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ABSTRACT

Actor-critic methods constitute a central paradigm in reinforcement learning (RL),
coupling policy evaluation with policy improvement. While effective across many
domains, these methods rely on separate actor and critic networks, which makes
training vulnerable to architectural decisions and hyperparameter tuning. Such
complexity limits their scalability in settings that require large function approxima-
tors. Recently, diffusion models have recently been proposed as expressive policies
that capture multi-modal behaviors and improve exploration, but they introduce ad-
ditional design choices and computational burdens, hindering efficient deployment.
We introduce Actor-Critic without Actor (ACA), a lightweight framework that
eliminates the explicit actor network and instead generates actions directly from
the gradient field of a noise-level critic. This design removes the algorithmic and
computational overhead of actor training while keeping policy improvement tightly
aligned with the critic’s latest value estimates. Moreover, ACA retains the ability to
capture diverse, multi-modal behaviors without relying on diffusion-based actors,
combining simplicity with expressiveness. Through extensive experiments on
standard online RL benchmarks, ACA achieves more favorable learning curves and
competitive performance compared to both standard actor-critic and state-of-the-art
diffusion-based methods, providing a simple yet powerful solution for online RL.

1 INTRODUCTION

Actor-critic methods represent a foundational paradigm in reinforcement learning (RL), in which a
critic estimates action values under the current policy and an actor updates the policy toward higher-
value actions (Sutton et al., 1998; Konda & Tsitsiklis, 1999). This alternating cycle of evaluation
and improvement is theoretically grounded and has demonstrated strong empirical success across
diverse domains (Mnih et al., 2016; Lowe et al., 2017; Haarnoja et al., 2018a;b; Espeholt et al., 2018).
However, the alternating updates increase algorithmic complexity, requiring careful tuning of network
architectures and learning rates for stability (Andrychowicz et al., 2021), while doubling computation
and memory demands, making actor-critic methods less attractive in domains requiring large function
approximators (Ouyang et al., 2022; Rafailov et al., 2024). Moreover, the gradual policy updates
required by the actor contrast with (Q-learning’s direct maximization of the critic, resulting in slower
policy improvement as the actor cannot instantly incorporate the critic’s latest estimates.

Recent advances have introduced diffusion models as powerful policy parameterizations for RL (Wang
et al., 2022; Chen et al., 2022; Lu et al., 2023; Chen et al., 2023; 2024; Zhu et al., 2024; Zhang et al.,
2024; Ren et al., 2024; Lu et al., 2025). These models generate actions by progressively denoising
Gaussian noise over a sequence of timesteps, enabling expressive multi-modal action distributions
well-suited for complex control. In the offline setting, this expressivity enables diffusion policies to
recover high-return trajectories from heterogeneous datasets and surpass unimodal Gaussian policies.
This benefit extends to online RL as well, where diffusion policies promote broader exploration and
better mode coverage (Wang et al., 2024; Yang et al., 2023; Psenka et al., 2023; Ding et al., 2024).

Although diffusion-based policies provide strong expressivity for modeling complex, multi-modal
action distributions, their deployment in online RL introduces substantial practical challenges. In
particular, they rely on large denoising networks that significantly increase memory consumption and
training time, and often require additional approximations that introduce bias into policy updates (Ma
et al., 2025). These factors complicate implementation, exacerbate computational overhead, and
ultimately limit scalability in settings where efficient and lightweight adaptation is crucial.
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Figure 1: Comparison between standard actor-critic methods and the proposed Actor-Critic without
Actor (ACA). Standard methods maintain both an actor and a critic, adding complexity and overhead,
whereas ACA eliminates the actor and achieves policy improvement via critic-guided denoising.

To address these limitations, we introduce Actor-Critic without Actor (ACA), a lightweight frame-
work that eliminates the explicit actor network and relies solely on the critic. Inspired by guidance
techniques in diffusion-based offline RL, ACA reformulates action sampling as a critic-guided de-
noising process, where actions are obtained directly from the gradient field of a noise-level critic. A
key distinction of ACA is that it preserves the multi-modal behavior inherent to diffusion models
without requiring a separately parameterized, computationally heavy actor. Removing the actor not
only reduces model complexity but also ensures that diverse action modes are faithfully represented
through the critic alone. Moreover, this mechanism replaces standard policy improvement with
gradient-based refinement, keeping sampled actions remain aligned with up-to-date value estimates
and thereby eliminating the policy lag. Through this design, ACA achieves improved learning curves
and competitive performance on MuJoCo continuous control benchmarks compared to both standard
actor-critic methods and diffusion-based approaches, while requiring substantially fewer parameters.

2 PRELIMINARIES

Reinforcement learning (RL) We consider the RL problem under a Markov Decision Process
(MDP) M = {S, A, P,r,7,po}, where S is the state space, A is the action space, P(s'[s,a) is
the transition probability, (s, a) is the reward, py is the initial-state distribution, and y € [0,1) is
the discount factor. The goal of RL is to learn a policy that maximizes the expected cumulative
discounted reward in MDP. For a policy 7(als), the state-action value is defined as Q7 (s,a) =
E 22 77 r(sr,ar)|so = s,ag = a, m, P], where 7 denotes environment timesteps in RL. A central
principle of RL is the policy iteration framework, which alternates between two steps. First, policy
evaluation estimates Q™ for a fixed policy, typically by iterating the Bellman operator

(T™Q)(s,a) =7(s,a) + YEg o p([s,a),a’~r(-|s) [Q(s", Q)] )]

Second, policy improvement updates 7 toward actions that maximize the expected )-value, e.g.,
m(-|s) + argmax, Q(s,a). Actor-critic methods instantiate this paradigm in a parametric form:
the critic approximates Q™ via Bellman backups, while the actor is updated using the critic’s value
estimates, thereby coupling policy evaluation and improvement in a single learning loop.

Denoising diffusion probabilistic models (DDPMs) DDPMs (Ho et al., 2020) are a class of
generative models that construct samples through a Markov forward-reverse process. In the forward
process, Gaussian noise is incrementally added to a clean data sample xg over 7' timesteps, according
to q(x¢|xt—1) := N(x¢;v/1 — Bex¢—1, B:I), where 8; € (0,1) is a predefined variance schedule
and t denotes the diffusion timestep. Importantly, this process admits a closed-form expression for
sampling x; from xg at any timestep ¢, q(x¢|xg) := N (x¢; /@rxo, (1 — @ )I), with oy := 1 — ;
and &y = Hi:l as. The reverse process starts from standard Gaussian noise x7 ~ A (0, 1) and
progressively denoises through a parameterized Markov chain:

1 B
= — - —— .t , h ~ N(0,1), 2
Xi_1 N (xt meg(xt )) + 0.z, where z (0,1) 2)
where the variance is fixed as o7 = 11_;321 B¢. The diffusion model ¢y is trained to approximate the

added noise by minimizing a simplified surrogate objective derived from a variational bound:

ExgnB,emN (0,1) t~td[1,T] [HE —€p (Varxo + V1 — ae, t) Hz} . 3
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Classifier guidance Diffusion models incorporate guidance mechanisms that bias the generative
process toward samples aligned with a desired label (Ho & Salimans, 2022; Dhariwal & Nichol,
2021). Classifier guidance (Dhariwal & Nichol, 2021) trains a noise-level classifier py(y|x;,t)
to predict labels from noisy inputs x;, and its gradient Vy, log pe(y|x¢,t) is used to steer the
diffusion sampling process toward the target class y. The guided noise prediction is defined as
€(x¢,t) = €g(x¢,t) — wo Vi, log ps(y|x¢,t), where w > 0 denotes a guidance weight. Here, g
is the noise-prediction network of the diffusion model, and € is the guided variant incorporating
classifier gradients. Since diffusion models can be viewed as score estimators (Song et al., 2020),

with Vi, log pi(xt) = —€*(x¢,t) /01 = —€g(X¢,t) /0y, classifier guidance can be reformulated from
the perspective of score functions:

Vi, log pi(xt) = Vi, log prg(xt) + wVx, log pe(y[xe,t) 4)
3  METHOD

3.1 CLASSIFIER-GUIDANCE IN ONLINE RL

Diffusion models have recently been adopted in offline RL as a natural framework for capturing
the multi-modal structure of action distributions and mitigating out-of-distribution issues (Wang
et al., 2022; Chen et al., 2022; Kang et al., 2023). Among various approaches, diffusion guidance
methods have proven effective in directing behavior-cloned diffusion models toward high-return
actions (Janner et al., 2022; Ajay et al., 2022; Lu et al., 2023; 2025; Frans et al., 2025). Specifically,
in classifier guidance, the score function for a noisy action a; at diffusion step ¢ is refined as follows:

Va, log i (afs) = Va, log 7 6(acls) + wVa, log ps(ylat, s, t) )
Here, the variable y in the classifier py(y|as, s, t) is defined as a binary optimality variable, with
y € {0,1} and y = 1 indicating that the action a; at (s, t) is optimal. We model this classifier
in an energy-based form as p,(y = 1|ag, s, t) o« exp (Qg4(s,as, t)), where Q4(s, a;, t) denotes a
noise-level critic that conditions on both the noised action a; and the diffusion timestep ¢. Under this
definition, the gradient of the classifier’s log-likelihood becomes

vat Ingti)(y = 1|at,svt) = vatQ¢(saat,t)a (6)
which shows that the gradient from the classifier aligns with the critic gradient. Thus, we can rewrite
the Equation (5) as follows:

Va, log 7ti(ai]s) = Va, logmg(acls) + wVa, Qe(s, as, t) @)
This gradient representation corresponds to the policy of the form 7;(a:|s) = mo(ails) -
exp(wQy(s,ar,t))/Zi(s), with Z,(s) = [ 7 g(arls) - exp(wQy(s, a, t))day, which in turn arises
as the solution of the KL-regularized optimization:

7ri(agls) = argmngSNB’atN,—r(_‘s) [Q¢(s,at,t) —w Dk (T’r(-|s)||7rt79(~|s))] 8)

This formulation maximizes the critic while constraining divergence from a reference policy m g, in
line with a behavior-regularized framework widely used in offline RL (Wu et al., 2019; Peng et al.,
2019; Xu et al., 2023; Frans et al., 2025; Ki et al., 2025).

However, in online settings such a reference is unavailable or restrictive, making entropy maximization
a natural alternative that encourages exploration. We therefore extend classifier guidance to the online
RL setting by replacing the KL constraint in Equation (8) with an entropy term:

7?rt(aﬂs) = arg m;LX ESNB’atNﬁ'HS) [Q¢ (S’ at, t) + w_l’}-[(ﬁ'(- |S))] &)
This represents the special case where 7 g in Equation (8) is uniform over actions, and the guided

policy consequently simplifies to a Boltzmann distribution, closely resembling the soft policies widely
adopted in online RL (Haarnoja et al., 2017; 2018a; Jain et al., 2024; Ma et al., 2025):

i (ag|s) = exp(wQy(s,ar, t))/Z,(s), where Z,(s) = /exp(wQ¢(s,at,t))dat. (10)

Differentiating the logarithm of the policy 7, yields
Va, log i (ai]s) = wVa, Qe(s, as, t). (11)
This formulation removes the dependence on the score network 7, ¢ in Equation (7) by allowing the

critic’s gradient field to directly guide the denoising process. Based on this observation, the resulting
denoising process can be expressed purely through the Q-function, as formalized below.
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Algorithm 1 Actor-Critic w/o Actor (ACA)

Input: Replay buffer B, guidance weight w, noise-level critic Q4 (s, a;, t), denoising step T
1: for each iteration do
2: for each sampling step do

Sample ag ~ 7 (+|s) by Definition 1

Execute ag, observe reward r and next state s’

Store transition (s, ag, r, s’) in buffer B

for each update step do
Sample minibatch from 5
Update Critic Q)4 with Equation (12)

AU

Definition 1 (Critic-guided denoising process). From Equation (11), the score can be equivalently
expressed in the form of a noise-prediction network

é(ar,s,t) = —woVa,Qo(s, a,t).

Substituting this guided noise into the reverse diffusion dynamics in Equation (2), the reverse process
can be reformulated directly in terms of the noise-level Q-function as:

1 Bt
a_q = Ta (at + Vi watVatQ(ﬁ(s,at,t)) + oz, z~N(0]I).

Starting from ar ~ N (0, 1) and iterating to t = 0, we define the induced policy ag ~ wq(-|s).

Definition 1 defines a denoising process guided directly by the gradient of the noise-level critic,
without requiring a separately trained noise-prediction network. The resulting policy g acts as an
implicit actor that generates actions by iteratively refining Gaussian noise under the critic’s gradient
field. In contrast to conventional actor-critic methods, where the explicit actor typically lags behind
the critic, mg maintains immediate alignment between sampled actions and the critic’s current value
estimates. This mechanism enables 7 to encourage both high-value and high-entropy behavior,
thereby achieving policy improvement without an explicit actor. Building on this formulation, we
introduce Actor-Critic without Actor (ACA), which eliminates the actor network entirely while
retaining policy improvement through the critic-guided denoising process.

3.2 ACTOR-CRITIC WITHOUT ACTOR

Based on Definition 1, we formalize ACA as an actor-critic algorithm in which the actor role is
entirely replaced by critic-guided denoising. The overall procedure is summarized in Algorithm 1,
highlighting the simplicity of our algorithm.

Critic objective The noise-level critic Q4 (s, at, t) is trained with a two-part objective that anchors
values at the denoised endpoint (¢ = 0) and propagates them to noisy timesteps (¢ > 0):

2
m(gn Es,ag,s’wl?,aéwﬂ'Q(-\s’) |:(Q¢(Sv ag, 0) - (7’(57 a()) + fYQgE (S/v aé)a 0)) ) :| (12)

2
+ Es ag~B,t~[1,T],e~N(0,1) [(Q¢ (57 Vagag + V1 — dt@t) — stop_grad(Qe(s,ao, 0))) } ;

where ) 5 is a target network and U[1, T'] denotes the uniform distribution over timesteps. The first
loss term corresponds to a standard temporal difference (TD) regression, with the only difference
being that the next action aj, is sampled by the implicit actor 7 rather than the explicit parameterized
policy. The second loss term regresses Q4 (s, a¢, t) toward the fully denoised value Q4(s, ag, 0) with
gradients stopped at the target, effectively transporting value information across the denoising chain.

Eliminating policy optimization A central contribution of ACA is the complete removal of the
explicit actor network. Conventional actor-critic frameworks must separately train an actor to track
the critic, which introduces additional optimization complexity, hyperparameter sensitivity, and
inevitable policy lag as the actor cannot instantly reflect the critic’s most recent updates. ACA
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Figure 2: Visualization of value maps in 2D bandit environment for noise-level (s, a;, t) across
different diffusion steps (t = 9, 6, 3, 0) compared to the standard Bellman critic Q(s, a). Detailed
setup in the 2D bandit environment is provided in Appendix A.l.

Q Value

circumvents these challenges by discarding the actor and directly generating actions through the
gradient field of a noise-level critic. This design ensures that behavior remains immediately aligned
with up-to-date value estimates, tightly coupling evaluation and improvement without the overhead
of actor optimization. As a result, ACA achieves a lightweight architecture that avoids the difficulties
of actor learning while consistently maintaining alignment between the critic and behavior.

Noise-level critic ; A crucial component of ACA is the noise-level critic Q(s, as, t), which
conditions on both the noised action a; and the diffusion timestep ¢. Unlike a standard Bellman critic
that only evaluates terminal actions, (); provides value estimates throughout the denoising process,
ensuring that guidance remains informative even under substantial noise corruption.

Proposition 1 (Noise-level critic consistency). For any fixed s, the population minimizer of the
noisy timestep loss (t > 0) satisfies

Q(S at, t) anwq(ao\at,s t) [Q(S, g, O)] .

Proposition 1 formalizes that (), approximates the conditional expectation of the terminal value
Q(s,ap,0) with respect to the posterior defined by the forward diffusion process. This regression
consistency induces a smoothing effect across noise levels, ensuring that gradients remain stable even
when a; lies in highly corrupted regions. Consequently, the gradient field V,, Q(s, a¢, t) provides
reliable guidance for denoising, enabling actions to converge toward globally consistent high-value
modes. As illustrated in Figure 2, this smoothing property allows value information to generalize
coherently across the entire diffusion chain, in contrast to the standard Bellman critic (s, a) that
lacks such noise-aware regularization.

Reward Diffusion-Q; (ACA) Diffusion-Q Langevin-Q

Reward

0.964 + 0.064 0.789 = 0.267 0.693 +0.291

Figure 3: Visualization of sampled actions ag obtained from different reverse processes in the 2D
bandit environment. The leftmost panel shows the reward landscape of the environment. White
dots denote initial samples ar, and arrows indicate their corresponding denoised actions ay (yellow)
guided by each method. The numbers below each plot show the mean reward + standard deviation,
computed over 10k denoised samples starting from ar ~ A(0,I). The detailed setup of the 2D
bandit environment is provided in Appendix A.1.

Illustrative examples The advantage of employing the noise-level critic is further illustrated
in Figure 3, which visualizes sampled actions from different reverse processes in the 2D bandit
environment. The figure compares three approaches: Diffusion-Q); (ACA), which performs denoising
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Reward

0

0.867 + 0.140

210 = 0.234 0.999 + 0.001 0.637 + 0.302

Figure 4: Visualization of sampled actions ay obtained from baseline algorithms (SDAC, QSM,
DACER, and DIPO) under the same 2D bandit setting as in Figure 3.

guided by the noise-level critic; Diffusion-(), which substitutes (); with a standard Bellman critic
@; and Langevin-(), which replaces the diffusion denoising process with Langevin dynamics. This
comparison isolates two factors: (i) the critic parameterization (Q; vs. @), and (ii) the choice of
reverse process. Diffusion denoising unfolds over multiple timesteps, where the variance schedule
gradually reduces noise, providing a multi-scale refinement of actions from coarse to fine resolutions.
In contrast, Langevin updates proceed at a single scale, applying the critic’s gradient directly at each
step. The detailed algorithm for Langevin-() is provided in Appendix C.

As illustrated in Figure 3, Diffusion-Q; (ACA) enables coarse-to-fine refinement of actions, providing
stable guidance throughout denoising and effectively steering samples toward distinct high-value
modes. This is achieved by conditioning value estimates on noise levels, with gradients adaptively
scaled by the variance schedule. In contrast, Diffusion-@), which lacks timestep conditioning, often
produces brittle gradients under high noise, making it prone to spurious local minima. Langevin-@)
applies gradients at a fixed scale, foregoing progressive rescaling and thus spreading samples broadly
across the action space without consistently capturing high-value modes. Overall, these comparisons
demonstrate that combining diffusion denoising with a noise-level critic yields well-conditioned
gradients and reliable coverage of high-value actions.

Multi-modal action coverage Multi-modality is a critical property of RL policies, as it allows
the representation of diverse high-value behaviors rather than collapsing into a single deterministic
solution (Haarnoja et al., 2017). Preserving multiple modes facilitates exploration of complex reward
landscapes, maintains behavioral diversity, and improves robustness to downstream tasks. Figure 3
demonstrates that ACA successfully captures all four high-value modes in the 2D bandit environment
by generating diverse actions through critic-guided denoising. In contrast, diffusion-based baselines
in Figure 4 collapse into a single dominant mode or yield uneven sample distributions.

Beyond qualitative comparisons in Figure 3 and 4, Table 1: Proportion of samples reaching each
Table 1 provides a quantitative evaluation of multi- high-value mode. Detailed explanation is pro-
modality in the 2D bandit environment. The table vided in Appendix A.2.

reports the proportion of samples reaching each of the

four high-value modes, measured over 10k samples  Method Proportions Sum
denoised from ar ~ N(0,I). DACER (Wang et al., “spac 0227 0227 0239 0234 0927
2024) collapses entirely into a single mode because ~ QSM 0.118 0.115 0.117 0.115 0465
o di : T, s DACER 0.000 1.000 0.000 0.000 1.000
it directly trains the diffusion model to maximize DIPO 0100 009 0104 0098 0401

@, which drives samples toward the highest-valued -

. . Langevin-Q  0.141 0.147 0.139 0.143  0.570
region and induces severe mode collapse. By contrast, Diffusion-Q 0141 0.182 0.160 0153 0.636
QSM (Psenka et al., 2023) and DIPO (Yang et al., ACA (Ours) 0240 0256 0243 0254 0.993
2023) do not leverage a noise-level critic )y, leading
to misaligned gradients during denoising and consequently insufficient coverage of high-value modes
(0.465 and 0.401). SDAC (Ma et al., 2025), on the other hand, preserves multi-modality more
effectively by employing a carefully devised diffusion training objective, achieving a score of 0.927.
Nonetheless, this comes at the cost of algorithmic complexity, as SDAC requires multiple auxiliary
tricks and incurs substantial computational overhead due to its diffusion actor. Unlike the baselines,
ACA employs a critic-guided denoising process in place of an explicit actor network, thereby avoiding
high architectural complexity and achieving an aggregate score of 0.993 with nearly uniform sample
proportions across all four modes (/0.25).
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Figure 5: Training performance on OpenAl Gym MuJoCo environments. Each curve reports the
mean return over 5 random seeds, with shaded regions denoting the 95% confidence interval.

Summary Standard actor-critic methods incur substantial algorithmic overhead, which is further
amplified when diffusion models are used as actors due to their large networks and additional
design complexity. ACA circumvents such burdens by eliminating the explicit actor network and
instead generating actions directly from the gradient field of a noise-level critic, ensuring immediate
alignment between actions and value estimates. The noise-level critic further stabilizes training by
propagating terminal values across noise levels, yielding well-conditioned gradients even under severe
corruption. Moreover, ACA faithfully preserves the multi-modal structure of action distributions,
enabling balanced coverage of diverse high-value behaviors and robust exploration.

4 EXPERIMENTS

4.1 ONLINE RL

We evaluate the online RL performance of ACA on a suite of MuJoCo control tasks from OpenAl
Gym. As baselines, we consider the standard off-policy actor-critic algorithm SAC (Haarnoja
et al., 2018a) along with several diffusion-based actor-critic methods: QSM (Psenka et al., 2023),
DIPO (Yang et al., 2023), QVPO (Ding et al., 2024), DACER (Wang et al., 2024), and SDAC (Ma
et al., 2025). Additional experimental details are provided in Appendix D.1.

Figure 5 shows training curves across 10 tasks. Algorithms are trained for 1M steps on six
environments (Ant-v4, HalfCheetah-v4, Hopper-v4, Walker2d-v4, Humanoid-v4,
and Swimmer-v4) and for 200k steps on four environments (Pusher-v4, Reacher-v4,
InvertedPendulum-v4, and InvertedDoublePendulum-v4). ACA achieves faster per-
formance gains with fewer interactions than baselines, while attaining competitive or superior final re-
turns. Table 2 further reports performance at 100k steps, highlighting ACA’s advantage in early-stage
learning. Although ACA exhibits slower improvement than DIPO and SDAC on Humanoid-v4, it
remains more parameter-efficient and achieves stronger results across the other environments. These
improvements stem from ACA’s actor-free design, which eliminates policy lag and aligns sampled
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Table 2: Performance at 100k steps, reported as mean return & 95% confidence interval over 5 seeds.

w/ Actor w/o Actor
SAC QSM DIPO DACER QVPO SDAC ACA
Ant-v4 884 + 44 397 + 36 932 +33 2623 +758 380 + 363 811 £113 3044 + 504
HalfCheetah-v4 5691 + 659 8389 + 614 5831+ 782 8990 4+ 696 5622 +943 10364 + 835 11206 + 575
Hopper-v4 962 + 1056 1366 +428 664 + 354 2420 +£740 61 + 103 1538 £ 665 2960 + 312

Walker2d-v4 2262 £611 755+283 776 £363 621 £319 325+190 1816 +898 3510 + 332
Humanoid-v4 780 £317 1226 £298 2217 £955 522+ 326 321 £78 2274 £420 1513 £ 665
Swimmer-v4 420+£52 453+1.1 422407 530+67 473+£08 537+54 72.0 +29.2

halfcheetah-random-v2 halfcheetah-medium-v2 halfcheetah-medium-replay-v2
2 0.9 0.9 0.9
o
&
5 0.6 0.6 0.6
N
T 0.3 0.3 0.3
S
=
1 2 1 2 1 2
Iterations le5 Iterations le5 Iterations le5
ACA (Ours) cQL IQL RLPD WSRL Cal-QL

Figure 6: Training performance on Hal fCheetah—-v2 environment with each suboptimal offline
dataset. Each curve reports the mean return over 5 random seeds with 95% confidence interval.
Results are shown for the online training phase, while offline pre-training is omitted.

actions immediately with critic updates, as well as from its critic-guided denoising mechanism, which
preserves multi-modality and supports a balanced exploration—exploitation trade-off. Overall, ACA
is both sample-efficient and capable of attaining favorable learning curves than competing baselines.

Beyond performance, we also evaluate the model complexity of ACA Table 3: Normalized pa-
relative to baseline methods. Table 3 reports parameter counts in the rameter counts.

Humanoid-v4 environment, where ACA requires substantially fewer “prethod # Params
parameters as a result of removing the explicit actor network. While ACA SAC 1000
uses only 475k parameters (0.677), which is substantially smaller than QSM 1,000
diffusion-based algorithms such as QSM, DIPO, DACER, QVPO, and DIPO 1.012
SDAC, and even smaller than SAC with 702k parameters (normalized to ~ DACER 1.008
1.0). This lightweight design reduces architectural and hyperparameter ~ QVPO 1.007

. . . e .. C g SDAC 1.007
complexity while maintaining competitive performance, establishing
ACA as a practical alternative to actor-based methods. ACA (Ours)  0.677

4.2 ONLINE RL WITH OFFLINE DATASETS

We further evaluate ACA against offline-to-online baselines to assess whether it achieves more favor-
able learning curves while maintaining efficiency in settings where sample efficiency is particularly
critical. The baselines include the offline RL algorithms CQL (Kumar et al., 2020) and IQL (Kostrikov
et al., 2021), the offline-to-online algorithms Cal-QL (Nakamoto et al., 2023) and WSRL (Zhou
et al., 2024), and the efficient online RL algorithm RLPD (Ball et al., 2023), which learns entirely
from scratch by constructing each mini-batch as an equal mixture (50/50) of samples from the offline
dataset and the online replay buffer. In this setup, ACA adopts the same protocol as RLPD, starting
directly from online learning without offline pre-training. By contrast, CQL, IQL, Cal-QL, and
WSRL are trained for 250k offline steps before transitioning to the online phase. Moreover, whereas
all baselines employ ensembles of ten (Q-networks, ACA relies only on a standard double-Q) setup.
As shown in Figure 6, ACA consistently matches or outperforms these algorithms across diverse sub-
optimal dataset conditions, while maintaining efficiency by avoiding large ensembles and operating
without any offline pre-training. Detailed experimental settings are provided in Appendix D.2.

4.3 ABLATION STUDIES

We conduct ablation studies to examine the effect of the guidance weight w and the number of denois-
ing steps T' on ACA’s performance. As shown in Figure 7, we sweep w € {1, 5,10, 30,50, 100} and
T € {5,10,20, 50,100} while keeping other hyperparameters fixed. The guidance weight controls
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Figure 7: Performance of ACA across MuJoCo environments under varying guidance weight w and
denoising steps 7', evaluated at 200k steps. The default hyperparameters are highlighted in red.

the balance between (J-maximization and entropy maximization: small values (w = 1, 5) emphasize
entropy and induce overly exploratory behavior, whereas large values (w = 100) suppress exploration
and yield greedy actions. Intermediate settings (w = 30, 50) provide the best trade-off. For denoising
steps, small values (T' = 5, 10) result in poor performance, while larger values yield comparable
returns. A setting of T' = 20 offers strong performance with higher efficiency, making it the most
practical choice.

5 RELATED WORKS

Diffusion models in offline RL.  Diffusion models have recently been established as powerful policy
representations in offline RL, providing a natural way to capture multi-modal behaviors. Wang et al.
(2022) introduce conditional diffusion models that combine behavior cloning with Q-learning to
achieve strong performance. Janner et al. (2022) propose trajectory-level denoising for planning,
enabling long-horizon reasoning and flexible goal conditioning. Chen et al. (2023) present a behavior-
regularized policy optimization framework based on a pretrained diffusion behavior model, and Lu
et al. (2023) formulate energy-guided sampling to realize principled ()-guided optimization.

Diffusion models in online RL.  In online RL, diffusion policies have been adapted to support con-
tinual interaction and efficient policy improvement. Yang et al. (2023) establish the first formulation
of diffusion policies with convergence guarantees. Ding et al. (2024) propose a variational lower
bound on the policy objective, enabling sample-efficient online updates with entropy regularization.
Wang et al. (2024) treat the reverse process itself as the policy, introducing adaptive exploration
control through entropy estimation. Most recently, Ma et al. (2025) generalize denoising objectives
to train policies directly on value-based targets, yielding efficient online algorithms.

6 CONCLUSION AND LIMITATIONS

In this work, we introduce Actor-Critic without Actor (ACA), a lightweight framework that
eliminates the explicit actor network and replaces standard policy improvement with critic-guided
denoising. Through extensive experiments, we show that ACA achieves more favorable learning
curves and shows competitive or superior performance compared to both standard actor-critic methods
and diffusion-based approaches, while requiring fewer parameters and simpler training.

Limitations Despite these advantages, ACA requires sampling actions through an iterative de-
noising process when training the critic with the Bellman operator, which is computationally more
expensive than algorithms such as SAC or PPO (Schulman et al., 2017) that do not rely on iterative
denoising. Moreover, ACA currently lacks an automatic mechanism for adjusting the guidance weight
w, which must be tuned manually, similar to entropy regularization in other RL algorithms (Schulman
et al., 2017; Psenka et al., 2023; Ding et al., 2024). Future work includes extending ACA with
soft Q)-functions (Haarnoja et al., 2017; 2018a) to better capture entropy-regularized objectives and
developing adaptive strategies for automatic guidance-weight tuning.
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A IMPLEMENTATION DETAILS IN 2D BANDIT ENVIRONMENTS

A.1 ENVIRONMENT SETTINGS

We design a multi-modal reward function based on a mixture of Gaus-
sian distributions, as illustrated in Figure 8. The reward corresponds
to the probability density of this mixture, resulting in a landscape with
eight modes, each represented by an isotropic Gaussian with covariance
0.321. To induce asymmetry, alternating weights of 2 and 1 are assigned
to the modes, which are positioned on a circle of radius V2 at coordi-
nates [(\/ia 0)7 (17 1)7 (07 \/5)7 (717 1)v (7\/57 O)a (71a 71)7 (07 7\/5)7
(1, —1)]. This arrangement produces alternating high- and low-reward
regions around the circle. The reward values are normalized so that the
maximum equals 1.0. This structure highlights how ACA’s smooth value
function helps avoid convergence to local optima by effectively navigating
multiple reward modes across the state space.

Reward

Figure 8: Reward map.

Training details We select the guidance weight w for Diffusion-@Q; (ACA), Diffusion-@), and
Langevin-@) by measuring the average reward over 10k samples for w € [1, 400]. The optimal values
obtained from this sweep are used in the evaluations and action sampling shown in Figure 3.

A.2 EVALUATION OF MULTI-MODALITY

In Table 1, we report the proportion of samples assigned to each high-value mode for all methods.
Sampling starts by drawing ar ~ A/(0,I) and propagating through each algorithm’s sampling
process. The four proportions correspond, in order from left to right, to the top, right, bottom, and left
high-value modes. Each proportion is computed as the ratio of samples lying within an Lo-distance

of 0.3 from the mode center to the total number of samples (10k).
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B FULL VISUALIZATIONS ON 2D BANDIT ENVIRONMENT

To reveal the intermediate denoising samples not shown in Figure 3 and Figure 4, we provide
visualizations at each denoising step. In this setting, initial actions ap are sampled from a grid rather

than the standard normal distribution, and we fix the number of denoising steps to 7' = 10 for all
baselines.

Reward

0

Figure 9: Initial samples az.

Step 7

Figure 10: Visualizations of our method (ACA).

Step 9 Step 8 Step 7 Step 6
— -

Figure 11: Visualizations of Diffusion-Q.
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Figure 12: Visualizations of Langevin-@Q).

Step 9 Step 8 Step 7 Step 6 Step 5

Step 0

Figure 13: Visualizations of SDAC.

Step 8 Step 7 Step 6

Figure 14: Visualizations of DACER.

Step 9 Step 8 Step 7 Step 6 Step 5

Figure 15: Visualizations of QSM.
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Figure 16: Visualizations of DIPO.

C CRITIC-GUIDED LANGEVIN DYNAMICS

Algorithm 2 Langevin-Q)

Input: Replay buffer B, step size €, guidance weight w, critic Q4 (s, a), denoising step T'
1: for each iteration do
2: for each sampling step do

Sample ag ~ 77, (+|s) by Definition 2

Execute ag, observe reward r and next state s’

Store transition (s, ag, 7, s’) in buffer B

for each update step do
Sample mini-batch from B

. . 2
Update Critic Qg With Eg o, s ~8,a)~mp (-|s') [(Q¢(s, ag) — (7"(57 a) +7Q4(s, aa))) }

® DNk

Instead of relying on the diffusion models’ denoising process, one can sample from the Boltzmann
policy m(als) = exp (wQ(s,a)) /Z(s), where Z(s) = [ exp(wQ(s,a))da, using Langevin dynam-
ics. Langevin dynamics generates samples from a target distribution p(x) given access to its score
Vx log p(x). With a fixed step size € > 0, the reverse process is defined as:

€
Xi_1 =X; + ivx log p(x¢) + ez,

where z; ~ N(0,I). Ase — 0 and T' — oo, the distribution of x7 converges to p(x) under mild
regularity conditions (Welling & Teh, 2011). In practice, approximate samples can be obtained
with finite 7" and sufficiently small e. Applying this principle to the Boltzmann policy 7(als)
exp(wQ(s,a)), we obtain the following sampling process:

Definition 2 (Critic-guided Langevin dynamics). Starting from Gaussian noise ar ~ N(0,1) and
applying the reverse Langevin update

€
a1 = at+ §’wan(S7at)+ﬁZt, Z NN(OaI)a
sequentially fort =T — 1, the resulting action is distributed as

ag ~ mr([s),

where 1, denotes the implicit policy induced by the Langevin sampling procedure.

Unlike the diffusion-based reverse process in Definition 1, this approach requires only a standard
critic Q4 (s, a) trained via the Bellman operator, without introducing a noise-level critic Q4 (s, a, t).
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D EXPERIMENTAL DETAILS

D.1 ONLINE RL

Following Ma et al. (2025), we employed vectorized environments across five tasks. Consequently,
the 1M training iterations reported in Figure 5 correspond to a total of SM environment interactions.
The hyperparameter configurations for the baseline algorithms are provided in Table 4, while those
for ACA are summarized in Table 5. For the Humanoid-v4 environment, we set the target entropy
to —0.5 - dim(.A) and the guidance weight to w = 60.0.

Table 4: Baseline algorithms’ hyperparameter settings.

Hyperparameter SDAC QSM DIPO DACER QVPO SAC
Replay buffer capacity le6 le6 le6 le6 le6 le6
Buffer warm-up size 3e4 3e4 3e4 3e4 3e4 3e4
Batch size 256 256 256 256 256 256
Discount factor y 0.99 0.99 0.99 0.99 0.99 0.99
Target update rate 7 0.005 0.005  0.005 0.005 0.005 0.005
Reward scale 0.2 0.2 0.2 0.2 0.2 0.2
No. of hidden layers 3 3 3 3 3 3
No. of hidden nodes 256 256 256 256 256 256
Activations Mish ReLU Mish Mish Mish GELU
Diffusion steps 20 20 100 20 20 N/A
Action gradient steps N/A N/A 30 N/A N/A N/A
No. of Gaussian distributions N/A N/A N/A 3 N/A N/A
No. of action samples N/A N/A N/A 200 N/A N/A
Noise scale 0.1 N/A N/A 0.1 N/A N/A
Optimizer Adam Adam Adam Adam Adam Adam
Actor learning rate 3e-4 3e-4 3e-4 3e-4 3e-4 3e-4
Critic learning rate 3e-4 3e-4 3e-4 3e-4 3e-4 3e-4
Alpha learning rate Te-3 N/A N/A 3e-2 N/A 3e-4
Target entropy -0.9 -dim(4) N/A N/A  -0.9 - dim(A) N/A  -dim(A)
No. of batch action sampling 32 32 N/A N/A 32 N/A

Table 5: ACA’s hyperparameter settings.

Hyperparameter ACA
Replay buffer capacity le6
Buffer warm-up size 3e4
Batch size 256
Discount vy 0.99
Target network soft-update rate p 0.005
Reward scale 0.2
No. of hidden layers 3
No. of hidden nodes 256
Activations in critic network Mish
Diffusion steps 20
Critic delay update 2
Optimizer Adam
Guidance weight 50
Critic learning rate le-3
No. of batch action sampling 32
Alpha learning rate 3e-2
Target entropy —0.9 - dim(A)
Noise scale 0.1
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D.2 ONLINE RL wWITH OFFLINE DATASETS

Following Zhou et al. (2024), the WSRL experiments in Figure 6 employ pre-trained policies and
value functions obtained through CQL-based offline training rather than Cal-QL. This choice is
motivated by the nature of the offline datasets, which contain dense rewards and lack terminal
states, thereby precluding the availability of ground-truth return-to-go values required for the Cal-QL
regularizer.

E PRACTICAL IMPLEMENTATIONS

Batch action sampling For each state s, we generate N candidate actions by sampling Gaussian
noise vectors ar ~ A(0,I) and applying the denoising process. From these candidates, we select
the action ag that maximizes the terminal value Q(s, ag, 0). This sampling-selection strategy, also
employed in prior diffusion-based RL methods (Ding et al., 2024; Ma et al., 2025), mitigates the
stochasticity of the denoising process and facilitates more reliable exploitation. Furthermore, we
add a Gaussian noise with an adaptively tuned noise level, following the approaches of Wang et al.
(2022); Ma et al. (2025).

Q@Q-gradient normalization To further stabilize training, we normalize the critic gradient during
denoising updates:

vatQ¢(Svatvt) <~ vatQ(ﬁ(S»atvt)/ (Hvathf)(svatvt)” + 6) .

This normalization prevents excessively large or uneven gradient magnitudes, which could otherwise
lead to unstable updates. By ensuring a consistent scale, the denoising dynamics remain stable and
the critic can learn smoother value estimates.

F USE OF LARGE LANGUAGE MODELS

In this work, large language models (LLMs) were employed in a limited capacity to assist with
grammar correction, sentence refinement, and to improve the overall readability of the paper.
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