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Abstract001

Causal discovery (CD) is the challenging task of infer-002
ring causal connections between a set of variables from003
data [4, 14]. Most traditional approaches to CD con-004
sider data from pure observations of the investigated sce-005
nario. These are approaches such as constraint-based ones006
[6, 12], score-based ones [3], and more recently continuous007
optimization-based ones [15, 16].008

In the context of CD, Pearl’s Causal Hierarchy (PCH)009
asserts that distinguishing between mere correlations and010
genuine causal relationships requires considering interven-011
tions in general [1]. As a response to this requirement, there012
has been a recent push to incorporate interventions into013
causal discovery research [5, 9] including machine learning014
[2, 7, 11], among others.015

Reinforcement learning (RL) learns an optimal policy016
for sequential decision problems through interactions [13].017
Therefore, RL is a promising framework for using interven-018
tions to investigate causal relationships by framing CD as a019
sequential decision problem. In particular, RL plays a dual020
role in the realm of causal discovery - it can be used not021
only to recover the causal structure of an environment [17],022
but also to learn causal discovery algorithms [11], thus rep-023
resenting a versatile tool for CD.024

Although causal discovery has seen substantial progress,025
challenges persist in areas such as scalability, general-026
ization, and planning of interventions. In this con-027
text, this paper introduces CORE (Causal DiscOvery with028
REinforcement Learning), a deep-RL-based [10] approach029
designed for the task of learning a CD algorithm. CORE030
learns a policy that sequentially reconstructs causal graphs031
from both observational and interventional data, while si-032
multaneously performing informative interventions. By033
providing a limited horizon, these interventions and the034
number of samples are highly budgeted, which is desirable035
in CD in general. The dual learning paradigm allows CORE036
not only to uncover causal structures efficiently, but also to037
identify interventions that enhance its causal models. The038
following lists our main contributions:039

• We formalize the task of learning a CD algorithm as a 040
partially observable Markov decision process (POMDP). 041

• We propose a dual Q-learning setup to simultaneously 042
learn intervention design and structure estimation more 043
efficiently. 044

• We demonstrate that CORE can be successfully applied 045
for causal discovery to previously unseen graphs of sizes 046
of up to 10 variables. 047

In addition, we show the importance of jointly learning 048
which interventions to perform and graph generation and 049
investigate the limitations of our approach regarding its ap- 050
plicability to the real world. 051

The most distinctive feature of CORE is that it does not 052
impose a specific algorithm for identifying causal models, 053
but rather attempts to learn it. This can have positive ef- 054
fects on efficiency and transferability to new problem in- 055
stances. While MCD [11] and AVICI [8] solve the same 056
task, they run into pitfalls that hinder their application to re- 057
alistic graph sizes or rely on offline data, respectively. We 058
set steps to overcome these pitfalls by imposing additional 059
structure on our policy, more efficient rewards, and learning 060
to actively perform relevant interventions. 061

Our results show robust generalization to unseen graphs 062
and the capability to scale to scenarios with up to ten vari- 063
ables, a step forward over the state of the art of learning CD 064
algorithms, and a crucial advancement towards addressing 065
real-world complexities. The joint learning of intervention 066
selection and graph generation is shown to be crucial. 067

Overall, CORE provides an automated and adaptable ap- 068
proach for uncovering causal relationships in complex sys- 069
tems. This aligns well with the goals of object-centric rep- 070
resentations and causal reasoning for robotics, where ro- 071
bust and efficient structure learning from interaction data is 072
key. Although limited, the scalability demonstrated is rele- 073
vant for some real-world robotic domains. This work was 074
recently accepted at AAMAS 24 and code is available at 075
https://anonymous.4open.science/r/CORE- 076
C0BF/. We believe it makes a strong contribution towards 077
the workshop’s aim of advancing causal learning for em- 078
bodied AI. 079
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