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Abstract
Prompting has recently been shown as a promis-001
ing approach for applying pre-trained language002
models to perform downstream tasks. We003
present Multi-Stage Prompting, a simple and004
automatic approach for leveraging pre-trained005
language models to translation tasks. To better006
mitigate the discrepancy between pre-training007
and translation, MSP divides the translation008
process via pre-trained language models into009
three separate stages: the encoding stage, the re-010
encoding stage, and the decoding stage. During011
each stage, we independently apply different012
continuous prompts for allowing pre-trained013
language models better shift to translation tasks.014
We conduct extensive experiments on three015
translation tasks. Experiments show that our016
method can significantly improve the transla-017
tion performance of pre-trained language mod-018
els.019

1 Introduction020

Prompting (Brown et al., 2020; Lester et al., 2021),021

which refers to the approach of generating task-022

specific outputs from language models (LMs)023

by conditioning on extra information (known as024

prompts), has emerged as a new way of using025

LMs to perform natural language processing (NLP)026

tasks (Gao et al., 2020; Liu et al., 2021). While027

being efficient in parameters (Lester et al., 2021),028

prompting can enable mixed-task inference, which029

is not possible for other related approaches like030

finetuning or adapter-based tuning (Li and Liang,031

2021; Lester et al., 2021). Prompting also opens032

the possibility of using a single pre-trained LM to033

perform all NLP tasks (Liu et al., 2021).034

Machine translation (MT), which involves trans-035

formations between two languages, is considered036

one of the most challenging tasks in NLP (Koehn037

and Knowles, 2017). While neural machine trans-038

lation (NMT) (Sutskever et al., 2014; Bahdanau039

et al., 2015; Vaswani et al., 2017) is the current040

de facto approach for machine translation, using041

pre-trained LMs as translators via prompting is ap- 042

pealing in several aspects. For example, for the 043

method described in this paper, supporting a new 044

translation direction with a pre-trained LM occu- 045

pies disk spaces below 20M, which is much smaller 046

than training a separate neural machine translation 047

model, where the model size is typically larger than 048

60M per language pair for the Transformer archi- 049

tecture. 1 Furthermore, the pre-trained LM also re- 050

tains the ability to perform other downstream tasks, 051

which is an important characteristic that has not 052

been validated available on neural machine transla- 053

tion models. 054

However, it is challenging to leverage pre-trained 055

LMs to translation tasks via prompting. First, find- 056

ing an appropriate prompt for a translation task 057

is not trivial and requires specific designs (Brown 058

et al., 2020; Gao et al., 2020; Li and Liang, 2021; 059

Lester et al., 2021). Second, the prompting method 060

with a single prompt may be sub-optimal for steer- 061

ing pre-trained LMs to translation tasks, as there 062

is a clear discrepancy between the objectives of 063

translation and pre-training. Translation imposes 064

strict semantic equivalence and language space 065

constraint, in which a source sentence must trans- 066

late to a semantically equivalent sentence in the 067

target language space. As the objective of pre- 068

training is usually to reconstruct parts of the in- 069

put sentence (Radford et al., 2018; Devlin et al., 070

2019), the generation of a pre-trained LM condi- 071

tioned on a source sentence will likely be in the 072

source language space with non-equivalent seman- 073

tics. Therefore, using a single prompt to guide the 074

LM for mitigating both the semantic and language 075

gap is likely to be sub-optimal. Third, prevalent 076

generative LMs such as GPTs use a decoder-only 077

architecture (Radford et al., 2018), which is uni- 078

directional and may be sub-optimal for encoding 079

source sentences (Devlin et al., 2019). While re- 080

1Assume using the transformer-base setting with a vocab-
ulary size of 32K.

1



mGPT

x1 x2 x3 <S> y1 y2 y3

y1 y2 y3 </S>

Prompt

Inputs

Positions 1 2 3 4 5 6 7

(a) Basic (single-stage) prompting for MT.
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(b) Multi-stage prompting.

Figure 1: Overview of using prompts for steering a multilingual GPT (mGPT) model to machine translation tasks.
Note that we reset the position ids during each stage in multi-stage prompting for ease of implementation. All stages
use the same mGPT model.

cent works in prompting like prefix-tuning (Li and081

Liang, 2021) or prompt-tuning (Lester et al., 2021)082

alleviate the first challenge by introducing differen-083

tiable continuous prompts, the last two challenges084

remain to be addressed.085

In this paper, we present Multi-Stage Prompting086

(MSP) for addressing the challenges of steering087

pre-trained language models to translation tasks.088

MSP encapsulates the idea of breaking transla-089

tion tasks into simpler consecutive stages, allow-090

ing the pre-trained LM to learn “smoother transi-091

tions” to translation tasks by providing different092

prompts at different stages. For GPT-style pre-093

trained LMs, we design a three-stage prompting094

scheme for modeling the translation process, which095

consists of an encoding stage, a re-encoding stage,096

and a decoding stage. Specifically, the pre-trained097

LM focuses on learning source representations098

at the encoding stage and learns refined bidirec-099

tional representations by re-encoding source sen-100

tences at the re-encoding stage. Therefore, the LM101

can produce better translations with refined source102

representations at the decoding stage. Following103

prefix-tuning (Li and Liang, 2021) and prompt tun-104

ing (Lester et al., 2021), we use independent train-105

able continuous prompts at different stages, which106

are learned through back-propagation. The differ-107

ence between basic (single-stage) prompting and108

multi-stage prompting is illustrated in Figure 1.109

We demonstrate the effectiveness of our method110

with a multilingual GPT (mGPT) model on111

Romanian-English, English-German, and English-112

Chinese translation tasks. Experiments verify that113

compared with prompt tuning or prefix-tuning,114

MSP can significantly improve the translation per-115

formance of pre-trained LMs. Our method im-116

proves the translation performance of pre-trained117

language models via prompt tuning and prefix-118

tuning by 18.6 and 4.1 BLEU points on average119

over the three translation tasks, respectively, sug- 120

gesting that MSP is a more effective prompting 121

method for translation tasks. 122

2 Background 123

2.1 Prompting 124

Prompting is an approach of using an LM to per- 125

form downstream tasks by adding extra informa- 126

tion for the LM to condition during its genera- 127

tion (Lester et al., 2021). This extra information, 128

also known as a prompt, plays an important role in 129

prompting methods and is often prepended to LM’s 130

input for better control of its generation. Depend- 131

ing on the form of prompts, prompting methods 132

can be divided into two categories: using textual 133

prompts or using continuous prompts. 134

Textual prompts are typically composed of natu- 135

ral language tokens. As a representative approach 136

of textual prompts, Brown et al. (2020) use manu- 137

ally designed prompts to steer GPT-3’s generation. 138

A typical prompt used in GPT-3 consist of a task 139

description and a few task-specific examples. Gao 140

et al. (2020) and Shin et al. (2020) propose differ- 141

ent automatic methods to generate textual prompts. 142

Textual prompts are typically understandable by 143

humans. However, Shin et al. (2020) indicate that 144

automatically generated textual prompts may lack 145

interpretability. 146

Continuous prompts, which consist of a se- 147

quence of continuous vectors, have gained increas- 148

ing popularity recently. For example, in (Li and 149

Liang, 2021), the continuous prompts consist of a 150

sequence of key-value pairs (also called prefixes). 151

Lester et al. (2021) propose a simplified version 152

of continuous prompts, which consists of virtual 153

tokens that are only added to the embedding layer. 154

Compared with textual prompts, using continuous 155

prompts is generally more powerful but less inter- 156

pretable (Lester et al., 2021). 157
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2.2 mGPT158

In this paper, we use GPT (Radford et al., 2018,159

2019; Brown et al., 2020) as the backbone LM for160

machine translation tasks. GPTs are a series of161

causal language models based on the Transformer162

architecture (Vaswani et al., 2017). To be more suit-163

able for translation tasks that involve multiple lan-164

guages, we introduce a multilingual GPT (mGPT)165

model instead of using a standard GPT-2 model.166

The main difference between mGPT and GPT-2167

is the training data. mGPT is trained on the mC4168

dataset (Xue et al., 2020), which is a multilingual169

dataset covering over 101 languages. For further170

details about mGPT, please refer to Appendix A.1.171

Let z = [z1, . . . , zn] be a sequence of tokens,172

mGPT uses an autoregressive Transformer network173

to model the conditional probability P (zt|z<t),174

where t ∈ [1, n] and z<t = [z1, . . . , zt−1]. We use175

fLM(z,H;θ) to denote the Transformer network,176

where z is a word embedding, H is a sequence of177

past activations, and θ denotes the parameters of178

the Transformer network.179

Initially, the inputs to the Transformer network180

are z1 and H0, where H0 is an empty sequence.181

The Transformer network produces two outputs:182

the final output g1 ∈ Rd and the activation h1 ∈183

R2N×d, 2 where d denotes the hidden size of the184

Transformer network and N is the number of layers185

of the Transformer network.186

For subsequent inputs zt and Ht−1, where187

Ht−1 = [h1, . . . ,ht−1], the computation is for-188

mally described as189

gt,ht = fLM(ezt ,Ht−1), (1)190

where ezt denotes the word embedding of zt. To191

make the notation simpler, we use the following192

equation to denote the repeated application of fLM193

over a sequence zi:j = [zi, . . . , zj ] given past acti-194

vations A:195

Gi:j ,H i:j = fLM(Zi:j ,A), (2)196

where Zi:j = [ezi , . . . , ezj ], G
i:j = [gi, . . . , gj ],197

and H i:j = [hi, . . . ,hj ].198

Finally, the conditional probability P (zt|z<t) is199

modeled as follows:200

P (zt|z<t) =
exp (eTzt · gt)∑|V |
i=1 exp (e

T
zi · gt)

, (3)201

where |V | is the vocabulary size, and “·” denotes202

matrix production.203

2h is a concatenation of a set of key-value pairs
{⟨k(i),v(i)⟩|i = 1 . . . N} in the Transformer network.

p
(e)
1 p

(e)
2 x

(i)
1 x

(i)
2 x

(i)
3

x
(i+1)
1 x

(i+1)
2 x

(i+1)
3

p
(i)
1 p

(i)
2

p
(i+1)
1 p

(i+1)
2

x
(i)
1 x

(i)
2 x

(i)
3

x
(i+1)
1 x

(i+1)
2 x

(i+1)
3

Prompt Inputs

Figure 2: A deep continuous prompt is prepended to the
inputs in all attention layers, which affects the computa-
tion of all attention layers. We do not distinguish keys
and values for simplicity.

3 Multi-Stage Prompting 204

We propose multi-stage prompting (MSP), a sim- 205

ple and lightweight method for steering pre-trained 206

LMs to translation tasks. We first describe the con- 207

cept of deep continuous prompts in Section 3.1. 208

Then we detail the stages and training objective 209

in Section 3.2 and Section 3.3, respectively. Fi- 210

nally, we describe the reparameterization of deep 211

continuous prompts in Section 3.4. 212

3.1 Deep Continuous Prompts 213

We adopt “continuous prompts” (Li and Liang, 214

2021; Lester et al., 2021) instead of using textual 215

prompts in our method. Using continuous prompts 216

allows learning through differentiable methods like 217

back-propagation (Lester et al., 2021). To be spe- 218

cific, we use deep continuous prompts which are in 219

the same form as in (Li and Liang, 2021). Formally, 220

a prompt P is a sequence of L continuous vec- 221

tors [p1, . . . ,pL]. Each vector pi ∈ R2N×d (1 ≤ 222

i ≤ L) is a concatenation of key-value pairs in 223

all N Transformer layers, which directly affect the 224

computation of every attention layer. We give an 225

illustration of conditioning on a deep continuous 226

prompt in Figure 2. 227

3.2 Stages 228

To effectively mitigate the semantic and language 229

gap between the pre-training and translation, we 230

propose multi-stage prompting which divides the 231

procedure of using pre-trained LMs as translators 232

into three separate stages: the encoding, the re- 233

encoding, and the decoding stages. Given different 234

prompts at different stages, the pre-trained LM is 235

expected to behave differently during each stage 236

and is more capable of generating translations. 237

Given a source sentence x = [x1, . . . , xS ] and a 238
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Figure 3: Detailed computations involved in the multi-stage prompting for machine translation tasks. We use
rectangles to denote prompt vectors and rounded rectangles to denote activations.

target sentence y = [y1, . . . , yT ], the details of the239

three stages are described as follows:240

The Encoding Stage. At the encoding stage, the241

pre-trained LM encodes the source sentence x into242

a sequence of activations H1:S
e by using an encod-243

ing stage prompt Pe. This procedure is the same as244

basic prompting. Formally, it can be described as245

follows:246

G1:S
e ,H1:S

e = fLM(X1:S ,Pe). (4)247

The Re-encoding Stage. At the re-encoding248

stage, the pre-trained LM produces fine-grained249

representations of the source sentence by re-250

encoding x given past activations H1:S
e and a re-251

encoding stage prompt Pr, which allows each rep-252

resentation to condition on all words in x. This253

procedure can be described as254

G1:S
r ,H1:S

r = fLM(X1:S , JPr;H
1:S
e K), (5)255

where JPr;H
1:S
e K denotes the concatenation of256

two sequences Pr and H1:S
e .257

The Decoding Stage. Finally, we obtain the hid-258

den vectors G1:T
d for predicting the probability of259

the target sentence y at the decoding stage, given260

the refined source representations H1:S
r and a de-261

coding stage prompt Pd:262

G1:T
d ,H1:T

d = fLM(Y 1:T , JPd;H
1:S
r K). (6)263

Figure 3 gives a detailed illustration of MSP. By264

dividing the translation process into multiple stages265

and applying different prompts, we expect the pre-266

trained LM model can generate better translations.267

3.3 Training Objective268

We use the cross-entropy loss for learning prompts.269

Given G1:T
d = [g

(d)
1 , . . . , g

(d)
T ] in Eq. (6), the train-270

ing objective is formally described as follows: 271

L =
1

T

T∑
t=1

P (yt|y<t,x)

=
1

T

T∑
t=1

exp (eTzt · g
(d)
t )∑|V |

i=1 exp (e
T
zi · g

(d)
t )

.

(7) 272

Note that the parameters θ of the pre-trained LM 273

are fixed during training. 274

3.4 Reparameterization 275

Li and Liang (2021) suggest that using a neural net- 276

work to reparameterize continuous prompts is more 277

robust to different choices of hyperparameters. In 278

contrast to their approach which uses an MLP net- 279

work to reparameterize continuous prompts, we in- 280

troduce a much simpler scaled reparameterization 281

method, in which a continuous prompt is reparam- 282

eterized as a product of a learnable scalar and an 283

embedding. More precisely, the reparameterization 284

of the three prompts are as follows: 285

Pe = max(αe, 1.0)× ϕe, (8) 286

Pr = max(αr, 1.0)× ϕr, (9) 287

Pd = max(αd, 1.0)× ϕd. (10) 288

As a result, the set of trainable parameters ϕ 289

in our method is ϕ = {αe, αr, αd,ϕe,ϕr,ϕd}, 290

which contains much less tunable parameters than 291

an MLP network. αe, αr, and αd are initialized to 292

1.0 at the beginning of training. 293

Scaled reparameterization enables directly ad- 294

justing the value of prompts by a tunable scaling 295

factor, leading to a much faster convergence with- 296

out loss of performance. Further analysis is pre- 297

sented in Section 4.6. 298
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Method #Params. Ro-En En-De En-Zh Average

Prompt Tuning 131K 17.7 5.9 4.5 9.4
Prefix-Tuning 26M 32.5 17.5 21.9 23.9
MSP (Ours) 19M 34.7 21.2 28.1 28.0

Table 1: BLEU score on three different translation tasks for different prompting methods. All prompting methods
use the same pre-trained language model “mGPT”. “#Params.” denotes the number of tunable parameters during
training.

LM Architecture #M-Params. Method BLEU

mT5-XXL (Zhang et al., 2021) Encoder-Decoder 13B Finetuning 24.0
CPM-2 (Zhang et al., 2021) Encoder-Decoder 11B Prompt Tuning 24.1
CPM-2 (Zhang et al., 2021) Encoder-Decoder 11B Finetuning 26.2
Ernie 3.0 (Sun et al., 2021a) Encoder-Decoder 10B Finetuning 26.8

mGPT (Ours) Decoder 560M MSP 28.1

Table 2: Comparisons with previous studies on the WMT20 En-Zh translation task. “#M-Params.” indicates the
number of parameters of pre-trained LMs.

4 Experiments299

4.1 Setup300

Datasets We conduct experiments on Romanian-301

English (Ro-En), English-German (En-De), and302

English-Chinese (En-Zh) translation tasks to ver-303

ify our proposed method. For the Ro-En transla-304

tion task, we used the WMT16 Romanian-English305

dataset, which consists of 0.6M bilingual sentence306

pairs and 2M back-translated sentence pairs.3 We307

used newsdev2016 as the development set and new-308

stest2016 as the test set. For the En-De translation309

task, we used the WMT14 English-German dataset,310

which consists of 4.5M sentence pairs. The de-311

velopment set is newstest2013 and the test set is312

newstest2014. For the En-Zh translation task, we313

used the WMT20 English-Chinese dataset as the314

training corpus, which consists of 28M sentence315

pairs. The development set is newstest2019 and the316

test set is newstest2020. The details of preprocess-317

ing and postprocessing are given in Appendix A.2.318

Metric. We used case-sensitive BLEU (Pap-319

ineni et al., 2002) as the evaluation metric. The320

BLEU score is calculated using the SACREBLEU321

toolkit (Post, 2018).4322

3http://data.statmt.org/rsennrich/
wmt16_backtranslations/ro-en

4Signature: nrefs:1|case:mixed|eff:no|tok:{13a,zh}|
smooth:exp|version:2.0.0

Baselines. We used the mGPT model as the back- 323

bone LM in all our experiments, which contains 324

560M parameters. We compare our method with 325

the following prompting methods: 5 326

• Prompt tuning (Lester et al., 2021). A prompt- 327

ing method that only prepends virtual tokens 328

to the embedding layer of pre-trained LMs. 329

• Prefix-tuning (Li and Liang, 2021). A prompt- 330

ing method that uses deep continuous prompts, 331

which prepend virtual tokens to all key-value 332

pairs in attention layers of pre-trained LMs. 333

We use an MLP network to reparameterize 334

a continuous prompt during training as sug- 335

gested in (Li and Liang, 2021). 336

Implementations. All our models are trained on 337

a machine with 8 RTX 3090Ti GPUs. For all 338

prompting methods, we set the prompt length to 339

128. For the training, we use the Glorot uniform 340

initilalizer (Glorot and Bengio, 2010) to initialize 341

tunable parameters unless otherwise noted. We use 342

Adam (Kingma and Ba, 2014) (β1 = 0.9, β2 = 0.98 343

and ϵ = 1× 10−9) as the optimizer with a batch 344

size of roughly 32K tokens. We use the same learn- 345

ing rate schedule as described in (Vaswani et al., 346

2017). We set the maximum learning rate to 0.02 347

5In our preliminary experiments, we also experimented
with the few-shot approach as described in (Brown et al.,
2020). However, we found mGPT often failed to generate
meaningful translations.

5
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for prompt tuning and MSP, and 7e-4 for prefix-348

tuning. We train prompts for a total of 80K steps349

for prompt tuning and prefix-tuning, and 40K steps350

for MSP. The number of warmup steps is set to 4K.351

For the inference, we use the beam search algo-352

rithm to obtain translation from the mGPT model,353

and the beam size is set to 4. The length penalty is354

determined by the results evaluated on the devel-355

opment set. We set the length penalty to 1.0 for356

the En-Zh translation task and 0.0 for other trans-357

lation tasks. We implement our models on top of358

the open-source NMT toolkit THUMT (Tan et al.,359

2020) and the Transformers library (Wolf et al.,360

2020).361

4.2 Main Results362

Table 1 shows the results for the Ro-En, En-De,363

and En-Zh translation tasks.364

As the most parameter-efficient among the three365

prompting methods, prompt tuning introduces only366

131K parameters during training for each transla-367

tion task. However, it only achieves 9.4 BLEU368

points on average over the three translation tasks.369

Lester et al. (2021) indicate that language model370

capacity is a key ingredient for prompt tuning to371

succeed. As mGPT is a pre-trained LM with only372

560M parameters, the results coincide with the con-373

clusion of Lester et al. (2021).374

Prefix-tuning, which uses deep continuous375

prompts, achieves an average of 23.9 BLEU points376

over the three translation tasks. The results indicate377

that using deep continuous prompts is beneficial378

for steering mGPT to translation tasks. However,379

introducing deep continuous prompts inevitably re-380

quires more free parameters. The MLP network381

used in prefix-tuning introduces about 26M param-382

eters for each translation task during training in our383

experiments.384

Finally, MSP achieves 28.0 BLEU points on385

average over the three translation directions and386

outperforms prompt tuning and prefix-tuning by387

18.6 and 4.1 BLEU points, respectively. MSP in-388

troduces 19M parameters for each translation task389

during training, which is more than prompt tuning390

but less than prefix-tuning. MSP explicitly divides391

the translation process using mGPT into three sepa-392

rate stages, which are not present in prompt tuning393

and prefix-tuning. The results suggest that MSP394

is more effective in instructing pre-trained LMs to395

perform translation than prompt tuning and prefix-396

tuning. Besides comparisons with prompting meth-397
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Figure 4: Comparison between MSP and prefix-tuning
on the WMT14 En-De translation task with different
prompt lengths.

ods, we also provide comparisons between mGPT 398

with MSP and Transformer-based NMT model in 399

Appendix A.3. 400

4.3 Comparison with Other LMs 401

Table 2 gives the results of mT5-XXL (Zhang et al., 402

2021), CPM-2 (Zhang et al., 2021), Ernie 3.0 (Sun 403

et al., 2021a), and mGPT on the WMT20 En-Zh 404

translation task. Except for mGPT, other LMs are 405

based on the encoder-decoder architecture. De- 406

spite using a much smaller pre-trained LM with 407

about 5% parameters of mT5-XXL, CPM-2, and 408

Ernie 3.0, MSP achieves the best performance over 409

prompt tuning and full fine-tuning. Therefore, we 410

show that MSP is an efficient and effective ap- 411

proach to steering pre-trained LMs to translation 412

tasks. 413

4.4 Effect of Prompt Length 414

Figure 4 shows the effect of prompt length for 415

prefix-tuning and MSP. We omit the comparison to 416

prompt tuning because of its inferior performance. 417

We found that using longer prompts generally leads 418

to better performance for both prefix-tuning and 419

MSP, but with diminishing returns. This finding 420

is consistent with previous studies (Li and Liang, 421

2021; Lester et al., 2021). Furthermore, MSP con- 422

sistently outperforms prefix-tuning when using the 423

same prompt length. Even MSP with a prompt 424

length of 64 performs better than prefix-tuning with 425

a prompt length of 256 (19.0 vs. 18.2). The results 426

further confirm that MSP is a better prompting 427

method than prefix-tuning for steering pre-trained 428

LMs to translation tasks. 429
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Method #Params. Training Inference BLEU

Single-stage 6.3M 14h 0.10 s/sent. 17.9
Two-stage (encoding/decoding) 12.6M 14h 0.10 s/sent. 20.2

+ Re-encoding (default) 19.0M 21h 0.11 s/sent. 21.2
+ 2nd Re-encoding 25.1M 29h 0.11 s/sent. 21.8
+ Prompt sharing 6.3M 21h 0.11 s/sent. 19.8

Table 3: Comparison of using different stage settings on the WMT14 En-De translation task. “#Params.” denotes
the number of trainable parameters. “Training” denotes the total training time. “Inference” denotes the inference
speed measured on newstest2014 using 8 GPUs. “s/sent.” denotes seconds per sentence.

4.5 Effect of Stages430

Table 3 shows the comparison of using different431

stage settings on the WMT14 En-De translation432

task. Using single-stage prompting achieves 17.9433

BLEU points. By comparison, explicitly separating434

encoding and decoding stages improve the transla-435

tion performance over single-stage prompting by436

2.3 BLEU points, which indicates the importance437

of differentiating stages. Adding a re-encoding438

stage further improves the translation performance439

by 1.0 BLEU point, suggesting that the re-encoding440

stage is effective. Adding a second re-encoding441

stage further improves the translation performance442

by 0.6 BLEU points. Although adding stages intro-443

duces more trainable parameters, it should be noted444

that sharing a single prompt for the encoding/re-445

encoding/decoding stages also improves over the446

single-stage prompting by 1.9 BLEU points. The447

results suggest that most improvements are at-448

tributed to the explicit separation of stages rather449

than increased parameters. Adding more stages450

generally slows the training speed. However, we451

do not observe notable inference speed drop as re-452

encoding stages are computed one time in parallel453

during inference.454

4.6 Effect of Reparameterization455

Figure 5 shows the comparison between MSP using456

scaled reparameterization and without using repa-457

rameterization. Using scaled reparameterization458

converges faster than without using reparameteriza-459

tion. These two methods achieve nearly the same460

translation performance when the training is con-461

verged. As a result, using scaled reparameterization462

can make the convergence much faster and reduce463

the total training time.464

4.7 Analysis465

Knowledge. As continuous prompts are learned466

using bilingual sentence pairs, an interesting ques-467

0 8 16 24 32 40 48 56 64 72 80
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16
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K Steps

B
L
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U

w/o. Reparameterization
Scaled Reparameterization

Figure 5: Comparison between using scaled reparame-
terization and without using reparameterization on the
WMT14 translation task. The BLEU score is evaluated
on newstest2013.

Prompt Distribution

w/o prompt en (16%), ru (10%)
Prefix-tuning zh (80%), ja (12%)
MSP (encoding stage) en (51%), la (14%)
MSP (re-encoding stage) en (24%), la (17%)
MSP (decoding stage) zh (91%), ja (9%)

Table 4: Language distribution of the free genera-
tions using mGPT by conditioning on different prompts
learned by different prompting methods on the WMT20
En-Zh dataset.

tion arises: Is the translation knowledge stored in 468

the continuous prompts or the pre-trained LM? To 469

answer this question, we discard the prompts and 470

feed the mGPT model the concatenation of a source 471

and the corresponding target sentence as input, and 472

calculate the cosine similarities between the source 473

and target hidden activations on each mGPT layer. 474

We found that although the prompts are not given, 475

the nearest pairs of tokens between the source and 476

target language frequently turn out to coincide with 477

bilingual alignments. This finding reveals to some 478

7



extent that the translation knowledge mainly re-479

sides in the pre-trained LM instead of the learned480

continuous prompts, while the prompts play a role481

in guiding the model to perform translation during482

generation. Examples are given in the Appendix.483

Bottleneck. We study the bottleneck of the cur-484

rent prompting method. We train a separate Trans-485

former encoder and an adapter network that directly486

maps a source sentence into a deep continuous487

prompt, leaving the mGPT model only serving as488

a decoder. This model introduces 378M tunable489

parameters and achieves 25.9 BLEU points on the490

WMT14 En-De translation task. Compared with491

21.2 BLEU points by MSP, the result shows that492

there is still room to advance the translation perfor-493

mance of pre-trained LM by improving the prompt-494

ing method, such as using dynamic prompts (Liu495

et al., 2021) for each input sentence. However, as496

translation knowledge may coming from the pre-497

trained LM, the translation performance may also498

bottlenecked by the capability of the backbone LM.499

Interpretability. We did not find our learned con-500

tinuous prompts to be interpretable, which agrees501

with the findings of Shin et al. (2020) and Lester502

et al. (2021). However, we do observe prompts of503

different stages changing the behavior of mGPT504

significantly. Specifically, we sample 100 exam-505

ples generated from mGPT by providing prompts506

of different stages learned on the English-Chinese507

translation task and identify the language ids of508

generated texts using the langid toolkit. The509

top-2 identified language distributions of each gen-510

eration are shown in Table 4. Without providing511

continuous prompts, mGPT generates a random512

sentence from a random language. By given contin-513

uous prompts learned by prefix-tuning, the mGPT514

mostly generates texts related to Chinese. For MSP,515

it is noticeable that there is a transition from En-516

glish to Chinese. mGPT generates English-related517

text given the encoding stage prompt. The distribu-518

tion of languages becomes smoother when provid-519

ing the re-encoding stage prompt. Finally, mGPT520

generates Chinese texts dominantly given the de-521

coding stage prompt. The results coincide with522

our intuition that MSP helps the pre-trained LM to523

learn “smoother transitions” to the translation task.524

5 Related Work525

Prompting. Brown et al. (2020) propose to use526

a task description and a few examples to adapt527

the GPT-3 model to downstream tasks, which is 528

referred to as in-context learning. Their prompts 529

are manually designed. Gao et al. (2020) present 530

LM-BFF for automatic prompts generation. They 531

use T5 model (Raffel et al., 2019) to generate tem- 532

plates for prompting pre-trained LMs. Li and Liang 533

(2021) propose prefix-tuning, which uses continu- 534

ous vectors as prompts. These prompts are trained 535

using task-specific data and optimized through 536

back-propagation. Lester et al. (2021) propose 537

prompt tuning, which is similar to prefix-tuning 538

but with fewer trainable parameters. Our method 539

is also based on prompting. We use continuous 540

prompts for steering PLMs to translation tasks. Un- 541

like Li and Liang (2021) and Lester et al. (2021) 542

who present general frameworks, our method is 543

focused on improving the translation performance 544

of pre-trained LMs. 545

Using Pre-trained LMs as Translators. Stick- 546

land et al. (2021) investigate using BART and 547

mBART models for machine translation tasks, their 548

approach relies on adapter networks and finetun- 549

ing parts of pre-trained LMs. Guo et al. (2020) 550

build a non-autoregressive NMT model by using 551

a source BERT model as the encoder and a target 552

BERT as the decoder with adapter layers. Sun et al. 553

(2021b) propose grafting a source BERT model 554

and a target GPT model for translation tasks. All 555

these methods are adapter-based, which injects ad- 556

ditional tunable modules into the pre-trained LMs. 557

As a result, the pre-trained LMs lose the ability 558

to perform mixed-task inference. Our approach is 559

based on prompting, which only uses prompts for 560

steering the pre-trained LMs to translation tasks. 561

Zhang et al. (2021) investigate using prompt tuning 562

for steering CPM-2 model to the WMT20 English- 563

Chinese translation task. Furthermore, their ap- 564

proach applied to encoder-decoder architecture pre- 565

trained LMs while ours applied to decoder-only 566

pre-trained LMs. 567

6 Conclusion 568

We have presented multi-stage prompting, a 569

method for making pre-trained models better trans- 570

lators. Experiments show that with multi-stage 571

prompting, pre-trained language models can gen- 572

erate better translations, showing the potential of 573

using pre-trained language models for translation 574

tasks. In future work, we plan to extend our 575

methods to pre-trained language models with the 576

encoder-decoder architecture. 577
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A Appendix710

A.1 Details of Multilingual GPT711

We used a multilingual GPT (mGPT) (Radford712

et al., 2019) model as the pre-trained language713

model in all our experiments. The mGPT model714

is trained using the Megatron-LM toolkit (Shoeybi715

et al., 2019) 6 on the mC4 dataset (Xue et al.,716

2020), 7 which contains massive web crawled data717

covering 101 languages. The model consists of718

24 transformer layers, and the hidden size d of the719

model is set to 1,024. We used the same tokeniza-720

tion and vocabulary as the mT5 model (Xue et al.,721

2020). The vocabulary size is 250,100. The total722

number of parameters of the mGPT model is about723

560M.724

A.2 Preprocessing and Postprocessing725

We do not apply any additional preprocessing dur-726

ing pre-training. Preprocessing like tokenization727

is done automatically with the sentencepiece pro-728

gram. For learning prompts, we do not apply ad-729

ditional preprocessing on translation tasks except730

Romanian-English translation task, where we use a731

script 8 to remove diacritics in the Romanian side.732

Because the mT5 tokenizer automatically uses Uni-733

code NFKC normalization, which results in non-734

standard punctuation for Chinese (e.g. “，”→ “,”).735

Therefore, we use a rule-based method to replace736

non-standard punctuation back to standard counter-737

parts for Chinese.738

A.3 Comparison with Transformer739

We compare our method with the state-of-the-art740

Transformer NMT model (Vaswani et al., 2017) 9741

on the following two datasets:742

• TedTalks dataset (Blackwood et al., 2018),743

which is an English-centric multilingual cor-744

pus including 59 languages with sentence745

pairs ranging from 3K to 200K per direction.746

We only report results for 5 languages pairs.747

The Transformer model is trained on all avail-748

able parallel sentences, serving as a strong749

NMT baseline. For mGPT with MSP, we indi-750

vidually train prompts on each language pair751

6https://github.com/NVIDIA/Megatron-LM
7https://huggingface.co/datasets/mc4
8https://github.com/rsennrich/

wmt16-scripts/blob/master/preprocess/
normalise-romanian.py

9We used the transformer-big setting. Tokenizations and
vocabularies are the same with mGPT for fair comparisons.

following the same procedure described in 752

this paper. 753

• WMT14 English-German (En-De) dataset, 754

which is a widely used dataset for machine 755

translation. 756

The results of “X→En” and “En→X” transla- 757

tion tasks are shown in Table 5 and Table 6, respec- 758

tively. Although mGPT with MSP is independently 759

trained on each language pair, the model still out- 760

performs the strong multilingual NMT baseline by 761

2.8 and 1.8 BLEU points on “X-En” and “En-X” 762

directions, respectively. This result demonstrates 763

that using pre-trained LMs as translators with an 764

appropriate prompting method has the potential to 765

outperform a strong traditional Transformer NMT 766

model. 767

Table 7 shows the comparison between and our 768

mGPT model with MSP on the WMT14 En-De 769

translation task. While there is still a noticeable 770

performance gap between Transformer and mGPT 771

with MSP, using mGPT as a translator with MSP 772

is much parameter-efficient than training a sepa- 773

rate NMT model. Supporting En-De translation 774

with mGPT only introduces 19M parameters with 775

MSP method. In comparison, the model size of the 776

Transformer model for En-De translation is 450M. 777

While mGPT model can perform other downstream 778

tasks by providing different prompts, such abilities 779

have not been validated on the Transformer NMT 780

model. Besides being efficient in disk spaces, learn- 781

ing prompts for the En-De translation task are also 782

faster than training a separate NMT model. It takes 783

21 hours to train prompts for MSP, whereas 72 784

hours for training a Transformer model. 785
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Model #Params. Bg Es It Ru Zh Avg.

Transformer 437M 35.2 38.0 34.2 22.6 17.6 29.5
mGPT (MSP) 19M 38.9 42.1 37.8 24.4 18.3 32.3

Table 5: Results on the TedTalks “X→En” translation directions.

Model #Params. Bg Es It Ru Zh Avg.

Transformer 437M 29.2 34.0 29.2 16.7 21.2 26.1
mGPT (MSP) 19M 34.1 38.4 32.8 19.2 14.9 27.9

Table 6: Results on the TedTalks “En→X” translation directions.

Model #Params. BLEU

Transformer (big) 450M 27.9
mGPT (MSP) 19M 21.2

Table 7: Resutls on the WMT14 En-De dataset. “#Params.” denotes the number of tunable parameters during
training.

English "They say there were boys around, that was not the case at all," he said.

Chinese 他表示：“他们说周围有好几个男孩子，但事实并非如此。”

Alignments 他/he 表示/said :“/" 他们/They 说/say 周围/around 有/were 好/boys
几个/were 男孩/boys 子/boys ,/, 但/that 事实/case 并非/not 如此/all 。”/.

English Saudi Arabia To Offer Tourist Visas For First Time, Abolish Abaya Rule

Chinese 沙特阿拉伯首次提供旅游签证，废除阿巴亚长袍规定

Alignments 沙/Saudi 特/Arabia 阿拉/Arabia 伯/Arabia 首次/Offer 提供/Offer 旅游/Tourist
签证/Visa ,/, 废/olish 除/olish 阿/Saudi 巴/baya 亚/baya 长/Rule 袍/Visa 规定/Rule

Table 8: Alignments induced by computing cosine similarities between target hidden keys and source hidden keys
of the 15th Transformer layer of mGPT. We use “/” to separate Chinese and English tokens.
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