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An Example from SEED-Bench

has two people standing by the car while the 
one on the left there are three people by the 
sidewalk and one by the car.

What are the 
differences between 
the two image? The 
picture on the right 

How many 
yellow trucks 
are there?
A. three
B. two
C. five
D. four

What happened after 
the person held the 
phone?
A. Closed the fridge
B. Put down the towel
C. Put down the laptop
D. Opened the window

Performance 
Gap (~45%)

Performance Drop (~40%)

Multi-image Examples from MileBench

What is the weather 
like in the image?
A. It's a sunny day.
B. It's foggy.
C. It's raining heavily.
D. It's a cloudy day.

Figure 1: MLLMs’ performance fluctuates with the image count in datasets. Open-source
MLLMs demonstrate a remarkable performance drop as the number of images increases.
The performance gap between open-source and closed-source MLLMs expands as well. For
single-image performance, we refer to SEED-Bench (Li et al., 2023b), given the absence of
single-image samples in MILEBENCH.

Abstract
Despite the advancements and impressive performance of Multimodal
Large Language Models (MLLMs) on benchmarks, their effectiveness in
real-world, long-context, and multi-image tasks is unclear due to the bench-
marks’ limited scope. Existing benchmarks often focus on single-image
and short-text samples, and when assessing multi-image tasks, they either
limit the image count or focus on specific task (e.g time-series captioning),
potentially obscuring the performance challenges of MLLMs. To address
these limitations, we introduce MILEBENCH, a pioneering benchmark de-
signed to test the MultImodal Long-contExt capabilities of MLLMs. This
benchmark comprises not only multimodal long contexts, but also multiple
tasks requiring both comprehension and generation. We establish two
distinct evaluation sets, diagnostic and realistic, to systematically assess
MLLMs’ long-context adaptation capacity and their ability to complete
tasks in long-context scenarios. Our experimental results, obtained from
testing 22 models, revealed that while the closed-source GPT-4o outper-
forms others, most open-source MLLMs struggle in long-context situations.
Interestingly, the performance gap tends to widen with an increase in the
number of images. We strongly encourage an intensification of research
efforts towards enhancing MLLMs’ long-context capabilities, especially in
scenarios involving multiple images.

∗Corresponding author.
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Figure 2: Visualization of distribution of images and word number in present MLLM bench-
marks. The range and mean of both word and image number per sample in MILEBENCH
far exceed those of previous works.

1 Introduction

The recent swift development of Multimodal Large Language Models (MLLMs) (OpenAI,
2023; Anil et al., 2023; Liu et al., 2023a; Awadalla et al., 2023) has displayed outstanding
performance across a diverse range of multimodal tasks (Yang et al., 2023; Wu et al., 2023).
Meanwhile, a surge of benchmarks for evaluating MLLM performance has emerged (Liu
et al., 2023a; Fu et al., 2023; Ge et al., 2023; Li et al., 2023a), offering insights into their general
capabilities (Li et al., 2023b; Liu et al., 2023c; Yu et al., 2023) and task-specific capabilities (Liu
et al., 2023d; Yue et al., 2023; Wang et al., 2024).

However, a critical aspect is often overlooked. Real-world applications frequently demand
the processing of long contexts and multi-image tasks that include multi-round dialogues
based on multiple images (Li et al., 2022), action prediction tasks (Wu et al., 2021), navigation
tasks in 3D space (Krantz et al., 2020), and understanding tasks with lengthy documents
interspersed with images on Wiki pages (Hannan et al., 2020).

Despite this, existing benchmarks primarily focus on single-image and short-text sam-
ples (Liu et al., 2023a; Fu et al., 2023; Liu et al., 2023c; Li et al., 2023b), thereby failing to
fully capture the complexity and diversity of real-world scenarios. While some benchmarks
evaluate multi-image tasks, they either have limited number of images provided per sample
(e.g., SEED-Bench-2 (Li et al., 2023a), DEMON (Li et al., 2023c)) or only include time-series
captioning tasks (e.g., Mementos (Wang et al., 2024)), as shown in Figure 2. In addition,
this omission could potentially neglect the hallucination issue that MLLMs might exhibit
in long-context situations (Huang et al., 2023). Given the aforementioned shortcomings
with existing benchmarks, we identify a pressing need for a more holistic evaluation that
fully encapsulates the long-context and multi-image task demands prevalent in real-world
applications.

Addressing this need, we introduce MILEBENCH, the first benchmark specifically designed
to test the MultImodal Long-contExt capabilities of MLLMs1. To systematically assess the
capabilities of MLLM in multimodal long contexts, our benchmark consists of two distinct
evaluation sets, diagnostic evaluation and realistic evaluation. The former explores the
long-context recall abilities of MLLMs, using needle-in-a-haystack and image retrieval
tasks, while the latter stress-tests the model in a manner akin to real-world conditions
using both temporal multi-image tasks and semantic multi-image tasks. To construct our
evaluation sets, we gather 6,440 multimodal long-context samples from 21 pre-existing or
self-constructed datasets, with an average of 15.2 images and 422.3 words each, as depicted
in Figure 2, and we categorize them into their respective subsets.

1We define “multimodal long contexts” as long text content integrated with two or more images,
or content composed of multiple images.
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After evaluating 22 models, the closed-source GPT-4o2 excelled in both diagnostic and
realistic evaluations, achieving impressive scores of 99.4% and 60.3%, although it still
falls short of a perfect 100% score. On the contrary, most open-source MLLMs struggled
with long-context tasks as depicted in Figure 1. Only Mantis and Qwen-VL-7B managed
average scores of 47.5% and 37.2% in realistic and diagnostic evaluations respectively. These
results underscore that there are “miles to go” towards fully-realized long-context MLLMs,
prompting a call for increased research focus on such tasks, especially those involving
numerous images.

2 Related Work

2.1 Multi-image and Long-Context MLLMs

Beyond training on single-image-text pairs, recent developments in MLLMs are also ori-
ented towards handling multiple and interleaved image-text sequences (Awadalla et al.,
2023; Li et al., 2023c). However, these models have relatively limited contexts (i.e., up to
4K) compared to leading proprietary MLLMs such as GPT-4V (OpenAI, 2023) and Gem-
ini (Anil et al., 2023; Reid et al., 2024), which exhibit capabilities for long-context processing,
supporting up to 128K and 10M tokens, respectively. However, there remains a notable gap
in open-source MLLMs capable of long-context comprehension. Currently, the only open-
source models equipped for long contexts are those designed for video, which are trained
to process multiple frames, inherently managing multiple images and long contexts (Liu
et al., 2024a; Zhang et al., 2023; Luo et al., 2023; Li et al., 2023d;e). In this paper, we release
an evaluation set specifically designed for multi-image and long-context MLLMs.

2.2 Evaluation of MLLMs
Most of the MLLM benchmarks only evaluate multimodal tasks with a single image (Liu
et al., 2023a; Fu et al., 2023; Liu et al., 2023c; Li et al., 2023b; Yu et al., 2023; Ge et al., 2023;
Yue et al., 2023). As a complementarity, SEED-Bench2 (Li et al., 2023a) and DEMON (Li
et al., 2023c) test multimodal capabilities with multiple images but limit the evaluation
to around three images, which is inadequate for a thorough multi-image comprehension
assessment. Mementos (Wang et al., 2024) involves data samples with up to approximately
11 images, mainly focusing on temporal understanding and limited context scenarios. This
focus overlooks the wide range of scenarios involving multiple images and long context.
We provide an overview of existing MLLM benchmarks in Appendix A. To the best of
our knowledge, MILEBENCH is the first comprehensive benchmark that evaluates MLLMs
across both multi-image and long-context dimensions, catering to a broader spectrum of
general scenarios.

3 MILEBENCH

3.1 Evaluation Taxonomy

MILEBENCH consists of two major components: Realistic Evaluation and Diagnostic Eval-
uation, as depicted in Figure 3. Realistic Evaluation requires MLLMs to address tasks
within multimodal long-context scenarios, emphasizing the models’ proficiency in com-
prehending and reasoning across extended multimodal contexts. Conversely, Diagnostic
Evaluation demands MLLMs to retrieve information from the provided context, high-
lighting the model’s capability of long-range information retrieval and the elimination of
distractors. The detailed taxonomy of MILEBENCH is illustrated in Table 4. 3

3.1.1 Realistic Evaluation

The realistic evaluation is designed to assess an MLLM’s ability to comprehend, integrate,
and infer information in a multimodal long context. We categorize the tasks into two
main groups: Temporal Multi-Image tasks and Semantic Multi-Image tasks. Temporal

2https://openai.com/index/hello-gpt-4o
3We adapted the taxonomy from MVBench (Li et al., 2024) and DEMON (Li et al., 2023c) to suit our

multimodal long-context setting.
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🏃(T-1) Action Understanding and Prediction

Instruction: Based on the provided images, answer the 
question related to the sequence of action You must 
choose your answer from the Choice List. 
Question: What happened before the person held the 
food? 
Choice List: 
A. Opened the bag.          B. Closed the closet/cabinet.
C. Opened the laptop.      D. Ate the sandwich.

🗃 Semantic Multi-Image

📍 Needle in a HayStack 🧐 Image Retrieval

Instruction: Upon viewing six pictures captured from 
various cameras on a street view vehicle, your role is to 
answer questions about the presented scene. You must 
choose your answer from the Choice List. 
Question: how many yellow trucks are there?
Choice List: A. three    B. two    C. five    D. four

Instruction: Answer user question concisely and directly 
based on the provided images and text. 

Context:           You can write programs that manipulate 
them. Just look for a reasonable domain expert proposing 
something that sounds wrong. …… And I don't have to 
know if I bet on everything just being on the server.  

            But its origins as a model of computation gave it a 
power and elegance that other languages couldn't match. The 
special magic Budapest number is: 5626534 There Is 
Always Room. ……
Question: What is the special magic Budapest number?

Instruction: Identify the candidate image that exhibits 
the most similarity in color, texture, and shape to the 
given anchor image.

Image1:

Question: Choose the answer from the choice list.
Choice List: 
A. image1   B. image2   C. image3   D. image4   E. image5

Image3:Image2:

Image4:
Image5: Anchor 

Image:

🎞 Temporal Multi-Image

🏕(S-5) Space Understanding

🧭(T-3) Visual Navigation and Spatial Localization

🎱(T-2) Object and Scene Understanding

🧩(T-4) Counterfactual Reasoning and State Change

🌐(S-1) Knowledge Grounded QA

🔠(S-2) Text-Rich Images QA

🔎(S-3) Visual Relation Inference

💬(S-4) 
Dialogue

📍🖼(N-2) Image Needle 

Realistic Evaluation

Diagnostic Evaluation

📍📰(N-1) Text Needle 🧐🖼(I-1)Image Retrieval

Figure 3: Taxonomy and four multimodal long-context examples in MILEBENCH.

Multi-Image tasks test the MLLM’s ability to discern temporal relationships among several
time-related images, emphasizing the model’s predictive capabilities in real-world scenarios.
On the other hand, Semantic Multi-Image tasks challenge MLLMs to process multiple
images that are possibly temporal-irrelevant but are semantically interconnected.

Temporal Multi-Image Tasks. Temporal Multi-Image tasks include four temporal-related
multi-image tasks. Each task contains multiple subtasks, each with 200 samples.

T-1 4 Action Understanding and Prediction task involves interpreting and forecasting
actions of objects or characters in sequential scenarios based on a series of images.
This task is divided into three subtasks. Action Localization (Gao et al., 2017) assesses
the model’s ability to identify time actions within a sequence. Action Prediction (Wu
et al., 2021) tests the model’s capacity to predict a character’s actions. Action
Sequence (Wu et al., 2021) evaluates the model’s understanding of the chronological
order of a character’s actions.

T-2 Object and Scene Understanding task involves identifying and understanding
objects within a sequence. It comprises four subtasks: Object Existence (Yi et al.,
2020) tests the model’s ability to detect and track an object’s movement. Mov-
ing Attribute (Yi et al., 2020) assesses the model’s understanding of moving object
attributes. Object Interaction (STAR) evaluates the model’s comprehension of inter-

4T, S, N, I denotes Temporal Multi-image Tasks, Semantic Multi-image Tasks, Needle in a Haystack
Tasks, and Image Retrieval Tasks, respectively. The numerical value is the index of the task within the
set of tasks.
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actions between people and objects in complex scenarios. Object Shuffle (Patraucean
et al., 2023) gauges the model’s ability to locate hidden objects amidst disturbances.

T-3 Visual Navigation and Spatial Localization task tests the model’s understanding
of spatial and directional concepts through two subtasks. One is Egocentric Naviga-
tion (Krantz et al., 2020), involves the model interpreting motion-related instructions
and image sequences from a robot’s perspective to predict the next action. Moving
Direction (Yi et al., 2020), assesses the model’s ability to determine object movement
direction, evaluating its understanding of spatial orientation.

T-4 Counterfactual Reasoning and State Change task evaluates the model’s logical
reasoning within image sequences, focusing on causality and state changes. It
comprises four subtasks. Counterfactual Inference (Yi et al., 2020) tests the model’s
ability to predict outcomes under hypothetical changes. State Change (Patraucean
et al., 2023) assesses the model’s understanding of object state changes. Character
Order (Patraucean et al., 2023) examines the model’s reasoning of the order of letter
appearances over time. Scene Transition (Huang et al., 2020) evaluates the model’s
understanding of scene changes and the associated causality.

Semantic Multi-Image Tasks. Semantic Multi-Image tasks include five semantic-related
multi-image tasks. Each task contains multiple existing or artificially constructed datasets,
each with 200 samples.

S-1 Knowledge Grounded QA task centres on knowledge-based reasoning, where
models synthesise multimodal knowledge for single- or multi-hop reasoning tasks.
The task employs four datasets: Webpage QA (Chang et al., 2022) for open-domain
multi-hop web search, Textbook QA (Kembhavi et al., 2017) for multimodal textbook
questions with diagrams and images, Complex Multimodal QA (Talmor et al., 2021)
for complex Wikipedia questions with tables and images, and Long Text with Images
QA for long text with images questions from Wiki documents.

S-2 Text-Rich Images QA task demands the processing and understanding of rich text
information embedded directly in images. It calls for models capable of recognizing
textual information from images and integrating this textual information with
complex reasoning to answer questions. It contains Slide QA (Tanaka et al., 2023)
for multi-slides question answering requiring multi-hop and numerical reasoning,
OCR QA (Mishra et al., 2019) for book cover image text reading, and Document
QA (Mathew et al., 2021) for document images with a focus on understanding
document structure.

S-3 Visual Relation Inference task is centered around understanding and inferring
visual relationships. It aims to detect subtle variations between two images, such
as changes in objects and positional shifts, and subsequently generate accurate
descriptions of these changes. This necessitates the model to possess robust capabil-
ities in capturing visual details and generating response. The task leverages Visual
Change Captioning (Jhamtani & Berg-Kirkpatrick, 2018; Hosseinzadeh & Wang, 2021)
to describe differences between similar images, image change capturing, and Visual
Relationship Expressing (Tan et al., 2019) for generating relationship captions between
images.

S-4 Dialogue task primarily involve the fusion of visual data and natural language
dialogue understanding. This task needs the model to understand and process
multimodal data, including both textual and visual information, while demonstrat-
ing consistency and complementarity in the task. The datasets involve Multimodal
Dialogue (Li et al., 2022) for multimodal conversational question answering and
Conversational Embodied Dialogue (Shridhar et al., 2020) for mapping from language
commands and visuals to action sequences.

S-5 Space Understanding task requires the model to perceive the spatial environment
using multi-image information. It uses the nuscenes (Caesar et al., 2020) dataset,
specifically designed for self-driving car technology. It contains sensor data for
object detection and tracking, with 1000 annotated scenes for location and properties
of objects.
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Table 1: Key Statistics of MILEBENCH.
Note that we use tokenizer of LLaMA2
to calculate the token number.

Statistic Number

Total samples 6,440
Total images 97,855
Average images 15.2
Range of images 2 ˜109
Range of words 7 ˜11821

(Estimated) Average Tokens
- Image token=0 542.2
- Image token=32 1,028.4
- Image token=256 4,432.1
- Image token=576 9,294.4

Samples by Image Num Level
- Few (2˜5) 2,959
- Medium (6˜31) 2,389
- Many (32˜109) 1,092
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Figure 4: Tasks Distribution of
MILEBENCH.

3.1.2 Diagnostic Evaluation

The diagnostic evaluation focuses on the MLLMs’ capability to retrieve information without
being distracted in a multimodal long context. We transform the tasks of “Needle in
a Haystack” from NLP and “Image Retrieval” from CV into a multimodal format for
assessment. This transition preserves the core of the conventional tasks while offering a
more challenging and realistic measure of MLLMs’ performance.

Needle in a Haystack. The “Needle in a Haystack” task requires the model to find a preset
password from a long context. This is widely used in diagnostic evaluations of long-context
language models (Kuratov et al., 2024). In this study, we reintroduce this novel task from a
multimodal perspective to evaluate the context perceptual and retrieval abilities of MLLMs.

Specifically, we constructed two tasks, Text Needle In A Haystack (N-1) and Image Needle In
A Haystack (N-2). Examples are shown in the lower left corner of Figure 3 and Figure 9 in
Appendix B.2, respectively. Compared to unimodal Needle in a Haystack task, Text Needle
In A Haystack’s haystack includes both text and images and the model is required to recall
a randomly generated 7-digit password from this multimodal haystack. Image Needle In A
Haystack changes the modality of the “needle”, inserting it as text within an image. This
cross-modal Needle in a Haystack task requires MLLMs to have not only good perceptual
and retrieval abilities but also robust OCR capabilities.

Image Retrieval. Image Retrieval task (I-1) (Schall et al., 2022) requires the model to
retrieve images from a set of candidates images given an anchor image (an example is
shown in the lower right corner of Figure 3). In addition to perceptual and retrieval abilities,
this task also necessitates that the MLLM possesses robust abilities in both object and
conceptual recognition. We consider this a traditional computer vision task and see image
retrieval as a “Needle in a Haystack” task with image modality queries.

3.2 Data Collection and Review Process

We have established a robust data collection process and meticulous review procedures to
maintain the integrity and quality of our datasets.

Data Collection. We collected the samples from two sources: (1) For most of the tasks, we
selected and sampled 200 instances from the test sets of the pre-existing datasets for each
task, giving priority to multi-image samples. For video data, we used the Katna (Keplerlab,
2021) to convert the video into a multi-image format by extracting one frame per second.
The choice of these pre-existing open-source datasets was driven by their well-established
reputation and the fact that they have been published in top-tier conferences and journals,
ensuring their credibility and reliability. Please refer to Section 5 and Appendix D.3 for
information on the data’s licensing and data contamination issue. (2) For the new tasks Long
Text with Images QA, Image Retrieval, Text Needle In A Haystack, and Image Needle In A Haystack,
we created synthetic data (more details in Appendix B.3). Ultimately, we collected 6,440
samples with varying context lengths. Detailed statistics of these samples are presented in
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Table 1. The task distribution is demonstrated in Figure 4. A comprehensive breakdown of
the datasets, tasks, and taxonomy can be found in Appendix B.1.

Review Process. For the open-source dataset comprised of the benchmark, we sample
10% of the data for manual verification. Our review team, composed entirely of authors,
was assigned to scrutinize the precision of the sampled data, resulting in an Inter-annotator
Agreement (IAA)5 of 95%, indicating a high level of consistency among reviewers. For the
datasets we formulated independently, equivalent manual verification was carried out on
the entirety of the dataset, yielding a similar IAA of 98%, thus ascertaining the data quality.
Additionally, the error rate was found to be less than 1% for both datasets, affirming that
these datasets maintain an exceptionally high quality and are virtually devoid of errors.

4 Experiment

4.1 Experiment Setup
Evaluation Models. In this study, we conducted an evaluation of several models across
three distinct categories that may handle multimodal long contexts, including five closed-
source models (GPT-4V (OpenAI, 2023), GPT-4o, Gemini 1.0 (Anil et al., 2023), Gem-
ini 1.5 (Reid et al., 2024), Claude 3 Opus6), twelve open-source image models (Qwen-
VL-Chat (Bai et al., 2023), MiniGPT-v2 (Chen et al., 2023), Cheetor (Li et al., 2023c),
Open flamingo (Awadalla et al., 2023), LLaVA-1.5-7B/13B (Liu et al., 2023a), LLaVA-1.6-
7B/13B (Liu et al., 2024b), ALLaVA-Longer (Chen et al., 2024), Yi-VL (Young et al., 2024),
VILA (Lin et al., 2023), Mantis (Jiang et al., 2024)), and five open-source video models
(Video-LLaMA-2 (Zhang et al., 2023), Valley (Luo et al., 2023), VideoChat2 (Li et al., 2023d),
LLaMA-VID (Li et al., 2023e), LWM (Liu et al., 2024a)). The details of the models and
and their version information are in Appendix C.1. All models used greedy decoding to
generate answers, with a designated generation length between 1 and 512. We conducted
all experiments on NVIDIA A100 GPUs.

Prompts and Metrics. To save costs, all evaluations were performed only in a zero-shot
setting. The format of the prompts is detailed in the Appendix C.2. When the input length
exceeds the maximum context length of the model, we keep the instruction, and truncate
the interleaved image-text question from left so as to keep the question of a sample, as
instruction and question are critical information and the importance of the last image is
higher in many tasks, e.g. multimodal dialogue. Metrics for each dataset, as shown in
Table 4, are consistent with the original work for tasks built on previous datasets. For
open-ended generation tasks, the popular n-gram-based metric ROUGE-L is adopted, and
accuracy is the metric for multiple-choice and needle-in-a-haystack tasks.

4.2 Main Result on MILEBENCH

We present the results of our experiments in Table 2 and summarize our findings as fol-
lows: (1) Closed-source MLLMs outperform open-source MLLMs in multimodal long-
context tasks to date, particularly in diagnostic evaluation of long-context adaptability
where the gap between closed-source MLLMs (average: 79.2%, max: 99.4%) and open-
source MLLMs (average: 10.1%, max: 37.2%) is significant. In realistic evaluation, all
open-source models, except for VILA and Mantis, lag considerably behind. (2) Open-
source image models generally perform better than open-source video models. Even
the best video model, LLaMA-VID, falls short in realistic evaluation with 31.8%, a score
that is lower than eight image models. This may be due to the inability of video mod-
els to capture detailed information in images in the same way that image models can.
(3) Training with multi-image data can improve performance. Models like Qwen-VL-
Chat, VILA, and Mantis that were trained on diverse multi-image datasets show notably
better performance, demonstrating the benefits of varied visual inputs in multimodal
learning. (4) The ability to adapt to long contexts and perform long-context tasks
are not necessarily linked. For example, while Qwen-VL-Chat scores the highest in
diagnostic evaluation among open-source models, it trails behind Mantis in task com-
pletion (39.1% <47.5%), highlighting our evaluation’s diversity and comprehensiveness.

5A degree of similarity among the annotations made by different annotators on the same data.
6https://www.anthropic.com/news/claude-3-family
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Table 2: Experiment Result on MILEBENCH. T-1 refers to the task number introduced in
Section 3. NH and IR refers to Needle in a Haystack and Image Retrieval. The highest scores
for closed-source models, open-source image models, and open-source video models are
marked in red, blue, and green respectively.

Model Size Temporal Multi-image Semantic Multi-image NH IR Overall Overall

T-1 T-2 T-3 T-4 S-1 S-2 S-3 S-4 S-5 N-1 N-2 I-1 Real. Diag.

Random - 25.0 31.9 25.0 31.6 25.1 24.6 0.0 25.3 0.0 0.0 0.0 11.4 22.3 5.5

Closed-source MLLMs

GPT-4V - 51.7 50.1 22.3 58.5 82.8 77.3 11.1 42.4 81.0 99.7 99.1 86.7 53.0 99.4
GPT-4o - 61.8 56.8 38.0 68.3 85.3 83.3 15.3 47.2 86.5 99.7 99.1 88.8 60.3 99.4
Gemini 1.0 - 41.5 46.0 27.3 51.6 74.4 64.7 16.9 47.8 73.0 73.1 27.5 12.5 49.2 37.7
Gemini 1.5 - 55.0 54.5 34.0 57.3 73.9 72.7 17.8 44.7 82.5 99.4 96.3 88.0 54.7 94.5
Claude 3 Opus - 37.7 42.1 21.0 48.6 64.8 59.7 13.3 44.0 58.5 98.1 72.5 25.0 43.3 65.2

Open-source MLLMs (Image models)

ALLaVA-Longer 3B 20.8 32.4 28.0 31.3 33.9 20.7 12.1 17.7 25.5 8.1 0.0 9.3 24.7 5.8
Yi-VL 6B 26.8 34.9 31.5 41.1 57.1 34.2 11.4 33.5 35.5 12.5 0.0 10.7 34.0 7.7
Cheetor 7B 24.2 23.3 18.3 28.0 28.5 24.8 21.9 27.5 32.0 17.8 0.0 8.5 25.4 8.8
Qwen-VL-Chat 7B 34.7 40.0 22.3 44.6 57.3 52.3 14.3 26.7 59.5 35.3 62.8 13.5 39.1 37.2
LLaVA-1.5-7B 7B 37.8 45.5 31.5 46.4 50.8 32.0 11.3 24.2 62.5 0.0 0.0 6.2 38.0 2.1
MiniGPT-v2 7B 9.2 14.4 16.0 20.3 34.5 25.2 7.6 17.0 16.5 15.9 0.0 1.2 17.8 5.7
VILA 7B 40.3 49.1 35.3 49.3 68.1 41.3 12.4 30.7 73.0 25.0 0.3 13.0 44.4 12.8
LLaVA-1.6-7B 7B 38.8 44.4 28.5 33.0 51.6 40.3 9.9 26.9 69.5 10.6 0.9 10.2 38.1 7.2
Mantis 7B 54.8 49.9 25.3 48.9 65.8 55.5 17.4 31.9 78.0 27.5 0.0 32.2 47.5 19.9
Open flamingo 9B 24.5 32.5 26.3 35.1 26.9 23.7 16.2 32.7 28.5 13.8 0.0 11.7 27.4 8.5
LLaVA-1.5-13B 13B 38.8 44.4 28.5 33.0 66.9 49.2 13.8 29.5 59.0 24.7 0.0 7.7 40.3 10.8
LLaVA-1.6-13B 13B 32.8 47.5 23.3 33.0 59.1 34.0 9.5 25.6 72.5 6.9 1.9 10.0 37.5 6.3

Open-source MLLMs (Video models)

Video-LLaMA-2 7B 0.5 3.9 1.3 6.9 11.5 3.3 4.7 3.6 10.0 0.0 0.0 4.5 5.1 1.5
Valley 7B 17.0 29.8 12.5 27.0 18.7 18.7 7.6 26.9 31.0 0.0 7.7 10.5 21.0 6.1
VideoChat2 7B 10.8 27.1 12.8 15.9 42.1 21.8 14.4 24.0 31.5 3.4 0.0 2.7 22.3 2.0
LLaMA-VID 7B 26.2 37.3 26.5 40.5 43.5 26.0 11.7 28.0 46.5 48.4 0.0 10.7 31.8 19.7
LWM* 7B 0.5 14.6 2.5 6.4 7.3 14.0 10.7 8.4 15.0 30.6 0.0 0.0 8.8 10.2

* LWM suffered from a significant decline in performance due to its training on video-text pairs in the final stage. However,
after repeating the image multiple times, we observed an improvement.

Few (2-5) Medium (6-31) Many (32-109)
Image Quantity Level

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Pe
rf

or
m

an
ce

GPT-4V
GPT-4o
Gemini 1.0
Gemini 1.5
Claude 3 Opus
ALLaVA
Yi-VL
Qwen-VL-Chat

MiniGPT-v2
Cheetor
LLaVA-1.5-7b
LLaVA-1.6-7b
VILA
Mantis
Open flamingo

LLaVA-1.5-13b
LLaVA-1.6-13b
LLaMA-VID
Video-LLaMA-2
Valley
VideoChat2
LWM

Figure 5: Average performance across
various levels of image quantity.

(5) Interestingly, the majority of open-source mod-
els scored zero in the Image Needle in a Haystack
task. Upon inspection, we found that many of
these models partially answered the needle nu-
meric string without completely getting it right.
This suggests that open-source models need to im-
prove their ability to retrieve information from im-
ages, particularly their OCR capabilities. Detailed
results from the realistic evaluation can be found
in Appendix C.4. We also selected individual ex-
amples for error analysis, details of which can be
found in Appendix C.3.

4.3 Analysis

In this section, we delve into a meticulous analy-
sis of the results, focusing on two research ques-
tions that revolve around the MILEBENCH: “How
do MLLMs perform given contexts with different lengths?” and “Do MLLMs also get Lost in the
Middle in multimodal long contexts?” We also analyzed three important questions: “Does com-
bined image help multi-image comprehension?”, “How diverse and comprehensive is MILEBENCH?”
and “Does data contamination issue exist in MILEBENCH?” Detailed analysis results are
provided in Appendix D.1, Appendix D.2, and Appendix D.3, respectively.

4.3.1 Performances Decline as the Number of Images Increases for Most MLLMs

To investigate the performance of MLLMs with varying numbers of images, we divide our
dataset into three levels: Few, Medium, and Many, based on the number of images per
sample. The specific quantities for each level can be found in Table 1. Figure 5 reports the
average performance of the model on the three types of data with different numbers of
images. It can be observed that as the number of images increases, the performance of
most models significantly declines (as indicated by a steep slope in the curve), especially
for the LLaVA-1.5 series models. This is likely because most models have only been trained
on single image, resulting in insufficient generalization for multi-image test data. However,
the performance of GPT-4V, GPT-4o, Gemini 1.5, Claude 3 Opus and Qwen-VL-Chat on the
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(a) TextNeedle for GPT-4V
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(b) TextNeedle for Qwen-VL-Chat
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(c) ImageNeedle for GPT-4V

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62

Image Limit

0

1

2

3

4

5

6

7

8

9

D
ep

th
 P

er
ce

nt

0.0

0.2

0.4

0.6

0.8

1.0

Sc
or

e

(d) ImageNeedle for Qwen-VL-Chat

Figure 6: Visualization of results varying in depth and context length in needle haystack. The
x-axis represents the number of tokens or images in the context, while the y-axis indicates the
depth of the context where the needle resides. Green squares indicate successful extraction
of the needle at that position, while red squares denote failure.
Medium level surpasses that of the Few level. This could be attributed to their training on
multi-image data, where a larger number of images can provide more information to some
extent, thereby aiding the model in task completion. Despite their outstanding performance
on multi-image tasks, their performance still declines when the number of images reaches
the Many level. This leaves room for future development in modeling for multi-image
context.
4.3.2 “Lost in the Middle” for MLLMs

Liu et al. (2023b) pointed out that in needle-in-a-haystack tasks involving long texts, models
may experience the “Lost in the Middle” phenomenon, where they struggle to find the
needle located in the middle of the context. We investigated whether MLLMs would exhibit
the “Lost in the Middle” phenomenon in multimodal contexts. We chose the two best-
performing models from closed-source and open-source models in the Needle in a Haystack
task for analysis. As can be seen from the results in Figure 6, MLLMs displayed varying
behaviors. In multimodal long contexts, GPT-4V did not “get lost in the middle” and
managed to complete the two tasks impressively with the scores 99.7% (N-1) and 99.1%
(N-2). On the other hand, ignoring the scenarios where the data exceeds its maximum
context length (8192 tokens or 32 images) and gets truncated, Qwen-VL-Chat showed a
certain degree of “lost in the middle”, particularly evident in the image needle task. This
indicates that the “lost in the middle” phenomenon also exists in multimodal scenarios.
However, a strong ability to manage long context can significantly reduce this risk.

5 Conclusion and Future Directions
In this study, we introduced MILEBENCH, a pioneering benchmark designed to rigorously
evaluate the multimodal long-context capabilities of MLLMs. We have established the
diagnostic and realistic evaluation sets, designed to systematically assess the MLLMs’ ca-
pacity for long-context adaptation and proficiency in task completion within these contexts.
Despite some impressive performances, our experimental results underscore the urgent
need for more focused research to enhance MLLMs’ capabilities in these complex scenarios.

Moving forward, we suggest two primary research directions: (1) Long-context MLLM:
Given the ubiquity of mixed media content, there is a pressing need for models that can
adeptly process multiple images in long-context scenarios. (2) Scaling MILEBENCH to
Larger Contexts and Other Modalities: As real-world tasks continue to evolve, benchmarks
should also adapt, incorporating larger contexts, complex task structures, and additional
modalities to stimulate the development of more versatile MLLMs. These efforts will help
equip MLLMs better for our increasingly multimodal world.
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Limitation
The limitations of this study include that the results from closed-source MLLMs may vary
over time, and there is a risk that some of the test data may be subject to leakage in the
future.

Ethics Statement
The dataset we’re using is an aggregation of publicly accessible datasets licensed under the
Creative Commons license (CC-BY) or other open-source licenses. We’ve meticulously ad-
hered to all required legal procedures to incorporate this data into our research, recognizing
the importance of transparency in data licensing for proper attribution and suitable data
utilization. Our dataset also encompasses images derived from publicly accessible datasets
and language data created through the GPT-4V API. While measures have been put in place
to secure suitable content, we acknowledge the potential existence of problematic content.
Should you come across any such content, we urge you to inform us immediately so we can
make the necessary adjustments to sustain a dataset free from inappropriate content. We
are unwavering in our commitment to maintain a high-quality, ethically responsible dataset
and promise to uphold principles of privacy and transparency throughout our work.
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A Comparison of Current MLLMs Benchmarks

As shown in Table 3, we enumerate the ten most extensively utilized MLLM benchmarks
used recently. These benchmarks are compared across six dimensions: Visual Modality,
Customized Question, Average Images, Max Images, Total Samples, and Question Type. It
is noteworthy that our benchmark presents a greater challenge, particularly in the areas of
Average Images and Max Images, in comparison to other benchmarks. Simultaneously, in
terms of data modality, question types, and quantity, it is comparable to existing works.

Table 3: The Comparison of MLLMs Benchmark. OE: open-ended. MC: multi-choice.

Benchmark Visual Modality Average
Images

Max
Images

Total Samples Question Type

Single-image Benchmarks

LLaVA-Bench Image 1 1 150 OE
MME Image 1 1 2,194 MC
MMBench Image 1 1 2,974 OE
MM-Vet Image 1 1 218 OE
MLLM-Bench Image 1 1 420 OE
MMMU Image 1 1 11,550 OE & MC
SEED-Bench Image & Video 1 1 19,242 MC

Multi-image Benchmarks

SEED-Bench2 Image & Video 2.7 13 24,371 MC
DEMON Image & Video 3.5 11 18,176 OE & MC
Mementos Image & Video 11.6 26 4,761 OE

MILEBENCH Image & Video 15.2 109 6,440 OE & MC

B More Information on MILEBENCH

B.1 Details of Taxonomy

In Table 4, we present a detailed taxonomy of the dataset, task composition, as well as the
number of samples and metrics corresponding to each task.

Table 4: Detailed Statistics and Taxonomy of MILEBENCH.

Category Task Dataset Data Source Count Metric

Realistic Evaluation

Action Understanding and Action Localization STA (Gao et al., 2017) 200 Accuracy
Prediction (T-1) Action Prediction STAR (Wu et al., 2021) 200 Accuracy

Action Sequence STAR (Wu et al., 2021) 200 Accuracy

Object and Scene Object Existence CLEVRER (Yi et al., 2020) 200 Accuracy
Understanding (T-2) Object Interaction STAR (Wu et al., 2021) 200 Accuracy

Temporal Moving Attribute CLEVRER (Yi et al., 2020) 200 Accuracy
Multi-image Object Shuffle Perception Test (Patraucean et al., 2023) 200 Accuracy

Visual Navigation and Egocentric Navigation VLN-CE (Krantz et al., 2020) 200 Accuracy
Spatial Localization (T-3) Moving Direction CLEVRER (Yi et al., 2020) 200 Accuracy

Counterfactual Reasoning Counterfactual Inference CLEVRER (Yi et al., 2020) 200 Accuracy
and State Change (T-4) State Change Perception Test (Patraucean et al., 2023) 200 Accuracy

Character Order Perception Test (Patraucean et al., 2023) 200 Accuracy
Scene Transition MovieNet (Huang et al., 2020) 200 Accuracy

Knowledge Grounded QA (S-1) Webpage QA WebQA (Chang et al., 2022) 200 Accuracy
Textbook QA TQA (Kembhavi et al., 2017) 200 Accuracy

Complex Multimodal QA MultiModalQA (Talmor et al., 2021) 200 Accuracy
Long Text with Images QA WikiVQA 200 Accuracy

Text-Rich Images QA (S-2) Slide QA SlideVQA (Tanaka et al., 2023) 200 Accuracy
Semantic OCR QA OCR-VQA (Mishra et al., 2019) 200 Accuracy
Multi-image Document QA DocVQA (Mathew et al., 2021) 200 Accuracy

Visual Relation Inference (S-3) Visual Change Captioning Spot-the-Diff (Jhamtani & Berg-Kirkpatrick, 2018) 200 ROUGE-L
CLEVR-Change (Hosseinzadeh & Wang, 2021) 200 ROUGE-L

Visual Relationship Expressing IEdit (Tan et al., 2019) 200 ROUGE-L

Dialogue (S-4) Multimodal Dialogue MMCoQA (Li et al., 2022) 200 Accuracy
Conversational Embodied Dialogue ALFRED (Shridhar et al., 2020) 200 ROUGE-L

Space Understanding (S-5) Space Understanding nuScenes (Caesar et al., 2020) 200 Accuracy

Diagnostic Evaluation

Needle In Text Needle (N-1) Text Needle In A Haystack TextNeedleInAHaystack 320 Accuracy

A Haystack Image Needle (N-2) Image Needle In A Haystack ImageNeedleInAHaystack 320 Accuracy

Image Retrieval Image Retrieval (I-1) Image Retrieval GPR1200 (Schall et al., 2022) 600 Accuracy
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B.2 More Examples in MILEBENCH

We provide additional examples from each dataset of the temporal multi-image and semantic
multi-image, and Image Needle In A Haystack task, as illustrated in Figure 7, Figure 8,
and Figure 9 respectively. In the instance of Image Needle In A Haystack task, a text needle
is embedded within the first image.

Instruction: Examine the succession of events in the supplied 
visuals and answer the relevant query. You must choose your 
answer from the Choice List.
Question: What happened after the person opened the 
closet/cabinet?
Choice List:
A. Put down the towel.        B. Put down the clothes.
C. Put down the food.     D. Threw the shoe.
Ground Truth: A. Put down the towel. 

Temporal Multi-image
Action Understanding and Prediction (T-1) Object and Scene Understanding (T-2)

Instruction: Review the supplied imagery, and find the hidden 
object. You must choose your answer from the Choice List.
Question: The person uses multiple similar objects to play an 
occlusion game. Where is the hidden object at the end of the game 
from the person's point of view?
Choice List: 
A. Under the first object from the left.    
B. Under the second object from the left.    
C. Under the third object from the left. 
Ground Truth: B. Under the second object from the left.    

Visual Navigation and Spatial Localization (T-3)

Instruction: From the presented pictures and instructions, infer 
the next course of action. You must choose your answer from the 
Choice List.
Question: This is a navigation video of an agent following 
instruction: "Go down the stairs to your right and stop when you 
get all the way down." What is the next action it should take?
Choice List:
A. Turn left and move forward.    B. Stop.
C. Move forward.       D. Turn right and move forward.
Ground Truth: D. Turn right and move forward. 

Counterfactual Reasoning and State Change (T-4)

Instruction: Inspect the presented illustrations and conclude the 
scene transition. You must choose your answer from the Choice 
List.
Question: Can you choose the option that matches how the 
scenes change in the video?
Choice List:
A. From the bedroom to the garden..    
B. From the kitchen to the rooftop..
C. From the office to the park..       
D. From the living room to the beach.
Ground Truth: B. From the kitchen to the rooftop. 

Figure 7: Examples in temporal multi-image category.
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Instruction: Examine the succession of events in the supplied 
visuals and answer the relevant query. You must choose your 
answer from the Choice List.
Question: Question: Identify the deltoid in the following images:
Choice List:
A. N.       B. U.       C. P.       D. V.
Ground Truth: B. U. 

Semantic Multi-image
Knowledge Grounded QA (S-1)

Text-Rich Images (S-2)

Instruction: Review the supplied imagery, and find the hidden 
object. You must choose your answer from the Choice List.
Question: Question: In which micro-market was the number of 
Units higher: Central Noida or the area whose weighted average 
BSP at the end of Q1-2014 was 2,991?
Choice List: 
A. the area with a weighted average BSP of 2,876.    
B. Central Noida.    
C. the area with a weighted average BSP of 2,658. 
D. the area with a weighted average BSP of 3,102
Ground Truth: B. Central Noida.    

Visual Relation Inference (S-3)

Instruction: Identify the transformations in the second image 
compared to the first.
Question: Difference:
Ground Truth: the after image has a person in a blue shirt. the 
after image has a woman walking before the person in a blue 
shirt. the after image has a dark person standing by the big tree

Space Understanding (S-5)

Instruction: Upon viewing six pictures captured from various 
cameras on a street view vehicle, your role is to answer 
questions about the presented scene. You must choose your 
answer from the Choice List. 
Question: how many yellow trucks are there?
Choice List: A. three    B. two    C. five    D. four
Ground Truth: A. three

Dialouge (S-4)
Instruction: Upon viewing six pictures captured from various 
cameras on a street view vehicle, your role is to answer 
questions about the presented scene. You must choose your 
answer from the Choice List. 

Your Main Goal:  Read a book using the light of a lamp.  
Step Details:

Step#3: 
Approach the 
lamp on the 
far right of 
the desk.

Ground Truth: Turn on the lamp.

Step#1: Turn 
to your right 
and walk to 
the desk.

Step#2: Pick 
up the book 
from the 
desk.

Question: 

        Current Step:

Figure 8: Examples in semantic multi-image category.

Image Needle in a HayStack
Instruction: Offer succinct and precise responses to any queries regarding the displayed images. 
Context:   

Question: What is the 
special magic Delhi 
number in the images?

Ground Truth: 2854716

Figure 9: An example in Image Needle In A Haystack task.
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B.3 Construction Process of Synthetic Data

Prompts

Please construct a multiple-choice question using the provided images and accompanying
text. The question must be relevant to multiple images. The four answer choices should
be as comparable as feasible, with only one correct answer. Present your response in the
following structure:
‘Question: <Question>
Options: <Option 1><Option 2><Option 3><Option 4>
Answer: <Answer>’.

Figure 10: Prompts for WikiVQA data construction.

Within the MILEBENCH, three datasets were constructed by our authors. We employed a
systematic approach for our task-specific data construction.

• The Long Text with Images QA (WikiVQA) is derived from multimodal English Wiki
documents. We collected documents that contain more than two images and have a
text length ranging between 1000 and 8000 words. For each data entry, we extracted
images and their associated captions from each document and leveraged GPT-4V
to generate a question, options, and an answer, based on a prompt illustrated in
Figure 10. Subsequently, we structured each data entry of WikiVQA by using
the original multimodal document as the context, accompanied by the question,
options, and the corresponding answer.

• For Image Retrieval, we used images from the GPR1200 (Schall et al., 2022), which
encompasses image data collated from a myriad of sources across 120 categories.
For each data entry, we select two images from one category as anchor and positive
samples, and then uniformly sample 4 to 62 images from other categories as negative
samples.

• Both Text Needle In A Haystack and Image Needle In A Haystack tasks involve sampling
between 2 to 64 images. For Text Needle In A Haystack, a text needle containing the
password is embedded into 10 equidistant positions within a long text fragment,
sampled at a ratio of 1 image to 250 words. Conversely, the Image Needle In A
Haystack task involves embedding the needle directly into the images themselves,
placed at 10 equidistant positions.

C More Information on Experiments

C.1 Details of Evaluation Models

We provide basic information of benchmarked models in Table 5, as well as brief introduction
for each model to highlight their characteristics:

• GPT-4V (OpenAI, 2023) and GPT-4o7 are developed by OpenAI and are deemed
the most powerful vision-language models for comprehension and generation. We
report testing GPT-4V (gpt-4-turbo-2024-04-09) on April 12, 2024 and GPT-4o
(gpt-4o-2024-05-13) on May 13, 2024.

• Gemini 1.0 (Anil et al., 2023) and Gemini 1.5 (Reid et al., 2024) are models developed
by Google, demonstrating competitive ability among closed-source MLLMs. We
report testing Gemini 1.0 (gemini-1.0-pro-vision-001) on March 20, 2024, and
Gemini 1.5 (gemini-1.5-pro-latest) on April 12, 2024. Gemini 1.0 has a limitation
of accepting up to 16 images as input.

• Claude 3 Opus8 is a vision-language model recently released by Anthropic, impress-
ing the community with its extra-long 200K context length. We report testing Claude

7https://openai.com/index/hello-gpt-4o/
8https://www.anthropic.com/news/claude-3-family
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Table 5: Sizes, context length, number of tokens per image and multi-image training infor-
mation of benchmarked models.

Model Size Context Length # Tokens per Image Multi-Image Training

Closed-source MLLMs

GPT-4V / 128K / /
GPT-4o / 128K / /
Gemini 1.0 / 12K / /
Gemini 1.5 / 1M / /
Claude 3 Opus / 200K / /

Open-source MLLMs (Image models)

ALLaVA-Longer 3B 2048 576 ✗
Yi-VL 6B 4096 576 ✗
Cheetor 7B 4096 32 ✓
Qwen-VL-Chat 7B 8192 256 ✓
LLaVA-1.5-7B 7B 4096 576 ✗
MiniGPT-v2 7B 4096 256 ✗
VILA 7B 4096 576 ✓
LLaVA-1.6-7B 7B 4096 576 ✗
Mantis 7B 8192 576 ✓
Open flamingo 9B 2048 256 ✓
LLaVA-1.5-13B 13B 4096 576 ✗
LLaVA-1.6-13B 13B 4096 576 ✗

Open-source MLLMs (Video models)

Video-LLaMA-2 7B 4096 32 ✓
Valley 7B 4096 256 ✓
VideoChat2 7B 2048 96 ✓
LLaMA-VID 7B 4096 2 ✓
LWM 7B 1M 257 ✓

3 (claude-3-opus-20240229) on March 16, 2024. Claude 3 Opus has a limitation of
accepting up to 20 images as input

• LLaVA-v1.5 (Liu et al., 2023a) introduces a simple yet effective modality alignment
strategy, based on which many other models are developed.

• MiniGPT-v2 (Chen et al., 2023) is a concurrent work with LLaVA-v1.5. It adopts a
similar structure to the latter and is a grounding-enhanced model.

• LLaVA-v1.6 (Liu et al., 2024b) takes a step further on the basis of LLaVA-v1.5. It
is able to process images with any resolution and releases more variants based on
different LLMs.

• ALLaVA-Longer (Chen et al., 2024) is a lite version of LLaVA with enhanced complex
reasoning ability, even achieving competitive results with larger models.

• Yi-VL (Young et al., 2024) is based on LLaVA architecture and adopts a 3-stage
training process.

• Cheetor (Li et al., 2023c) proposes to use a Visual Prompt Generator to capture
residual visual details, which might be vital for model performance.

• Qwen-VL-Chat (Bai et al., 2023) is a 7B model trained on billions of multimodal
samples.

• VILA (Lin et al., 2023) adopts a LLaVA-like structure but is trained with interleaved
image-text data.

• Mantis (Jiang et al., 2024) uses LLaMA39 as language model and is trained with
multi-image data.

• Open flamingo (Awadalla et al., 2023) the open-source implementation of
Flamingo (Alayrac et al., 2022), which serves as the foundation of subsequent
multi-image and video comprehension models.

9https://github.com/meta-llama/llama3
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• Video-LLaMA-2 (Zhang et al., 2023) is an MLLM that can process vision and audio
data by adopting two distinct encoders and Q-Formers.

• Valley (Luo et al., 2023) is a video comprehension model that uses a temporal mod-
eling module to encode video inputs into embeddings, which are then concatenated
with textual features to perform downstream tasks.

• VideoChat2 (Li et al., 2023d) trains a Q-Former to extract visual features, and the
LLM remains frozen with the added LoRA layer tuned.

• LLaMA-VID (Li et al., 2023e) conducts an extreme compression of images, repre-
senting an image with only 2 tokens.

• LWM (Liu et al., 2024a) is progressively trained with multimodal data to extend its
context length. It is by far the only open-source MLLM that can handle up to 1M
tokens as its inputs.
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C.2 Details of Input Prompt Construction and Instruction Application

In Figure 11, we illustrate the prompt structure employed during our evaluation phase. We
crafted a unified input prompt structure for each dataset, incorporating dataset-specific
instructions. For a detailed view of the specific instructions utilized, please refer to Table 6
for temporal multi-image tasks, Table 7 for semantic multi-image tasks, Table 8 for diagnostic
evaluation.

Prompts

Prompt for Multi-choice QA:
Instruction: {Instruction}
Question: {Interleaved image-text question}
Choice List: {choices}
Answer:

Prompt for Open-ended QA:
Instruction: {Instruction}
Question: {Interleaved image-text question}
Answer:

Figure 11: Prompts for evaluating models.

Table 6: Instructions for the datasets in temporal multi-image tasks.

Dataset Instruction

Action Localization Analyze the provided visuals and determine the timing of the event in question.
You must choose your answer from the Choice List.

Action Prediction Analyze the provided visuals and forecast the individual’s subsequent move. You
must choose your answer from the Choice List.

Action Sequence Based on the provided images, answer the question related to the sequence of
action You must choose your answer from the Choice List.

Object Existence Based on the provided images, answer the question related to the existence of
objects. You must choose your answer from the Choice List.

Object Interaction Based on the provided images, answer the question related to the interaction of
objects. You must choose your answer from the Choice List.

Moving Attribute Based on the provided images, answer the question related to the moving
attribute. You must choose your answer from the Choice List.

Object Shuffle Based on the provided images, and find the hidden object. You must choose your
answer from the Choice List.

Egocentric Navigation Analyze the provided visuals and instructions, then determine the subsequent
step. You must choose your answer from the Choice List.

Moving Direction Based on the provided images, answer the question related to the moving
direction. You must choose your answer from the Choice List.

Counterfactual
Inference

Based on the provided images, answer the question related to the counterfactual
inference. You must choose your answer from the Choice List.

State Change Analyze the provided visuals and determine the change of the state in question.
You must choose your answer from the Choice List.

Character Order Analyze the given visuals and answer the question about the order of character.
You must choose your answer from the Choice List.

Scene Transition Analyze the provided visuals and determine the transition of the scene in question.
You must choose your answer from the Choice List.
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Table 7: Instructions for the datasets in semantic multi-image tasks.

Dataset Instruction

Webpage QA I will give you several images and a question, your job is to seek information in
the slide and answer the question correctly. You must choose your answer from
the Choice List.

Textbook QA Provided with a series of diagrams from a textbook, your responsibility is to
correctly answer the following question. You must choose your answer from the
Choice List.

Complex Multimodal
QA

Given a collection of relevant data, which includes images, text, and tables, your
task is to respond accurately to the ensuing question. You must choose your
answer from the Choice List.

Long Text with
Images QA

Analyze the given context and associated images, draw inferences from the
combination of both, and provide responses to posed questions.

Slide QA I will give you several slides and a question, your job is to seek information in the
slide and answer the question correctly. You must choose your answer from the
Choice List.

OCR QA I will give you two pictures of the book cover. Please look at the pictures and
answer a question You must choose your answer from the Choice List.

Document QA I will give you some pictures, and each group of pictures will correspond to a
question. Please answer it briefly. You must choose your answer from the Choice
List.

Visual Change
Captioning

What’s the difference between 2 images?

Visual Relationship
Expressing

Please give a editing Request to describe the transformation from the source image
to the target image.

Multimodal Dialogue Provided with a variety of pertinent information, including images, text, tables,
and previous Q&A history, your role is to answer the upcoming question
accurately.

Conversational
Embodied Dialogue

Give you a main goal, your job is to figure out what to do now by looking at
current envirments. Your past views as well as decisions are also provided.

Space Understanding Given six images taken from different cameras on a street view car, your task is to
answer questions about the depicted scene. You must choose your answer from
the Choice List.

Table 8: Instructions for the datasets in diagnostic evaluation.

Dataset Instruction

Text Needle In A
Haystack

Answer user question concisely and directly based on the provided images.

Image Needle In A
Haystack

Answer user question concisely and directly based on the provided images.

Image Retrieval Given the anchor image and the candidate images, identify which candidate
image is most visually similar to the anchor image.

25



Published as a conference paper at COLM 2024

C.3 Error Case Study

Ground Truth: Place tissue box on back of toilet, in front of candle stick. ✔
GPT-4V: I'm sorry, I cannot provide assistance as requested.❌ (Refusal to reply)
Qwen-VL-Chat: Step 1 is complete.❌  (Failure to follow instructions)
LLaVA-1.5-7B: The image is a 3D computer-generated image of a bathroom.❌  
(Failure to follow instructions)

Instruction: Using the final goal as your guide, reflect on your past successful 
strategies as a smart agent. Observe the information in the image to inform your 
present decision.
Question: Your Main Goal:  Move two boxes of tissue from counter to back of 
toilet. Step Details: Step#1: Proceed to counter in front of tissue boxes. Step#2: 
Pick up middle tissue box from counter. Step#3: Turn around, go to counter toilet. 
Current Step:

Ground Truth: There are 2 people on the left image.  ✔
Qwen-VL-Chat: There is no existence of any difference in the 
images.❌  (Failure to recognize)
Valley: The image shows a building with a large number of cars parked 
in front of it. The cars are parked in a parking lot, and the building 
appears to be a university building. The cars are parked in a row, and the 
image is taken from a distance, showing the entire parking lot.❌  
(Failure to follow instructions)

Instruction: What's the difference between 2 images? 
Question: Difference:

Figure 12: Two error cases from Space Understanding (above) and Visual Relation Inference
(below) tasks in MILEBENCH.

We conducted an error analysis to further investigate the flaws of the models. An example of
the Space Understanding task is displayed in the upper part of Figure 12. When recognizing
spatial positions and current actions, GPT-4V declined to respond, while other models
did not correctly follow the instructions to answer the question. They merely generated
captions for the images, which could be related to them not having been trained on multi-
image QA data, emphasizing the importance of multi-image training. In a Visual Relation
Inference task example (Figure 12 bottom), Qwen-VL-Chat and Valley struggled with image
differentiation and instruction following, resulting in inaccurate inferences. This suggests
MLLMs could improve in recognizing subtle image differences, possibly due to their low-
resolution visual models. The illusion issue in multi-image inputs for video models also
highlights the need for ample multi-image training data.

C.4 Detailed Experiments Result

To delve deeper into the analysis, we present the performance of all models on both the
Multi-image Set and the Combined-image Set. For collections involving multiple images,
Table 11 illustrates the performance of all models under the temporal multi-image tasks,
while Table 12 demonstrates their performance on semantic multi-image tasks. Regarding
the combined-image set, Table 13 exhibits the results of all models for Temporal Multi-image
Tasks, and Table 14 reveals their results on Semantic Multi-image Tasks.

D More Analysis Results

D.1 Experiment on Combined-image Set

To overcome the constraint that models support only a minimal number of image inputs, we
introduced Combined-image Set, and to distinguish it from the original MILEBENCH, we will
henceforth refer to MILEBENCH as the Multi-image Set. In the Combined-image Set, multiple
images are merged into one large image, positioned at the beginning of the input. The
original images in the text are then substituted with placeholders. To save the cost, we only
selected three closed-source MLLMs to evaluate.

We show the result on combined image set in Table 9 and summarize our findings as follows:
(1) The performance of proprietary models still surpasses that of open-source models in
both realistic evaluation (average: 44.8% v.s. 29.6%, max: 48% v.s. 44.9%) and diagnostic
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Table 9: Experiment Result on Combined-image Set. T-1 refers to the task number intro-
duced in Section 3. NH and IR refers to Needle in a Haystack and Image Retrieval. The
highest scores for closed-source models, open-source image models, and open-source video
models are marked in red, blue, and green respectively.

Model Size Temporal Multi-image Semantic Multi-image NH IR Overall Overall

T-1 T-2 T-3 T-4 S-1 S-2 S-3 S-4 S-5 N-1 N-2 I-1 Realistic Diagnostic

Random - 25.0 31.9 25.0 31.6 25.1 24.6 0.0 25.3 0.0 0.0 0.0 11.4 22.3 5.5

Closed-source MLLMs

GPT-4V - 40.8 42.6 24.5 49.5 76.1 60.8 12.2 35.0 70.5 100.0 9.1 38.2 45.8 49.1
Gemini 1.0 - 32.3 45.8 31.0 51.1 70.1 70.7 16.1 44.8 70.0 71.3 83.8 26.5 48.0 60.5
Claude 3 Opus - 32.5 38.8 20.0 50.0 65.3 57.8 14.4 36.5 51.0 100.0 13.5 18.5 40.7 44.0

Open-source MLLMs (Image models)

ALLaVA-Longer 3B 22.7 31.6 30.5 36.6 34.0 21.2 10.5 25.1 29.5 6.9 0.0 10.0 26.9 5.6
Yi-VL 6B 26.8 34.3 28.5 44.3 57.8 33.5 9.9 30.7 42.5 27.2 0.0 10.5 34.2 12.6
Cheetor 7B 23.5 30.0 19.5 30.5 29.5 26.0 22.8 26.9 31.0 15.6 0.0 10.7 26.0 8.8
Qwen-VL-Chat 7B 27.5 37.1 23.8 40.5 55.1 44.8 9.6 29.9 53.0 50.9 1.9 8.8 35.7 20.6
LLaVA-1.5-7B 7B 30.0 38.1 30.3 41.8 53.8 29.0 15.5 30.4 65.5 18.8 0.0 7.2 37.1 8.6
MiniGPT-v2 7B 26.5 32.3 25.3 38.3 43.0 25.3 10.6 19.9 44.0 21.6 0.0 11.2 29.5 10.9
VILA 7B 34.5 39.1 32.3 46.4 61.9 35.2 13.5 29.8 63.5 21.9 0.0 11.3 39.6 11.1
LLaVA-1.6-7B 7B 27.3 38.5 27.3 40.8 46.3 33.0 11.8 25.6 56.5 15.9 0.0 10.5 34.1 8.8
Mantis 7B 43.0 45.1 34.0 54.5 68.8 53.2 17.3 27.2 61.0 85.3 0.0 11.8 44.9 32.4
Open flamingo 9B 16.2 22.1 17.3 21.8 25.5 20.0 3.3 25.3 28.5 19.4 0.0 10.8 20.0 10.1
LLaVA-1.5-13B 13B 33.5 44.1 29.5 52.4 64.8 39.0 13.7 36.0 64.0 20.0 0.0 10.0 41.9 10.0
LLaVA-1.6-13B 13B 32.0 44.5 29.5 43.4 55.4 30.3 10.0 27.8 64.0 17.8 0.0 10.3 37.4 9.4

Open-source MLLMs (Video models)

Video-LLaMA-2 7B 12.5 21.5 18.5 11.6 15.6 10.3 4.8 3.7 4.0 25.9 0.0 10.2 11.4 12.0
Valley 7B 21.3 31.9 24.3 26.1 24.0 23.8 13.9 7.8 26.5 10.5 5.3 0.0 22.2 5.3
VideoChat2 7B 14.3 35.5 25.8 26.4 44.1 19.7 12.6 26.2 25.0 14.1 0.0 9.2 25.5 7.7
LLaMA-VID 7B 25.8 33.3 25.8 35.6 44.9 24.0 12.0 28.8 38.0 51.3 0.0 10.7 29.8 20.6
LWM 7B 1.3 10.4 0.8 3.1 8.4 10.3 9.9 6.8 7.0 43.1 0.0 0.2 6.4 14.4

evaluation (average: 51.2% v.s. 12.3%, max: 60.5% v.s. 32.4%). (2) In comparison to the
results on the multi-image set, the performance of proprietary models declined, except
for Gemini 1.0, which is limited by the number of images uploaded on the multi-image set.
The potential reason is that to maintain performance on the combined image set, models
need to possess high-resolution vision models that can effectively distinguish multiple
images combined together. For instance, Gemini 1.0 adjusts images of excessively large
resolution to a size of 3072 × 3072. On the other hand, GPT-4V and Claude 3 Opus resize
the images to dimensions of 768 × 768 and 1568 × 1568, respectively. The lower resolution
input of GPT-4V and Claude 3 Opus, in comparison to Gemini 1.0, could potentially be a
factor for their diminished performance. (3) Compared to the results on the multi-image
set, the performance of some open-source models with short contexts improved, such as
ALLaVA-Longer (from 24.7% to 26.9%) and MiniGPT-v2 (from 17.8% to 29.5%). The possible
reason is that these models have only been trained on single images and cannot effectively
generalize to multi-image scenarios. Combining images can effectively alleviate this issue.

D.2 Inter-task Correlation in MILEBENCH

T-1 T-2 T-3 T-4 S-1 S-2 S-3 S-4 S-5

T-1

T-2

T-3

T-4

S-1

S-2

S-3

S-4

S-5

1.00 0.94 0.72 0.92 0.92 0.93 0.38 0.78 0.95

0.94 1.00 0.72 0.87 0.90 0.85 0.27 0.68 0.95

0.72 0.72 1.00 0.66 0.60 0.56 0.35 0.50 0.64

0.92 0.87 0.66 1.00 0.90 0.92 0.45 0.86 0.83

0.92 0.90 0.60 0.90 1.00 0.95 0.34 0.72 0.90

0.93 0.85 0.56 0.92 0.95 1.00 0.38 0.77 0.88

0.38 0.27 0.35 0.45 0.34 0.38 1.00 0.55 0.31

0.78 0.68 0.50 0.86 0.72 0.77 0.55 1.00 0.67

0.95 0.95 0.64 0.83 0.90 0.88 0.31 0.67 1.00 0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Figure 13: Spearman correlation be-
tween each pair of tasks in realistic
evaluation.

To investigate the multi-task characteristics of the
realistic evaluation in our MILEBENCH, we ana-
lyzed the performance of all models across the nine
tasks within this evaluation and calculated pair-
wise correlations between different tasks, as shown
in Figure 13. (1) We found that, aside from Task S-3
(Visual Relation Inference), tasks within the same
category (either temporal multi-image or semantic
multi-image) exhibited high correlation. Task S-3,
being a challenging one, showed little variation in
scores across models. (2) We also noted that Task
T-3 (Visual Navigation and Spatial Localization)
demonstrated lower correlation with other tasks,
possibly due to its requirement of unique cognitive
skills such as understanding the world from a first-
person perspective. These observations suggest
that the realistic evaluation of MILEBENCH encompasses a broad range of task types,
offering a more comprehensive assessment in the context of multi-image long-context
scenarios.
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D.3 Risk of Data Contamination for MILEBENCH

Model Regular ADV ∆ ↓

Cheetor 25.4 25.3 0.1
VILA 44.4 43.6 0.8
Qwen-VL-Chat 39.1 38.2 0.9
Open flamingo 27.4 26.2 1.2
GPT-4o 60.3 57.3 3.0

Table 10: Contamination Detection. We
present Regular (result on MILEBENCH), ADV
(result on the ADV set) and their difference ∆.

Considering MILEBENCH’s use of public
datasets, there’s a potential risk of data
contamination. Our investigation, which
involved excluding models trained solely
on single-image tasks, selected four open-
source models—Qwen-VL-Chat, Cheetor,
Open Flamingo, and VILA—and one
closed-source model, GPT-4o (details in Ap-
pendix C.1) We referred to Wei et al. (2023)
and constructed an Adversarial (ADV) Set
with shuffled options and paraphrased ref-
erence answers and evaluated the differ-
ence between original and ADV results. The results (Table 10) indicate a negligible per-
formance drop, ranging from 0.1% to 1.2% for the open-source models and 3% for the
closed-source model, suggesting a minimal likelihood that these models were trained on
our dataset.

Table 11: Experiment Result on Temporal Multi-image Tasks. AL: Action Localization. AP:
Action Prediction. AS: Action Sequence. CO: Character Order. CI: Counterfactual Inference.
EN: Egocentric Navigation. MA: Moving Attribute. MD: Moving Direction. OE: Object
Existence. OI: Object Interaction. OS: Object Shuffle. ST: Scene Transition. SC: State Change.

Model AL AP AS CO CI EN MA MD OE OI OS ST SC

Random 25.0 25.0 25.0 33.3 34.8 25.0 36.0 25.0 33.3 25.0 33.3 25.0 33.3

Closed-source MLLMs

GPT-4V 36.5 64.0 54.5 73.0 32.0 28.5 51.0 16.0 48.5 66.0 35.0 83.0 46.0
GPT-4o 34.5 73.5 77.5 86.5 46.0 44.5 58.0 31.5 52.0 79.5 37.5 86.5 54.0
Gemini 1.0 30.0 48.0 46.5 39.0 41.0 28.5 48.5 26.0 53.0 50.5 32.0 84.5 42.0
Gemini 1.5 40.0 63.5 61.5 75.0 33.5 32.5 60.5 35.5 54.0 68.0 35.5 79.0 41.5
Claude 3 Opus 32.5 41.5 39.0 56.5 30.5 24.5 46.5 17.5 45.5 47.5 29.0 71.5 36.0

Open-source MLLMs (Image models)

ALLaVA-Longer 19.0 23.5 20.0 25.5 23.5 25.5 29.0 30.5 47.0 21.5 32.0 38.5 37.5
Yi-VL 31.5 22.0 27.0 40.0 34.0 33.5 32.5 29.5 45.5 28.5 33.0 51.0 39.5
Cheetor 25.5 24.5 22.5 40.0 23.0 24.5 30.5 12.0 11.5 21.5 29.5 9.0 40.0
Qwen-VL-Chat 32.5 34.0 37.5 38.0 30.5 22.0 42.5 22.5 41.0 40.5 36.0 71.5 38.5
LLaVA-1.5-7B 24.0 48.5 38.5 26.0 28.5 31.5 47.0 32.0 53.0 47.5 33.5 71.5 30.0
MiniGPT-v2 9.5 6.5 11.5 17.5 39.0 15.0 20.5 17.0 14.5 16.5 6.0 5.5 19.0
VILA 23.0 53.0 45.0 48.5 38.5 35.0 54.0 35.5 54.5 51.5 36.5 78.0 32.0
LLaVA-1.6-7B 25.5 50.0 41.0 23.0 17.0 28.5 41.0 28.5 51.5 46.5 38.5 58.5 33.5
Mantis 25.0 60.5 49.0 41.5 34.0 20.5 55.5 30.0 55.5 57.0 31.5 66.5 53.5
Open flamingo 26.5 25.0 24.0 35.5 38.0 25.0 31.5 27.5 30.0 29.5 39.0 33.0 34.0
LLaVA-1.5-13B 25.5 45.5 42.5 43.0 36.0 26.0 48.5 37.0 46.0 45.0 42.5 70.5 36.0
LLaVA-1.6-13B 27.0 34.0 31.5 29.5 20.0 23.5 49.0 23.0 52.0 50.0 39.0 48.5 34.0

Open-source MLLMs (Video models)

Video-LLaMA-2 1.5 0.0 0.0 9.5 8.5 2.0 3.5 0.5 5.5 1.5 5.0 0.0 9.5
Valley 16.0 15.0 20.0 32.5 28.0 12.0 33.5 13.0 39.5 30.0 16.0 17.5 30.0
VideoChat2 6.5 16.0 10.0 16.5 25.0 17.5 44.0 8.0 37.5 11.0 16.0 10.0 12.0
LLaMA-VID 27.5 29.0 22.0 42.0 39.5 25.0 46.0 28.0 30.0 34.0 39.0 49.0 31.5
LWM 0.5 1.0 0.0 12.0 2.5 0.5 13.5 4.5 40.0 5.0 0.0 0.5 10.5
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Table 12: Experiment Result on Semantic Multi-image Tasks. CED: Conversational Em-
bodied Dialogue. VCC1: Visual Change Captioning (CLEVR-Change). DQ: Document
QA. VRE: Visual Relationship Expressing. MD: Multimodal Dialogue. CMQ: Complex
Multimodal QA. SU: Space Understanding. OQ: OCR QA. SQ: Slide QA. VCC2: Visual
Change Captioning (Spot-the-Diff). TQ: Textbook QA. WQ: Webpage QA. LTIQ: Long Text
with Images QA.

Model CED VCC1 DQ VRE MD CMQ SU OQ SQ VCC2 TQ WQ LTIQ

Random 0.0 0.0 25.0 0.0 0.0 25.3 25.3 23.0 25.7 0.0 25.0 25.3 25.0

Closed-source MLLMs

GPT-4V 15.4 15.5 92.5 5.1 69.5 80.0 81.0 57.5 82.0 12.7 76.5 79.0 95.5
GPT-4o 24.4 20.3 96.0 7.6 70.0 85.0 86.5 64.0 90.0 18.1 80.0 79.5 96.5
Gemini 1.0 41.1 21.1 75.5 9.6 54.5 76.0 73.0 52.5 66.0 19.9 66.0 67.5 88.0
Gemini 1.5 26.9 21.3 88.5 12.8 62.5 71.5 82.5 52.0 77.5 19.4 74.0 71.5 78.5
Claude 3 Opus 19.6 19.7 81.5 8.7 68.5 56.0 58.5 31.0 66.5 11.7 70.0 61.5 71.5

Open-source MLLMs (Image models)

ALLaVA-Longer 10.4 15.8 28.0 5.7 25.0 27.0 25.5 2.5 31.5 14.8 33.5 49.5 25.5
Yi-VL 30.0 15.2 53.5 5.4 37.0 48.0 35.5 8.0 41.0 13.7 51.5 57.0 72.0
Cheetor 32.1 29.0 18.0 13.9 23.0 32.5 32.0 28.0 28.5 22.7 25.0 29.5 27.0
Qwen-VL-Chat 19.4 15.3 58.0 8.5 34.0 66.0 59.5 42.5 56.5 19.2 53.5 44.0 65.5
LLaVA-1.5-7B 14.9 16.4 43.5 1.2 33.5 66.5 62.5 10.0 42.5 16.5 46.5 58.5 31.5
MiniGPT-v2 1.9 5.5 25.5 7.4 32.0 34.0 16.5 21.5 28.5 10.0 21.0 52.0 31.0
VILA 20.0 16.6 44.0 7.1 41.5 72.5 73.0 31.5 48.5 13.6 55.5 65.0 79.5
LLaVA-1.6-7B 11.8 13.7 44.0 5.9 42.0 60.0 69.5 32.0 45.0 10.2 49.0 38.0 59.5
Mantis 26.3 17.6 53.0 8.7 37.5 74.5 78.0 61.0 52.5 26.0 39.5 62.5 86.5
Open flamingo 23.9 17.6 26.5 13.3 41.5 29.0 28.5 20.5 24.0 17.8 29.0 29.5 20.0
LLaVA-1.5-13B 19.0 15.9 46.0 9.7 40.0 74.0 59.0 50.5 51.0 15.7 55.0 65.0 73.5
LLaVA-1.6-13B 12.7 12.8 41.0 5.7 38.5 69.5 72.5 13.5 47.5 10.1 53.5 45.0 68.5

Open-source MLLMs (Video models)

Video-LLaMA-2 7.2 5.0 2.5 4.9 0.0 7.0 10.0 5.5 2.0 4.2 11.0 0.5 27.5
Valley 20.7 9.1 19.0 3.7 33.0 24.5 31.0 21.5 15.5 9.9 20.5 21.5 8.4
VideoChat2 13.0 22.6 30.5 7.6 35.0 53.5 31.5 7.0 28.0 12.9 31.0 33.5 50.5
LLaMA-VID 19.9 14.6 35.0 6.5 36.0 37.5 46.5 14.5 28.5 13.9 47.0 37.0 52.5
LWM 13.3 14.9 13.5 6.5 3.5 17.5 15.0 17.5 11.0 10.9 9.0 1.5 1.0
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Table 13: Experiment Result on Temporal Multi-image Tasks of Combined-image Set. AL:
Action Localization. AP: Action Prediction. AS: Action Sequence. CO: Character Order.
CI: Counterfactual Inference. EN: Egocentric Navigation. MA: Moving Attribute. MD:
Moving Direction. OE: Object Existence. OI: Object Interaction. OS: Object Shuffle. ST:
Scene Transition. SC: State Change.

Model AL AP AS CO CI EN MA MD OE OI OS ST SC

Random 25.0 25.0 25.0 33.3 34.8 25.0 36.0 25.0 33.3 25.0 33.3 25.0 33.3

Closed-source MLLMs

GPT-4V 38.0 48.0 36.5 48.0 36.0 26.5 47.0 22.5 58.0 42.0 23.5 75.0 39.0
Gemini 1.0 27.0 31.5 38.5 45.0 37.5 35.5 45.5 26.5 56.5 45.0 36.0 81.0 41.0
Claude 3 Opus 35.5 28.0 34.0 54.5 34.0 24.5 43.5 15.5 44.0 35.0 32.5 73.5 38.0

Open-source MLLMs (Image models)

ALLaVA-Longer 22.5 21.5 24.0 34.0 27.5 32.5 28.0 28.5 46.0 23.0 29.5 49.5 35.5
Yi-VL 27.5 25.5 27.5 41.0 36.5 36.5 31.5 20.5 46.5 26.5 32.5 60.5 39.0
Cheetor 31.0 21.0 17.5 27.5 32.5 30.0 23.5 41.0 10.5 26.5 23.5 26.5 12.5
Qwen-VL-Chat 28.5 24.0 30.0 35.5 25.0 27.5 46.0 20.0 47.0 25.5 30.0 65.5 36.0
LLaVA-1.5-7B 20.0 38.0 32.0 33.0 28.5 28.0 48.5 32.5 38.0 37.0 29.0 71.5 34.0
MiniGPT-v2 29.5 25.0 25.0 32.5 38.0 22.0 26.0 28.5 31.5 32.5 39.0 36.5 46.0
VILA 63.5 28.5 35.5 39.5 37.0 35.0 31.5 46.5 33.0 51.0 29.5 29.5 73.5
LLaVA-1.6-7B 27.0 29.0 26.0 37.0 39.0 27.0 42.5 27.5 40.5 32.0 39.0 50.5 36.5
Mantis 33.0 47.0 49.0 44.5 39.0 37.5 50.0 30.5 50.0 48.5 32.0 85.0 49.5
Open flamingo 15.0 17.5 16.0 34.0 18.0 24.0 15.5 10.5 22.0 20.0 31.0 31.0 4.0
LLaVA-1.5-13B 31.0 33.0 36.5 46.5 38.0 27.0 51.5 32.0 45.5 37.5 42.0 79.5 45.5
LLaVA-1.6-13B 35.5 25.0 35.5 35.0 38.5 33.0 55.5 26.0 52.5 37.0 33.0 58.0 42.0

Open-source MLLMs (Video models)

Video-LLaMA-2 20.5 16.0 1.0 16.0 1.0 14.5 8.0 22.5 42.5 13.5 22.0 6.5 23.0
Valley 17.5 25.5 21.0 30.0 29.5 23.5 32.0 25.0 48.5 32.5 14.5 19.0 26.0
VideoChat2 17.5 19.5 6.0 29.0 25.0 33.0 40.0 18.5 47.5 26.0 28.5 24.5 27.0
LLaMA-VID 29.5 27.0 21.0 39.5 36.0 23.5 33.0 28.0 30.0 31.0 39.0 31.5 35.5
LWM 0.5 0.5 3.0 8.5 0.0 1.0 9.5 0.5 5.0 2.5 24.5 1.0 3.0
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Table 14: Experiment Result on Semantic Multi-image Tasks of Combined-image Set.
CED: Conversational Embodied Dialogue. VCC1: Visual Change Captioning (CLEVR-
Change). DQ: Document QA. VRE: Visual Relationship Expressing. MD: Multimodal
Dialogue. CMQ: Complex Multimodal QA. SU: Space Understanding. OQ: OCR QA.
SQ: Slide QA. VCC2: Visual Change Captioning (Spot-the-Diff). TQ: Textbook QA. WQ:
Webpage QA. LTIQ: Long Text with Images QA.

Model CED VCC1 DQ VRE MD CMQ SU OQ SQ VCC2 TQ WQ LTIQ

Random 0.0 0.0 25.0 0.0 0.0 25.3 25.3 23.0 25.7 0.0 25.0 25.3 25.0

Closed-source MLLMs

GPT-4V 11.6 17.4 60.0 5.1 58.5 70.0 70.5 56.0 66.5 14.1 68.0 72.5 94.0
Gemini 1.0 41.5 20.3 88.0 10.3 48.0 60.0 70.0 56.0 68.0 17.5 61.5 68.0 91.0
Claude 3 Opus 18.0 18.4 69.0 9.1 55.0 57.5 51.0 36.5 68.0 15.7 66.5 62.5 74.5

Open-source MLLMs (Image models)

ALLaVA-Longer 11.7 15.5 30.0 4.7 38.5 30.0 29.5 3.0 30.5 11.2 41.5 52.0 12.5
Yi-VL 22.8 12.0 51.5 5.4 38.5 49.0 42.5 7.0 42.0 12.3 54.5 57.5 70.0
Cheetor 31.7 29.8 23.5 15.5 22.0 32.5 31.0 25.0 29.5 23.2 34.5 26.5 24.5
Qwen-VL-Chat 20.4 11.1 38.5 6.6 39.5 60.5 53.0 44.0 52.0 11.0 49.5 49.5 61.0
LLaVA-1.5-7B 19.8 16.7 39.0 8.6 41.0 62.5 65.5 4.5 43.5 21.2 40.5 59.5 52.5
MiniGPT-v2 5.7 9.6 28.5 10.6 34.0 42.5 44.0 18.0 29.5 11.6 38.0 48.5 43.0
VILA 20.0 16.9 40.0 7.5 39.5 64.5 63.5 21.5 44.0 16.1 48.5 69.0 65.5
LLaVA-1.6-7B 13.8 16.8 35.0 5.5 37.5 52.0 56.5 21.5 42.5 13.2 48.5 37.5 47.0
Mantis 14.9 19.5 46.0 8.6 39.5 71.0 61.0 62.5 51.0 23.7 54.0 62.0 88.0
Open flamingo 12.1 1.4 14.0 6.3 38.5 31.5 28.5 21.0 25.0 2.2 27.5 25.0 18.0
LLaVA-1.5-13B 30.6 15.7 42.5 5.9 41.5 70.5 64.0 27.0 47.5 19.7 51.5 68.5 68.5
LLaVA-1.6-13B 13.5 15.0 44.5 4.9 42.0 61.0 64.0 3.0 43.5 10.1 54.0 55.0 51.5

Open-source MLLMs (Video models)

Video-LLaMA-2 5.4 7.5 2.5 5.5 2.0 13.5 4.0 15.0 13.5 1.6 9.5 11.5 28.0
Valley 9.3 9.8 17.5 4.3 6.3 34.5 26.5 34.5 19.5 27.5 13.5 25.0 23.0
VideoChat2 19.4 18.4 29.0 6.6 33.0 51.5 25.0 4.0 26.0 13.0 36.0 45.0 44.0
LLaMA-VID 19.2 16.6 31.0 5.9 38.5 39.5 38.0 12.5 28.5 13.5 44.5 35.5 60.0
LWM 8.1 12.8 10.0 6.4 5.5 11.5 7.0 8.5 12.5 10.5 13.5 2.5 6.0
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