
Under review as a conference paper at ICLR 2024

DIVERGENCE AT THE INTERPOLATION THRESHOLD:
IDENTIFYING, INTERPRETING & ABLATING THE
SOURCES OF A DEEP LEARNING PUZZLE

Anonymous authors
Paper under double-blind review

ABSTRACT

Machine learning models misbehave, often in unexpected ways. One prominent
misbehavior is when the test loss diverges at the interpolation threshold, perhaps
best known from its distinctive appearance in double descent. While considerable
theoretical effort has gone into understanding generalization of overparameterized
models, less effort has been made at understanding why the test loss misbehaves
at the interpolation threshold. Moreover, analytically solvable models in this area
employ a range of assumptions and use complex techniques from random matrix
theory, statistical mechanics, and kernel methods, making it difficult to assess
when and why test error might diverge. In this work, we analytically study the
simplest supervised model - ordinary linear regression - and show intuitively and
rigorously when and why a divergence occurs at the interpolation threshold using
basic linear algebra. We identify three interpretable factors that, when all present,
cause the divergence. We demonstrate on real data that linear models’ test losses
diverge at the interpolation threshold and that the divergence disappears when
we ablate any one of the three identified factors. We then leverage one of the
three factors to construct adversarial training data that increases the test error
by 1-3 orders of magnitude without affecting the training error. We conclude
with contributing fresh insights to recent discoveries regarding superposition and
double descent in nonlinear models.

1 INTRODUCTION

Machine learning models, while incredibly powerful, can sometimes act unpredictably. One of the
most intriguing behaviors is when the test loss suddenly diverges at the interpolation threshold,
a point where the model perfectly fits the training data, leading to zero training error. This phe-
nomenon is distinctly observed in the double descent curve Belkin et al. (2019). Although much
theoretical groundwork has been laid to comprehend generalization of overparameterized models
(Vallet, 1989; Krogh & Hertz, 1991; Geman et al., 1992; Krogh & Hertz, 1992; Opper, 1995; Duin,
2000; Spigler et al., 2018; Belkin et al., 2019; Bartlett et al., 2020; Belkin et al., 2020; Nakkiran
et al., 2021; Poggio et al., 2019; Advani et al., 2020; Liang & Rakhlin, 2020; Adlam & Pennington,
2020; Rocks & Mehta, 2022b; 2021; 2022a; Mei & Montanari, 2022; Hastie et al., 2022; Bach,
2023), a general understanding of why test loss behaves erratically at this threshold remains elusive.
Many analytical models aiming to explain this behavior rely on a plethora of assumptions (e.g.,
i.i.d additive Gaussian noise, sub-Gaussian covariates, (8 +m)-moments) and use advanced proof
techniques from random matrix theory, statistical mechanics, and kernel methods. This complexity
muddies the waters, making it challenging to pinpoint the general conditions leading to test error
misbehavior. For instance, a recent study on toy nonlinear autoencoders by Anthropic unveiled a
divergence even in the absence of noise (Henighan et al., 2023), an assumption that many theories
relied upon (Bartlett et al., 2020; Liang & Rakhlin, 2020; Belkin et al., 2020; Hastie et al., 2022;
Mei & Montanari, 2022; Bach, 2023). This unexpected outcome prompts the question: with all this
theory, should we have expected the result?

In this work, we intuitively and quantitatively explain why the test loss diverges at the interpolation
threshold, without assumptions and without resorting to intricate mathematical tools (e.g., random
matrix theory, replica calculations, reproducing kernel Hilbert spaces) but also without sacrificing

1

Under review as a conference paper at ICLR 2024

0 10 20 30 40
Num. Training Samples

100

101

102

103

104

105

M
ea

n
Sq

ua
re

d
Er

ro
r

Dataset: Student-Teacher
Train
Test
Interpolation Threshold

0 10 20 30 40
Num. Training Samples

10 1

100

101

102

103

104

M
ea

n
Sq

ua
re

d
Er

ro
r

Dataset: California Housing
Train
Test
Interpolation Threshold

0 10 20 30 40
Num. Training Samples

104

105

106

107

108

M
ea

n
Sq

ua
re

d
Er

ro
r

Dataset: Diabetes
Train
Test
Interpolation Threshold

0 10 20 30 40
Num. Training Samples

101

103

105

107

109

M
ea

n
Sq

ua
re

d
Er

ro
r

Dataset: WHO Life Expectancy
Train
Test
Interpolation Threshold

Figure 1: Ordinary linear regression exhibits a divergence at the interpolation threshold on
synthetic and real data. Left to Right: Synthetic, California Housing (Pace & Barry, 1997), Di-
abetes (Efron et al., 2004), World Health Organization Life Expectancy (Gochiashvili, 2023). A
divergence can occur as one approaches the interpolation threshold because (1) at least one singular
mode in the training features becomes probabilistically likely to have a small amount of non-zero
variance, (2) whose relation to the training regression targets is error-prone, such that when (3) new
test data varies greatly along this direction, the model is forced to extrapolate distantly along a mode
it doesn’t understand well, causing the error to explode. Blue is training error, Orange is test error.

precision. To accomplish this, we focus on the simplest supervised model - ordinary linear regres-
sion - using the most basic linear algebra primitive: the singular value decomposition. We identify
three distinct interpretable factors which, when collectively present, trigger the divergence. Through
practical experiments on real data sets, we confirm that both model’s test losses diverge at the inter-
polation threshold, and this divergence vanishes when even one of the three factors is removed. We
then use one of the three factors to construct adversarial training data that We complement our under-
standing by offering a geometric picture that reveals linear models perform representation learning
when overparameterized, and conclude by shedding light on recent results in nonlinear models con-
cerning superposition (Henighan et al., 2023). By building general understanding, we offer valuable
insights into surprising behaviors observed in nonlinear models.

2 DIVERGENCE IN ORDINARY LINEAR REGRESSION

To offer an intuitive yet quantitative understanding of model misbehavior, we turn to ordinary linear
regression. Ordinary linear regression is useful for its simplicity, and because closed-form solutions
are known for both the underparameterized and overparameterized regimes, meaning we can avoid
complexity by excluding a learning algorithm and its corresponding learning dynamics.

Notation and Terminology Consider a regression dataset of N training data with features x⃗n ∈
RD and targets yn ∈ R. We sometimes use matrix-vector notation to refer to the training data:

X ∈ RN×D and Y ∈ RN×1. In ordinary linear regression, we want to learn parameters ˆ⃗
β ∈ RD

such that x⃗n · ˆ⃗β ≈ yn. We will study three key parameters: number of model parameters P , number
of training data N , and dimensionality of the data D. We say that a model is overparameterized
(a.k.a. underconstrained) if N < P and underparameterized (a.k.a. overconstrained) if N > P .
The interpolation threshold refers to N = P , because when N ≤ P , the model can perfectly
interpolate the training points. Recall that in ordinary linear regression, the number of parameters
P equals the dimension D of the covariates. Consequently, rather than thinking about changing the
number of parameters P , we’ll instead think about changing the number of data points N .

Empirical Evidence on Synthetic & Real Data Before studying ordinary linear regression math-
ematically, does our claim that it exhibits a divergence at the interpolation threshold hold empiri-
cally? We show that it indeed does, using one synthetic and three real datasets: World Health Orga-
nization Life Expectancy (Gochiashvili, 2023), California Housing (Pace & Barry, 1997), Diabetes
(Efron et al., 2004); these three real datasets were selected on the basis of being easily accessible
through sklearn (Pedregosa et al., 2011) or Kaggle. All display a spike in test mean squared error at
the interpolation threshold (Fig. 1). Our code will be publicly available.

Mathematical Analysis of Ordinary Linear Regression To understand under what conditions
and why the test loss diverges at the interpolation threshold in linear regression, we’ll study the two

2

Under review as a conference paper at ICLR 2024

0 10 20 30 40
Num. Training Samples

100

101

102

103

104

105

Tr
ai

n
M

SE

Dataset: Student-Teacher
Ablation: No Small Singular Values

Singular Value Cutoff
1e 03
1e 02
1e 01
1

0 10 20 30 40
Num. Training Samples

10 1

100

101

102

103

104

Tr
ai

n
M

SE

Dataset: California Housing
Ablation: No Small Singular Values

Singular Value Cutoff
1e 03
1e 02
1e 01
1

0 10 20 30 40
Num. Training Samples

104

105

106

107

108

Tr
ai

n
M

SE

Dataset: Diabetes
Ablation: No Small Singular Values

Singular Value Cutoff
1e 03
1e 02
1e 01
1

0 10 20 30 40
Num. Training Samples

101

103

105

107

109

Tr
ai

n
M

SE

Dataset: WHO Life Expectancy
Ablation: No Small Singular Values

Singular Value Cutoff
1e 03
1e 02
1e 01
1

Figure 2: Required Factor #1: How much training features vary in each direction. The test loss
diverges at the interpolation threshold only if training features X contain small (non-zero) singular
values. Ablation: By removing all singular values below a cutoff, the divergence at the interpolation
threshold is diminished or disappears entirely. Blue is training error, Orange is test error.

0 10 20 30 40
Num. Training Samples

100

101

102

103

104

105

Tr
ai

n
M

SE

Dataset: Student-Teacher
Ablation: Test Features in Training Feature Subspace

Num. Leading Singular
Modes to Keep

5
10
15
20
25

0 10 20 30 40
Num. Training Samples

10 1

100

101

102

103

104

Tr
ai

n
M

SE

Dataset: California Housing
Ablation: Test Features in Training Feature Subspace

Num. Leading Singular
Modes to Keep

1
3
4
6
7
9
10

0 10 20 30 40
Num. Training Samples

104

105

106

107

108

Tr
ai

n
M

SE

Dataset: Diabetes
Ablation: Test Features in Training Feature Subspace

Num. Leading Singular
Modes to Keep

1
3
4
6
7
9
10

0 10 20 30 40
Num. Training Samples

101

103

105

107

109

Tr
ai

n
M

SE

Dataset: WHO Life Expectancy
Ablation: Test Features in Training Feature Subspace

Num. Leading Singular
Modes to Keep

1
3
4
6
7
9
10

Figure 3: Required Factor #2: How much, and in which directions, test features vary relative
to training features. The test loss diverges only if the test features x⃗test have a large projection onto
the training features X’s right singular vectors V . Ablation: By projecting the test features into the
subspace of the leading singular modes, the divergence at the interpolation threshold is diminished
or disappears entirely. Blue is training error, Orange is test error.

0 10 20 30 40
Num. Training Samples

100

101

102

103

104

105

Te
st

 M
SE

Dataset: Student-Teacher
Ablation: No Residuals in Ideal Fit

Train = 0
Test 0

0 10 20 30 40
Num. Training Samples

10 1

100

101

102

103

104

Te
st

 M
SE

Dataset: California Housing
Ablation: No Residuals in Ideal Fit

Train = 0
Test 0

0 10 20 30 40
Num. Training Samples

104

105

106

107

108

Te
st

 M
SE

Dataset: Diabetes
Ablation: No Residuals in Ideal Fit

Train = 0
Test 0

0 10 20 30 40
Num. Training Samples

101

103

105

107

109

Te
st

 M
SE

Dataset: WHO Life Expectancy
Ablation: No Residuals in Ideal Fit

Train = 0
Test 0

Figure 4: Required Factor #3: How well the best possible model in the model class can correlate
variance in training features with training targets. The test loss diverges only if the residuals E
from the best possible model in the model class on the training data have a large projection onto the
training features X’s left singular vectors U . Ablation: By ensuring the true relationship between
features and targets is within the model class i.e. linear, the divergence at the interpolation threshold
disappears. Blue is training error, Orange is test error.

3

Under review as a conference paper at ICLR 2024

parameterization regimes. If the regression is underparameterized, we estimate the linear relation-
ship between covariates x⃗n and target yn by solving the least-squares minimization problem:

ˆ⃗
βunder

def
= argmin

β⃗

1

N

∑
n

||x⃗n · β⃗ − yn||22 = argmin
β⃗

||Xβ⃗ − Y ||22.

The solution is the ordinary least squares estimator based on the second moment matrix XTX:

ˆ⃗
βunder = (XTX)−1XTY.

If the model is overparameterized, the optimization problem is ill-posed since we have fewer con-
straints than parameters. Consequently, we choose a different (constrained) optimization problem:

ˆ⃗
βover

def
= argmin

β⃗
||β⃗||22 s.t. ∀n ∈ {1, ..., N} x⃗n · β⃗ = yn.

We choose this optimization problem because it is the one gradient descent implicitly minimizes
(App. B). The solution to this optimization problem uses the Gram matrix XXT ∈ RN×N :

ˆ⃗
βover = XT (XXT)−1Y.

One way to see why the Gram matrix appears is via constrained optimization: define the Lagrangian
L(β⃗, λ⃗) def

= 1
2 ||β⃗||

2
2 + λ⃗T (Y − Xβ⃗) with Lagrange multipliers λ⃗ ∈ RN , then differentiate with

respect to the parameters and Lagrange multipliers to obtain the overparameterized solution. After
being fit, for test point x⃗test, the model will make the following predictions:

ŷtest,under = x⃗test ·
ˆ⃗
βunder = x⃗test · (XTX)−1XTY

ŷtest,over = x⃗test ·
ˆ⃗
βover = x⃗test ·XT (XXT)−1Y.

Hidden in the above equations is an interaction between three quantities that can, when all grow
extreme, create a divergence in the test loss. To reveal the three quantities, we’ll rewrite the re-
gression targets by introducing a slightly more detailed notation. Unknown to us, there are some
ideal linear parameters β⃗∗ ∈ RP = RD that truly minimize the test mean squared error. We can
write any regression target as the inner product of the data x⃗n and the ideal parameters β∗, plus an
additional error term en that is an “uncapturable” residual from the “perspective” of the model class
yn = x⃗n · β⃗∗ + en.. In matrix-vector form, we will equivalently write:

Y = Xβ⃗∗ + E,

with E ∈ RN×1. To be clear, we are not imposing assumptions. Rather, we are introducing notation
to express that there are (unknown) ideal linear parameters, and possibly non-zero errors E that even
the ideal model might be unable to capture; these errors E could be random noise or could be fully
deterministic patterns that this particular model class cannot capture. Using this new notation, we
rewrite the model’s predictions to show how the test datum’s features x⃗test, training data’s features
X and training data’s regression targets Y interact. In the underparameterized regime:

ŷtest,under = x⃗test · β∗ + x⃗test · (XTX)−1XTE

ŷtest,under − y∗test = x⃗test · (XTX)−1XTE.

This equation is important, but opaque. To extract the intuition, let y∗test
def
= x⃗test · β∗ and replace

X with its singular value decomposition X = UΣV T . Let R def
= rank(X) and let σ1 > σ2 > ... >

σR > 0 be X’s (non-zero) singular values. We can decompose the underparameterized prediction
error ŷtest,under − y∗test along the orthogonal singular modes:

ŷtest,under − y∗test = x⃗test · V Σ+UTE =

R∑
r=1

1

σr
(x⃗test · v⃗r)(u⃗r · E).

4

Under review as a conference paper at ICLR 2024

In the overparameterized regime, our calculations change slightly:

ŷtest,over − y∗test = x⃗test · (XT (XXT)−1X − ID)β∗ + x⃗test · (XTX)−1XTE.

If we again replace X with its SVD USV T , we can again simplify x⃗test · (XTX)−1XTE. This
yields our final equations for the prediction errors.

ŷtest,over − y∗test =

R∑
r=1

1

σr
(x⃗test · v⃗r)(u⃗r · E) + x⃗test · (XT (XXT)−1X − ID)β∗

ŷtest,under − y∗test =

R∑
r=1

1

σr
(x⃗test · v⃗r)(u⃗r · E).

The shared term between the two predictions causes the divergence:

R∑
r=1

1

σr
(x⃗test · v⃗r)(u⃗r · E). (1)

Eqn. 1 is critical. It reveals that our test prediction error (and thus, our test squared error!) will
depend on an interaction between 3 quantities:

1. How much the training features X vary in each direction (Fig. 2); more formally, the
inverse (non-zero) singular values of the training features X:

1

σr
.

2. How much, and in which directions, the test features x⃗test vary relative to the training
features X (Fig. 3); more formally: how x⃗test projects onto X’s right singular vectors V :

x⃗test · v⃗r.

3. How well the best possible model in the model class can correlate the variance in the train-
ing features X with the training regression targets Y (Fig. 4); more formally: how the
residuals E of the best possible model in the model class (i.e. insurmountable “errors”
from the “perspective” of the model class) project onto X’s left singular vectors U :

u⃗r · E.

When (1) and (3) co-occur, the model’s parameters along this singular mode are likely incorrect.
When (2) is added to the mix by a test datum x⃗test with a large projection along this mode, the model
is forced to extrapolate significantly beyond what it saw in the training data, in a direction where the
training data had an error-prone relationship between its predictions and the training targets, using
parameters that are likely wrong. As a consequence, the test squared error explodes!

For completeness, recall the overparameterized prediction error ŷtest,over − y∗test has another term:

x⃗test · (XT (XXT)−1X − ID)β∗. (2)

To understand why this bias exists, recall that our goal is to correlate fluctuations in the covariates x⃗
with fluctuations in the targets y. In the overparameterized regime, there are more parameters than
data; consequently, for N data points in D = P dimensions, the model can “see” fluctuations in at
most N dimensions, but has no “visibility” into the remaining P−N dimensions. This causes infor-
mation about the optimal linear relationship β⃗∗ to be lost, thereby increasing the overparameterized
prediction error ŷtest,over − y∗test.

5

Under review as a conference paper at ICLR 2024

0 10 20 30 40
Num. Training Samples

10 1

100
Sm

al
le

st
 N

on
-Z

er
o

Si
ng

ul
ar

Va
lu

e
of

 T
ra

in
in

g
Fe

at
ur

es
 X

Dataset: Student-Teacher
Interpolation Threshold

0 10 20 30 40
Num. Training Samples

10 1

100

101

102

103

Sm
al

le
st

 N
on

-Z
er

o
Si

ng
ul

ar
Va

lu
e

of
 T

ra
in

in
g

Fe
at

ur
es

 X

Dataset: California Housing
Interpolation Threshold

0 10 20 30 40
Num. Training Samples

10 2

10 1

Sm
al

le
st

 N
on

-Z
er

o
Si

ng
ul

ar
Va

lu
e

of
 T

ra
in

in
g

Fe
at

ur
es

 X

Dataset: Diabetes
Interpolation Threshold

0 10 20 30 40
Num. Training Samples

100

102

104

106

Sm
al

le
st

 N
on

-Z
er

o
Si

ng
ul

ar
Va

lu
e

of
 T

ra
in

in
g

Fe
at

ur
es

 X

Dataset: WHO Life Expectancy
Interpolation Threshold

Figure 5: The training features are most likely to obtain their smallest non-zero singular value
when approaching the interpolation threshold. This means that the first required factor for a
divergence (small non-zero singular values; Fig. 2) is likely to occur near the interpolation threshold.

Dim 1

5.02.50.0 2.5 5.0 Dim
 2

5.0
2.5

0.0
2.5

5.0

Di
m

 3

5.0
2.5

0.0
2.5
5.0

True Data Distribution

Dim 1

5.02.50.0 2.5 5.0 Dim
 2

5.0
2.5

0.0
2.5

5.0

Di
m

 3

5.0
2.5

0.0
2.5
5.0

Num Data: 1

Dim 1

5.02.50.0 2.5 5.0 Dim
 2

5.0
2.5

0.0
2.5

5.0

Di
m

 3

5.0
2.5

0.0
2.5
5.0

Num Data: 2

Dim 1

5.02.50.0 2.5 5.0 Dim
 2

5.0
2.5

0.0
2.5

5.0

Di
m

 3

5.0
2.5

0.0
2.5
5.0

Num Data: 3

Dim 1

5.02.50.0 2.5 5.0 Dim
 2

5.0
2.5

0.0
2.5

5.0

Di
m

 3

5.0
2.5

0.0
2.5
5.0

Num Data: 8

Dim 1

5.02.50.0 2.5 5.0 Dim
 2

5.0
2.5

0.0
2.5

5.0

Di
m

 3

5.0
2.5

0.0
2.5
5.0

Num Data: 100

Figure 6: Geometric intuition for why the smallest non-zero singular value reaches its lowest
value near the interpolation threshold. If 1 datum is observed, variance exists in only 1 direction.
If 2 data are observed, a second axis of variation appears, but because the two data are likely to share
some component, the second axis is likely to have less variation than the first. At the interpolation
threshold (here, D = P = N = 3), because the three data are likely to share components along the
first two axes, the third axis is likely to have even less variance. Beyond the interpolation threshold,
additional data contribute additional variance to these three axes.

Divergence at the Interpolation Threshold Why does this divergence happen near the interpo-
lation threshold? The answer is that the first factor (small non-zero singular values in the training
features X) is likely to occur at the interpolation threshold (Fig. 5), but why? Suppose we’re given
a single training datum x⃗1. So long as this datum isn’t exactly zero, that datum varies in a single
direction, meaning we gain information about the variance in that direction, but the variance in all
orthogonal directions is exactly 0. With the second training datum x⃗2, so long as this datum isn’t
exactly zero, that datum varies, but now, some fraction of x⃗2 might have a positive projection along
x⃗1; if this happens (and it likely will, since the two vectors are unlikely to be exactly orthogonal),
the shared direction gives us more information about the variance in this shared direction, but less
information about the second orthogonal direction of variation. Ergo, the training data’s smallest
non-zero singular value after 2 samples is probabilistically smaller than after 1 sample. As we ap-
proach the interpolation threshold, the probability that each additional datum has large variance in a
new direction orthogonal to all previous directions grows unlikely (Fig. 6), but as we move beyond
the interpolation threshold, the variance in each covariate dimension becomes increasingly clear.

6

Under review as a conference paper at ICLR 2024

0 10 20 30 40
Num. Training Samples

10 1

101

103

105

107

Tr
ai

n
M

SE

Dataset: Student-Teacher
Adversarial Manipulation: Training Data

Adversarial Train
Data Prefactor

0
6
12
18
24
30

0 10 20 30 40
Num. Training Samples

10 2

100

102

104

106

108

Tr
ai

n
M

SE

Dataset: California Housing
Adversarial Manipulation: Training Data

Adversarial Train
Data Prefactor

0
6
12
18
24
30

0 10 20 30 40
Num. Training Samples

103

104

105

106

107

Tr
ai

n
M

SE

Dataset: Diabetes
Adversarial Manipulation: Training Data

Adversarial Train
Data Prefactor

0
6
12
18
24
30

0 10 20 30 40
Num. Training Samples

100

102

104

106

108

1010

Tr
ai

n
M

SE

Dataset: WHO Life Expectancy
Adversarial Manipulation: Training Data

Adversarial Train
Data Prefactor

0
6
12
18
24
30

Figure 7: Adversarial Training Datasets in Linear Regression. By manipulating the residual
errors E that the best possible model in the model class achieves on the training data, we construct
training datasets that increase the test error of the learned model by 1-3 orders of magnitude without
affecting its training error. Blue is training error, Orange is test error.

Ablating the Divergence The test loss will not diverge if any of the three required factors are
absent. What could cause that?

• Small-but-nonzero singular values do not appear in the training data features. One way to
accomplish this is by setting all singular values below a selected threshold to exactly 0.

• The test datum does not vary in different directions than the training features. If the test
datum lies entirely in the subspace of just a few of the leading singular directions, then the
divergence is unlikely to occur.

• The best possible model in the model class makes no errors on the training data. For exam-
ple, if we use a linear model class on data where the true relationship is a noiseless linear
one, then at the interpolation threshold, we will have D = P data, P = D parameters, our
line of best fit will exactly match the true relationship, and no divergence will occur.

To test our understanding, we independently ablate each factor:

1. No Small Singular Values in Training Features: As we run the ordinary linear regression fit-
ting process, and as we sweep the number of training data, we also sweep different singular
value cutoffs and remove all singular values of the training features X below the cutoff.

2. Test Features Lie in the Training Features Subspace: As we run the ordinary linear regres-
sion fitting process, as we sweep the number of training data, we project the test features
x⃗test onto the subspace spanned by the training features X singular modes.

3. No Residual Errors in the Optimal Model: We first use the entire dataset to fit a linear
model β⃗∗, then replace Y with Xβ⃗∗ and y∗test with x⃗test · β⃗∗ to ensure the true relationship
is linear. We then rerun our typical fitting process, sweeping the number of training data.

We intentionally apply each ablation individually to our one synthetic dataset and three real datasets,
and find that each ablation partially or wholly prevents a divergence from occurring (Figs. 2 3 4).

3 CONSTRUCTING ADVERSARIAL TRAINING DATA

Adversarial test examples are well known Szegedy et al. (2013); Goodfellow et al. (2014); Kurakin
et al. (2018); Athalye et al. (2018); Xie et al. (2022), and are visible in our analysis as Factor 2 i.e.
how much, and in which direction, the test features x⃗test vary relative to the training features X
(App. Fig. 11). More interestingly, Factor 3 in our analysis reveals the existence of adversarial
training data. Recalling that Factor 3 is how well the best possible model in the model class can
correlate the variance in the training features X with the training regression targets Y , Factor 3
tells us that by amplifying the training residual errors E along the smallest singular mode, one can
significantly increase the test error without affecting the training error. We then empirically test and
confirm this insight (Fig. 7). Adversarial training data is akin to targeted dataset poisoning attacks
Biggio et al. (2012); Steinhardt et al. (2017); Wallace et al. (2020); Carlini & Terzis (2021); Carlini
(2021); Schuster et al. (2021) or backdoor attacks Chen et al. (2017); Gu et al. (2017); Carlini &
Terzis (2021), but differs in that we manipulate the model to misbehave on all test data rather than
misbehave on specific test data. The key insight is that the test error of the learned model is increased
due to errors that the best possible model in the model class makes on the training data.

7

Under review as a conference paper at ICLR 2024

Figure 8: Geometry of Generalization in Overparameterized Ordinary Linear Regression. The
rowspace of the training features X forms a subspace (here, R1) of the ambient space (here, R2).
For test datum x⃗test, the linear model forms an internal representation of the test datum ˆ⃗xtest by
orthogonally projecting the test datum onto the rowspace via projection matrix XT (XXT)−1X .
The generalization error will then increase commensurate with the inner product between ˆ⃗xtest −
x⃗test and the best possible parameters for the function class β⃗∗. Three different possible β⃗∗ are
shown with low, medium and high generalization errors.

Figure 9: Test Error of Overparameterized Models. Large inner product between the ideal
model’s parameters and the difference between the fit model’s internal representations of the test
data and the test data creates large test error.

4 GENERALIZATION IN OVERPARAMETERIZED LINEAR REGRESSION

A natural question to ask is under what conditions will an overparameterized model generalize well?
We previously saw that away from the interpolation threshold, the variance (Eqn. 1) is unlikely to
affect the discrepancy between the overparameterized model’s predictions and the ideal model’s pre-
dictions, meaning most of the discrepancy must therefore emerge from the bias (Eqn. 2). This bias
term yields an intuitive geometric picture (Fig. 8) that also reveals a surprising fact: overparam-
eterized linear regression does representation learning! Specifically, for test datum x⃗test, a linear
model creates a representation of the test datum ˆ⃗xtest by orthogonally projecting the test datum onto
the row space of the training covariates X via the projection matrix XT (XXT)−1X:

ˆ⃗xtest
def
= XT (XXT)−1X x⃗test.

Seen this way, the bias can be rewritten as the inner product between (1) the difference between its
representation of the test datum and the test datum and (2) the ideal linear model’s fit parameters:

(ˆ⃗xtest − x⃗test) · β⃗∗. (3)

Intuitively, an overparameterized model will generalize well if the model’s representations capture
the essential information necessary for the best model in the model class to perform well (Fig. 9).

8

Under review as a conference paper at ICLR 2024

Figure 10: Henighan et al. (2023) recently discovered a divergence in test loss at the interpolation
threshold in noiseless nonlinear autoencoders. Despite significant theoretical work in this area,
whether such a phenomenon should be expected is unclear because of the numerous assumptions
and particular model classes studied by prior work.

5 INTUITION EXTENDS TO NONLINEAR MODELS

Although we mathematically studied ordinary linear regression, the intuition for why the test loss
diverges extends to nonlinear models, such as polynomial regression and including certain classes
of deep neural networks (Jacot et al., 2018; Lee et al., 2017; Bordelon et al., 2020). For a concrete
example about how our intuition can shed light on the behavior of nonlinear models, Henighan et al.
(2023) recently discovered interesting properties of shallow nonlinear autoencoders: depending on
the number of training data, (1) autoencoders either store data points or features, and (2) the test loss
increases sharply between these two regimes (Fig. 10). Our work sheds light on the results in two
ways:

1. Henighan et al. (2023) write, “It’s interesting to note that we’re observing double descent in
the absence of label noise.” Our work clarifies that noise, in the sense of a random quantity,
is not necessary to produce double descent. Rather, what is necessary is residual errors
from the perspective of the model class - E, in our notation. Those errors could be entirely
deterministic, such as a nonlinear model attempting to fit a noiseless linear relationship, or
other model misspecifications.

2. Henighan et al. (2023) write, “[Our work] suggests a naive mechanistic theory of overfit-
ting and memorization: memorization and overfitting occur when models operate on ‘data
point features’ instead of ‘generalizing features’.” Our work hopefully clarifies that this
terminology can be made more precise: when overparameterized, “data point features” are
akin to the Gram matrix XXT and when underparameterized, ”generalizing features” are
akin to the second moment matrix XTX . Our work hopefully clarifies that “data point
features” can and very often do generalize, and that there is a deep connection between the
two, i.e., their shared spectra.

6 DISCUSSION

In this work, we intuitively and quantitatively explained why the test loss misbehaves based on three
interpretable factors, tested our understanding via ablations, and added conceptual clarity of recent
discoveries in nonlinear models (Henighan et al., 2023).

9

Under review as a conference paper at ICLR 2024

REFERENCES

Ben Adlam and Jeffrey Pennington. Understanding double descent requires a fine-grained bias-
variance decomposition. Advances in neural information processing systems, 33:11022–11032,
2020.

Madhu S Advani, Andrew M Saxe, and Haim Sompolinsky. High-dimensional dynamics of gener-
alization error in neural networks. Neural Networks, 132:428–446, 2020.

Anish Athalye, Logan Engstrom, Andrew Ilyas, and Kevin Kwok. Synthesizing robust adversarial
examples. In International conference on machine learning, pp. 284–293. PMLR, 2018.

Francis Bach. High-dimensional analysis of double descent for linear regression with random pro-
jections, 2023.

Peter L Bartlett, Philip M Long, Gábor Lugosi, and Alexander Tsigler. Benign overfitting in linear
regression. Proceedings of the National Academy of Sciences, 117(48):30063–30070, 2020.

Mikhail Belkin, Daniel Hsu, Siyuan Ma, and Soumik Mandal. Reconciling modern machine-
learning practice and the classical bias–variance trade-off. Proceedings of the National Academy
of Sciences, 116(32):15849–15854, 2019.

Mikhail Belkin, Daniel Hsu, and Ji Xu. Two models of double descent for weak features. SIAM
Journal on Mathematics of Data Science, 2(4):1167–1180, jan 2020. doi: 10.1137/20m1336072.
URL https://doi.org/10.1137%2F20m1336072.

Battista Biggio, Blaine Nelson, and Pavel Laskov. Poisoning attacks against support vector ma-
chines. arXiv preprint arXiv:1206.6389, 2012.

Blake Bordelon, Abdulkadir Canatar, and Cengiz Pehlevan. Spectrum dependent learning curves in
kernel regression and wide neural networks. In International Conference on Machine Learning,
pp. 1024–1034. PMLR, 2020.

Nicholas Carlini. Poisoning the unlabeled dataset of {Semi-Supervised} learning. In 30th USENIX
Security Symposium (USENIX Security 21), pp. 1577–1592, 2021.

Nicholas Carlini and Andreas Terzis. Poisoning and backdooring contrastive learning. arXiv preprint
arXiv:2106.09667, 2021.

Xinyun Chen, Chang Liu, Bo Li, Kimberly Lu, and Dawn Song. Targeted backdoor attacks on deep
learning systems using data poisoning. arXiv preprint arXiv:1712.05526, 2017.

Robert PW Duin. Classifiers in almost empty spaces. In Proceedings 15th International Conference
on Pattern Recognition. ICPR-2000, volume 2, pp. 1–7. IEEE, 2000.

Bradley Efron, Trevor Hastie, Iain Johnstone, and Robert Tibshirani. Least angle regression. 2004.

Stuart Geman, Elie Bienenstock, and René Doursat. Neural networks and the bias/variance dilemma.
Neural computation, 4(1):1–58, 1992.

Lasha Gochiashvili. World health organization life expectancy (fixed), 2023. URL https://
www.kaggle.com/ds/3065197.

Ian J Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and harnessing adversarial
examples. arXiv preprint arXiv:1412.6572, 2014.

Tianyu Gu, Brendan Dolan-Gavitt, and Siddharth Garg. Badnets: Identifying vulnerabilities in the
machine learning model supply chain. arXiv preprint arXiv:1708.06733, 2017.

Trevor Hastie, Andrea Montanari, Saharon Rosset, and Ryan J Tibshirani. Surprises in high-
dimensional ridgeless least squares interpolation. The Annals of Statistics, 50(2):949–986, 2022.

Tom Henighan, Shan Carter, Tristan Hume, Nelson Elhage, Robert Lasenby, Stanislav Fort,
Nicholas Schiefer, and Christopher Olah. Double descent in the condition number. Trans-
former Circuits Thread, 2023. URL https://transformer-circuits.pub/2023/
toy-double-descent/index.html.

10

https://doi.org/10.1137%2F20m1336072
https://www.kaggle.com/ds/3065197
https://www.kaggle.com/ds/3065197
https://transformer-circuits.pub/2023/toy-double-descent/index.html
https://transformer-circuits.pub/2023/toy-double-descent/index.html

Under review as a conference paper at ICLR 2024

Arthur Jacot, Franck Gabriel, and Clément Hongler. Neural tangent kernel: Convergence and gen-
eralization in neural networks. Advances in neural information processing systems, 31, 2018.

Anders Krogh and John Hertz. A simple weight decay can improve generalization. Advances in
neural information processing systems, 4, 1991.

Anders Krogh and John A Hertz. Generalization in a linear perceptron in the presence of noise.
Journal of Physics A: Mathematical and General, 25(5):1135, 1992.

Alexey Kurakin, Ian J Goodfellow, and Samy Bengio. Adversarial examples in the physical world.
In Artificial intelligence safety and security, pp. 99–112. Chapman and Hall/CRC, 2018.

Jaehoon Lee, Yasaman Bahri, Roman Novak, Samuel S Schoenholz, Jeffrey Pennington, and Jascha
Sohl-Dickstein. Deep neural networks as gaussian processes. arXiv preprint arXiv:1711.00165,
2017.

Tengyuan Liang and Alexander Rakhlin. Just interpolate: Kernel “ridgeless” regression can gener-
alize. The Annals of Statistics, 48(3):1329–1347, 2020.

Song Mei and Andrea Montanari. The generalization error of random features regression: Precise
asymptotics and the double descent curve. Communications on Pure and Applied Mathematics,
75(4):667–766, 2022.

Preetum Nakkiran, Gal Kaplun, Yamini Bansal, Tristan Yang, Boaz Barak, and Ilya Sutskever. Deep
double descent: Where bigger models and more data hurt. Journal of Statistical Mechanics:
Theory and Experiment, 2021(12):124003, 2021.

Manfred Opper. Statistical mechanics of learning: Generalization. The handbook of brain theory
and neural networks, pp. 922–925, 1995.

R Kelley Pace and Ronald Barry. Sparse spatial autoregressions. Statistics & Probability Letters, 33
(3):291–297, 1997.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Pretten-
hofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and
E. Duchesnay. Scikit-learn: Machine learning in Python. Journal of Machine Learning Research,
12:2825–2830, 2011.

Tomaso Poggio, Gil Kur, and Andrzej Banburski. Double descent in the condition number. arXiv
preprint arXiv:1912.06190, 2019.

Jason W Rocks and Pankaj Mehta. The geometry of over-parameterized regression and adversarial
perturbations. arXiv preprint arXiv:2103.14108, 2021.

Jason W Rocks and Pankaj Mehta. Bias-variance decomposition of overparameterized regression
with random linear features. Physical Review E, 106(2):025304, 2022a.

Jason W Rocks and Pankaj Mehta. Memorizing without overfitting: Bias, variance, and interpolation
in overparameterized models. Physical Review Research, 4(1):013201, 2022b.

Roei Schuster, Congzheng Song, Eran Tromer, and Vitaly Shmatikov. You autocomplete me: Poi-
soning vulnerabilities in neural code completion. In 30th USENIX Security Symposium (USENIX
Security 21), pp. 1559–1575, 2021.

Stefano Spigler, Mario Geiger, Stéphane d’Ascoli, Levent Sagun, Giulio Biroli, and Matthieu Wyart.
A jamming transition from under-to over-parametrization affects loss landscape and generaliza-
tion. arXiv preprint arXiv:1810.09665, 2018.

Jacob Steinhardt, Pang Wei W Koh, and Percy S Liang. Certified defenses for data poisoning attacks.
Advances in neural information processing systems, 30, 2017.

Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Erhan, Ian Goodfellow,
and Rob Fergus. Intriguing properties of neural networks. arXiv preprint arXiv:1312.6199, 2013.

11

Under review as a conference paper at ICLR 2024

F Vallet. The hebb rule for learning linearly separable boolean functions: learning and generaliza-
tion. Europhysics Letters, 8(8):747, 1989.

Eric Wallace, Tony Z Zhao, Shi Feng, and Sameer Singh. Concealed data poisoning attacks on nlp
models. arXiv preprint arXiv:2010.12563, 2020.

Yong Xie, Dakuo Wang, Pin-Yu Chen, Jinjun Xiong, Sijia Liu, and Sanmi Koyejo. A word is
worth a thousand dollars: Adversarial attack on tweets fools stock prediction. arXiv preprint
arXiv:2205.01094, 2022.

12

Under review as a conference paper at ICLR 2024

Figure 11: Adversarial Test Examples in Linear Regression. Adversarial examples arise by push-
ing x⃗test far along the trailing singular modes in the training features X . Blue is training error,
Orange is test error.

A ADVERSARIAL TEST EXAMPLES IN LINEAR REGRESSION

Factor 2 in our analysis corresponds to advesarial test examples. Recall that Factor 2 is how much,
and in which directions, the test features x⃗test vary relative to the training features X (Fig. 2), or
moremore formally: how x⃗test projects onto X’s right singular vectors V :

x⃗test · v⃗r.

We visually display such adversarial attacks (Fig. 11).

B WHY GRADIENT DESCENT IMPLICITLY REGULARIZES

This is a sketch of why gradient descent implicitly regularizes. Suppose we have a model Xw for a
vector of data y ∈ Rn and want to minimize the norm of the error,

L(w) = ∥Xw − y∥22 = ∥e∥22
where we introduce some short-hand notation. We use the gradient learning rule,

w(t+ 1) = w(t)− ηXT e(t)

⇒ e(t+ 1) = e(t)− ηXXT e(t)

⇒ e(t+ 1) = (I − ηXXT)e(t)

Each matrix satisfies X ∈ Rn×d1 where n is the number of samples and d1 is the dimension of
each sample. In the overparameterized setting we have d1 > n and so XXT will generically have
full-rank and the error will go to zero.

This lies in the difference between XXT which appears here in the error analysis and XTX which
appears in the solution. So we can have XXT ∈ Rn×n generically full-rank only if we have more
parameters than there is data. On the other hand, we only have XTX full-rank if also it’s satisfied
that there is more data than parameters. This is important because in this case we can compute the
pseudo-inverse easily. Generically, we can show that if we use gradient descent we have something
like the following,

(XTX)−1X︸ ︷︷ ︸
left inverse

X−1︸︷︷︸
inverse

XT (XXT)−1︸ ︷︷ ︸
right inverse

for the cases where we are under-parameterized, minimally parameterized, or over-parameterized to
model the data.

So under gradient flow we’ll suppose the parameters update according to,

ẇ = −ηXT e

w(0) = 0

Observe that the gradient ẇ is invariantly in the span of XT so we may conclude that w(t) is always
in the span of XT . Generically, any solution in the over-parameterized setting is a global optimizer

13

Under review as a conference paper at ICLR 2024

such that Xw = y. This means that the limit of the flow can be written as w∗ = XTα for some
coefficient vector with the constraint that Xw∗ = y. After some manipulations we find that,

y = Xw∗ = XXTα

⇒ α = (XXT)−1y

⇒ w∗ = XT (XXT)−1y = X+y

This means that the solution X+ picked from gradient flow is the Moore-Penrose psuedoinverse.
This can be defined as the matrix,

X+ = lim
λ→0+

XT (XXT + λI)−1

Also observe that there is a unique minimizer for the regularized problem,

min
w

L(w) + λ∥w∥22

with value wλ = XT (XXT + λI)−1y. Perhaps, Xw = y has a set of solutions, but it is clear this
set is convex so there is a unique minimum norm solution. On the other hand, each wλ corresponds
to a best solution with norm below the minimum. However, we have w∗ = limλ→0+ wλ from
continuity. Since w∗ is an exact solution it can’t have less than the minimum-norm and it is clear w∗

can’t have above the minimum-norm either since this is not the case for any of the wλ. We conclude
that gradient descent does indeed find the minimum norm solution.

14

	Introduction
	Divergence in Ordinary Linear Regression
	Constructing Adversarial Training Data
	Generalization in Overparameterized Linear Regression
	Intuition Extends to Nonlinear Models
	Discussion
	Adversarial Test Examples in Linear Regression
	Why Gradient Descent Implicitly Regularizes

