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Abstract

With the rising popularity of Transformer-001
based large language models (LLMs), reducing002
their high inference costs has become a signifi-003
cant research focus. One effective approach is004
to compress the long input contexts. Existing005
methods typically leverage the self-attention006
mechanism of the LLM itself for context com-007
pression. While these methods have achieved008
notable results, the compression process still009
involves quadratic time complexity, which lim-010
its their applicability. To mitigate this limita-011
tion, we propose the In-Context Former (IC-012
Former). Unlike previous methods, IC-Former013
does not depend on the target LLMs. Instead,014
it leverages the cross-attention mechanism and015
a small number of learnable digest tokens to016
directly condense information from the contex-017
tual word embeddings. This approach signifi-018
cantly reduces inference time, which achieves019
linear growth in time complexity within the020
compression range. Experimental results indi-021
cate that our method requires only 1/32 of the022
floating-point operations of the baseline during023
compression and improves processing speed024
by 68 to 112 times while achieving over 90%025
of the baseline performance on evaluation met-026
rics. Overall, our model effectively reduces027
compression costs and makes real-time com-028
pression scenarios feasible.029

1 Introduction030

In recent years, transformer-based (Vaswani et al.,031

2017) language models especially large language032

models (LLMs) have made significant strides in the033

field of natural language processing, demonstrating034

exceptional performance across a wide range of035

tasks. However, the self-attention mechanism in036

LLMs leads to high inference costs. Previous work037

(Child et al., 2019; Beltagy et al., 2020; Bulatov038

et al., 2022; Zheng et al., 2022; Wu et al., 2022;039

Ding et al., 2023; Dai et al., 2019; Choromanski040

et al., 2020; Borgeaud et al., 2022) has explored041

Large Language Model

Compression 
Model

soft prompt Prompt: What modalities 
of content can ChatGPT-4o 
generate?

Long context
OpenAI‘s new ChatGPT-4o iteration of the generative pre-trained 
transformer is a leap forward in AI communication, capable of 
understanding and generating content across multiple modalities, 
including voice, text, and images. 
…….
This comparative leap signifies OpenAI’s commitment to pushing 
the boundaries of what AI can achieve in creating human-like 
interactions.

Voice, text, and images.

Figure 1: Compressing long contexts into short soft
prompts to improve inference efficiency.

various approaches to reduce computational com- 042

plexity by improving the self-attention mechanism 043

of language models. Although these strategies mit- 044

igate the overhead of long context processing, they 045

inevitably introduce modifications to the original 046

structure of LLMs, potentially impacting the capa- 047

bilities of the original model (Liu et al., 2024). 048

To better avoid modifications to the LLM struc- 049

ture, a more intuitive approach is to introduce a 050

preliminary context compression process. These 051

methods are based on a core assumption: most 052

natural language texts contain redundant informa- 053

tion, which makes context compression feasible. 054

In early exploration, Mu et al. (2024) have at- 055

tempted to compress the instructions into short soft 056

prompts. This method offers a novel perspective 057

but still has limitations in long context compres- 058

sion. Later works (Chevalier et al., 2023; Ge et al., 059

2024) aim to further extend compression abilities 060

for document-level long contexts, and achieved 061

considerable results. As illustrated in Figure 1, 062
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these methods design compression models to con-063

dense lengthy contexts into short, context-rich soft064

prompts, which then serve as substitutes for the065

original context when input into the LLM. How-066

ever, these methods still suffer the issue of expen-067

sive time costs during the compression process.068

This limitation restricts their application in real-069

time compression scenarios, such as compressing070

retrieved (Guu et al., 2020) or real-time Internet071

documents (Asai et al., 2023) immediately.072

By reviewing previous works on compressors,073

we find that existing methods typically utilize the074

LLM as the encoder. While these methods fully075

utilize the powerful semantic understanding capa-076

bilities of LLM, they also suffer from rapidly in-077

creasing quadratic time complexity as the context078

lengthens. So is there a way to significantly reduce079

the theoretical complexity of compressors, with an080

acceptable decrease in performance?081

Driven by this motivation, we design an efficient082

context compression model, the In-Context Former083

(IC-Former), which aims at optimizing resource084

consumption during the compression of long con-085

text in existing models. This model is based on two086

assumptions regarding semantic content compres-087

sion: (1) Word embeddings already contain suffi-088

cient semantic information (Mikolov et al., 2013;089

Tache et al., 2021), suggesting that additional in-090

teractions may not be necessary prior to the ex-091

traction process. (2) Learnable tokens within an092

elaborate structure can effectively aggregate infor-093

mation to a certain extent (Chevalier et al., 2023;094

Ge et al., 2024). Based on these assumptions, we095

creatively discard the costly self-attention interac-096

tion of text content in previous models. Instead, we097

leverage the efficiency of the cross-attention mech-098

anism for information extraction. This innovative099

strategy ensures that the computational overhead100

of compression grows linearly with the context101

length within the compression range, significantly102

enhancing compression efficiency compared to the103

previous methods.104

Specifically, our IC-Former consists of a few105

cross-attention blocks and some learnable digest106

tokens. Through this structure, the IC-Former lever-107

ages the digest tokens to extract information from108

lengthy contextual content and refine it into com-109

pact digest vectors. Subsequently, these digest vec-110

tors directly replace the original, verbose context111

and serve as input to LLMs while ensuring that112

the generated texts are faithful to the original con-113

text. In the training phase, to effectively compress114

context, we follow the previous training paradigm 115

(Ge et al., 2024), employing a strategy that com- 116

bines pre-training and fine-tuning to optimize the 117

IC-Former. During the pre-training phase, the IC- 118

Former engages in a context reconstruction task. It 119

generates digest vectors from which an LLM can 120

reconstruct the original context. In the fine-tuning 121

phase, we train the IC-Former on instruction data 122

to ensure the generated digest vectors correctly re- 123

spond to various context-related prompts. 124

Additionally, through theoretical calculations, 125

we demonstrate that at a compression ratio of 4x, 126

our IC-Former achieves only 1/32 of the floating- 127

point operations required by the baseline. Ex- 128

perimental results further show that our method 129

achieves a compression speed that is 68 to 112 130

times faster than the baseline while maintaining 131

over 90% of the baseline performance on eval- 132

uation metrics. This indicates a higher cost- 133

effectiveness. 134

Overall, our contributions can be summarized in 135

the following three points: 136

• We propose the In-Context Former (IC- 137

Former), a novel context compression model 138

that can compress context to a quarter of its 139

original length as a soft prompt while preserv- 140

ing most of original contextual information. 141

• The IC-Former is lightweight and efficient, 142

with a parameter size that is 9% of the tar- 143

get LLM. It achieves compression speeds 68 144

to 112 times faster than the baseline while 145

maintaining more than 90% of the baseline 146

performance. 147

• We analyze the interaction between the IC- 148

Former and the context, enhancing the inter- 149

pretability of the IC-Former’s compression 150

process. 151

2 Related Work 152

Soft prompt compression Wingate et al. (2022) 153

propose to learn a compact soft prompt (Lester 154

et al., 2021) to represent the original natural lan- 155

guage prompt. They align the model predictions 156

that are based on the original prompt and those 157

conditioned on the soft prompt by optimizing KL 158

divergence (Hershey and Olsen, 2007). As a re- 159

sult, Wingate et al. (2022) discover that the trained 160

soft prompt retain high-level semantic information 161

and can be utilized to control generation. However, 162

this approach suffers high computational costs as 163
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Figure 2: Left: Model architecture of In-Context Former. In-Context Former utilizes a set of learnable digest
embeddings to condense the information of context and generates digest vectors. And we apply causal attention
masks for digest tokens. Right: Overview of In-Context Former’s framework.

it requires retraining a new soft prompt for each164

new context. In contrast, our method can predict165

the soft prompt corresponding to the input context.166

Context distillation Another related work (Snell167

et al., 2022; Askell et al., 2021) focuses on distilling168

the contextual information such as instruction into a169

student model without prompting. Mu et al. (2024)170

propose GIST to compress prompts into gist tokens,171

which can be viewed as key-value attention prefixes.172

Nonetheless, this approach did not address the long173

context issue as it is limited to compressing short174

prompts. In addition, this method requires updating175

the parameters of language model, which differs176

from our method. Our method keeps the language177

model fixed and therefore preserves its capability.178

Context compression Chevalier et al. (2023) pro-179

pose AutoCompressors to compress long text into180

summary vectors recursively. However, the com-181

pression procedure is sophisticated and LLMs are182

still required to be fine-tuned to generate summary183

vectors. ICAE (Ge et al., 2024) is the most closely184

related study to our research. ICAE compresses185

context into short memory slots, with a small num-186

ber of additional parameters by the LoRA (Hu et al.,187

2021) approach with a fixed LLM. However, both188

AutoCompressors and ICAE employ self-attention189

to integrate contextual information, resulting in a190

quadratic complexity with respect to the length of191

context. Instead, our model does not incorporate192

contextual interactions and reduces both time and193

space complexities, striking a balance between effi-194

ciency and performance.195

3 Method196

3.1 Task Formulation197

Context compression aims to transform lengthy198

contexts into brief, compact representations while199

endeavoring to preserve the fundamental semantics 200

and integrity of the original contexts. 201

Formally, we define the original context that 202

is to be compressed as w = (w1, w2, ..., wn), 203

where wi represents the i-th token of context and 204

n is the number of tokens in context. Then, we 205

denote e(·) as the word embedding lookup in 206

the LLM and ẽ(·) as the learnable embeddings 207

of soft tokens. A context compressor model Θ 208

utilizes the embeddings of soft tokens ẽ(d) = 209

(ẽ(d1), ẽ(d2), ..., ẽ(dk)) and context embeddings 210

e(w) = (e(w1), e(w2), ..., e(wn)) to generate 211

compact representations d̃ = (d̃1, d̃2, ..., d̃k) of 212

context, where k is the length of compressed con- 213

text and k ≪ n. 214

The condensed vectors d̃ can substitute the orig- 215

inal context and be combined with other prompt 216

e(p) = (e(p1), ..., e(pl)) for input to an LLM Φ. 217

The output y = (y1, ..., ym) remains faithful to the 218

content of the original context w. 219

3.2 In-Context Former 220

As illustrated in Figure 2, IC-Former consists of 221

a few cross-attention layers and a set of learnable 222

soft tokens, which are named digest tokens. The 223

IC-Former utilizes context tokens and digest to- 224

kens as inputs, leveraging a causal cross-attention 225

mechanism to condense the context information 226

into digest vectors. Subsequent sections will detail 227

the attention computation process, attention masks, 228

and positional embeddings. 229

Attention computation When compressing a long 230

context, the context tokens are concatenated with 231

digest tokens and subsequently mapped into embed- 232

dings, which serve as key and value in the cross- 233

attention layer. Meanwhile, the embeddings of 234

digest tokens serve as query to interact with both 235
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Figure 3: Left: Pretraining stage. IC-Former learns to generate digest vectors such that, when these vectors and
a special token AE are jointly fed into an LLM, the LLM reproduces the original context. Right: Instruction
fine-tuning stage. Training IC-Former to generate digest vectors capable of correctly responding to prompts.

context embeddings and digest embeddings. To236

be specific, the Q, K and V in IC-Former can be237

computed as:238

Q = WQ ẽ(d)T (1)239

K = WK [e(w); ẽ(d)]T (2)240

V = WV [e(w); ẽ(d)]T (3)241

Then we employ the cross-attention mechanism to242

condense contextual information, as this approach243

has been empirically validated effective. (Li et al.,244

2023; Ye et al., 2023; Zhu et al., 2023).245

Attention masks As depicted in Figure 2, our de-246

sign for attention masks allows digest tokens to247

attend to all context tokens as well as preceding248

digest tokens, thereby mitigating the deficiency of249

interaction among context tokens.250

Additionally, it can be observed from the atten-251

tion matrix that given a context length of n and252

a target compression length of k, the time com-253

plexity and space complexity of our method are254

both O(kn+k2) ∼ O(kn). This indicates that the255

complexity of this model grows linearly with the256

increase of context.257

Positional embeddings We recognize that the pure258

cross-attention mechanism does not capture the rel-259

ative positional relationships among tokens within260

the context. This implies swapping any two tokens261

in the context results in an identical digest vector,262

which does not align with our expectations. To263

address this, we applied RoPE (Su et al., 2024) to264

represent the relative positional relations within the265

context tokens.266

We denote the positional embeddings of the nth267

token in the sequence as RoPE(n) and is abbrevi-268

ated as Rn. 269

RoPE(n) =


R

(0)
n

R
(1)
n

. . .

R
(h
2
−1)

n

 , 270

where R(i)
n =

[
cos(nθi) − sin(nθi)
sin(nθi) cos(nθi)

]
(4) 271

In the Eq.4, θ = θ
− 2

h
base where θbase is a hyper- 272

parameter and h is the hidden size and assumed 273

to be even. We restate Eq.1 & 2 as follows: 274

Q = (q1, q2, ..., qk) (5) 275

K = (k1, ...,kn,kn+1, ...,kn+k) (6) 276

We allocate positional embeddings as if placing the 277

digest tokens subsequent to the context tokens as 278

demonstrated in Eq.7 & 8. 279

QRoPE = (Rn+1q1,Rn+2q2, ...,Rn+kqk) (7) 280

KRoPE = (R1k1, ...,Rnkn, ...,Rn+kkn+k) (8) 281

The RoPE manifests the relative positional relation- 282

ships through the inner product between QRoPE 283

and KRoPE: 284

(Riq)
T (Rjk) = qTRT

i Rjk = qTRj−ik (9) 285

In this manner, each digest token is capable of 286

perceiving the relative positions of both context 287

tokens and other digest tokens. 288

3.3 Training process 289

This section introduces the training objectives of 290

IC-Former, including pretraining and instruction 291

fine-tuning, and a divide-and-conquer training strat- 292

egy when dealing with too long contexts. 293
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Pretraining Previous works (Rumelhart et al.,294

1986; Kramer, 1991; Van Den Oord et al., 2017; Ge295

et al., 2024) have demonstrated that autoencoding296

tasks can benefit models to effectively condense297

and encode information. We adopt this approach to298

pretrain our IC-Former by using a text reconstruc-299

tion task. The objective of this task is to leverage di-300

gest vectors, which are extracted from compressed301

contexts, to reconstruct the original contexts. As302

illustrated in Figure 3, the context tokens are com-303

pressed into digest vectors by IC-Former and then304

serve as input to LLM with a special token "[AE]"305

to indicate the autoencoding task.306

To make LLM reconstruct the original context307

w conditioned on the digest vectors d̃, we optimize308

IC-Former Θ and digest embeddings ẽ(d) by mini-309

mizing negative log-likelihood of context w. The310

pretraining objective can be written as:311

LAE = − log p
(
w|d̃1, ..., d̃k; Φ

)
312

= − log p (w|d1, ..., dk; ẽ; Θ;Φ) (10)313

This reconstruction task forces IC-Former to focus314

on each token in context, thereby preserving all315

context information. The analysis on pretraining in316

Section 4.3 demonstrates that this task can help IC-317

Former learn to aggregate contextual information.318

Instruction fine-tuning After the pretraining319

phase, IC-Former has effectively learned to metic-320

ulously attend to context. However, to ensure321

that the compressed digest vectors appropriately322

respond to various prompts, further instruction fine-323

tuning (Zhang et al., 2023) of IC-Former is neces-324

sary. As shown in Figure 3, we input the digest325

vectors generated from IC-Former along with the326

prompt embeddings into the LLM. Similarly, by327

optimizing IC-Former Θ and digest embeddings328

ẽ(d), we minimize the negative log-likelihood of329

the expected output y:330

LFT = − log p(y|d̃1, ..., d̃k; p1, ..., pl; Θ;Φ)331

= − log p(y|d1, ..., dk; p1, ..., pl; ẽ; Θ;Φ)
(11)

332

Divide and conquer When the context length ex-333

ceeds the compression limit, a divide-and-conquer334

strategy (Bertsch et al., 2024; Song et al., 2024;335

Chen et al., 2023) proves to be effective. We first336

uniformly split the context into several chunks of337

acceptable length. Each of these chunks is then338

compressed individually to obtain local vectors.339

As illustrated in Figure 4, we subsequently con-340

catenate all these local vectors to form the global341

…… ……

Chunk 1 Chunk N

In-Context Former

……

…… …………

……

concatenate
Local

vectors

Global digest vectors

……

Chunk 1 Chunk N

In-Context Former

…… ……

…… ……

……

Local digest vectors

Global digest vectors

……

Chunk 2

……

concatenate

……

… …

In-Context Former

……

…… …………

concatenate

…Global 
vectors

Local
vectors

Chunk 1 Chunk N

Figure 4: The excessively long contexts are broken into
chunks, which are then compressed and concatenated.

vectors. This strategy is applied in both the training 342

and inference phases. 343

4 Experiments 344

4.1 Experimental setting 345

This section introduces the experimental setting 346

including data, baseline, and model configuration. 347

Data Due to resource constraints, we pretrain IC- 348

Former using a subset of the Pile (Gao et al., 2020) 349

dataset, comprising approximately 2.29 million 350

text entries. In the fine-tuning phase, we em- 351

ployed the PwC (Prompt-with-Context) dataset (Ge 352

et al., 2024), which includes contexts accompanied 353

by corresponding questions. This dataset is suit- 354

able for evaluating the compressor’s ability to pre- 355

serve contextual information. For each context, the 356

dataset provides ten specific and five general ques- 357

tions. For evaluation convenience, we select the 358

ten specific questions to evaluate as their answers 359

are relatively more definitive. 360

Baseline We select ICAE as our baseline for com- 361

parison, because the motivations behind other re- 362

lated works are distinct from ours. For instance, Au- 363

toCompressors fine-tune LLMs and focus on stabil- 364

ity in long-context modeling rather than on restor- 365

ing details in compressed text. Likewise, GIST also 366

modifies model parameters, and its strength lies in 367

compressing instruction information rather than 368

long context. We replicate ICAE on this dataset. 369

Model configuration We use Llama2-7b-chat 370

(Touvron et al., 2023) as the target LLM for eval- 371

uation. Both attention and feed-forward network 372

modules of IC-Former have the same hidden size as 373

Llama2-7b-chat. The default number of digest to- 374

kens k is set to 128 unless otherwise specified. Fur- 375

thermore, IC-Former consists of only three trans- 376
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Input
(Batchsize×Length) Method Memory

(GB)
Compression

Time (s)
Inference
Time (s)

Total
Time (s)

8× 2048
LLM 35.96 - 1.845 1.845

LLM+ICAE 19.76 3.268 0.314 3.582
LLM+IC-Former 15.96 / 2.38 0.029 (112×) 0.314 0.343 (5.3×)

8× 512
LLM 17.46 - 0.318 0.318

LLM+ICAE 19.76 0.476 0.079 0.555
LLM+IC-Former 15.82 / 2.28 0.007 (68×) 0.079 0.086 (3.7×)

32× 512
LLM 29.07 - 1.186 1.186

LLM+ICAE 38.74 1.848 0.288 2.136
LLM+IC-Former 18.98 / 3.52 0.017 (108×) 0.289 0.306 (3.8×)

Table 1: Compression and inference overhead. Inference time refers to the period required to perform a forward
pass, utilizing either original context embeddings or compressed vectors as input to the LLM. Memory denotes the
peak GPU memory usage during the compression and inference processes. Additionally, we quantify the memory
utilization when employing IC-Former for compression independently (right of the /).

Method Time&Space
Complexity

Theoretical
FLOPs

ICAE O(n2 + 2kn) 8.50× 1012

IC-Former O(kn) 2.62× 1011(∼ 1
32)

Table 2: Complexity analysis. The theoretical FLOPs
represent the computational cost incurred when com-
pressing a context of length 512 into 128 vectors for
the Llama2-7b-chat model. For further details, see the
Appendix C.

former layers and includes approximately 607M377

parameters, encompassing the digest embeddings.378

4.2 Experiment Results379

4.2.1 Compression & Inference Efficiency380

Firstly we analyze the theoretical time-space com-381

plexity of the IC-Former and baseline method and382

the floating point operations (FLOPs) required to383

compress 512 tokens to a length of 128. As illus-384

trated in Table 2, our approach significantly reduces385

both the temporal and spatial overhead compared386

to the baseline. In experiments involving compres-387

sion of contexts with a length of 512, the required388

FLOPs are merely 1/32 of those needed by the389

baseline method.390

We further assess and compare the compression391

time and memory utilization of IC-Former dur-392

ing actual compression processes with the baseline393

model. Experimental results indicate that our IC-394

Former significantly outperforms existing methods395

in terms of both temporal efficiency and spatial396

occupancy.397

As shown in Table 1, our IC-Former has the398

lowest memory usage during compression among399

Length BLEU-4 Loss
ICAE IC-Former ICAE IC-Former

100 0.9967 0.9965 0.1461 0.1789
200 0.9969 0.9972 0.0971 0.0851
300 0.9974 0.9971 0.0602 0.0558
400 0.9889 0.9892 0.0499 0.0483
500 0.9654 0.9689 0.1116 0.1078

Table 3: Results of BLEU-4 scores and cross-entropy
loss between reconstructed context and original context
across different context lengths.

the compared models. Additionally, IC-Former’s 400

compression process does not depend on the target 401

LLM, enabling it to perform compression inde- 402

pendently and achieve over 88% memory savings 403

relative to the baseline. In terms of compression 404

time, our method is 68 to 112 times faster than the 405

baseline, rendering the compression overhead neg- 406

ligible compared to the inference time of the target 407

LLM. In scenarios where compression is followed 408

by inference, our method achieves approximately 409

four times faster processing than directly inferring 410

using the original context, whereas the baseline 411

method consumes even more time. Our approach 412

thus offers a viable solution for real-time compres- 413

sion scenarios. 414

4.2.2 Pretraining: Context Reconstruction 415

We evaluate the pretraining performance of IC- 416

Former, focusing on its ability to reconstruct the 417

original context. To measure the discrepancies be- 418

tween the reconstructed text and the original, we 419

utilize BLEU (Papineni et al., 2002) and cross- 420

entropy loss as metrics. 421

As shown in Table 3, the reconstructed context 422
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Input content
ROUGE-1 ROUGE-2 ROUGE-L

P R F1 P R F1 P R F1

512 original context tokens 0.456 0.635 0.501 0.300 0.438 0.331 0.426 0.594 0.468
128 memory slots (ICAE) 0.592 0.561 0.555 0.404 0.385 0.377 0.553 0.525 0.519

128 digest vectors (IC-Former) 0.554 0.520 0.516 0.374 0.355 0.348 0.517 0.487 0.482
(performance ratio) 93.6% 92.7% 93.0% 92.6% 92.2% 92.3% 93.5% 92.8% 92.9%

64 digest vectors 0.384 0.412 0.377 0.211 0.234 0.209 0.349 0.375 0.343
64+64 digest vectors 0.545 0.498 0.500 0.358 0.330 0.327 0.507 0.464 0.465

128 digest vectors 0.554 0.520 0.516 0.374 0.355 0.348 0.517 0.487 0.482

128 digest vectors (w/o pretrain) 0.431 0.381 0.389 0.234 0.211 0.212 0.393 0.349 0.355

Table 4: Evaluation results on PwC test set. The first row of the table compares the performance of our method with
other baseline models, and the performance ratio means the ratio of our IC-Former to the ICAE. The second row
demonstrates the performance variations when different compression strategies are implemented, where "64+64"
represents a divide-and-conquer approach. The third row reveals the impact of ablation pre-training on performance.

Text type BLEU Loss
Normal text 0.9006 0.125

Reversed text 0.6652 1.803
Patterned random text 0.1347 4.401

Completely random text 0.0080 8.137

Table 5: Reconstruction results for texts with varying
degrees of randomness, with randomness increasing
from top to bottom. The patterned text is generated
by adding 1 to each token_id of normal text. All texts
above are compressed from length of 512 to 128.

by IC-Former exhibits minimal discrepancies when423

compared to the original context. For a context424

length of less than 400, the BLEU-4 score reaches425

0.99, and the cross-entropy loss hovers around 0.05.426

When the context length is extended to 500, the427

BLEU score maintains a high value of 0.96, and428

the cross-entropy loss is approximately 0.1. These429

results suggest that IC-Former effectively captures430

the contextual information, achieving a 4x com-431

pression ratio while maintaining performance com-432

parable to the baseline.433

Then we explore the impact of digest tokens434

length k on the reconstruction task. As shown in435

Figure 5, it is not surprising that the quality of the436

reconstructed text deteriorates as k decreases.437

Additionally, we attempt to use IC-Former to438

compress texts with various levels of randomness439

and analyze the reconstruction results. As observed440

from Table 5, the reconstruction performance of441

IC-Former progressively declines as the random-442

ness of the text increases. This phenomenon may443

suggest that IC-Former primarily achieves informa-444

tion compression through semantic understanding445

rather than mere rote memorization. Further analy-446

sis is conducted in Section 4.3.447

Figure 5: BLEU-4 for different digest token lengths k.

4.2.3 Performance on Downstream Task 448

In this section, we evaluate the model’s perfor- 449

mance on the PwC dataset. Although our model 450

can achieve good results based on the BLEU met- 451

ric, considering that BLEU is more susceptible to 452

response length, we ultimately choose the ROUGE 453

metric (Lin, 2004) to evaluate the performance of 454

our model, which more faithfully reflects the orig- 455

inal content of the text. We compare the perfor- 456

mance of various context compression models by 457

keeping the target LLM frozen and substituting the 458

context with different vectors. 459

As illustrated in the first row of Table 4, our 460

method achieves over 92% of the baseline perfor- 461

mance while significantly surpassing the baseline 462

model in terms of compression speed. The second 463

row of the table compares the performance of digest 464

vectors of varying lengths, including the compres- 465

sion of 512 context tokens into 64 digest vectors 466

and their subsequent division and compression into 467

two sets of 64 digest vectors each, as discussed 468

in Section 3.3 under the strategy of divide-and- 469

conquer. It can be observed that compared to di- 470

rectly compressing 512 context tokens into 128 di- 471
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Figure 6: Local attention map in the last layer of IC-
Former. The horizontal axis represents context tokens
acting as key and the vertical axis represents digest
tokens acting as query. For complete attention map, see
Appendix E.

gest vectors, the approach of divide-and-conquer re-472

sults in a slight performance degradation. However,473

this performance loss is acceptable when compared474

to the costs associated with retraining a model to475

accommodate longer digest embeddings. Addition-476

ally, we utilize an ablation study to demonstrate477

the efficacy of pretraining. IC-Former without pre-478

training performs poorly in capturing contextual479

information and is more prone to generating hallu-480

cinations. (See examples in Appendix D).481

4.3 Analysis482

To better understand the working principles of IC-483

Former, we conducted further visualization analy-484

sis based on the attention map.485

Neighbourhood information aggregation We av-486

erage the attention scores of all attention heads487

in the third layer (last layer) of the IC-Former to488

obtain an attention map. It can be observed from489

Figure 6 that each digest token attends to 3 to 5 con-490

secutive context tokens, and digest tokens focus on491

the context tokens in accordance with their sequen-492

tial order, which presents a backslash shape pattern.493

It is worth mentioning that the non-pretrained IC-494

Former does not exhibit this phenomenon (See ex-495

amples in Appendix E). These phenomena indicate496

that IC-Former compresses context by aggregating497

information from adjacent tokens and integrating498

it into digest vectors. Moreover, the application of499

positional embeddings ensures that digest tokens500

attend to context in a sequential manner.501

Layer-wise semantic diversification Thanks to502

IC-Former being composed of merely three layers,503

we are able to conduct a detailed analysis of each504

An example of context

A large language model (LLM) is a computational model
notable for its ability to achieve general-purpose language
generation and other natural language processing tasks
such as classification. Based on language models, LLMs
acquire these abilities by learning statistical relationships
from vast amounts of text during a computationally
intensive self-supervised and semi-supervised training
process. LLMs can be used for text generation, a form of
generative AI, by taking an input text and repeatedly
predicting the next token or word. LLMs are artificial
neural networks that utilize the transformer architecture,
invented in 2017. The largest and most capable LLMs, as
of June 2024, are built with a decoder-only
transformer-based architecture, which enables efficient
processing and generation of large-scale text data. Larger
models such as GPT-3 have demonstrated the ability to
achieve similar results through prompt engineering, which
involves crafting specific input prompts to guide the
model’s responses.

Table 6: The context tokens that are most attended to by
digest tokens across layers. The color of each token is
determined by the layer when it is initially attended to.
Red, cyan, and blue denote the first, second and third
layer respectively. Gray indicates tokens that are never
attended to.

layer. We examine each layer of the IC-Former to 505

identify the top five context tokens with the highest 506

attention scores for each digest token. 507

As illustrated in Table 6, it can be observed 508

that in the first layer, digest tokens mainly focus 509

on prepositions, articles, be-verb, and punctuation 510

marks. As we proceed to the second layer, digest 511

tokens start to extend their focus to verbs, nouns, 512

adjectives, and adverbs. The third layer contin- 513

ues this trend based on the second layer, further 514

broadening the range of grammatical categories of 515

tokens covered, encompassing a more extensive 516

context. This implies that IC-Former might rely 517

on semantic structures to understand and compress 518

context effectively. 519

5 Conclusion 520

In this paper, we propose the In-Context Former 521

(IC-Former), a novel context compression model, 522

which can efficiently condense contextual infor- 523

mation into digest vectors in a linear complex- 524

ity by removing irrelevant interaction processing. 525

Moreover, our proposed IC-Former utilizes the 526

cross-attention mechanism to enhance the extrac- 527

tion ability of digest tokens. Our experimental 528

results demonstrate that IC-Former significantly re- 529

duces time and space complexity while preserving 530

contextual semantics, thereby supporting broader 531

applications requiring extensive context. 532
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Limitations533

1. We only apply IC-Former to the Llama2-7b-534

chat model. Future efforts will involve con-535

ducting experiments on larger-scale models536

to explore further potential. It is anticipated537

that the increased hidden size in larger models538

will continue to enhance the performance of539

the IC-Former.540

2. Although our method is capable of handling541

longer texts in implementation, we did not542

conduct compression experiments on longer543

contextual content to more comprehensively544

validate the method’s performance due to re-545

source constraints.546

3. Despite our model significantly outperform-547

ing the baseline in terms of efficiency, it has548

not surpassed the baseline’s performance in549

downstream tasks. Our future work will aim550

to enhance performance in scenarios that are551

less sensitive to real-time requirements.552
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A Experiment Details744

A.1 Model Configuration745

We show the detailed configuration of our IC-746

Former model in Table 7.747

Hyperparameter Value

theta base 10000.0
hidden size 4096
layer number 3
rms norm eps 1e-6
initializer range 0.02
activate function silu
intermediate size 11008
digest tokens number 128
attention heads number 32
max position embeddings 2048

Table 7: Detailed configuration of IC-Former.

A.2 Training Configuration748

We show the detailed configuration of pretraining749

and fine-tuning in Table 8 & 9.750

Hyperparameter Value

optimizer AdamW
learning rate 1e-4
batch size 1
gradient accumulation 16
clip norm 2.0
training steps 9.3k
dtype bfloat16

Table 8: Detailed configuration of pretraining.

Hyperparameter Value

optimizer AdamW
learning rate 5e-5
batch size 1
gradient accumulation 256
clip norm 2.0
training steps 7.9k
dtype bfloat16

Table 9: Detailed configuration of fine-tuning.

A.3 Prompt Template on Evaluation751

The prompt template we used for evaluation is as752

follows:753

Response the Prompt based on the below754

text:\n\n {context}\n\n Prompt:{prompt}755

B Profiling Setup 756

We use a single Nvidia RTX A6000 GPU (48GB) 757

for pretraining, fine-tuning, and efficiency tests 758

(Table 1). The CPU of our machine is Intel(R) 759

Xeon(R) Gold 6326 with 16 cores and 1007GB 760

RAM. The runtime configuration is python=3.8.18, 761

pytorch=1.13.1, cuda=11.7, cudnn=8.5. 762

C Theoretical Analysis 763

C.1 Complexity Analysis 764

In Table 2 we assert that the time and space com- 765

plexity of ICAE is O(n2 + 2kn). This conclusion 766

can be easily drawn by comparing the attention 767

maps of the IC-Former and ICAE. As illustrated in 768

Figure 7, ICAE utilizes memory tokens and context 769

for causal self-attention interaction, resulting in a 770

complexity of O
(
(n+ k)2

)
∼ O(n2 + 2kn). 771
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Figure 7: Top: Attention mask in IC-Former. Bottom:
Attention mask in ICAE. The di represents digest tokens
in IC-Former and the mi represents the memory tokens
in ICAE’s encoder.
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C.2 Floating Point Operations Calculation772

When calculating the floating-point operations, we773

considered only the matrix multiplication compu-774

tations involved in the attention and feed-forward775

network (FFN) modules, while ignoring the rela-776

tively smaller computational overhead of modules777

such as normalization and softmax.778

Given context embedding with shape of [b, s, h]779

where b represents batch size, s represents se-780

quence length and h represents hidden size, the781

theoretical calculation of the FLOPs for ICAE and782

IC-Former required to compress it into vectors of783

length k are shown in Tables 10 & 11:784

Modules FLOPs

xWQ/WK/WV 3 · 2b(s+ k)h2

QKT 2b(s+ k)2h
AV 2b(s+ k)2h
xWO 2b(s+ k)h2

xoutWup 2b(s+ k)hm
xoutWgate 2b(s+ k)hm
xoutWdown 2b(s+ k)hm

SUM
4bh(s+ k)(2h+ s+ k)

+6bhm(s+ k)

Table 10: Theoretical complexity in each layer of
ICAE’s encoder. A represents the attention scores ma-
trix, m represents the intermediate size of FFN.

Modules FLOPs

xWQ 2bkh2

xWK/WV 2 · 2b(s+ k)h2

QKT 2bk(s+ k)h
AV 2bk(s+ k)h
xWO 2bkh2

xoutWup 2bkhm
xoutWgate 2bkhm
xoutWdown 2bkhm

SUM
4bkh2 + 2bh(s+ k)(h+ 2k)

+6bkhm

Table 11: Theoretical complexity in each layer of IC-
Former. A represents the attention scores matrix, m
represents the intermediate size of FFN.

The ratio of FLOPs between ICAE and IC-785

Former R can be calculated as follows:786

R =
l1 · [2(s+ k)(2h+ s+ k) + 3m(s+ k)]

l2 · [2kh+ (s+ k)(h+ 2k) + 3mk]
,

(12)

787

where l1 is the layers of ICAE and l2 is the layers 788

of IC-Former. 789

In our experimental settings, l1 = 32, l2 = 3, 790

s = 512, k = 128, h = 4096, m = 11004, thus 791

R ≈ 32.39 (13) 792

D Case Study 793

In Table 12, we present several cases to compare 794

the outputs of Llama2-7b-chat based on the 128 795

digest vectors generated from the pretrained and 796

non-pretrained IC-Former. The results indicate that 797

the IC-Former without pre-training has a poor abil- 798

ity to capture contextual information and thus is 799

more prone to hallucinating. 800

E Attention Maps in IC-Former 801

Additionally, by comparing the attention maps of 802

the pretrained and non-pretrained IC-Former mod- 803

els (Figure 8 & 9), it is observable that the non- 804

pretrained IC-Former does not exhibit the phe- 805

nomenon of neighborhood information aggrega- 806

tion. Furthermore, the words captured by each 807

layer do not demonstrate distinct grammatical pat- 808

terns, which underscores the necessity of pretrain- 809

ing in enhancing model performance. 810
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Context 1

French senior civil servant arrested on suspicion of spying for North Korea

November 27, 2018 by Joseph Fitsanakis

A senior civil servant in the upper house of the French parliament has been arrested on suspicion
of spying for North Korea, according to prosecutors. The news of the suspected spy’s arrest was
first reported on Monday by Quotidien, a daily politics and culture show on the Monaco-based
television channel TMC. The show cited “a judicial source in Paris” and said that France’s domestic
security and counterintelligence agency, the General Directorate for Internal Security (DGSI), was
in charge of the espionage case.
(omitted 155 tokens)
Quennedey is believed to be the president of the Franco-Korean Friendship Association, the French
branch of a Spanish-based organization that lobbies in favor of international support for North
Korea.

Prompt: Mention the organization Benoit Quennedey is believed to be the president of.

Output (with pretrained IC-Former): Benoit Quennedey is believed to be the president of the
Franco-Korean Friendship Association.

Output (with non-pretrianed IC-Former): Benoit Quennedey is believed to be the president of
the French intelligence agency, the Directorate General for External Security (DGSE).

Label (by GPT-4): Franco-Korean Friendship Association

Context 2

One of NewsBusters’ classification categories is "Covert Liberal Activists," and my antennae
immediately went up when Lauren Leader was introduced on today’s Morning Joe as "co-founder
and CEO of All In Together, "a non-partisan, women’s civic and political organization."
(omitted 462 tokens)
Another clue as to Leader’s liberal leanings. Questioning whether the immigrants "actually threw
rocks," she cites . . . NPR reporting that things were "relatively peaceful except that, obviously,
they were trying to break through." When people are trying to illegally "break through" a border,
there is nothing "relatively peaceful" about it.

Prompt: What source does Lauren Leader use to question the accuracy of the immigrants throwing
rocks?

Output (with pretrained IC-Former): Lauren Leader uses NPR to question the accuracy of the
immigrants throwing rocks.

Output (with non-pretrianed IC-Former): The source is a Fox News segment.

Label (by GPT-4): Lauren Leader cites NPR reporting as a source to question the accuracy of the
immigrants throwing rocks.

Table 12: Examples of output results from Llama2-7b-chat model utilizing digest vectors generated by pretrained
and non-pretrained IC-Former models. The evidence of prompt is marked in blue and red denote the outputs that are
not faith to the original context.

13



0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 10
0

10
5

11
0

11
5

12
0

12
5

13
0

13
5

14
0

14
5

15
0

15
5

16
0

16
5

17
0

17
5

18
0

18
5

19
0

19
5

20
0

20
5

21
0

21
5

22
0

22
5

23
0

23
5

24
0

24
5

25
0

25
5

26
0

26
5

27
0

27
5

28
0

28
5

29
0

29
5

30
0

30
5

31
0

31
5

32
0

32
5

33
0

33
5

34
0

34
5

35
0

35
5

36
0

36
5

37
0

37
5

38
0

38
5

Context tokens

0
4
8

12
16
20
24
28
32
36
40
44
48
52
56
60
64
68
72
76
80
84
88
92
96

100
104
108
112
116
120
124

Di
ge

st
 to

ke
ns

Attention map in the first layer of pretrained IC-Former

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 10
0

10
5

11
0

11
5

12
0

12
5

13
0

13
5

14
0

14
5

15
0

15
5

16
0

16
5

17
0

17
5

18
0

18
5

19
0

19
5

20
0

20
5

21
0

21
5

22
0

22
5

23
0

23
5

24
0

24
5

25
0

25
5

26
0

26
5

27
0

27
5

28
0

28
5

29
0

29
5

30
0

30
5

31
0

31
5

32
0

32
5

33
0

33
5

34
0

34
5

35
0

35
5

36
0

36
5

37
0

37
5

38
0

38
5

Context tokens

0
4
8

12
16
20
24
28
32
36
40
44
48
52
56
60
64
68
72
76
80
84
88
92
96

100
104
108
112
116
120
124

Di
ge

st
 to

ke
ns

Attention map in the second layer of pretrained IC-Former

0.025

0.050

0.075

0.100

0.125

0.150

0.175

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 10
0

10
5

11
0

11
5

12
0

12
5

13
0

13
5

14
0

14
5

15
0

15
5

16
0

16
5

17
0

17
5

18
0

18
5

19
0

19
5

20
0

20
5

21
0

21
5

22
0

22
5

23
0

23
5

24
0

24
5

25
0

25
5

26
0

26
5

27
0

27
5

28
0

28
5

29
0

29
5

30
0

30
5

31
0

31
5

32
0

32
5

33
0

33
5

34
0

34
5

35
0

35
5

36
0

36
5

37
0

37
5

38
0

38
5

Context tokens

0
4
8

12
16
20
24
28
32
36
40
44
48
52
56
60
64
68
72
76
80
84
88
92
96

100
104
108
112
116
120
124

Di
ge

st
 to

ke
ns

Attention map in the last layer of pretrained IC-Former

0.025

0.050

0.075

0.100

0.125

0.150

0.175

0.200

Figure 8: Complete attention maps of pretrained IC-Former. From top to bottom are attention maps of the first,
second, and third layers of IC-Former.
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Figure 9: Complete attention maps of non-pretrained IC-Former. From top to bottom are attention maps of the first,
second, and third layers of IC-Former.
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