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Abstract

Characterizing rare extreme events is a major challenge in climate and other
sciences, and AI emulators may offer a solution: The idea is that an emulator
trained on a small dataset can generate large synthetic datasets with extreme
events beyond those that were absent from the training set. In principle. AI
cannot generalize beyond the training set (i.e., extrapolate), however, because
the governing equations are fixed, there are speculations that generative models,
especially those that learn from fast dynamics, can reproduce stronger events from
the same dynamical system. Here, we investigate the most promising approaches
using 2D geophysical turbulence test cases. First, we train an unconditional static
emulator that samples plausible flow states from noise; second, an autoregressive
dynamic emulator; and third, iteratively augment the training dataset using the
emulator’s output. We show that both static and dynamic emulators can produce
extreme events stronger than those in the training set, effectively creating “gray
swans”. However, neither could accurately reproduce the frequency (return period)
of these rare events. We show that both emulators are constrained by the small
training set, and trying to increase the data size by iteratively training emulators
on their own output leads to model collapse - a degenerative feedback loop that
progressively worsens the quality of generated samples and extreme estimates.
Overall, these findings indicate that purely data-driven diffusion models are not
capable of learning the underlying data-generation process from a small training
set.
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1 Introduction

Accurately modeling and predicting the rarest, yet most impactful, extreme events is a major challenge
in many scientific disciplines. For example, in climate science, quantifying the statistics of weather
extremes through directly sampling high-fidelity physics-based simulations is often computationally
prohibitive [Lucarini and Chekroun, 2023, de Burgh-Day and Leeuwenburg, 2023, Materia et al.,
2024, Lai et al., 2024, Bracco et al., 2025]. Various statistical and algorithmic tools have been
developed to supplement physics-based simulations, including extreme-value theory (EVT) [Coles
et al., 2001], large deviation theory [Ragone et al., 2018, Ragone and Bouchet, 2020], and different
forms of rare event sampling [Webber et al., 2019, Abbot et al., 2021, Finkel et al., 2023] such
as ensemble boosting [Vanden-Eijnden and Weare, 2012, Gessner et al., 2021] and importance
sampling [Ragone and Bouchet, 2021]. However, these methods often have significant limitations;
for example, EVT provides only statistical distributions without describing the circulation patterns
and dynamics of an event, while others still require substantial, targeted simulations that limit their
broad application. These constraints have recently shifted attention towards artificial intelligence (AI)
emulators as a more flexible and potentially powerful approach for estimating extremes and their
associated uncertainty [Materia et al., 2024, Camps-Valls et al., 2025].

Building on the success of deep learning in short- and medium-range weather forecasting [Pathak
et al., 2022, Lam et al., 2023, Bi et al., 2023, Chen et al., 2023, Rühling Cachay et al., 2023, Lang
et al., 2024, Nguyen et al., 2024, Price et al., 2025], the core idea is to train an AI emulator on a small
amount of available high-fidelity data (e.g., from high-resolution physics-based simulations). The
trained emulator can then be used to generate large, long ensembles (e.g., orders of magnitude more
than the training data) at a fraction of the computational cost [Lai et al., 2024, Watson-Parris, 2021,
Bracco et al., 2025, Li et al., 2024a, Lam et al., 2023, Pathak et al., 2022], providing enough data for
direct sampling of rare extremes. In particular, this approach may enable the characterization of gray
swans: strong, extreme events that are physically plausible, but so rare that they were absent from the
limited training dataset [Lin and Emanuel, 2016, Sun et al., 2025a].

The success of this approach hinges on several critical requirements. For an AI emulator to be a
reliable tool for extreme event analysis, it must:

1. Generate outputs that are stable and physically consistent over long integrations, accurately
reproducing the system’s mean statistics.

2. Extrapolate beyond its training data to generate gray swan events more intense than anything
seen during training.

3. Reproduce the correct statistics (e.g., frequency or return period) of these extrapolated
events.

Satisfying the first requirement for long-term stability is now a well-established capability of many
AI emulators [Kochkov et al., 2024, Dheeshjith et al., 2025, Chapman et al., 2025, Watt-Meyer et al.,
2025, Rühling Cachay et al., 2023]. The key unresolved challenge, however, is meeting the other two
requirements by extrapolating to generate extreme, out-of-distribution (OOD) events with the correct
statistics. While OOD generalization (i.e., extrapolation) is a general weakness of neural networks,
there is growing hope that this might be possible given the evidence that AI models can learn physical
dynamics [Rackow et al., 2024, Sun et al., 2025b, Meng et al., 2025]. That said, there are also studies
emerging showing a lack of extrapolation to gray swans in some of the AI weather models [Sun et al.,
2025a, Zhang et al., 2025]

To investigate (2)-(3), we rigorously evaluate two distinct strategies designed to enable generative
emulators to predict extreme events beyond their training data, a process outlined in Figure 1. A
key challenge in assessing out-of-distribution performance is the lack of very long ground-truth
records for comparison. We overcome this by using a 2D geophysical turbulence test case, for which
we can generate extensive ground-truth data. Our first strategy focuses on building two diffusion
emulators [Ho et al., 2020, Batzolis et al., 2021], as shown in Figure 1(b). We investigate both
a self-supervised static diffusion model (hereafter ’static’) that directly samples plausible system
states [Lienen et al., 2023, Li et al., 2024b,a, Whittaker et al., 2024, Brenowitz et al., 2025], and a
supervised autoregressive conditional diffusion model (hereafter ’dynamic’) that learns the system’s
temporal evolution, like the current state-of-the-art weather models [Kohl et al., 2023, Rühling Cachay
et al., 2023, Price et al., 2025, Stamatelopoulos and Sapsis, 2025, Bassetti et al., 2024]. A potential
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advantage of an autoregressive emulator is that it can learn the underlying (fast) dynamics and can
have a better chance of producing gray swans. We train these emulators on a very short dataset from
the 2D turbulent flow and then use them to generate much longer emulations.

Our second strategy, outlined in Figure 1(e)-(f), explores an often mentioned potential solution to
the small-data problem: using the emulator to generate synthetic data for further training of itself
[Antoniou et al., 2017, Lai et al., 2024]. If an emulator can successfully generate physically consistent
data containing gray swan events, it is natural to investigate whether this new dataset can be used
to retrain and improve the emulator’s performance on even more extreme events, reproducing the
correct statistics. However, similar experiments in other domains (e.g., LLMs) have shown that
such an approach leads to model autophagy disorder or model collapse [Alemohammad et al., 2024,
Shumailov et al., 2024, Feng et al., 2024, Dohmatob et al., 2024, Kazdan et al.], an autophagous
(self-consuming) feedback loop where models iteratively trained on their own output progressively
lose fidelity. Here, we aim to test whether this approach for dynamical systems, especially using the
dynamic emulator, can address the small-data problem or lead to model collapse.

Overall, this two-part investigation allows us to evaluate the current capabilities of generative
emulators, concluding that they can partially satisfy requirements (1) and (2), but fail to meet
requirement (3).

2 Methods and Data

2D Turbulence Test Case: We use 2D turbulence flow as the test case. This canonical flow has
been extensively used for testing novel AI methods [Jakhar et al., 2024a, Guan et al., 2022, Pedersen
et al., 2025, Lippe et al., 2023, Maulik et al., 2019]. We consider 2D turbulence described by
the dimensionless Navier-Stokes equations for an incompressible flow in (x, y) spatial dimensions
[Jakhar et al., 2024a, Guan et al., 2022]:

∇ · u = 0, (1)
∂u

∂t
+ (u · ∇)u = −∇p+

1

Re
∇2u+F − χu+B, (2)

where u = [u (x, y, t) , v (x, y, t)] is the velocity, p (x, y, t) is the pressure, χ = 0.1 is the Rayleigh
drag coefficient, and Re = 5× 102 is the Reynolds number. F (x, y) represents an time-constant
external forcing with ∇ × F = kf cos (kfx) + kf cos (kfy) at a wavenumber, kf = 4. B (x, y),
with ∇ × B = −βv, and β = 20 represents Earth’s rotation leading to zonal jets mimicking jet
streams and other strong coherent current in the atmosphere and ocean [Vallis, 2017]. The domain is
doubly periodic with length L = 2π.

Training Data: (u, v) fields on a 642 grid. Datasets A, B: 2,500 snapshots each; A10x: 25,000snap-
shots (see Section A.1 for details).

Evaluation: Ground truth (referred to as “truth” hereafter) with 5 independent sequences (250,000
snapshots each), compared with 5 emulator-generated sequences of equal length to test for gray-swan
extremes (see Section A.1 for details).

Diffusion Emulators: U-Net DDPM with circular padding. Static Emulator samples instanta-
neous states, conditioned on grid coordinates (x, y). Dynamic Emulator autoregressively predicts
(ut+∆t, vt+∆t) conditioned on (ut, vt) where ∆t is the emulator timestep (see Figure 1(b) and
Section A.2 for details).

Iterative Training: We use two strategies on the training dataset B. all gen: cumulative augmentation,
where an emulator is trained on the original data plus all synthetic data from generations. last gen
trained only on the synthetic data from immediately preceding generation (see Figure 1(e-f) and
Section A.3 for details).

3 Results and Discussion

Our analysis reveals that both the static and dynamic emulators only partially satisfy requirement (1)
(see Section C.1). This calls for more work on building stable, physically consistent emulators with
outputs that accurately reproduce the system’s mean statistics. While the dynamic emulator proves
to be stable (a metric not applicable to the static emulator), neither is physically consistent, as for
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Figure 1: Experimental Design: We train conditional diffusion emulators on very short datasets and
evaluate their ability to predict previously unseen extremes. (a) A physics-based numerical solver
is used to generate training data and a 100× longer ground truth. (b) Two types of diffusion model
architectures are considered: (1) a self-supervised static diffusion model (static) that generates samples
of flow fields conditioned on spatial grid coordinates, and (2) an autoregressive conditional diffusion
model (dynamic) that rolls forward in time conditioned on the previous temporal step. (c) Both trained
models are used to generate emulation datasets 100x longer than the training dataset. Return period
curves, R, are computed to assess their ability to predict extremes. (d-f) Model Collapse: Iteratively
training static emulator models on their own output leads to model collapse. Two configurations
are explored: (e) last gen, where only data from the immediately preceding generation is used for
training, and (f) all gen, where data from all previous generations are cumulatively combined for
training. As shown in (d), the quality of R progressively degrades for all gen.
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example, they fail to maintain the divergence-free condition, ∇× u ̸= 0. Furthermore, their ability
to reproduce the truth’s means statistics are fundamentally limited; they replicate the statistics of their
training set, which can differ from the truth (Section C.1 and Figure 4.

3.1 Extreme Event Prediction and Return Period Analysis

The central question of this study is how well the emulators can predict extreme events that were
absent from the training dataset (the gray swans). We address this by comparing the distribution of
extremes in the emulator-generated data against that of the truth. Specifically, to characterize the
frequency of rare events, we use return period curves, a common measure in theoretical and applied
investigation of climate extremes.

Dimensionless Return Period: We define return period as R = 1/P(E). Here, E is a scalar value
representing the single maximum (or minimum) value found across an entire 2D snapshot of the
flow state. To empirically estimate R, we first create a time series by extracting the maximum (or
minimum) value from each snapshot in our simulations. These scalar maxima (or minima) are then
ranked to compute their exceedance probability, P(E). This entire procedure is performed separately
for both the maxima and minima of the flow fields. Return periods are also computed for debiased
flow states (anomalies). These are calculated by subtracting the 2D temporal mean from the flow
state, u− ⟨u⟩, and computing extremes of these anomalies. The means are calculated separately for
the truth, training set, and emulated dataset to remove the effect of the mean biases on the return
period.

Note that because the static emulator does not have an explicit notion of time, the true time-dependent
return period cannot be calculated. The metric 1/P(E) nonetheless provides a meaningful way to
quantify the extremeness of an event, allowing the performance of the static and dynamic emulators
to be directly compared.

The return periods are calculated for both the prognostic u flow states output by the emulator
(Figure 2(b)), the diagnostic flow state ω (Figure 2(a,c,e)), and debiased ω (Figure 2(d,f)). Note that
ω can be thought of as “weather” in this canonical flow: positive and negative vorticity correspond to
low-pressure (cyclonic) and high-pressure (anticyclonic) systems. The return period curves reveal the
following key points about the emulated extreme events:

• Both static and dynamic emulators demonstrate an ability to generate events more intense
than those in the training set. While this might suggest that geneative emulators can produce
“gray swans”, we caution that some of these large values might be due to unphysical artifacts.
Figure 2(a) shows an example of this problem, which is an issue for ω, a diagnostic variable
involving differentiation. However, examining more cases, particularly for the prognostic
variable u, demonstrates that these generative emulators are indeed not limited by the
training dataset’s maximum or minimum values, showing the ability to “extrapolate”.

• The emulators fail to reproduce the correct statistics (frequency or return period) of these
extrapolated events, deviating from the truth return periods for the most extreme values.

• The predicted return periods are strongly constrained by the distribution of the training
dataset. This is evident with dataset B, where the return periods for u in the training dataset
were significantly larger than those of the truth 2(b). Consequently, both the static and
dynamic emulators produced events that closely tracked the training dataset’s biased return
period curve, failing to match the truth. The dynamic emulator also struggled to capture
extremes of ω for this dataset (see 2(a)). This is because of poor training (due to a small
dataset), which resulted in unphysical artifacts in ω.

• The dynamic emulator predicts extremes more accurately than the static emulator for dataset
A and A10×. Its return period curve for high-amplitude extremes lies closer to the truth;
this may be due to the inductive bias of autoregressive models for learning dynamics [Cheng
and Weare, 2024]. It was not true for dataset B because of the reasons mentioned above
(Figure 2(c,e)), and this conclusion holds even after removing the mean bias from the flow
states (Figure 2(d,f)). The dynamic model’s superior performance may be attributed to the
inductive bias of autoregressive models for learning dynamics [Cheng and Weare, 2024].
In contrast, this advantage was not observed for dataset B due to the poor training of the
dynamic emulator (Figure 2(a)).
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• The extrapolation of return periods for OOD extreme events is not robust when using
smaller training datasets, showing high sensitivity to stochastic training elements like
weight initialization. This indicates that a simple autoregressive model struggles without
sufficient data. However, this challenge could be overcome by increasing the training dataset
tenfold. A direct comparison shows that the return period curves for the large dataset, A10x
(Figure 2(e,f)), are closer to the truth than those for the smaller dataset, A (Figure 2(c,d)).
The larger dataset provides the emulator with enough examples of extremes to learn a tail
distribution that more accurately reflects the true system dynamics.

3.2 Mitigating Data Scarcity: Iterative Training and Model Collapse

Given the challenges above, a practical question arises: can we extend the training data using
the emulator itself, e.g, to expose it to more extreme events? This idea is conceptually similar to
bootstrapping and speculated in some studies as a way of addressing the small-data regime in climate
applications [Watson-Parris, 2021, Dueben et al., 2022, Lai et al., 2024]. We investigate this approach
through iterative training as described in Methods Section A.3. Our results show that this approach
fails to solve the data scarcity issue and ultimately leads to model collapse.

In all gen strategy, where the training dataset includes the original real data plus all synthetic data
from every previous generation, the emulator’s performance gradually degrades over generations. The
energy spectrum showed a progressive loss of power at higher wavenumbers, which was noticeable
by generation 5 and significant by generation 10 (Figure 3(a)). While the 2D long-time mean
of u in generation 5 remained similar to the original one, it started to degrade by generation 10
(Figure 3(a)). Crucially, this data augmentation strategy did not improve the prediction of extreme
events. By generation 5, the model began underpredicting the rarest events and showed no subsequent
improvements. The fact that iterative training with more synthetic data did not improve, but rather
degraded, the return period curves confirms that this data augmentation approach cannot solve the
small-data problem. The apparent good performance of some metrics (like the gen 5 temporal mean of
u) can be misleading, highlighting the importance of a holistic evaluation of emulators’ performance.

The last gen strategy, a stress test where each new model was trained only on the previous generation’s
synthetic data, demonstrated a much faster failure. The model began to diverge after just one iteration.
The output from the gen 2 emulator (trained solely on gen 1’s synthetic data) was visibly degraded
(Figure 1b). By gen 3, the emulator had effectively collapsed, unable to reproduce the 2D temporal
mean of u (Figure 3(b)). The energy spectrum reveals that gen 2 spectrum shows an increase in
energy at high wavenumbers. By generation 10, the spectrum was corrupted across all scales.

Our findings clearly show that iterative training of the emulator is not a viable strategy for overcoming
data scarcity. Instead of improving performance, this self-consuming loop leads to model collapse.
The degradation is gradual when the original data is retained (all gen) but catastrophic and rapid
when it is discarded (last gen). This demonstrates that synthetic data generated by the model itself
progressively loses fidelity and introduces artifacts that corrupt subsequent training cycles.

4 Conclusion

We explored the capability of diffusion emulators to quantify the statistics of rare extreme events by
training emulators on a small amount of high-fidelity data in 2D geophysical turbulence, a canonical
test case for atmospheric and oceanic turbulence. We examined three key requirements for extreme
event emulators: (1) stable, physically consistent outputs reproducing mean statistics, (2) generation
of OOD (“gray swan”) extreme events, and (3) reproduction of the correct statistics (frequency or
return period) of those extremes. We evaluated two strategies: the first builds two emulators, a static
(distribution sampling) and a dynamic (autoregressive) emulator, and the second uses iterative training
on synthetic data generated by the emulators. By comparing statistics from emulator-generated data
(100× the training dataset) to a high-fidelity truth simulation of equal length, we aim to examine
these emulators’ ability to satisfy requirements (1)-(3). Our study yields several takeaways:

• Diffusion emulators can produce events more extreme than those present in their training
data, demonstrating an ability to extrapolate beyond the training data distribution, satisfying
requirement (2). Notably, the dynamic emulator showed a slight advantage in generating
high-magnitude events over the static emulator, likely because it can learn the underlying fast
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Figure 2: Dimensionless return periods for extremes (R). Emulators generate extremes beyond
those in the training dataset but fail to reliably capture the correct frequency. R shown for training
datasets B (a–b), A (c-d), and A10x (e-f). (a) The dynamic emulator overestimates the R of ω; this is
explained by the unphysical artifacts appearing in ω shown in the inset for such extremes, indicating
inaccurate learning of dynamics in the small-data regime. (b) The R of u for both emulators is biased
towards the training set, which is distinct from the truth. (c-f) R was computed both from raw outputs
and from debiased flow states to account for systematic biases. The dynamic emulator is closer to
the truth than the static emulator for the R of ω compared to the dynamic emulator for R of ω (c,e)
and debiased ω (d,f), indicating that the dynamic emulator is learning the underlying dynamics. The
return period curves for the large dataset, A10x (Figure 2(e,f)), are closer to the truth than those for
the smaller dataset A (Figure 2(c,d)). In each panel, the dotted grey line corresponds to the most
extreme values present in the training dataset. Shaded bands denote sampling variability (25th-75th
percentiles), and the insets zoom in on the high return period range. All values are normalized by the
corresponding standard deviation, σ.
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Figure 3: Model collapse in the static emulator. Contours of the temporal mean of u and cor-
responding spectra for successive emulator generations for training dataset B. (a) all gen: Each
generation is trained on the cumulative outputs from all previous emulators. Drift is slower with
gens 1–5 remaining close to training data, while gen 10 shows emerging discrepancies in spectra
at both low and high wavenumbers. (b) last gen: Each generation is trained only on data from the
immediately preceding emulator. Collapse appears by gen 2, with a strong mean bias and an increase
in high-wavenumber energy; by gen 10, the degradation is severe. Figure 1 shows the return period
of all gen, confirming that the performance degrades by gen 10.

dynamics. However, some of these OOD extremes may be unphysical artifacts, highlighting
the critical need for holistic evaluation across multiple physical and statistical metrics. In
contrast, the static emulator treats each snapshot independently, missing temporal causation,
though it retains an advantage in predicting mean flow statistics. This performance gap
underscores that the choice to formulate an AI emulator as a time-stepper versus a one-
shot sampler has a significant impact on its ability to capture rare events. We therefore
recommend further testing of such autoregressive models on more complex systems (e.g.,
global weather or climate models) to verify whether this advantage holds broadly.

• Both emulators’ representation of extremes is fundamentally constrained by their training
dataset. If the training dataset is too short or unrepresentative of the truth’s mean and
variability, the emulator will inherit and reproduce those biases, failing to match the truth’s
mean statistics and extreme event frequencies. While increasing the training data size tenfold
improved performance, it underscores a central challenge: accurately capturing rare events
may require observing them first!

• Iterative training on synthetic data leads to model collapse. Using the emulator to generate
more data for subsequent training is not a viable solution for data scarcity. This self-
consuming feedback loop degrades performance over generations, corrupts the energy
spectrum, and fails to improve extreme event prediction.

• One intriguing direction is to explicitly tune the diffusion model to produce more (or fewer)
extremes. Some studies have proposed modifying the diffusion sampling process (e.g.,
adjusting noise levels or using guided sampling) to bias generation towards rare events.
Developing methods to steer generative models toward the tails (e.g., classifier-free guidance
[Ho and Salimans, 2022]) could significantly aid the study of extremes.
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• While our emulators maintain some physical consistency, they fail to enforce all system con-
straints (e.g., incompressibility). Incorporating explicit physical constraints or conditioning
may be necessary to satisfy requirement (3).

Taken together, our results provide only a partial fulfillment of the three viability requirements of
AI-based emulators. The emulators are generally stable and may produce mean statistics (requirement
1), and they can generate OOD extremes (requirement 2), with the dynamic model outperforming
the static model in peak magnitudes. However, neither design reproduces the correct frequency of
rare events (requirement 3). Performance remains limited by the representativeness of the training
data, and iterative retraining on synthetically generated data fails to improve return periods and can
induce model collapse. We therefore recommend cautious use of generative diffusion emulators for
quantitative extreme-risk estimation, and focusing future work on longer, more representative training
sets together with physics-aware objectives, evaluated with the same diagnostics used here (including
return period curves and physical consistency checks).
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A Experimental Details

A.1 Ground Truth and Training Dataset

We train the emulators on the (u, v) flow fields. Training data is generated using “py2d” [Jakhar et al., 2024b]
on a 642 grid, with two short training datasets with uncorrelated initial conditions and 2,500 snapshots each
(called datasets A and B), and a 10x longer dataset with 25,000 snapshots (dataset A10x). Datasets A and B were
chosen so that B’s mean and extreme statistics deviate much more from the ground truth than A’s. This setup
tests whether the emulator simply mimics the training data’s statistics (e.g., distribution), or learns the dynamics
or a meaningful representation of the ground truth (even when trained with a short dataset). The larger A10x
dataset is more representative of the ground truth statistics by virtue of its length. We operate in the small-data
regime deliberately to mimic the real-world application. 2,500 snapshots were about the minimum required to
train a working static emulator, making this a stringent test of learning from scarce data. Indeed, training in this
regime was challenging; both emulators’ performance was highly sensitive to hyperparameters and initialization,
sometimes failing altogether. In contrast, the 10-times longer dataset A10x yielded more stable training and
more consistent results across runs.

To evaluate long-term performance, we generate ground-truth (referred to as “truth” hereafter) much longer
than the training data length: Starting from various random initial conditions, we run the numerical solver to
produce an ensemble of 5 independent sequences, each 100 times the training length, i.e, 250,000 snapshots
each. After training, each emulator (static and dynamic) is used to generate 5 independent sequences, each
250,000 snapshots in length. This approach allows robust uncertainty quantification for the statistics of rare
events. We will show in Section 3.1 that the extremes of interest (gray swan events) in these long runs were
never seen during training – they emerge only in the 100x longer truth and emulation datasets.

A.2 Diffusion Emulators

We adopt the Denoising Diffusion Probabilistic Model (DDPM) framework for generative modeling of the
turbulent flow fields. Our network architecture is a U-Net convolutional neural network similar to that of Ho et
al. (2020), which progressively downscales and upscales the input [Ho et al., 2020, Batzolis et al., 2021]. We
use circular padding to avoid boundary artifacts, which had introduced artificial extremes during initial tests. We
train two variants of the diffusion-based emulator corresponding to different ways of conditioning the model:

Static emulator: The static diffusion emulator learns the distribution of instantaneous states. It does not produce
a time-evolving trajectory; i.e., it is a climate distribution sampler rather than a simulator [Brenowitz et al., 2025,
Li et al., 2024b, Whittaker et al., 2024, Li et al., 2024a]. This emulator treats each snapshot in time independently.
It is trained to generate a state of the flow (the velocity fields (u, v) on the grid) without temporal context. The
model is conditioned on a constant field of 2D grid coordinates, (x, y), concatenated with the velocity field,
(u, v). This conditioning prevents spatial drift, a problem that arises because the circular padding used to enforce
periodicity causes the U-Net to lose its sense of absolute location.

Dynamic emulator: This dynamic emulator is an autoregressive conditional diffusion model emulator designed
to mimic a time-stepping solver by producing the next state given the current state [Kohl et al., 2023, Lienen et al.,
2023, Price et al., 2025, Rühling Cachay et al., 2023]. We frame the diffusion model to output (ut+∆t, vt+∆t)
conditioned on (ut, vt). Here, ∆t (the ML emulator’s time step) is chosen much larger than the numerical
solver’s step – specifically, ∆t = 6× 10−2, which is 120 times the solver’s base time step, ∆tsolver = 5× 10−4.
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Table 1: Hyperparameters for training emulators.

Component Setting
Architecture Periodic UNet; down block [32,64,128,256]; mid block [256,256,128];
Conditioning static: Spatial grid (x, y); dynamic: Previous state (ut−1, vt−1)
Diffusion steps 1000 (linear noise schedule)
Optimizer AdamW
LR schedule CosineAnnealingLR (peak 3×10−4, min 1×10−6)
Epochs 800
Seeds Best out of 4
Loss noise, ∥ϵ− ϵθ∥2

Grid coordinates as conditioning are not added to the dynamic emulator since they are found to provide no
improvement in performance.

For each emulator type and dataset, we train with 4 random seeds. Training details are mentioned in Table 1.

A.3 Iterative Training and Model Collapse

We designed two experiments using the static emulator on the more challenging training dataset B. The first
experiment (all gen) tests the viability of using synthetic data for augmentation, while the second (last gen) is a
stress test of the iterative training process and the quality of the generative emulators’ output.

all gen: This experiment follows a cumulative data augmentation strategy. Here, we begin with generation 1
(gen 1) trained on the original dataset B. Then, during inference, generate a synthetic dataset of the same length
as the training dataset (2500 snapshots). Next, we train a new static emulator on a combined dataset of the
original data and gen 1’s synthetic data output (5000 total snapshots). This gen 2 emulator generates another
2500 samples. Train a new emulator using a combined dataset of original, gen 1, and gen 2 data (7500 total
snapshots), generate another 2500 samples (gen 3), and so forth. In each cycle, the newest emulator is trained on
the original dataset plus all the synthetic data from preceding generations.

last gen:: This experiment is designed to reveal the limits of iterative retraining and measure the system’s
susceptibility to model collapse. Here, we start with generation 1 (gen 1) trained on the original dataset B. Then,
during inference, generate a synthetic dataset of the same length as the training dataset (2500 snapshots). Then,
train a new static emulator using only gen 1’s output (synthetic data) and generate another 2500 samples (gen 2).
Train a new emulator using the gen 2 data, generate another 2500 samples (gen 3), and so forth. In each cycle,
the newest emulator sees only data produced by its immediate predecessor. This is an extreme test where errors
may compound with each generation.

B Training Details

We found that training is sensitive to initialization, especially in the small-data regime (datasets A and B). Some
seeds yielded significantly better models (analyzed in the context of mean statistics), reflecting the challenges
of non-convex optimization with limited data. While training on the large dataset (A10x) was more robust, it
still remained seed-dependent. All results reported here use the best performing seed on validation metrics for
the respective configuration. This variability underlines that multiple trials may be needed to obtain a reliable
emulator, especially when data are scarce.

Table 1 lists the hyperparameters used for training.

C Experiments

C.1 Mean Flow Statistics and Physical Consistency

Figure 4 compares the temporal mean u from the training data, emulator output, and the truth simulation for
each case. For datasets A and B (2,500-snapshot training), the emulated means coincide with the training means,
which differ from the true climate mean; in case A10x (25,000-snapshot training), the training mean was already
close to the true mean, and accordingly, the emulator’s mean aligns with both. The emulator spectra for all cases
align with that of the respective training data, especially for dataset B, where the training data spectrum does not
overlap with the truth spectrum at low wavenumbers. This suggests that the emulators faithfully reproduce the
statistical features present in their training data rather than the truth.
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Dataset B proved harder to train on, and its statistics deviate further from the long-term truth. The spectra
of Dataset B are different from the truth (Figure 4(j)), while this is not the case for Dataset A (Figure 4(f)).
Additionally, the temporal mean of u for Dataset A is much closer to the truth than that of Dataset B (Figures 4(a,
c, g)).

Additionally, the emulators did not enforce incompressibility; ∇ · u = 0 is a good test for physical consistency.
The numerical solver’s output is divergence-free by construction (to machine precision ≈ 10−6), but the
divergence-free condition was not explicitly enforced for training emulators. Consequently, the generated
velocity fields have a non-zero divergence (of order 10−2) as mentioned in Figure 3. Although this did not affect
the large-scale mean or energy spectrum, it could have implications for long-term statistics. Enforcing physical
constraints in ML emulators is an active area of research [Beucler et al., 2019, Chapman et al., 2025, Watt-Meyer
et al., 2025], and techniques such as divergence-penalizing loss terms could be explored.

Overall, for bulk statistics like mean and energy spectrum, emulators can perform well when the training data is
representative of the truth. If the training period is too short or atypical, the emulator will faithfully reproduce
those biases. This underscores the importance of training on data that captures the variability of the system.
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Figure 4: Training datasets and emulator performance on mean statistics. (a) Truth temporal
mean of the velocity, u. (b) Table summarizing the three training datasets - A, B (2500 snapshots
each), and A10x (25000 snapshots), together with divergence of velocity, ∇ · u. The training dataset
and truth generated from the numerical solver are divergence-free up to single-precision round-off,
10−6, whereas static and dynamic emulator outputs show divergence of order 10−2, indicating
that the emulators do not enforce incompressibility. (c-d, g-i, k-m) Contours of temporal mean
of u corresponding to training dataset (c-d) A, (g-i) B, and (k-m) A10x. The static emulator best
reproduces the training-set mean, with the dynamic emulator being relatively less accurate. (f,j,n)
Spectra of u corresponding to training dataset A, B, A10x. Both emulators match the training dataset
spectra across scales with limited spectral bias. (j) Spectra of training dataset B are distinct from truth
at lower wavenumbers, both static and dynamic emulators follow training dataset’s spectra.
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