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Abstract

The increasing fluency and widespread usage of
large language models (LLMs) highlight the de-
sirability of corresponding tools aiding detection
of LLM-generated text. In this paper, we identify
a property of the structure of an LLM’s proba-
bility function that is useful for such detection.
Specifically, we demonstrate that text sampled
from an LLM tends to occupy negative curva-
ture regions of the model’s log probability func-
tion. Leveraging this observation, we then define
a new curvature-based criterion for judging if a
passage is generated from a given LLM. This
approach, which we call DetectGPT, does not re-
quire training a separate classifier, collecting a
dataset of real or generated passages, or explic-
itly watermarking generated text. It uses only
log probabilities computed by the model of in-
terest and random perturbations of the passage
from another generic pre-trained language model
(e.g., T5). We find DetectGPT is more discrimi-
native than existing zero-shot methods for model
sample detection, notably improving detection of
fake news articles generated by 20B parameter
GPT-NeoX from 0.81 AUROC for the strongest
zero-shot baseline to 0.95 AUROC for Detect-
GPT. See ericmitchell.ai/detectgpt
for code, data, and other project information.

1. Introduction

Large language models (LLMs) have proven able to gen-
erate remarkably fluent responses to a wide variety of user
queries. Models such as GPT-3 (Brown et al., [2020), PaLM
(Chowdhery et al.l 2022), and ChatGPT (OpenAl, [2022)
can convincingly answer complex questions about science,
mathematics, historical and current events, and social trends.
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Candidate passage x:
“Joe Biden recently made a move to the White House
that included bringing along his pet German Shepherd...”
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Figure 1. We aim to determine whether a piece of text was gener-
ated by a particular LLM p, such as GPT-3. To classify a candidate
passage x, DetectGPT first generates minor perturbations of the
passage Z; using a generic pre-trained model such as T5. Then
DetectGPT compares the log probability under p of the original
sample = with each perturbed sample z;. If the average log ratio
is high, the sample is likely from the source model.

I &) x from other source |

While recent work has found that cogent-sounding LLM-
generated responses are often simply wrong (Lin et al.|
2022), the articulate nature of such generated text may still
make LLMs attractive for replacing human labor in some
contexts, notably student essay writing and journalism. At
least one major news source has released Al-written content
with limited human review, leading to substantial factual er-
rors in some articles (Christian, 2023)). Such applications of
LLMs are problematic for a variety of reasons, making fair
student assessment difficult, impairing student learning, and
proliferating convincing-but-inaccurate news articles. Un-
fortunately, humans perform only slightly better than chance
when classifying machine-generated vs human-written text
(Gehrmann et al. 2019), leading researchers to consider
automated detection methods that may identify signals dif-
ficult for humans to recognize. Such methods might give
teachers and news-readers more confidence in the human
origin of the text that they consume.

As in prior work (Jawahar et al. 2020), we study the
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machine-generated text detection problem as a binary clas-
sification problem. Specifically, we aim to classify whether
a candidate passage was generated by a particular source
model. While several works have investigated methods for
training a second deep network to detect machine-generated
text, such an approach has several shortcomings, including
a tendency to overfit to the topics it was trained on as well as
the need to train a new model for each new source model that
is released. We therefore consider the zero-shot version of
machine-generated text detection, where we use the source
model itself, without fine-tuning or adaptation of any kind,
to detect its own samples. The most common method for
zero-shot machine-generated text detection is evaluating the
average per-token log probability of the generated text and
thresholding (Solaiman et al.,|2019; |(Gehrmann et al.,2019;
Ippolito et al., [2020). However, this zeroth-order approach
to detection ignores the local structure of the learned proba-
bility function around a candidate passage, which we find
contains useful information about the source of a passage.

This paper poses a simple hypothesis: minor rewrites of
model-generated text tend to have lower log probability un-
der the model than the original sample, while minor rewrites
of human-written text may have higher or lower log prob-
ability than the original sample. In other words, unlike
human-written text, model-generated text tends to lie in ar-
eas where the log probability function has negative curvature
(e.g., local maxima of the log probability). We empirically
verify this hypothesis, and find that it holds true across a
diverse body of LLMs, even when the minor rewrites, or
perturbations, come from alternative language models. We
leverage this observation to build DetectGPT, a zero-shot
method for automated machine-generated text detection. To
test if a passage came from a source model py, DetectGPT
compares the log probability of the candidate passage under
pp with the average log probability of several perturbations
of the passage under py (generated with, e.g., T5; Raffel
et al.|(2020)). If the perturbed passages tend to have lower
average log probability than the original by some margin,
the candidate passage is likely to have come from py. See
Figure [I] for an overview of the problem and DetectGPT.
See Figure[2]for an illustration of the underlying hypothesis
and Figure [3| for empirical evaluation of the hypothesis. Our
experiments find that DetectGPT is more accurate than exist-
ing zero-shot methods for detecting machine-generated text,
improving over the strongest zero-shot baseline by over
0.1 AUROC for multiple source models when detecting
machine-generated news articles.

Contributions. Our main contributions are: (a) the identi-
fication and empirical validation of the hypothesis that the
curvature of a model’s log probability function tends to be
significantly more negative at model samples than for hu-
man text, and (b) DetectGPT, a practical algorithm inspired
by this hypothesis that approximates the trace of the log
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Figure 2. We identify and exploit the tendency of machine-
generated passages z ~ pg(-) (left) to lie in negative curvature
regions of logp(x), where nearby samples have lower model
log probability on average. In contrast, human-written text
Z ~ Preat(+) (right) tends not to occupy regions with clear nega-
tive log probability curvature.

probability function’s Hessian to detect a model’s samples.

2. Related Work

Increasingly large LLMs (Radford et al.}[2019; |Brown et al.
2020; \Chowdhery et al., 2022} |OpenAl, [2022} [Zhang et al.,
2022) have led to dramatically improved performance on
many language-related benchmarks and the ability to gen-
erate convincing and on-topic text. GROVER (Zellers
et al.| 2019) was the first LLM trained specifically for gen-
erating plausible news articles. Human evaluators found
GROVER-generated propaganda at least as trustworthy as
human-written propaganda, motivating the authors to study
GROVER’s ability to detect its own generations by fine-
tuning a detector on top of its features; they found GROVER
better able to detect GROVER-generated text than other pre-
trained models. However, [Bakhtin et al.| (2019); |Uchendu
et al.| (2020) note that models trained explicitly to detect
machine-generated text tend to overfit to their training dis-
tribution of data or source models.

Other works have trained supervised models for machine-
generated text detection on top of neural representations
(Bakhtin et al., [2019;[Solaiman et al., [2019; |Uchendu et al.,
2020 Ippolito et al., 2020; [Fagni et al., |2021)), bag-of-words
features (Solaiman et al.,2019; |Fagni et al.,[2021), and hand-
crafted statistical features (Gehrmann et al., 2019). Alterna-
tively, |[Solaiman et al.| (2019) notes the surprising efficacy
of a simple zero-shot method for machine-generated text
detection, which thresholds a candidate passage based on its
average log probability under the generative model, serving
as a strong baseline for zero-shot machine-generated text
detection in our work. In our work, we similarly use the
generating model to detect its own generations in a zero shot
manner, but through a different approach based on estimat-
ing local curvature of the log probability around the sample
rather than the raw log probability of the sample itself. See
Jawahar et al.| (2020) for a complete survey on machine-
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generated text detection. Other work explores watermarks
for generated text (Kirchenbauer et al.|[2023)), which modify
a model’s generations to make them easier to detect. Our
work does not assume text is generated with the goal of easy
detection; DetectGPT detects text generated from publicly
available LLMs using standard LLM sampling strategies.

The widespread use of LLMs has led to much other con-
temporaneous work on detecting LLM output. [Sadasivan
et al. (2023) show that the detection AUROC of the an de-
tector is upper bounded by a function of the TV distance
between the model and human text. However, we find that
AUROC of DetectGPT is high even for the largest publicly-
available models (Table [J), suggesting that TV distance
may not correlate strongly with model scale and capabil-
ity. This disconnect may be exacerbated by new training
objectives other than maximum likelihood, notably rein-
forcement learning with human feedback (Christiano et al.,
2017} Ziegler et al.,|2020). Both|Sadasivan et al.| (2023) and
Krishna et al.| (2023)) show the effectiveness of paraphrasing
as a tool for evading detection, suggesting an important area
of study for future work. |Liang et al.|(2023)) show that multi-
lingual detection is difficult, with non-DetectGPT detectors
showing bias against non-native speakers; this result high-
lights the advantage of zero-shot detectors like DetectGPT,
which generalize well to any data generated by the original
generating model. Finally, Mireshghallah et al.[(2023)) per-
form a comprehensive study of which proxy scoring models
produce the most useful log probabilities for detection when
the generating model is not known (a large-scale version
of our Figure[6). Surprisingly (but consistent with our find-
ings), they find that smaller models are in fact better proxy
models for performing detection with perturbation-based
methods like DetectGPT.

The problem of machine-generated text detection echoes ear-
lier work on detecting deepfakes, artificial images or videos
generated by deep nets, which has spawned substantial ef-
forts in detection of fake visual content (Dolhansky et al.,
2020; |Z1 et al.} 2020). While early works in deepfake de-
tection used relatively general-purpose model architectures
(Giiera & Delpl 2018), many deepfake detection methods
rely on the continuous nature of image data to achieve state-
of-the-art performance (Zhao et al., [2021; |Guarnera et al.,
2020), making direct application to text difficult.

3. The Zero-Shot Machine-Generated Text
Detection Problem

We study zero-shot machine-generated text detection, the
problem of detecting whether a piece of text, or candidate
passage x, is a sample from a source model pg. The problem
is zero-shot in the sense that we do not assume access to
human-written or generated samples to perform detection.
As in prior work, we study a ‘white box’ setting (Gehrmann

Algorithm 1 DetectGPT model-generated text detection
1: Input: passage x, source model pg, perturbation function g,
number of perturbations k, decision threshold e
2: %y ~q(- | x), i € [1..K]
3 i Y, logpo(d:)
4: d, < logpe(z) — [
5: 57 g 2, (logpo (%) — 1)’
6
7
8
9

Lsp dg
o if &= > € then

return true
: else

return false

et al.,|2019) in which the detector may evaluate the log prob-
ability of a sample log pp (). The white box setting does
not assume access to the model architecture or parameters.
Most public APIs for LLMs (such as GPT-3) enable scor-
ing text, though some exceptions exist, notably ChatGPT.
While most of our experiments consider the white box set-
ting, see Section [5.2]for a suite of experiments in which we
score text using models other than the source model. See
Mireshghallah et al.|(2023) for a comprehensive evaluation
in this setting.

The detection criterion we propose, DetectGPT, also makes
use of generic pre-trained mask-filling models in order to
generate passages that are ‘nearby’ the candidate passage.
However, these mask-filling models are used off-the-shelf,
without any fine-tuning or adaptation to the target domain.

4. DetectGPT: Zero-shot Machine-Generated
Text Detection with Random Perturbations

DetectGPT is based on the hypothesis that samples from a
source model py typically lie in areas of negative curvature
of the log probability function of py, unlike human text. In
other words, if we apply small perturbations to a passage
x ~ py, producing Z, the quantity log pg(z) — log py(Z)
should be relatively large on average for machine-generated
samples compared to human-written text. To leverage this
hypothesis, first consider a perturbation function ¢(- | )
that gives a distribution over z, slightly modified versions of
z with similar meaning (we will generally consider roughly
paragraph-length texts ). As an example, ¢(- | ) might be
the result of simply asking a human to rewrite one of the
sentences of x, while preserving the meaning of z. Using
the notion of a perturbation function, we can define the
perturbation discrepancy d (x, pg, q):

d (z,p9,q) = 1ogpe(x) — Ezg(.|2) logpe(E) (1)
We state our hypothesis more formally as the Local Pertur-
bation Discrepancy Gap Hypothesis, which describes a gap
in the perturbation discrepancy for model-generated text
and human-generated text.

Perturbation Discrepancy Gap Hypothesis. If ¢ produces
samples on the data manifold, d (x, py, q) is positive with



Zero-Shot Machine-Generated Text Detection using Probability Curvature

gpt2-x| EleutherAl/gpt-neo-2.7B

Human
Model

o
=]

N
o

N
o

o

-0.3 -0.2 -0.1 0.0 -0.3 -0.2 -0.1 0.0
EleutherAl/gpt-j-6B EleutherAl/gpt-neox-20b

Frequency

S [}
o =]

N
o

o

-0.3 -0.2 -0.1 0.0 -0.3 -0.2 -0.1 0.0
Log Probability Change (Perturbation Discrepancy)

Figure 3. The average drop in log probability (perturbation discrep-
ancy) after rephrasing a passage is consistently higher for model-
generated passages than for human-written passages. Each plot
shows the distribution of the perturbation discrepancy d (z, pe, q)
for and

of equal word length. Human-written articles are a sample
of 500 XSum articles; machine-generated text, generated from
models GPT-2 (1.5B), GPT-Neo-2.7B (Black et al.,[2021), GPT-J
(6B;|Wang & Komatsuzaki|(2021)) and GPT-NeoX (20B; Black
et al.|(2022)), is generated by prompting each model with the first
30 tokens of each XSum article, sampling from the raw conditional
distribution. Discrepancies are estimated with 100 T5-3B samples.

high probability for samples x ~ pg. For human-written
text, d (x, pg, q) tends toward zero for all .

If we define (- | «) to be samples from a mask-filling model
such as T5 (Raffel et al., 2020)), rather than human rewrites,
we can empirically test the Perturbation Discrepancy Gap
Hypothesis in an automated, scalable manner. For real data,
we use 500 news articles from the XSum dataset (Narayan
et al.,|2018); for model samples, we use the output of four
different LLMs when prompted with the first 30 tokens of
each article in XSum. We use T5-3B to apply perturbations,
masking out randomly-sampled 2-word spans until 15% of
the words in the article are masked. We approximate the
expectation in Eq.|l{with 100 samples from TSF_] Figure
shows the result of this experiment. We find the distribution
of perturbation discrepancies is significantly different for
human-written articles and model samples; model samples
tend to have a larger perturbation discrepancy. Section[5.3]
explores a relaxation of the assumption that ¢ only produces
samples on the data manifold, finding that a gap, although
reduced, still exists in this case.

Given these results, we can detect if a piece of text was
generated by a model py by simply thresholding the pertur-
bation discrepancy. In practice, we find that normalizing the

'We later show in Figurethat varying the number of samples
used to estimate the expectation effectively allows for trading off
between accuracy and speed.

perturbation discrepancy by the standard deviation of the ob-
served values used to estimate Ej (.|, log pe(Z) provides
a slightly better signal for detection, typically increasing
AUROC by around 0.020, so we use this normalized version
of the perturbation discrepancy in our experiments. The
resulting method, DetectGPT, is summarized in Alg. |1} Hav-
ing described an application of the perturbation discrepancy
to machine-generated text detection, we next provide an
interpretation of this quantity.

Interpretation of perturbation discrepancy as curvature

While Figure [3]suggests that the perturbation discrepancy
may be useful, it is not immediately obvious what it mea-
sures. In this section, we show that the perturbation dis-
crepancy approximates a measure of the local curvature
of the log probability function near the candidate passage,
more specifically, that it is proportional to the negative trace
of the Hessian of the log probability function To han-
dle the non-differentiability of discrete data, we consider
candidate passages in a latent semantic space, where small
displacements correspond to valid edits that retain similar
meaning to the original. Because our perturbation function
(T5) models natural text, we expect our perturbations to
roughly capture such meaningful variations of the original
passage, rather than arbitrary edits.

We first invoke Hutchinson’s trace estimator (Hutchinson,
1990), giving an unbiased estimate of the trace of matrix A:

tr(A) = E,z' Az @)

provided that the elements of z ~ ¢, are IID with E[z;] =0
and Var(z;) = 1. To use Equation to estimate the trace of
the Hessian, we must therefore compute the expectation of
the directional second derivative z' H(x)z. We approxi-
mate this expression with finite differences:

flz+hz) + f(x - hz) - 2f(x)
12

Combining Equations [2and [3]and simplifying with h = 1,

we have an estimate of the negative Hessian trace

—tr(H)¢(z) = 2f(x) —E, [f(x +2)+ f(x —2)]. 4

If our noise distribution is symmetric, that is, p(z) = p(—z)
for all z, then we can simplify Equation @]to

—tr(H) ()
2

7 Hi(v)z ~ (3)

~ f(x) = B f(x + 2). ©)

We note that the RHS of Equation [5] corresponds to the
perturbation discrepancy where the perturbation func-
tion ¢(Z | x) is replaced by the distribution ¢,(z) used

ZRather than the Hessian of the log likelihood with respect to
model parameters (the Fisher Information Matrix), here we refer
to the Hessian of the log probability with respect to the sample x.
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XSum

SQuAD

WritingPrompts

Method  GPT-2 OPT-2.7 Neo-2.7 GPT-] NeoX

Avg. |GPT-2 OPT-2.7 Neo-2.7 GPT-J NeoX

Avg. |GPT-2 OPT-2.7 Neo-2.7 GPT-J NeoX Avg.

log p(z) 086  0.86 086 082 077 0.83 | 091 0.88
Rank 079  0.76 077 075 073 076 | 0.83  0.82
LogRank  0.89* 0.88*% 0.90* 0.86* 0.81* 0.87%| 0.94* 0.92%
Entropy 0.60  0.50 058 058 061 057 | 058 053
DetectGPT 0.99  0.97 099 097 095 097 | 099 097

084 078 071 0.82 | 097 095 095 094 0.93* 0.95
080 079 0.74 0.80 | 0.87 0.83 082 0.83 081 0383
0.90* 0.83* 0.76% 0.87*| 0.98* 0.96* 0.97* 096* 095 0.96*
058 058 059 057 | 037 042 034 036 039 038
097 090 079 092 | 099 0.99 099 097 0.93* 0.97

Diff 0.10  0.09 009 0.1 0.4 0.10] 005 005

0.07  0.07 0.03

0.05 | 0.01 0.03 0.02 0.01 -0.02 0.01

Table 1. AUROC for detecting samples from the given model on the given dataset for DetectGPT and four previously proposed criteria
(500 samples used for evaluation). From 1.5B parameter GPT-2 to 20B parameter GPT-NeoX, DetectGPT consistently provides the most
accurate detections. Bold shows the best AUROC within each column (model-dataset combination); asterisk (*) denotes the second-best
AUROC. Values in the final row show DetectGPT’s AUROC over the strongest baseline method in that column.

in Hutchinson’s trace estimator . Here, % is a high-
dimensional sequence of tokens while ¢, is a vector in a
compact semantic space. Since the mask-filling model sam-
ples sentences similar to x with minimal changes to seman-
tic meaning, we can think of the mask-filling model as first
sampling a similar semantic embedding (Z ~ q.) and then
mapping this to a token sequence (Z — ). Sampling in
semantic space ensures that all samples stay near the data
manifold, which is useful because we would expect the log
probability to always drop if we randomly perturb tokens.
We can therefore interpret our objective as approximating
the curvature restricted to the data manifold.

S. Experiments

We conduct experiments to better understand multiple facets
of machine-generated text detection; we study the effective-
ness of DetectGPT for zero-shot machine-generated text de-
tection compared to prior zero-shot approaches, the impact
of distribution shift on zero-shot and supervised detectors,
and detection accuracy for the largest publicly-available
models. To further characterize factors that impact detec-
tion accuracy, we also study the robustness of zero-shot
methods to machine-generated text that has been partially
revised, the impact of alternative decoding strategies on
detection accuracy, and a black-box variant of the detec-
tion task. Finally, we analyze more closely DetectGPT’s
behavior as the choice of perturbation function, the number
of samples used to estimate d (x, pg, ¢), the length of the
passage, and the data distribution is varied.

Comparisons. We compare DetectGPT with various exist-
ing zero-shot methods for machine-generated text detection
that also leverage the predicted token-wise conditional dis-
tributions of the source model for detection. These methods
correspond to statistical tests based on token log probabil-
ities, token ranks, or predictive entropy (Gehrmann et al.,
2019; Solaiman et al., 2019; [Ippolito et al., [2020). The
first method uses the source model’s average token-wise log
probability to determine if a candidate passage is machine-
generated or not; passages with high average log probability
are likely to be generated by the model. The second and
third methods use the average observed rank or log-rank of

the tokens in the candidate passage according to the model’s
conditional distributions. Passages with smaller average
(log-)rank are likely machine-generated. We also evalu-
ate an entropy-based approach inspired by the hypothesis
in|Gehrmann et al.[(2019) that model-generated texts will
be more ‘in-distribution’ for the model, leading to more
over-confident (thus lower entropy) predictive distributions.
Empirically, we find predictive entropy to be positively cor-
related with passage fake-ness more often that not; there-
fore, this baseline uses high average entropy in the model’s
predictive distribution as a signal that a passage is machine-
generated. While our main focus is on zero-shot detectors
as they do not require re-training for new domains or source
models, for completeness we perform comparisons to su-
pervised detection models in Section[5.1] using OpenAI’s
RoBERTa-based (Liu et al.,2019) GPT-2 detector modelsE]
which are fine-tuned on millions of samples from various
GPT-2 model sizes and decoding strategies.

Datasets & metrics Our experiments use six datasets that
cover a variety of everyday domains and LLM use-cases.
We use news articles from the XSum dataset (Narayan et al.}
2018)) to represent fake news detection, Wikipedia para-
graphs from SQuAD contexts (Rajpurkar et al., 2016) to
represent machine-written academic essays, and prompted
stories from the Reddit WritingPrompts dataset (Fan et al.,
2018) to represent detecting machine-generated creative
writing submissions. To evaluate robustness to distribution
shift, we also use the English and German splits of WMT16
(Bojar et al., 2016)) as well as long-form answers written by
human experts in the PubMedQA dataset (Jin et al.,[2019).
Each experiment uses between 150 and 500 examples for
evaluation, as noted in the text. For each experiment, we
generate the machine-generated text by prompting with the
first 30 tokens of the real text (or just the question tokens
for the PubMedQA experiments). We measure performance
using the area under the receiver operating characteristic
curve (AUROC), which can be interpreted as the probability
that a classifier correctly ranks a randomly-selected posi-
tive (machine-generated) example higher than a randomly-

*https://github.com/openai/gpt—2-output—
dataset/tree/master/detector
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Figure 4. Supervised machine-generated text detection models
trained on large datasets of real and generated texts perform as
well as or better than DetectGPT on in-distribution (top row)
text. However, zero-shot methods work out-of-the-box for new
domains (bottom row) such as PubMed medical texts and German
news data from WMT16. For these domains, supervised detectors
fail due to excessive distribution shift.

selected negative (human-written) example. All experiments
use an equal number of positive and negative examples.

Hyperparameters. The key hyperparameters of DetectGPT
are the fraction of words masked for perturbation, the length
of the masked spans, the model used for mask filling, and the
sampling hyperparameters for the mask-filling model. Using
BERT (Devlin et al.,|2019) masked language modeling as
inspiration, we use 15% as the mask rate. We performed
a small sweep over masked span lengths of {2,5,10} on a
held-out set of XSum data, finding 2 to perform best. We
use these settings for all experiments, without re-tuning.
We use T5-3B for almost all experiments, except for GPT-
NeoX and GPT-3 experiments, where compute resources
allowed for the larger T5-11B model; we also use mT5-3B
instead of T5-3B for the WMT multilingual experiment. We
do not tune the hyperparameters for the mask filling model,
sampling directly with temperature 1.

5.1. Main Results

We first present two groups of experiments to evaluate De-
tectGPT along with existing methods for zero-shot and su-
pervised detection on models from 1.5B to 175B parameters.

Zero-shot machine-generated text detection. We present
the comparison of different zero-shot detection methods in
Table [I] In these experiments, model samples are gener-
ated by sampling from the raw conditional distribution with
temperature 1. DetectGPT most improves average detec-
tion accuracy for XSum stories (0.1 AUROC improvement)
and SQuAD Wikipedia contexts (0.05 AUROC improve-
ment). While it also performs accurate detection for Writing-

PMQA XSum WritingP | Avg.
RoB-base  0.64/0.58 0.92/0.74 0.92/0.81 | 0.77
RoB-large 0.71/0.64 0.92/0.88 0.91/0.88 | 0.82
log p(x) 0.64/0.55 0.76/0.61 0.88/0.67 | 0.69
DetectGPT 0.84/0.77 0.84/0.84 0.87/0.84 | 0.83

Table 2. DetectGPT detects generations from GPT-3 and Jurassic-2
Jumbo (175B models from OpenAl and AI21 Labs) with average
AUROC on-par with supervised models trained specifically for
machine-generated text detection. For more ‘typical’ text, such
as news articles, supervised methods perform strongly. The GPT-
3 AUROC appears first in each column, the Jurassic-2 AUROC
appears second (i.e., after the slash).

Prompts, the performance of all methods tends to increase,
and the average margin of improvement is narrowE| For 14
of the 15 combinations of dataset and model, DetectGPT
provides the most accurate detection performance, with a
0.06 AUROC improvement on average. Log-rank threshold-
ing proves to be a consistently stronger baseline than log
probability thresholding, although it requires slightly more
information (full predicted logits), which are not always
available in public APIs.

Comparison with supervised detectors. While our experi-
ments generally focus on zero-shot detection, some works
have evaluated the detection performance of supervised
methods (typically fine-tuned transformers) for detecting
machine-generated text. In this section, we explore several
domains to better understand the relative strengths of super-
vised and zero-shot detectors. The results are presented in
Figure ] using 200 samples from each dataset for evalua-
tion. We find that supervised detectors can provide similar
detection performance to DetectGPT on in-distribution data
like English news, but perform significantly worse than zero-
shot methods in the case of English scientific writing and
fail altogether for German writing. This finding echoes past
work showing that language models trained for machine-
generated text detection overfit to their training data (source
model, decoding strategy, topic, language, etc.; [Uchendu
et al.| (2020); [Ippolito et al.| (2020); Jawahar et al.|(2020)).
In contrast, zero-shot methods generalize relatively easily
to new languages and domains; DetectGPT’s performance
in particular is mostly unaffected by the change in language
from English to German.

While our experiments have shown that DetectGPT is ef-
fective on a variety of domains and models, it is natural to
wonder if it is effective for the largest publicly-available
LMs. Therefore, we also evaluate multiple zero-shot and su-
pervised methods on two 175B parameter models, OpenAlI’s
GPT-3 and AI21 Labs’ Jurassic-2 Jumbo. Because neither

“The overall ease of detecting machine-generated fake writing
corroborates anecdotal reporting that machine-generated creative
writing tends to be noticeably generic, and therefore relatively easy
to detect (Roose & Newton, [2022).
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Figure 5. We simulate human edits to machine-generated text by
replacing varying fractions of model samples with T5-3B gener-
ated text (masking out random five word spans until 7% of text is
masked to simulate human edits to machine-generated text). The
four top-performing methods all generally degrade in performance
with heavier revision, but DetectGPT is consistently most accurate.
Experiment is conducted on the XSum dataset.

API provides access to the complete conditional distribution
for each token, we cannot compare to the rank, log rank, and
entropy-based prior methods. We sample 150 examplesﬂ
from the PubMedQA, XSum, and WritingPrompts datasets
and compare the two pre-trained RoBERTa-based detector
models with DetectGPT and the probability thresholding
baseline. We show in Table [2]that DetectGPT can provide
detection competitive with or better than the stronger of the
two supervised models, and it again greatly outperforms
probability thresholding on average.

5.2. Variants of Machine-Generated Text Detection

Detecting paraphrased machine-generated text. In prac-
tice, humans may manually edit or refine machine-generated
text rather than blindly use a model’s generations for their
task of interest. We therefore conduct an experiment to
simulate the detection problem for model samples that have
been increasingly heavily revised. We simulate human re-
vision by replacing 5 word spans of the text with samples
from T5-3B until r% of the text has been replaced, and
report performance as r varies. Figure [3] shows that De-
tectGPT maintains detection AUROC above 0.8 even when
nearly a quarter of the text in model samples has been re-
placed. Unsurprisingly, almost all methods show a gradual
degradation in performance as the sample is more heavily
revised. The entropy baseline shows surprisingly robust
performance in this setting (althought it is least accurate
on average), even slightly improving detection performance
up to 24% replacement. DetectGPT shows the strongest
detection performance for all revision levels.

Impact of alternative decoding strategies on detection.

SWe reduce the number of evaluation samples from 500 in our
main experiments to reduce the API costs of these experiments.

XSum SQuAD WritingPrompts
Method top-p top-k top-p top-k top-p top-k
log p(x) 092 087 089 085 0.98 0.96
Rank 076 076 0.81 080 0.84 0.83
LogRank 0.93* 0.90* 0.92* 0.90* 0.98 0.97

Entropy 053 055 054 056 032 0.35
DetectGPT 098 098 094 093 098 0.97

Table 3. AUROC for zero-shot methods averaged across the five
models in Table |I| for both top-k and top-p sampling, with k =
40 and p = 0.96. Both settings enable slightly more accurate
detection, and DetectGPT consistently provides the best detection
performance. See Appendix Tables E| and|§] for complete results.

While Table [I] suggests that DetectGPT is effective for
detecting machine-generated text, prior work notes that
the decoding strategy (i.e., temperature sampling, top-k,
nucleus/top-p) can impact the difficulty of detection. We re-
peat the analysis from Section|S.1|using top-k sampling and
nucleus sampling. Top-k sampling truncates the sampling
distribution to only the &k highest-probability next tokens;
nucleus sampling samples from only the smallest set of to-
kens whose combined probability exceeds p. The results
are summarized in Table 3} Appendix Tables @ and [5|show
complete results. We use k& = 40, and p = 0.96, in line with
prior work (Ippolito et al., | 2020). We find that both top-k
and nucleus sampling make detection easier, on average.
Averaging across domains, DetectGPT provides the clearest
signal for zero-shot detection.

Detection when the source model is unknown. While
our experiments have focused on the white-box setting
for machine-generated text detection, in this section, we
explore the effect of using
a different model to score a
candidate passage (and per-

Scoring Model
GPT-Neo GPT-2

-
turbed texts) than the model i 0-85
that generated the passage. E 2
N =
In other words, we aim ok 0.81
. 0 (G]
to classify between human- ©
generated text and text from @ g 0.81

model A, but without ac-
cess to model A to com-
pute log probabilities. In-
stead, we use log probabil-
ities computed by a surro-
gate model B. We con-
sider three models, GPT-J,
GPT-Neo-2.7, and GPT-2,
evaluating all possible com-
binations of source model
and surrogate model (9 to-
tal). We average the perfor-
mance across 200 samples

Figure 6. DetectGPT performs
best when scoring samples
with the same model that gen-
erated them (diagonal), but
the column means suggest that
some models (GPT-Neo, GPT-
2) may be better ‘scorers’ than
others (GPT-J). White values
show mean (standard error)
AUROC over XSum, SQuAD,
and WritingPrompts; black
shows row/column mean.
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Figure 7. There is a clear association between capacity of mask-
filling model and detection performance, across source model
scales. Random mask filling (uniform sampling from mask filling
model vocabulary) performs poorly, reinforcing the idea that the
perturbation function should produce samples on the data manifold.
Curves show AUROC scores on 200 SQuAD contexts.

from XSum, SQuAD, and WritingPrompts. The results
are presented in Figure [6] showing that when the surrogate
model is different from the source model, detection perfor-
mance is reduced, indicating that DetectGPT is most suited
to the white-box setting. Yet we also observe that if we
fix the model used for scoring and average across source
models whose generations are detected (average within col-
umn), there is significant variation in AUROC; GPT-2 and
GPT-Neo-2.7 seem to be better ‘scorers’ than GPT-J. These
variations in cross-model scoring performance suggest en-
sembling scoring models may be a useful direction for future
research; see Mireshghallah et al.|(2023)) for reference.

5.3. Other factors impacting performance of DetectGPT

In this section, we explore how factors such as the size of the
mask-filling model, the number of perturbations used to es-
timate the expectation in Equation [T} or the data distribution
of the text to be detected impact detection quality.

Source and mask-filling model scale. Here we study the
impact of the size of the source model and mask-filling
model on DetectGPT’s performance; the results are shown
in Figure[7] In particular, the increased discrimination power
of DetectGPT for larger mask-filling models supports the
interpretation that DetectGPT is estimating the curvature
of the log probability in a latent semantic space, rather
than in raw token embedding space. Larger TS models
better represent this latent space, where random directions
correspond to meaningful changes in the text.

Number of perturbations for DetectGPT. We evaluate the
performance of DetectGPT as a function of the number of
perturbations used to estimate the expectation in Equation [I]
on three datasets. The results are presented in Figure [§]
Detection accuracy continues to improve until 100 pertur-
bations, where it converges. Evaluations use 100 examples
from each dataset.

Data distributional properties. We study more closely
the impact of the data distribution on DetectGPT, particu-
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Figure 8. Impact of varying the number of perturbations (samples
of mask and mask-fill) used by DetectGPT on AUROC for GPT-2
(left) and GPT-J (right) to estimate the perturbation discrepancy
on detection. Averaging up to 100 perturbations greatly increases
DetectGPT'’s reliability. Perturbations sampled from T5-large.

larly how the domain impacts the threshold separating the
perturbation discrepancy distributions of model-generated
and human texts as well as the impact of passage length on
detection. Figure[9]shows the perturbation discrepancy dis-
tributions for model-generated and human texts across four
data distributions, using GPT-Neo-2.7B to generate sam-
ples. A threshold of slightly below 0.1 separates human and
model texts across data distributions, which is important for
practical scenarios in which a passage may be analyzed with-
out knowing its domain a priori. Finally, Figure[I0]shows an
analysis of DetectGPT’s performance as a function of pas-
sage length. We bin the paired human- and model-generated
sequences by their average length into three bins of equal
size (bottom/middle/top third), and plot the AUROC within
each bin. The relationship between detection performance
and passage length generally depends on the dataset and
model (or tokenizer). For very long sequences, DetectGPT
may see reduced performance because our implementation
of DetectGPT applies all TS5 mask-filling perturbations at
once, and T5 may fail to track many mask tokens at once.
By applying perturbations in multiple sequential rounds of
smaller numbers of masks, this effect may be mitigated.

6. Discussion

As large language models continue to improve, they will
become increasingly attractive tools for replacing human
writers in a variety of contexts, such as education, jour-
nalism, and art. While legitimate uses of language model
technologies exist in all of these settings, teachers, readers,
and consumers are likely to demand tools for verifying the
human origin of certain content with high educational, so-
cietal, or artistic significance, particularly when factuality
(and not just fluency) is crucial.

In light of these elevated stakes and the regular emergence of
new large language models, we study the zero-shot machine-
generated text detection problem, in which we use only the
raw log probabilities computed by a generative model to
determine if a candidate passage was sampled from it. We
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Figure 9. Perturbation discrepancy distributions for GPT-Neo
(2.7B) and humans across domains. A threshold of 0.1 gener-
ally separates model- and human-generated text well, which is
important for practical scenarios where the domain is unknown.

identify a property of the log probability function computed
by a wide variety of large language models, showing that a
tractable approximation to the trace of the Hessian of the
model’s log probability function provides a useful signal
for detecting model samples. Our experiments find that
this signal is more discriminative than existing zero-shot
detection methods and is competitive with bespoke detection
models trained with millions of model samples.

DetectGPT and Watermarking. One interpretation of
the perturbation function is producing semantically similar
rephrasings of the original passage. 1f these rephrasings
are systematically lower-probability than the original pas-
sage, the model is exposing its bias toward the specific (and
roughly arbitrary, by human standards) phrasing used. In
other words, LLMs that do not perfectly imitate human
writing essentially watermark themselves implicitly. Under
this interpretation, efforts to manually add watermarking bi-
ases to model outputs (Aaronson, 2022} Kirchenbauer et al.|
2023) may further improve the effectiveness of methods
such as DetectGPT, even as LLMs continue to improve.

Limitations. One limitation of probability-based methods
for zero-shot machine-generated text detection (like Detect-
GPT) is the white-box assumption that we can evaluate log
probabilities of the model(s) in question. For models be-
hind APIs that do provide probabilities (such as GPT-3),
evaluating probabilities nonetheless costs money. Another
assumption of DetectGPT is access to a reasonable pertur-
bation function. While in this work, we use off-the-shelf
mask-filling models such as T5 and mT5 (for non-English
languages), some domains may see reduced performance
if existing mask-filling models do not well represent the
space of meaningful rephrases, reducing the quality of the
curvature estimate. While DetectGPT provides the best
available detection performance for PubMedQA, its drop
in performance compared to other datasets may be a result
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Figure 10. DetectGPT AUROC vs passage length. The relation-
ship between detection performance and passage length generally
depends on the dataset and model (or tokenizer). Decreases in
detection quality with increasing length may be due to TS failing
to track many (20+) masks to fill at once; this problem may be
mitigated by applying mask-fills in a sequence of smaller batches.

of lower quality perturbations. Finally, DetectGPT is more
compute-intensive than other methods for detection, as it
requires sampling and scoring the set of perturbations for
each candidate passage, rather than just the candidate pas-
sage; a better tuned perturbation function or more efficient
curvature approximation may help mitigate these costs.

Future Work. While the methods in this work make no
assumptions about the models generating the samples, fu-
ture work may explore how watermarking algorithms can be
used in conjunction with detection algorithms like Detect-
GPT to further improve detection robustness as language
models continually improve their reproductions of human
text. Separately, the results in Section [5.2] suggest that ex-
tending DetectGPT to use ensembles of models for scoring,
rather than a single model, may improve detection in the
black box setting. Another topic that remains unexplored
is the relationship between prompting and detection; that
is, can a clever prompt successfully prevent a model’s gen-
erations from being detected by existing methods? Finally,
future work may explore whether the local log probabil-
ity curvature property we identify is present for generative
models in other domains, such as audio, video, or images.
We hope that the present work serves as inspiration to fu-
ture work developing effective, general-purpose methods
for mitigating potential harms of machine-generated media.
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A. Complete Results for Top-p and Top-% Decoding

Tables ] and [5] contain the complete results for XSum, SQuAD, and WritingPrompts for the five models considered in
Table[T] On average, both top-p and top-k sampling seem to make the detection task easier. This result is perhaps intuitive,
as both sampling methods strictly increase the average log likelihood of model generations under the model (as they truncate

low-probability tokens, albeit with different heuristics). Therefore methods based on probability or rank of tokens should
become more discriminative.

XSum SQuAD WritingPrompts
Method ~ GPT-2 OPT-2.7 Neo-2.7 GPT-] NeoX Avg. |GPT-2 OPT-2.7 Neo-2.7 GPT-J NeoX Avg. |GPT-2 OPT-2.7 Neo-2.7 GPT-J NeoX Avg.

log p(x) 0.93 0.93 0.94 091 087 092 | 0.96 0.94 091 087 079 089 | 0.99* 098*  098* 097* 0.97* 0.98
Rank 0.80 0.77 0.77 075 073 076 | 0.84 0.82 0.81 080 075 081 | 0.87 0.84 0.83 083 081 0.84
LogRank 0.95% 0.94*  096* 0.93* 0.89* 0.93*| 098* 0.96* 094* 090 083 0.92%*| 0.99* 0.98* 0.98* 098 098 0.98
Entropy 0.55 0.46 0.53 054 058 053 | 053 0.50 055 056 057 054 | 032 0.37 0.28 032 032 032
DetectGPT  0.99 0.98 1.00 098 097 098 | 0.99 0.98 098 090 0.82* 094 | 1.00 0.99 0.99 0.97* 093 0.98

Dift 0.04 0.04 0.04 0.05 008 0.05 | 001 0.02 0.04 000 -001 0.02 | 001 0.01 0.01  -0.01 -0.05 0.00

Table 4. Nucleus (top-p) sampling evaluation with p = 0.96. AUROC for detecting samples from the given model on the given dataset for
DetectGPT and four previously proposed criteria. Nucleus sampling generally makes detection easier for all methods, but DetectGPT still
provides the highest average AUROC. For WritingPrompts, however, the LogRank baseline performs as well as DetectGPT.

XSum SQuAD WritingPrompts
Method GPT-2 OPT-2.7 Neo-2.7 GPT-J NeoX Avg. |GPT-2 OPT-2.7 Neo-2.7 GPT-] NeoX Avg. |GPT-2 OPT-2.7 Neo-2.7 GPT-J NeoX Avg.
log p(x) 0.89 0.89 0.89 084 0.81 087 | 093 0.90 0.88 082 074 085 | 097 0.95 0.97 0.96  0.95* 0.96
Rank 0.79 0.77 0.77 075 073 076 | 0.84 0.82 0.80 080 0.75 0.80 | 0.87 0.84 0.83 082 0.81 0.83
LogRank 0.92% 091*  093* 0.89* 0.85% 0.90*| 0.96* 0.94* 0.92* 0.87* 0.79* 0.90*%| 098* 0.97* 0.98* 0.97 096 0.97
Entropy 0.58 0.49 0.55 056 059 055 | 0.55 0.52 0.56 0.56 0.58 0.56 | 0.35 0.41 030 034 037 035
DetectGPT  0.99 0.97 0.99 096 096 098 | 0.99 0.98 0.98 089 0.80 093 | 0.99 0.98 099 097 093 0.97

Diff 0.07 0.06 0.06 0.07 0.1 008 | 0.03 0.04 0.06 0.02 001 003 | 001 0.01 0.01 0.00 -0.03 0.00

Table 5. Top-k sampling evaluation with k& = 40. DetectGPT generally provides the most accurate performance (highest AUROC),
although the gap is narrowed comparing to direct sampling, presumably because top-k generations are more generic.
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