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Abstract
Methods that learn graph topological representations are becoming the usual choice
to extract features to help solve machine learning tasks on graphs. In particular,
low-dimensional encoding of graph nodes can be exploited in tasks such as link
prediction and network reconstruction, where pairwise node embedding similarity
is interpreted as the likelihood of an edge incidence. The presence of polyadic
interactions in many real-world complex systems is leading to the emergence
of representation learning techniques able to describe systems that include such
polyadic relations. Despite this, their application on estimating the likelihood of
tuple-wise edges is still underexplored.
Here we focus on the reconstruction and prediction of simplices (higher-order
links) in the form of classification tasks, where the likelihood of interacting groups
is computed from the embedding features of a simplicial complex. Using similarity
scores based on geometric properties of the learned metric space, we show how the
resulting node-level and group-level feature embeddings are beneficial to predict
unseen simplices, as well as to reconstruct the topology of the original simplicial
structure, even when training data contain only records of lower-order simplices.

1 Introduction
Network science provides the dominant paradigm for the study of the structure and dynamics of
complex systems, thanks to its focus on their underlying relational properties. In data mining applica-
tions, topological node embeddings of networks are standard representation learning methods that
help solve downstream tasks, such as network reconstruction, link prediction, and node classifica-
tion [1]. Complex interacting systems have been usually represented as graphs. This representation
however suffers from the obvious limitation that it can only capture pairwise relations among nodes,
while many systems are characterized by group interactions [2]. Indeed, simplicial complexes are
generalized graphs that encode group-wise edges as sets of nodes, or simplices, with the additional
requirement that any subset of nodes forming a simplex must also form a simplex belonging to the
complex. Unlike alternative high-order representations, e.g. hypergraphs, which also overcome
the dyadic limitation of the graph formalism [3], the simplicial downward closure constraint works
particularly well when studying systems with subset dependencies, such as brain networks and social
networks (e.g., people interacting as a group also engage in pairwise interactions).

Due to the increased interest in studying complex systems as generalized graph structures, topological
representation learning techniques on simplicial complexes are also emerging as tools to solve
learning tasks on systems with polyadic relations. In particular, here we focus on tasks based on
the reconstruction and prediction of higher-order edges. While for standard graphs these problems
have been extensively studied with traditional machine learning approaches [4, 5] and representation
learning [6,7], the literature for their higher-order counterparts is more limited. In fact, reconstruction
and prediction of higher-order interactions have been investigated mainly starting from pairwise
data [8, 9] or time series [10, 11], without particular attention to representation learning methods.
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Here we study low-dimensional embeddings of simplicial complexes for link prediction and recon-
struction in higher-order networks. Our main contributions are:

• We introduce an embedding framework to compute low-rank representations of simplicial
complexes.

• We formalize network reconstruction and link prediction tasks for polyadic graph structures.

• We show that simplicial similarities computed from embedding representations outperform
classical network-based reconstruction and link prediction methods.

Since the problems of link prediction and network reconstruction are not yet well-defined in the
literature for the higher-order case, none of the available state-of-the-art methods were previously
evaluated in terms of both these tasks. In this paper, we properly delineate the formal steps to perform
higher-order link prediction and reconstruction, and we make a comprehensive evaluation of different
methods adding many variations such as the use of multi-node proximities and simplicial weighted
random walks. We publicly release the code to run the experiments at https://github.com/
simonepiaggesi/simplex2pred.

2 Related Work
Representation Learning Beyond Graphs. Representation learning for graphs [1] allows obtaining
low-dimensional vector representations of nodes that convey information useful for solving machine
learning tasks. Most methods fit into one of these two categories: shallow node embeddings and
graph neural networks (GNNs). Shallow methods generate node representations as a result of an
unsupervised task (e.g., matrix factorization [12]), while GNN methods obtain node vectors from
iterative message passing operations, e.g. graph convolutions and graph attention networks [13].
In hypergraph settings, node embedding methods typically leverage hyperedge relations similarly
to what is done for standard graph edges: for example, spectral decomposition [14], random walk
sampling [15, 16], autoencoders [17]. Recently, Maleki et al. [18] proposed a hierarchical approach
for scalable node embedding in hypergraphs. In simplicial complexes, random walks over simplices
are exploited to compute embeddings of interacting groups with uniform or mixed sizes [19, 20],
extending hypergraph methods that compute only node representations. Extensions of GNNs have
been proposed to generalize convolution and attention mechanisms to hypergraphs [21–24] and
simplicial complexes [25–27].

Link Prediction and Network Reconstruction Beyond Graphs. The link prediction [4] task predicts
the presence of unobserved links in a graph by estimating their occurrence likelihood, while network
reconstruction consists in the inference of a graph structure based on indirect data [28], missing or
noisy observations [29]. In this work, we use latent embedding variables to assess the reconstruction
and prediction of a given edge, relying on similarity indices. In higher-order systems, link prediction
has been investigated primarily for hypergraphs, in particular with methods based on matrix factoriza-
tion [30, 31], resource allocation metric [32], loop structure [33], and representation learning [34, 35].
The higher-order link prediction problem was introduced in a temporal setting by Benson et al. [9]
(reformulating the term simplicial closure [36]), while Liu et al. [37] studied the prediction of several
higher-order patterns with neural networks. Yoon et al. [38] investigated the use of opportune k-order
projected graphs to represent group interactions, and Patil et al. [39] analyzed the problem of finding
relevant candidate hyperlinks as negative examples. Despite these early results, reconstruction of
higher-order interactions is an ongoing challenge: for example, Young et al. [8] proposed a Bayesian
inference method to distinguish between hyperedges and combinations of low-order edges in pairwise
data, while Musciotto et al. [40] developed a filtering approach to detect statistically significant
hyperlinks in hypergraph data. In addition, some works studied approaches for the inference of
higher-order structures from time series data [10, 11].

3 Methods and Tasks Description
3.1 Reconstruction and Prediction of Higher-order Interactions in Simplicial Complexes

Simplicial complexes can be considered as generalized graphs that include higher-order interactions.
Given a set of nodes V , a simplicial complex K is a collection of subsets of V , called simplices,
satisfying downward closure: for any simplex σ ∈ K, any other simplex τ which is a subset of σ
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belongs to the simplicial complex K (for any σ ∈ K and τ ⊂ σ, we also have τ ∈ K). This constraint
makes simplicial complexes different from hypergraphs, for which there is no prescribed relation
between hyper-edges. A simplex σ is called a k-simplex if |σ| = k + 1, where k is its dimension
(or order). A simplex σ is a coface of τ (or equivalently, τ is a face of σ) if τ ⊂ σ. We denote with
dim(σ) the order of simplex σ, and with nk the number of k-simplices in K.

Given a simplicial complex K, by reconstruction of higher-order interactions we mean the task of
correctly classifying whether a group of k + 1 nodes s = (i0, i1, . . . , ik) is a k-simplex of K or not.
More specifically, we consider S = {s ∈ K : |s| > 1} as the set of interactions (simplices with order
greater than 0) that belongs to the simplicial complex K. Given any group s = (i0, i1, . . . , ik), with
the reconstruction task we aim to discern if the elements in s interact within the same simplex, and
so s ∈ S, or s is a group of lower-order simplices, and so s /∈ S (but subsets of s may be existing
simplices). When group s interacts within a simplex, we say that s is closed, conversely it is open.

By higher-order interaction prediction we mean instead the task of predicting whether an interaction
S∗ that has not been observed at a certain time (i.e., the simplex has not been added to the complex yet)
will appear in the future. Given any open configuration s̄ ∈ US coming from the set of unobserved
interactions US =

{
s ∈ 2V : |s| > 1, s /∈ S

}
, namely the complement1 of S , the prediction task is to

classify which groups will give rise to a simplicial closure in the future (s̄ ∈ S∗ ) versus those that
will remain open (s̄ ∈ US \ S∗ ).

3.2 Low-dimensional Embedding of Simplicial Complexes

Given a simplicial complex K, we want to learn a mapping function f : K → Rd from elements of
K to a d-dimensional low-rank feature space (d ≪ |K|). The mapping f must preserve topological
information incorporated in the simplicial complex, in such a way that adjacency relations are
preserved into geometric distances between vectors of the embedding space. Here we propose that
representations of simplices can be obtained by random-walking over the inclusions hierarchy of K
and learning the embedding space according to the simplex proximity observed through such walks,
preserving high-order information about the topological structure of the complex itself.

The navigation of the downward inclusion chain can be performed with usual graph random walk
sampling, unfolding the simplicial complex in its canonical graph of inclusions, called Hasse Diagram
(HD): formally, the Hasse Diagram H(K) of complex K is the multipartite graph H(K) = (VH, EH),
such that each node vσ ∈ VH corresponds to a simplex σ ∈ K, and two simplices σ, τ ∈ K are
connected by the undirected edge (vσ, vτ ) ∈ EH iff σ is a coface of τ and dim(τ) = dim(σ) − 1.
In other words, each simplicial order corresponds to a graph layer in H(K), and two simplices in
different layers are linked if they are (upper/lower) adjacent in the original simplicial complex. The
optimization problem defined here is independent of the random walk sampling procedure, so in our
experiments we test different procedures (listed in §4).

Inspired by language models such as WORD2VEC [41], we start from a corpus W = {σ1, . . . , σ|W|}
of simplicial random walks, and we aim to maximize the log-likelihood of a target simplex σi given
the multi-set CT (σi) = {σi−T . . . σi−1, σi+1 . . . σi+T } of context simplices within a distance T ,
determined as the number of steps between the target and the context simplex. The optimization
problem is as follows:

max
f

|W|∑
i=1

log Pr( σi | {f(τ) : τ ∈ CT (σi)} ) (1)

where the probability is the soft-max Pr(σi |{f(τ), . . . }) ∝ exp
[∑

τ∈CT (σi)
f(σi) · f(τ)

]
, normal-

ized via the standard partition function Zσi =
∑

κ∈K exp
[∑

τ∈CT (σi)
f(κ) · f(τ)

]
, and it represents

the likelihood of observing simplex σ given context simplices in CT (σ). This leads to the maximiza-
tion of the function:

max
f

|W|∑
i=1

[
− logZσi +

∑
τ∈CT (σi)

f(σi) · f(τ)
]

(2)

Our method of choice –SIMPLEX2VEC [20]– is implemented by sampling random walks from H(K)
and learning simplicial embeddings with continuous-bag-of-words (CBOW) model [42]. To overcome

1Here we used 2V to identify the power set of the vertices.
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the expensive computation of Zσi , we train CBOW with negative sampling. While SIMPLEX2VEC is
conceptually similar to k-SIMPLEX2VEC [19], there are important differences: (i) by fixing k as
simplex dimension, k-SIMPLEX2VEC uses exclusively upper connections through (k+1)-cofaces and
lower connections through (k-1)-faces to compute random walk transitions; (ii) random walks focus on
a fixed dimension, allowing the embedding computation only for k-simplices. SIMPLEX2VEC instead
computes embedding representations for all simplex orders simultaneously because the random walks
are sampled from the entire Hasse Diagram.

4 Experimental Setup
Here we describe the experimental setup used to quantify the accuracy of SIMPLEX2VEC in recon-
structing and predicting higher-order interactions. In the next paragraphs, we illustrate which datasets
we use, how we sample non-existing hyperlinks, and how we use them in downstream tasks.

Table 1: Summary statistics of empirical datasets, referring to the largest connected component of the
projected graph. In order: total number of time-stamped simplices |D|; number of unique simplices
|F|; number of training nodes |V| and edges |E| in the first 80% of D; number of triangles in the first
80% |∆| / new triangles in the last 20% |∆∗|; number of training tetrahedra in the first 80% |Θ| / new
tetrahedra in the last 20% |Θ∗|.
Dataset |D| |F| |V| |E| |∆|/|∆∗| |Θ|/|Θ∗|
contact-high-school 172,035 7,818 327 5,225 2,050 / 320 218 / 20
contact-primary-school 106,879 12,704 242 7,575 4,259 / 880 310 / 71
email-Eu 234,559 25,008 952 26,582 143,280 / 17,325 631,590 / 82,945
email-Enron 10,883 1,512 140 1,607 5,517 / 1,061 14,902 / 3,547
tags-math-sx 819,546 150,346 893 60,258 167,306 / 34,801 101,649 / 26,344
congress-bills 103,758 18,626 97 3,207 32,692 / 371 90,316 / 3,309
coauth-MAG-History 114,447 11,072 4,034 9,255 4,714 / 1,297 3,966 / 1,008
coauth-MAG-Geology 275,565 29,414 3,835 27,950 17,946 / 3,852 12,072 / 3,168

4.1 Data Processing

We consider data in the form of collections D of time-stamped interactions {(si, ti), si ∈ F , ti ∈
T }i=1...N , where each si = (i0, i1, . . . , ik) is a k-simplex of the node set V , F is the set of
distinct simplices and T is the set of time-stamps at which interactions occur. We split D in
two subsets, Dtrain and Dtest, corresponding to the 80th percentile t(80) of time-stamps, namely
Dtrain = {(si, ti) ∈ D, t(0) ≤ ti ≤ t(80)} and Dtest = {(si, ti) ∈ D, t(80) < ti ≤ t(100)}, where
t(0) and t(100) are the 0th and the 100th percentiles of the set T .

We use real-world time-stamped data, indicated above with the collection D, from different do-
mains [9]: face-to-face proximity (contact-high-school and contact-primary-school), email exchange
(email-Eu and email-Enron), online tags (tags-math-sx), US congress bills (congress-bills), coauthor-
ships (coauth-MAG-History and coauth-MAG-Geology). When the datasets came in pairwise format, we
associated simplices to cliques obtained by integrating edge information over short time intervals [9].

We considered, for all datasets, only nodes in the largest connected component of the projected graph
(two nodes of the projected graph are connected if they appear in at least one simplex of D). In
addition, to lighten the embedding computations, for congress, tags and coauth datasets we apply a
filtering approach in order to reduce their sizes: similarly to [43] with the Core set, here we selected
the nodes incident in at least 5 cliques in every temporal quartile (except in coauth-MAG-History where
we applied a threshold of 1 clique per temporal quartile). In Table 1, we report statistics for every
considered dataset after the pre-processing steps (extraction of the largest projected component and
filtering of unfrequent nodes).

4.2 Random Walk Sampling and Feature Learning

We build from Dtrain, disregarding time-stamps, a simplicial complex KD
train from which we

sample random walk realizations for learning low-dimensional embeddings. We consider several
weighting schemes [20] to bias the random walks between the vertices {vτ} of the HD:
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Figure 1: (Left) Schematic view of SIMPLEX2VEC: starting from simplicial sequential data (a), we
construct a simplicial complex on whose Hasse Diagram we sample random walks (b) with different
weighting (c), from which we construct the embedding space (d). (Right) Schematic description of
classification tasks (reconstruction and prediction) in the case of 3-node group interactions.

• Unweighted The jump to a given vτ is made by a uniform sampling among the set of neighbors
Nσ = N ↓

σ ∪N ↑
σ of the node vσ in the HD (i.e., the sets of (k−1)-faces N ↓

σ and (k+1)-cofaces
N ↑

σ of the k-simplex σ in the simplicial complex).
• Counts. To every node vτ of the HD is attached an empirical weight ωτ , counting the number

of times that τ appears in the data D. The probability to jump from σ to τ is given by
pστ = ωτ∑

r∈Nσ
ωr

.

• LObias. With the definition of transition probability as before, the weight ωτ is defined to
introduce a bias for the random walker towards low-order simplices: as explained in [20], every
time a n-simplex σ appears in the data its weight is increased by 1, and the weight of any subface
of dimension n− k is increased by (n+1)!

(n−k+1)! . There is an equivalent scheme for biasing towards
high-order simplices, but we empirically observed that the performance of the first one is better.

• EQbias. Starting from the weight set {ωσ} computed with empirical counts, we attach additional
weights {ωστ} to the Hasse diagram’s edges in order to have an equal probability of choosing
neighbors from N ↓

σ or N ↑
σ . Transition weights for the downward (upward) step (σ, τ) are

defined by normalizing ωτ respect to all the downward (upward) weights ωστ ∝ ωτ∑
r∈N↓(↑)

σ
ωr

,

with the probability of the step given by pστ = ωστ∑
r∈N↓

σ∪N↑
σ
ωσr

In all experiments, we train SIMPLEX2VEC2 on the Hasse Diagram H(KD
train

) to obtain d-
dimensional feature representations vσ ∈ Rd of every simplex σ ∈ KD

train. Due to the com-
binatorial explosion of the number of simplicial vertices in the HD, we constrain the maximum order
of the interactions to M ∈ {1, 2, 3} in a reduced Hasse diagram HM (KD

train) referred simply as
HM . Consequently, every simplex with a dimension larger than m = maxM is represented in
HM by node combinations of size up to m. In Fig. 1 (Left), we show the feature learning process
explained before.

4.3 Similarity Scores and Baseline Metrics

Using the learned simplicial embeddings we assign to each higher-order link candidate δ a likelihood
score based on the average pairwise inner product among 0-simplex embeddings of nodes {vi, i ∈ δ}
or any high-order k-simplices {vσ, σ ⊂ δ}:

sk(δ) =
1

|
(( δ

k+1)
2

)
|

∑
(σ,τ)∈((

δ
k+1)
2

)

vσ · vτ (3)

2We used the WORD2VEC implementation from Gensim (https://radimrehurek.com/gensim/) and ran
the CBOW model with window T = 10 and 5 epochs. We sample 10 random walks of length 80 per simplex as
input to WORD2VEC.
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To assess the reconstruction and prediction performances of the embedding model, we compare
likelihood scores defined in Eq. 3 with other baseline metrics:

• Projected metrics. Local and global node-level features computed from the projected graph. The
projected graph is defined as Gtrain

D = (V, E), where V is the set of 0-simplices of the complex
Ktrain

D and E =
{
s ∈ Ktrain

D : |s| = 2
}

is the set of links between training nodes that interacted
in at least one simplex of Dtrain. Moreover, edges (i, j) can be weighted with the number of
simplices of D containing both i and j. For triangles-related tasks we considered several 3-way
metrics computed with the code3 released by [9] (we show the best performant: Harmonic mean,
Geometric mean, Katz, PPR, Logistic Regression). We exploited also the pair-wise random
walk measure PPMIT [44], for tetrahedra-related tasks where 4-way implementations of the
above listed scores are not available. PPMI is widely used as a similarity function for node
embeddings, and variations of the window size T allow us to take into account both local and
global information.

• Spectral embedding. Features from the spectral decomposition of the combinatorial k-
Laplacian [45]. Given the set of boundary matrices {Bk}, which incorporate incidence
relationships between k-simplices and their (k − 1)-faces4, the unweighted k-Laplacian is
Lk = BT

kBk +Bk+1B
T
k+1. We consider also the weighted k-Laplacian [46], calculated with

the substitutions Bk → W
−1/2
k−1 BkW

1/2
k , where every Wk is a diagonal matrix containing

empirical counts of any k-simplex5. Following the same procedure used in graph spectral
embeddings [47], we compute the eigenvectors matrix Qk ∈ Rnk×d corresponding to the first
d smallest non-zero eigenvalues of Lk and we use the rows of Qk as d-dimensional spectral
embeddings for k-simplices.

• k-SIMPLEX2VEC embedding. Features learned with an extension of NODE2VEC [19] that samples
random walks from higher-order transition probabilities6 (e.g., edge-to-edge occurrences) in a
single simplicial dimension. This model is based on sampling from a uniform structure without
taking into account simplicial weights.

Likelihood scores of candidate higher-order links are assigned for the embedding models with the
same metric of Eq. 3 used for SIMPLEX2VEC embeddings. In k-SIMPLEX2VEC, we sample the same
number of random walks per simplex, with the same length, as the ones used for SIMPLEX2VEC.

4.4 Downstream Tasks and Open Configurations Sampling

Similarly to the standard graph case, non-existing links are usually the majority class and this
imbalance is even more pronounced in the higher-order case [30] (in graphs we have O(|V|2)
potential links, but the number of potential hyperlinks/simplices is O(2|V|) in higher-order structures).
To compensate, we focus the work on 3-node and 4-node groups, reducing the number of potential
hyperedges to O(|V|3) and O(|V|4) respectively. For a concise presentation, in the next paragraphs
we describe mainly the 3-way case. Hence, we restrict the set of possible interactions S to be
exclusively closed triangles ∆ of the training complex and the corresponding 3-node complementary
set U∆:

∆ =
{
s ∈ Ktrain

D : |s| = 3
}
, U∆ =

(
V
3

)
\∆ (4)

where we used
(V
3

)
as the set of 3-node combinations of elements from V (we instead denote

respectively with Θ and UΘ the observed and unobserved tetrahedra of the training set). With the
reconstruction task we aim to discern those triplets δ interacting as a 2-simplex in the training window
[0, t(80)], and so δ ∈ ∆, from those that are groups of lower-order simplices, meaning δ ∈ U∆.
Moreover, defining ∆∗ as the set of new triadic interactions in the interval (t(80), t(100)], with the
prediction task we aim to classify those open groups δ̄ ∈ U∆ that give rise to a simplicial closure
on the test time-span (δ̄ ∈ ∆∗ ) respect to those ones that remain open (δ̄ ∈ U∆ \∆∗). In Figure 1
(Right), we sketch the task’s formulation based on 2-simplices (3-node configurations).

3https://github.com/arbenson/ScHoLP-Tutorial
4Boundary matrix Bk ∈ {0,±1}nk−1×nk requires the definition of oriented simplices, see [2] for additional

details.
5Weights matrices satisfy the consistency relations Wk = |Bk+1|Wk+1, see [46] for further details.
6https://github.com/celiahacker/k-simplex2vec
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Table 2: Number of unobserved configurations obtained with the sampling approach in different
datasets.

Dataset
Unseen configurations sampled from U∆

nE(×103)
0 1 2 3

contact-high-school 3,476 1,150 107 25
email-Eu 8,096 1,392 1,654 186
tags-math-sx 6,229 2,473 5,467 1,725
coauth-MAG-History 9,958 30 60 2

Dataset
Unseen configurations sampled from UΘ

n∆(×103)
0 1 2 3 4

contact-primary-school 17,683 396 19 2 < 1
email-Enron 7,048 400 28 2 < 1
congress-bills 1,462 1,264 325 149 80
coauth-MAG-Geology 15,473 593 30 3 < 1

To overcome the impossibility of enumerating all the unseen configurations, we collect negative
instances for the classification tasks by sampling fixed-size groups of nodes. In practice, we sample
stars, cliques and other network motifs [39] from the projected graph to collect group configurations
with distinct densities of lower-order interactions. We independently sample nodes to obtain (more
likely) groups with unconnected units. For each sampled 3-node group δ we count the number of
involved training edges nE(δ), and we analyze tasks performances for open configurations char-
acterized by fixing nE(δ) ∈ {0, 1, 2, 3}. For 4-node configurations, instead of nE(δ), we consider
the number of training triangles n∆(δ) ∈ {0, 1, 2, 3, 4} to differentiate open groups. In Table 2 we
report the number of open configurations randomly selected from U∆ and UΘ. We extracted with
replacement 107 samples of candidate open configurations for each pattern (stars, cliques, motifs,
and independent node groups).

We claim that quantities nE(δ) and n∆(δ) are related to the concept of hardness of non-
hyperlinks [39], i.e. the propensity of open groups to be misclassified as closed interaction, and
they influence the difficulty of downstream classification tasks. In fact, increasing the number of
lower-order faces -nE or n∆- engaged into a fake hyperlink, the latter becomes more and more
structurally similar to true simplices, making the classification task more difficult.

5 Results and Discussion

With the previously described setup, we conducted experiments with 3-node configurations on datasets
contact-high-school, email-Eu, tags-math-sx, coauth-MAG-History and with 4-node configurations on
the remaining ones. Due to the limited space available, we only report 3-way results leaving the
4-way analysis in the Appendix. We also include supplemental experiments with hypergraph-based
embeddings not shown in the main text.

We highlight the classification performance when using different embedding similarities sk(δ)
on open configurations with different nE(δ) (in the case of triangles, or n∆(δ) for tetrahedra).
For each case, triangles and tetrahedra classification, we examine: (i) the comparison with k-
SIMPLEX2VEC embeddings in the unweighted scenario, to study how different embedding models
learn statistical patterns from the simplicial structure; (ii) the comparison with classical metrics in
the weighted scenario, to study how the addition of empirical weights influences the embedding
performance with respect to traditional weighted approaches.

Results are presented in terms of average binary classification scores, where test sets are generated by
randomly chosen open and closed groups. Contrarily to previous work [9, 35], we evaluate models
without a fixed class imbalance because we cannot access the entire negative classes (e.g., U∆ and
U∆ \∆∗ respectively in 3-way reconstruction and prediction). Instead, in every test set we uniformly
sample the cardinality of the two classes to be between 1 and the number of available samples
according to the task. We report calibrated AUC-PR scores [48] to account for the difference in class
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Figure 2: Calibrated AUC-PR scores on 3-way link reconstruction (a)(c) and prediction (b)(d)
for SIMPLEX2VEC and k-SIMPLEX2VEC with: (a)(b) similarity s0 varying the parameter nE ; (c)(d)
similarity sk (with k in {0, 1}) on highly edge-dense open configurations (nE = 3). Metrics are
computed in unweighted representations, with SIMPLEX2VEC trained on Hk+1 when showing results
for metric sk. The label unbalancing in each sample is uniformly drawn between 1:1 and 1:5000. A
schematic view of positive and negative examples is reported for each classification task.

imbalance as a consequence of our sampling choice7. In Figure 2, for a fair comparison with the
other projected and embedding metrics, we report the similarity sk training SIMPLEX2VEC on Hk+1.
For instance, when comparing node embedding performance (k=0), we use the Hasse Diagram H1 to
neglect triadic and higher-order information not explicitly incorporated with node-to-node proximities
in k-SIMPLEX2VEC and spectral node embeddings. Best average scores are chosen for embedding
models with a search on vector sizes in the set {8, 16, 32, 64, 128, 256, 512, 1024}.

5.1 Reconstruction and Prediction of 3-way Interactions: the Unweighted Scenario and
k-SIMPLEX2VEC

5.1.1 Comparison of Pair-wise Node Proximities

In Figure 2(a)(b), we show evaluation metrics on higher-order link classification (reconstruction and
prediction) for 3-way interactions, computed with unweighted node-level information from different
models, varying the quantity nE(δ) referred to the open configurations. We recall that in this case
k-SIMPLEX2VEC is equivalent to the NODE2VEC embedding of the projected graph. Hasse diagram H1

scores s0(δ) computed with SIMPLEX2VEC perform overall better than proximities of the projected
graph (i.e., k-SIMPLEX2VEC scores) in almost all cases, meaning that the information given by the
pairwise structures is enriched by considering multiple layers of interactions, even without leveraging
interaction weights (both in Gtrain

D and Ktrain
D ).

Generally, we observe an expected decrease in performance for every model with respect to parameter
nE . For example, a few datasets show less sensitivity in the performance of prediction tasks to varia-
tions of nE(δ) (e.g., email-Eu). We ascribe this difference to domain-specific effects and peculiarities
of those datasets. Embedding similarity s0(δ) from H1 diagram outperforms k-SIMPLEX2VEC prox-
imities in almost every reconstruction task, except for coauth-MAG-History on open configurations
with nE = 3. This fact seems connected with some specific graph features of collaborations (even
possibly related to the filtering approach utilized). Moreover, coauthorship relations usually are
not characterized by subset dependencies (writing a paper as a group does not imply pair-wise
collaborations [3]) that are encoded with simplicial complexes. In prediction tasks, we observe the

7For this purpose we fix the reference class ratio π0 = 0.5. See [48] for additional details. We also tested the
AUC-ROC metric with similar findings.
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Table 3: Calibrated AUC-PR scores for higher-order link reconstruction (Top) and prediction
(Bottom) on 3-node groups, with the hardest class of negative configurations (nE = 3). The best
scores for different methods are reported in boldface letters; among these ones, the best overall score
is blue-shaded and the second best score is grey-shaded.

Features Type
Dataset

contact-high-school email-Eu tags-math-sx coauth-MAG-History
s0(δ) s1(δ) s0(δ) s1(δ) s0(δ) s1(δ) s0(δ) s1(δ)

Neural

Hasse diagram H1

Unweighted 57.5±1.9 51.4±1.2 72.0±0.3 64.0±0.2 66.7±0.2 57.1±0.1 41.1±0.9 75.5±1.1
Counts 79.5±1.0 84.4±0.9 76.3±0.4 73.3±0.2 80.5±0.1 87.8±0.1 41.6±1.0 76.0±1.1
LObias 81.6±2.4 89.5±0.8 76.1±0.3 71.2±0.2 76.9±0.1 83.7±0.1 41.7±0.7 57.7±1.2

Embedding

Hasse diagram H2

Unweighted 55.5±3.0 99.5±0.1 61.0±0.4 97.9±0.0 66.7±0.1 95.1±0.0 40.0±0.5 83.1±1.3
Counts 57.0±1.3 91.2±0.9 54.5±0.2 92.6±0.1 66.2±0.1 89.4±0.1 35.3±0.4 82.1±1.3
LObias 84.7±2.2 91.9±0.8 80.6±0.3 81.6±0.2 77.9±0.1 84.3±0.1 57.3±1.0 70.4±1.4
EQbias 72.7±1.1 89.2±0.7 71.8±0.3 75.0±0.2 78.2±0.2 88.0±0.1 39.3±0.7 87.3±1.1

Spectral Combinatorial Laplacians Unweighted 52.4±3.7 77.0±1.3 67.3±0.3 65.3±0.2 58.4±0.2 50.7±0.1 72.1±1.1 63.5±1.4
Embedding Weighted 70.4±1.6 75.3±1.6 79.4±0.2 76.4±0.1 79.9±0.1 50.4±0.1 82.3±1.0 68.4±1.2

Projected
Harm. mean

Weighted

85.5±1.5 74.0±0.2 83.1±0.1 53.3±1.1
Geom. mean 85.8±1.1 72.5±0.2 86.8±0.1 52.9±1.3

Metrics Katz 78.6±1.1 65.6±0.2 81.8±0.1 49.2±1.5
PPR 76.9±1.4 70.7±0.2 81.8±0.1 74.8±1.3

Features Type
Dataset

contact-high-school email-Eu tags-math-sx coauth-MAG-History
s0(δ) s1(δ) s0(δ) s1(δ) s0(δ) s1(δ) s0(δ) s1(δ)

Neural

Hasse diagram H1

Unweighted 62.9±5.2 50.6±4.7 68.5±0.7 57.6±0.5 63.2±0.3 54.0±0.5 69.5±8.2 63.2±6.6
Counts 74.2±3.0 73.0±3.4 74.3±0.8 67.3±0.7 74.3±0.4 84.0±0.3 68.7±8.4 66.6±8.6
LObias 70.6±2.8 65.6±5.3 70.5±0.6 64.5±0.8 71.3±0.5 79.1±0.5 68.8±8.7 66.5±8.7

Embedding

Hasse diagram H2

Unweighted 62.5±6.3 69.5±4.9 66.2±0.7 67.8±0.6 62.5±0.2 83.1±0.2 65.9±8.5 55.6±8.0
Counts 64.3±3.6 72.8±3.6 61.8±0.7 69.1±0.6 62.9±0.3 82.3±0.3 67.3±8.2 61.0±9.6
LObias 69.7±3.5 65.4±5.1 69.0±0.6 60.3±0.6 71.2±0.7 79.2±0.4 67.3±7.9 64.2±9.6
EQbias 72.4±3.6 73.5±3.5 71.3±0.6 66.1±0.6 71.2±0.4 82.3±0.3 67.8±8.6 65.7±9.3

Spectral Combinatorial Laplacians Unweighted 56.4±3.6 56.7±6.8 63.8±0.6 53.5±0.7 55.1±0.2 50.4±0.2 57.8±6.0 56.4±5.7
Embedding Weighted 66.5±5.3 56.1±6.5 65.2±0.8 55.6±0.7 72.8±0.4 50.3±0.3 70.1±8.3 53.5±6.8

Projected
Harm. mean

Weighted

71.4±4.3 64.5±0.8 79.0±0.2 61.6±8.2
Geom. mean 73.1±3.8 66.7±0.8 83.3±0.2 62.4±7.7

Metrics Katz 69.3±3.7 63.2±0.6 77.8±0.3 62.4±7.0
PPR 69.8±3.9 68.8±0.5 75.7±0.4 57.7±4.6
Logistic Regression Unweighted 68.7±3.1 68.1±0.7 81.2±0.2 65.4±6.9

same advantage of SIMPLEX2VEC respect to k-SIMPLEX2VEC, except in contact-high-school where
the models perform similarly on nE < 2.

5.1.2 Comparison of Higher-order Edge Proximities

In the previous sections, the metric s0(δ) was computed from feature representations of 0-simplices.
Here we analyze instead how performances change when we use embedding representations of
1-simplices (edge representations) to compute s1(δ). Intuitively, group representations like 1-simplex
embeddings should convey higher-order information useful to improve classification with respect to
node-level features.

In Figure 2(c)(d), we show evaluation metrics on higher-order link classification for 3-way interactions,
comparing unweighted node-level and edge-level information from different models, fixing the
quantity nE(δ) = 3 referred to the open configurations. We consider fully connected triangle
configurations because, besides being the harder configurations to be classified, they consist of the
set of links necessary to compute s1(δ).

Generally, we notice an increase in classification scores when using s1(δ) similarity rather s0(δ)
with SIMPLEX2VEC embeddings, instead k-SIMPLEX2VEC exhibits reduced gains in most datasets.
The SIMPLEX2VEC performance gain is quite large (between 30% and 100%) in all reconstruction
tasks, and for prediction tasks it is noticeable on contact-high-school and tags-math-sx while it is
even negative on coauth-MAG-History. Regarding the latter dataset, the use of edge-level similarity
balances the node-level reconstruction loss noticed in Figure 2(a).
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5.2 Reconstruction and Prediction of 3-way Interactions: Role of Simplicial Weights

Previously we showed that feature representations learned through the hierarchical organization of the
HD enhance the classification accuracy of closed triangles when considering unweighted complexes.
We now integrate these results by studying the effect of introducing weights. In particular, we analyze
the importance of weighted interactions in our framework, focusing on the case where fully connected
open triangles are the negative examples for downstream tasks.

In Table 3 (Top) we show higher-order link reconstruction results: simplicial similarity s1(δ) on the
unweighted HD H2 outperforms all other methods, in particular weighted metrics based on Laplacian
similarity and projected graph geometric mean, allowing almost perfect reconstruction in 3 out of
4 datasets. Compared with projected graph metrics, this was expected since 3-way information is
incorporated in H2, and the optimal scores reflect the goodness of fit of the embedding algorithm.
Weighting schemes Counts and EQbias also obtain excellent scores with s1(δ) metric, while metric
s0(δ) benefits from the use of LObias weights. Differently, even simplicial similarity s1(δ) on
Hasse diagram H1 outperforms baseline scores in half of the datasets (with weighting schemes
Counts and LObias), showing the feasibility of reconstructing 2-order interactions from weighted
lower-order simplices (vertices in H1 are simplices of dimension 0 and 1) similarly to previous work
on hypergraph reconstruction [8].

In Table 3 (Bottom) we show higher-order link prediction results. Overall, SIMPLEX2VEC embeddings
trained on H1 with Counts and EQbias weights give better results: in contact-high-school and
email-Eu with s0(δ) metric, in tags-math-sx with s1(δ) metric. In dataset coauth-MAG-History the
unweighted s0(δ) score is outperformed uniquely by the weighted L0 embedding, with weighted
simplicial counterparts resulting in similar performances. In the space of projected graph scores,
good results are obtained with geometric mean and logistic regression, which were among the best
metrics in one of the seminal works on higher-order link prediction [9].

Finally, we observe that weighting schemes for neural simplicial embeddings overall positively
contribute to classification tasks both for reconstruction and prediction.

6 Conclusions and Future Work

In this paper, we introduced SIMPLEX2VEC for representation learning on simplicial complexes.
In particular, we focused on formalizing reconstruction and link prediction tasks for higher-order
structures, and we tested the proposed model on solving such downstream tasks. We showed that
SIMPLEX2VEC-based representations are more effective in classification than traditional approaches
and previous higher-order embedding methods. In particular, we prove the feasibility of using
simplicial embedding of Hasse diagrams in reconstructing system’s polyadic interactions from lower-
order edges, in addition to adequately predicting future simplicial closures. SIMPLEX2VEC enables
the investigation of the impact of different topological features, and we showed that weighted and
unweighted models have different predictive power. Future work should focus on understanding these
differences through the analysis of link predictability [49,50] with higher-order edges as a function of
datasets’ peculiarities. Future work includes algorithmic approaches to tame the scalability limits set
by the combinatorial structure of the Hasse diagram, which could for example be tackled via different
optimization frameworks [51, 52] and hierarchical approaches [18, 53].
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Figure A1: Calibrated AUC-PR scores on 4-way link reconstruction (a)(c) and prediction (b)(d)
for SIMPLEX2VEC and k-SIMPLEX2VEC with: (a)(b) similarity s0 varying the parameter n∆; (c)(d)
similarity sk (with k in {0, 1, 2}) on highly triangle-dense open configurations (n∆ = 4). Metrics
are computed in unweighted representations, with SIMPLEX2VEC trained on Hk+1 when showing
results for metric sk. Label unbalancing in each sample is uniformly drawn between 1:1 and 1:5000.
A schematic view of positive and negative examples is reported for each classification task.

A Appendix
A.1 Beyond 3-way Interactions: Tetrahedra

Unweighted Analysis. In Figure A1(a), we show node-level evaluation metrics for 4-way higher-
order reconstruction. Metric s0(δ) of SIMPLEX2VEC computed on H1 shows overall slightly
better performances respect to k-SIMPLEX2VEC similarities, especially when the density of tri-
angles is low (n∆ < 3). In coauth-MAG-Geology we observe also a remarkable increment of k-
SIMPLEX2VEC reconstruction scores for negative examples with increasing n∆(δ), and this is also
observable in email-Enron. In Figure A1(b), we report node-level evaluation metrics for 4-way
higher-order prediction. Node-level SIMPLEX2VEC embedding performs better than k-SIMPLEX2VEC,
on contact-primary-school and, to a lesser extent, on coauth-MAG-Geology. In email-Enron and
congress-bills SIMPLEX2VEC performance increases when the density of triangles is low (n∆ ≤ 2).
Higher-order similarity measures from k-SIMPLEX2VEC, in Figure A1(c)(d), are outperformed
by the SIMPLEX2VEC ones in many cases, especially s2(δ) metric for contact-primary-school,
email-Enron and congress-bills in reconstruction tasks. In prediction tasks with email-Enron and
coauth-MAG-Geology SIMPLEX2VEC obtain mainly good results overcoming the simplicial baseline.
These results generally confirm our previous findings on 3-way tasks, which displayed an increasing
classification capability when using higher-order proximities sk (k > 0) for SIMPLEX2VEC.

Weighted Analysis. In Table A1 (Top) we show reconstruction scores of tetrahedra, when simplicial
embeddings are trained on Hasse diagram H2 and negative examples are given by open 4-way
configurations with four triangular faces. Due to H2 characteristics, features learned from the
simplicial complex are not aware of tetrahedral structures and this task results on reconstructing
4-node groups from training data with most triadic structures. Previous work analyzed the problem of
higher-order edge reconstruction from pair-wise data [8], but here we focus on a not previously studied
task based on triadic data. From the comparison with spectral embeddings and PPMI proximities, we
notice that SIMPLEX2VEC weighted s2(δ) similarity (LObias and EQbias) is the best on half of the
datasets in classifying closed tetrahedra respect to triangle-rich open groups. In email-Enron weighted
L1 embedding outperforms the unweighted (and weighted ones) s0(δ) simplicial metric, while
in coauth-MAG-Geology the best score is given by the unweighted PPMI1 (which is also the best
projected metric in the other 3 datasets). In Table A1 (Bottom) we report classification scores for
the prediction of simplicial closures on tetrahedra when neural embeddings are trained on Hasse
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Table A1: Calibrated AUC-PR scores for higher-order link reconstruction (Top) and prediction
(Bottom) on 4-node groups, with the hardest class of negative configurations (n∆ = 4). The best
scores for different methods are reported in boldface letters; among these ones, the best overall score
is blue-shaded and the second best score is grey-shaded.

Dataset Neural Embedding (Hasse Diagram H2) Spectral Embedding (Combinatorial Laplacians) Projected Graph PPMI Metric
s0(δ) s1(δ) s2(δ) s0(δ) s1(δ) s2(δ) T = 1 T = 10 T = ∞

contact-primary-school

Unweighted 52.9±3.3 45.2±2.7 64.5±2.8 Unweighted 52.1±3.8 58.2±2.0 53.4±3.0 51.5±3.1 50.2±3.0 50.2±3.0Counts 48.4±3.0 46.2±2.8 59.1±3.3
LObias 50.6±3.2 61.6±3.3 70.7±3.9 Weighted 54.0±2.8 55.9±2.8 53.4±2.1 47.9±3.1 47.0±2.7 48.5±2.5EQbias 45.2±3.6 47.0±3.0 58.5±3.3

email-Enron

Unweighted 69.0±0.4 56.0±0.4 58.2±0.3 Unweighted 69.0±0.5 68.0±0.4 55.5±0.3 68.5±0.4 66.7±0.5 66.9±0.4Counts 60.6±0.5 61.3±0.5 54.0±0.4
LObias 68.0±0.5 46.5±0.5 57.4±0.5 Weighted 71.1±0.4 79.0±0.3 76.9±0.2 58.3±0.4 57.9±0.5 62.0±0.5EQbias 62.1±0.7 44.4±0.3 53.1±0.4

congress-bills

Unweighted 63.1±0.2 64.4±0.1 51.8±0.2 Unweighted 56.1±0.2 58.4±0.1 49.8±0.1 65.9±0.1 66.0±0.1 65.9±0.1Counts 43.1±0.1 70.4±0.1 72.5±0.1
LObias 49.0±0.1 74.2±0.1 60.6±0.2 Weighted 55.0±0.1 62.8±0.2 55.3±0.2 49.1±0.1 47.8±0.1 47.3±0.1EQbias 65.7±0.2 69.0±0.1 74.2±0.1

coauth-MAG-Geology

Unweighted 71.6±0.5 34.6±0.3 84.2±0.7 Unweighted 62.6±0.6 61.7±0.9 49.3±0.9 86.0±0.4 77.8±0.4 75.5±0.5Counts 40.5±0.3 36.2±0.4 74.1±0.3
LObias 64.1±0.5 34.4±0.3 73.3±0.5 Weighted 85.8±0.7 65.7±0.5 44.9±0.7 76.3±0.6 71.9±0.5 70.6±0.6EQbias 36.7±0.3 37.5±0.2 79.2±0.4

Dataset Neural Embedding (Hasse Diagram H3) Spectral Embedding (Combinatorial Laplacians) Projected Graph PPMI Metric
s0(δ) s1(δ) s2(δ) s0(δ) s1(δ) s2(δ) T = 1 T = 10 T = ∞

contact-primary-school

Unweighted 56.4±1.8 58.6±2.3 66.8±2.4 Unweighted 82.1±4.0 85.4±1.7 85.9±3.1 49.3±2.2 45.8±1.6 45.7±1.7Counts 63.0±2.7 67.8±0.7 72.2±1.6
LObias 60.4±1.6 61.2±2.2 62.4±2.6 Weighted 57.8±2.4 81.3±4.4 70.6±1.5 61.1±2.3 47.4±1.6 48.6±1.6EQbias 62.7±2.0 65.6±1.2 68.3±2.2

email-Enron

Unweighted 88.3±6.6 98.0±2.1 96.9±2.3 Unweighted 92.7±2.9 67.6±5.7 97.1±1.8 50.3±0.2 50.9±0.5 50.8±0.5Counts 77.0±5.6 88.7±4.0 83.5±4.5
LObias 60.5±3.1 73.7±5.4 88.4±4.0 Weighted 84.8±5.6 88.7±3.7 95.8±2.4 55.8±2.2 53.3±1.3 54.7±1.5EQbias 57.9±2.5 84.9±3.6 80.4±5.6

congress-bills

Unweighted 47.9±0.1 34.0±0.0 77.7±0.3 Unweighted 60.8±0.2 64.3±0.3 48.8±0.2 74.7±0.2 74.7±0.2 74.7±0.2Counts 49.9±0.2 37.4±0.1 74.6±0.3
LObias 40.2±0.2 76.9±0.3 74.0±0.3 Weighted 40.2±0.1 53.1±0.3 50.8±0.2 40.2±0.1 40.8±0.1 40.2±0.1EQbias 64.2±0.2 58.4±0.3 71.4±0.2

coauth-MAG-Geology
Unweighted 55.1±7.7 60.1±7.2 74.8±4.8 Unweighted 57.0±6.9 48.1±7.8 52.1±7.3 50.7±3.5 54.6±6.3 55.3±7.4Counts 54.0±5.9 74.1±3.6 78.6±4.4
LObias 75.9±5.0 84.2±2.9 73.9±4.3 Weighted 88.5±3.2 52.0±7.7 52.7±7.3 54.9±4.5 56.1±5.9 55.3±4.8EQbias 51.3±4.7 76.1±4.3 72.8±6.1

diagram H3 (we empirically observed better results with respect to H2). We compare these results
with spectral embeddings and PPMI projected metrics in predicting which mostly triangle-dense
configurations will close in a tetrahedron in the last 20% of data. Unusually, best scores obtained with
SIMPLEX2VEC come from the unweighted setting in email-Enron and congress-bills with respectively
s1(δ) and s2(δ) metrics. There is not a unique best metric, which was also observed in the 3-
way prediction reports of Table 3 (Bottom). Spectral embedding outperforms neural methods for
contact-primary-school (unweighted s2) and coauth-MAG-Geology (weighted s0).
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Figure A2: Calibrated AUC-PR scores on higher-order link reconstruction for SIMPLEX2VEC (trained
on H1) compared with walk-based hypergraph embeddings, with similarity s0. On the left are
shown similarity indices varying the parameter nE for 3-node interactions; on the right similarity
indices varying the parameter n∆ for 4-node interactions. Metrics are computed in unweighted
representations. Label unbalancing in each sample is uniformly drawn between 1:1 and 1:5000.
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Figure A3: Calibrated AUC-PR scores on higher-order link prediction for SIMPLEX2VEC (trained
on H1) compared with walk-based hypergraph embeddings, with similarity s0. On the left are
shown similarity indices varying the parameter nE for 3-node interactions; on the right similarity
indices varying the parameter n∆ for 4-node interactions. Metrics are computed in unweighted
representations. Label unbalancing in each sample is uniformly drawn between 1:1 and 1:5000.

A.2 Additional Comparison with Hypergraph-based Methods

Random Walk Encodings. In Figures A2 and A3 we compare classification scores respectively
for reconstruction and prediction of higher-order links, among SIMPLEX2VEC and skip-gram node
embeddings generated with 1st-order random walks [14] on the unweighted hypergraph structure of
the input data (we use the same setup for WORD2VEC : T = 10, 5 epochs, 10 random walks of length
80 per node). Even SIMPLEX2VEC is trained with Unweighted walk transitions, leading to a similar
1st-order random walk strategy (but, on a different topological structure). The hypergraph contains
hyperedges (formed by at least 2 nodes) that are simplices of Hk, where k = 2, 3 is the order of
simplices involved in the classification task. Even comparing node-level similarity indices, we notice
that SIMPLEX2VEC outperforms hypergraph-based node embeddings in the majority of the datasets,
except in the reconstruction of densely connected configurations for co-authorship data.
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Figure A4: Calibrated AUC-PR scores on higher-order link reconstruction for SIMPLEX2VEC (trained
on H1) compared with Hyper-SAGNN node embeddings. On the left are shown similarity indices
varying the parameter nE for 3-node interactions; on the right similarity indices varying the parameter
n∆ for 4-node interactions. Metrics are computed in unweighted representations. Label unbalancing
in each sample is uniformly drawn between 1:1 and 1:5000.
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Figure A5: Calibrated AUC-PR scores on higher-order link prediction for SIMPLEX2VEC (trained
on H1) compared with Hyper-SAGNN node embeddings. On the left are shown similarity indices
varying the parameter nE for 3-node interactions; on the right similarity indices varying the parameter
n∆ for 4-node interactions. Metrics are computed in unweighted representations. Label unbalancing
in each sample is uniformly drawn between 1:1 and 1:5000.

Hyper-SAGNN Embeddings. In Figures A4 and A5 we compare classification scores respectively for
reconstruction and prediction of higher-order links, among SIMPLEX2VEC and Hyper-SAGNN [23]
node embeddings on the unweighted hypergraph structure of the input data. Due to the model
architecture, we compute hyperedge likelihood scores for Hyper-SAGNN combining embeddings with
the same euclidean functional form optimized during model training, as e0(δ) = 1

|δ|
∑

i∈δ |di − si|2,
where the pair (si,di) corresponds to the (static, dynamic) embeddings of node i as explained in the
paper. In this setup, we notice that SIMPLEX2VEC outperforms Hyper-SAGNN embeddings in the
larger part of experiments.

One of the main drawbacks of existing hypergraph-based methods (e.g., [16, 18, 23, 24]) is that they
are limited to compute 0-simplex representations (node embeddings), making impossible the use of
higher-order proximities (computed with interaction embeddings, like edges and triangles) similarly
to the ones showed in Figures 2 and A1 (c)(d).
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