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Abstract

Adversarial training of deep neural networks (DNNs) is an
important defense mechanism that allows a DNN to be robust
to input perturbations, that can otherwise result in predictions
errors. Recently, there is a growing interest in learning a clas-
sifier with a reject (abstain) option that can be more robust to
adversarial perturbations by choosing to not return a prediction
on inputs where the classifier may be incorrect. A challenge
faced with robust learning of a classifier with reject option is
that existing works do not have a mechanism to ensure that
(very) small perturbations of the input are not rejected, when
they can in fact be accepted and correctly classified. We first
propose a novel metric – robust error with rejection – that
extends the standard definition of robust error to include the
rejection of small perturbations. The proposed metric has natu-
ral connections to the standard robust error (without rejection),
as well as the robust error with rejection proposed in a re-
cent work. Motivated by this metric, we propose novel loss
functions and a robust training method – stratified adversarial
training with rejection (SATR) – for a classifier with reject
option, where the goal is to accept and correctly-classify small
input perturbations, while allowing the rejection of larger input
perturbations that cannot be correctly classified. Experiments
on well-known image classification DNNs using strong adap-
tive attack methods validate that SATR can significantly im-
prove the robustness of a classifier with rejection compared to
standard adversarial training (with confidence-based rejection)
as well as a recently-proposed baseline.

Introduction
Training robust classifiers in the presence of adversarial in-
puts is an important problem from the standpoint of design-
ing secure and reliable machine learning systems (Biggio
and Roli 2018). Adversarial training and its variations are
the most effective methods for learning robust DNN classi-
fiers (Madry et al. 2018; Zhang et al. 2019). However, adver-
sarial training may still not be very effective against adaptive
adversarial attacks, or even standard attacks with configu-
rations not observed during training (Athalye, Carlini, and
Wagner 2018; Tramèr et al. 2020). Given this limitation, it
is important to design classifiers that learn when to reject
or abstain from predicting on hard-to-classify inputs. This
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can be especially crucial when it comes to real-world, safety-
critical systems such as self-driving cars, where abstaining
from prediction is often a much safer alternative to making
an incorrect decision.

We focus on the problem of learning a robust classifier
with a reject option in the presence of adversarial inputs. The
related problem of learning a (non-robust) classifier with a re-
ject option has been studied extensively in the literature (Tax
and Duin 2008; Guan et al. 2018; Cortes, DeSalvo, and Mohri
2016; Geifman and El-Yaniv 2019; Charoenphakdee et al.
2021). Recently, a number of works have also addressed the
problem of adversarial robustness for a classifier equipped
with a reject option (Laidlaw and Feizi 2019; Stutz, Hein,
and Schiele 2020; Sheikholeslami, Lotfi, and Kolter 2021;
Pang et al. 2021b; Tramèr 2021; Kato, Cui, and Fukuhara
2020). These approaches extend the standard definition of
adversarial robustness (robust error) to the setting where the
classifier can also reject inputs. In this setting, rejection of
a perturbed input is considered to be a valid decision that
does not count towards the robust error. However, rejection
of a clean input still counts towards the robust error (Tramèr
2021).

A key limitation with this view of the robust error with
rejection is that it treats equally the rejection of very small
perturbations as well as large perturbations of an input. How-
ever, many practical applications (e.g., object detection) may
require that small perturbations of an input be handled ac-
curately by the classifier without resorting to rejection. In
other words, there could be a higher cost for rejecting small
input perturbations, when in-fact the classifier can accept
and classify them correctly. Existing methods for training a
robust classifier with rejection, such as confidence-calibrated
adversarial training (CCAT) (Stutz, Hein, and Schiele 2020),
achieve a high robustness by simply rejecting a large fraction
of the perturbed inputs (since rejecting perturbed inputs does
not contribute to the robust error, no matter the perturbation
size). As we validate experimentally, CCAT often has a high
rejection rate on even small perturbations of clean inputs,
which may not be acceptable in many practical applications.

Motivated by these limitations in existing works, we revisit
the problem of adversarial robustness of a classifier with
reject option, and make the following contributions:
• We propose a novel metric – robust error with rejection

– that can provide a fine-grained evaluation of the robust-



ness of a classifier with reject option across a range of
perturbation sizes.

• We provide a theoretical analysis of this problem, which
motivates the need for learning a robust classifier with
rejection that can accept and correctly classify small input
perturbations.

• We propose novel loss functions and a robust training
method SATR for jointly learning a classifier-detector sys-
tem (i.e., a classifier with rejection) that are designed to
achieve the goal of accepting and correctly classifying
small input perturbations, while also selectively rejecting
larger input perturbations.

Related Work
Adversarial robustness of deep learning models has received
significant attention in recent years. Many defenses have
been proposed and most of them have been broken by strong
adaptive attacks (Athalye, Carlini, and Wagner 2018; Tramèr
et al. 2020). The most effective approach for improving ad-
versarial robustness is adversarial training (Madry et al. 2018;
Zhang et al. 2019). However, adversarial training still cannot
achieve very good robustness on complex datasets, and often
there is a large generalization gap in the robustness (Tsipras
et al. 2019; Stutz, Hein, and Schiele 2019). For example,
on CIFAR-10, state-of-the-art adversarial training has only
about 50% robustness under the strongest adaptive attacks.

One approach to break this robustness bottleneck is to al-
low rejection of adversarial examples instead of trying to cor-
rectly classify all of them. Recently, there has been a great in-
terest in exploring adversarial training of a classifier with a re-
ject option (Laidlaw and Feizi 2019; Stutz, Hein, and Schiele
2020; Sheikholeslami, Lotfi, and Kolter 2021; Pang et al.
2021b; Tramèr 2021). Stutz, Hein, and Schiele proposed to
adversarially train confidence-calibrated models so that they
can generalize to unseen adversarial attacks. Sheikholeslami,
Lotfi, and Kolter modified existing certified-defense mech-
anisms to allow the classifier to either robustly classify or
detect adversarial attacks, and showed that it can lead to bet-
ter certified robustness, especially for large perturbation sizes.
Laidlaw and Feizi proposed a method called Combined Ab-
stention Robustness Learning (CARL) for jointly learning a
classifier and the region of the input space on which it should
abstain, and showed that training with CARL can result in a
more accurate and robust classifier.

Problem Setup
Let X ⊆ Rd denote the space of inputs x and Y :=
{1, · · · , k} denote the space of outputs y. Let Y := Y ∪{⊥}
be the extended output space where ⊥ denotes the abstain or
rejection option. Let ∆k denote the set of output probabilities
over Y (i.e., the simplex in k-dimensions). Let d(x,x′) be a
norm-induced distance on X (e.g., the `p-distance for some
p > 1), and let N (x, r) := {x′ ∈ X : d(x′,x) ≤ r} denote
the neighborhood of x with distance r. Let ∧ and ∨ denote
the boolean AND and OR operations respectively. Let 1{c}
define the binary indicator function which takes value 1 (0)
when the condition c is true (false). We denote vectors and
matrices using boldface symbols.

Given samples from a distribution D over X ×Y , our goal
is to learn a classifier with rejection option, f : X → Y , that
can correctly classify adversarial examples with small pertur-
bations, and can either correctly classify or reject those with
large perturbations. The standard robust error at adversarial
budget ε > 0 is defined as (Carlini and Wagner 2017)

Rε(f) := E
(x,y)∼D

[
max

x′∈N (x,ε)
1{f(x′) 6= y}

]
,

which does not allow any rejection. A few recent works
(e.g. (Tramèr 2021)) have proposed a robust error with rejec-
tion at adversarial budget ε > 0 as

Rrej
ε (f) := E

(x,y)∼D

[
1{f(x) 6= y}

∨ max
x′∈N (x,ε)

1{f(x′) 6∈ {y,⊥}}
]
,

which allows the rejection of input perturbations within an
ε-neighborhood without incurring an error.

Neither of these metrics for robust error is well-suited to
our needs. We therefore propose a new metric for evaluating
a robust classifier with reject option – the robust error with
rejection at budgets ε0 ∈ [0, ε] and ε ≥ 0:

Rrej
ε0,ε(f) := E

(x,y)∼D

[
max

x′∈N (x,ε0)
1{f(x′) 6= y}

∨ max
x′′∈N (x,ε)

1{f(x′′) 6∈ {y,⊥}}
]
. (1)

The motivation for this metric is as follows. For small pertur-
bations of a clean input within a neighborhood of radius ε0,
both an incorrect prediction and rejection are considered to be
an error. For larger perturbations outside the ε0-neighborhood,
rejection is not considered to be an error, i.e., the classifier can
either predict the correct class or reject larger perturbations.
Proposition 1. The robust error with rejection can be equiv-
alently defined as

Rrej
ε0,ε(f) := E

(x,y)∼D

[
max

x′∈N (x,ε0)
1{f(x′) = ⊥}

∨ max
x′′∈N (x,ε)

1{f(x′′) 6∈ {y,⊥}}
]
. (2)

We first note that

1{f(x′) 6= y} = 1{f(x′) = ⊥} ∨ 1{f(x′) /∈ {y,⊥}}.
The maximum over the ε0-neighborhood can be expressed as

max
x′∈N (x,ε0)

1{f(x′) 6= y} = max
x′∈N (x,ε0)

1{f(x′) = ⊥}

∨ max
x′∈N (x,ε0)

1{f(x′) /∈ {y,⊥}}.

Finally, the second term in the RHS of the above expression
can be combined with the second term inside the expectation
of Eq. (1), i.e.,

max
x′∈N (x,ε0)

1{f(x′) /∈ {y,⊥}} ∨ max
x′∈N (x,ε)

1{f(x′) /∈ {y,⊥}}

= max
x′∈N (x,ε)

1{f(x′) /∈ {y,⊥}},

which shows the equivalence of (1) and (2).



Our new metric has the following natural connections with
existing metrics in the literature:

• When ε0 = ε, our metric Rrej
ε0,ε(f) reduces to the standard

robust error (without rejection) Rε(f) at budget ε.
• When ε0 = 0, our metric reduces to the robust error with

rejection at budget ε, Rrej
ε (f) proposed e.g., in (Tramèr

2021). For this special case, rejection is considered to be
an error only for clean inputs (i.e., no perturbation).

• For any classifier g : X → Y that does not allow re-
jection and any ε0 ∈ [0, ε], it is easily verified that our
metric reduces to the standard robust error at budget ε,
i.e., Rrej

ε0,ε(g) = Rε(g).

In our experiments, we evaluate Rrej
ε0,ε(f) over a range of

ε0 values by setting ε0 = α ε, α ∈ [0, 1]. This produces a
curve with Rrej

αε,ε(f) on the y-axis as a function of α on the
x-axis. The curve shows the robust error with rejection of the
classifier for a range of small-perturbation neighborhoods,
with Rrej

ε (f) at the left end (α = 0) and the standard robust
error Rε(f) at the right end (α = 1).

Theoretical Analysis
Our goal is to correctly classify small perturbations of the
input and allow rejection of large perturbations when the
classifier is not confident. Two fundamental questions arise:
1. Why not allow rejection of both small and large pertur-

bations? This is done in most existing studies on robust
classification with rejection. On the other hand, many prac-
tical applications would like to handle small perturbations,
and rejecting them can have severe costs. The question
is whether it is possible to correctly classify small pertur-
bations without hurting the robustness i.e., whether it is
possible to achieve a small Rrej

ε0,ε(f).
2. Why not try to correctly classify both small and large

perturbations? This is done in traditional adversarial ro-
bustness, typically by adversarial training. The question
is essentially about the benefit of allowing rejection.

To answer these questions, we will show that under mild
conditions, there exists a classifier f with rejection with a
small Rrej

ε0,ε(f). So it is possible to correctly classify small
perturbations without rejecting them, answering the first ques-
tion. Moreover, under the same conditions, all classifiers
g : X → Y without rejection must have at least as large
errors, i.e., Rrej

ε0,ε(g) = Rε(g) ≥ Rrej
ε0,ε(f). In fact, the robust

error of g may be much larger than that of f . This shows the
benefit of allowing rejection, answering the second question.

Theorem 1. Consider binary classification. Let g(x) be any
decision boundary (i.e., any classifier without a rejection
option). For any 0 ≤ ε0 ≤ ε, there exists a classifier f with a
rejection option such that

Rrej
ε0,ε(f) ≤ R(ε0+ε)/2(g). (3)

Moreover, the bound is tight: there exist simple data dis-
tributions and g such that any f must have Rrej

ε0,ε(f) ≥
R(ε0+ε)/2(g).

The proof for Theorem 1 is given in the Appendix. In-
tuitively, the theorem states that if the data allows a small
robust error at adversarial budget (ε0 + ε)/2, then there exists
a classifier with small robust error with rejection at budget
(ε0, ε). For example, if the two classes can be separated with
a margin (ε0 + ε)/2, then there exists an f with 0 robust error
with rejection, even considering perturbations as large as ε
which can be significantly larger than (ε0 + ε)/2. Therefore,
under mild conditions, it is possible to classify correctly small
perturbations while rejecting large perturbations, answering
our first question.

On the other hand, under the same conditions, if we do not
allow rejection and consider any classifier g without rejec-
tion, then robust error of g at the same adversarial budget is
Rrej
ε0,ε(g) = Rε(g) ≥ R(ε0+ε)/2(g) ≥ Rrej

ε0,ε(f). In fact, there
can be a big gap between Rε(g) and R(ε0+ε)/2(g), e.g., when
a large fraction of inputs have distances in ((ε0 + ε)/2, ε) to
the decision boundary of g. In this case, allowing rejection
can bring significant benefit, answering our second question.
Note that if we set ε0 = 0, then the theorem reduces to
Theorem 5 in (Tramèr 2021).

Proposed Method
Consider a classifier without rejection g(x ;θc), g : X 7→ Y
realized by a DNN with parameters θc. The output of the
DNN is the predicted probability of each class h(x ;θc) =
[h1(x ;θc), · · · , hk(x ;θc)] ∈ ∆k. We define the logits or
the vector of un-normalized predictions as h̃(x ;θc) =

[h̃1(x ;θc), · · · , h̃k(x ;θc)] ∈ Rk. The output of the DNN is
obtained by applying the softmax function to the logits. The
class corresponding to the maximum predicted probability
is returned by g, i.e., g(x ;θc) := argmaxy∈Y hy(x ;θc).
The corresponding maximum probability is referred to as the
prediction confidence hmax(x ;θc) := maxy∈Y hy(x ;θc).
The prediction confidence has been used in prior works for
determining when the classifier should abstain from predic-
tion (Wu et al. 2018; Stutz, Hein, and Schiele 2020). In this
work, we focus on the robust training of a classifier with a
confidence-based reject option. Unlike many prior works, the
confidence is not simply used at test time for rejection, but is
included in our robust training objective.

We define a general classifier with a confidence-based
reject option f : X 7→ Y as follows

f(x ;θ) :=

{
g(x ;θc) if h⊥(x ;θ) ≤ η,
⊥ otherwise ,

(4)

where h⊥(x ;θ) ∈ [0, 1] is the predicted probability of re-
jection and η ∈ [0, 1] is a suitably-chosen threshold. We can
view h⊥(x ;θ) as a detector that either accepts or rejects
an input based on the classifier’s prediction, as shown in
Fig.1. The detector is defined as a general parametric func-
tion of the classifier’s un-normalized prediction h⊥(x ;θ) :=

u(h̃(x ;θc) ;θd), u : Rk 7→ [0, 1], with detector-specific
parameters θd 1. Here, we denote the combined parameter
vector of the classifier and detector by θT := [θTc θTd ].

1We discuss specific choices for the function u in the sequel.
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Figure 1: Overview of the proposed classifier with rejection.

Probability Model. The class-posterior probability model
of the classifier with reject option f is defined as follows:

Pθ(y |x) = (1− h⊥(x ;θ))hy(x ;θc)1{y 6= ⊥}
+ h⊥(x ;θ)1{y = ⊥}. (5)

An input x is accepted with probability 1 − h⊥(x ;θ) and
predicted into one of the classes y ∈ Y with probability
hy(x ;θc); otherwise x is rejected with probability h⊥(x ;θ)
and the class ⊥ is returned with probability 1.

Loss Functions
Consider the robust error with rejection defined in Eq. (1).
We would like to design smooth surrogate loss functions to
replace the 0 − 1 error functions in order the minimize the
robust error with rejection.

Figure 2: Nested perturbation balls (relative to the `2-norm) around
a clean input x; used to formalize our robust classification with
rejection setting.

Accept & Classify Correctly. First, consider the 0 −
1 error corresponding to small perturbations in the ε0-
neighborhood, 1{f(x′) 6= y}. We would like the corre-
sponding surrogate loss to take a small value when the
predicted probability for the true class y is high and
the predicted probability of rejection is low. The pre-
dicted probability of f can be viewed as a k + 1 di-
mensional probability vector over the k classes and the

reject class Y : [(1 − h⊥(x′ ;θ))h1(x′ ;θc), · · · , (1 −
h⊥(x′ ;θ))hk(x′ ;θc), h⊥(x′ ;θ)]. Note that the final term
corresponds to the probability of rejection, and the k + 1
probabilities sum to 1. For an input (x′, y) to be accepted and
predicted into class y, the target k + 1 dimensional one-hot
probability vector has a 1 corresponding to class y and zeros
elsewhere. We propose to use the cross-entropy loss between
this target one-hot probability and the predicted probability
of f , given by

`CE(x′, y ;θ) = − log[(1− h⊥(x′ ;θ))hy(x′ ;θc)]. (6)

We observe that the above loss function approaches 0 when
the probability of rejection is close to 0 and the predicted
probability of class y is close to 1; the loss function takes a
large value in all other cases. We also apply this cross-entropy
loss for clean inputs since we expect the classifier to accept
and correctly classify them.

Accept & Classify Correctly or Reject. Consider the 0−1
error corresponding to perturbations in the ε-neighborhood,
1{f(x′) /∈ {y,⊥}}. We would like the corresponding
surrogate loss to take a small value when the predicted
probability for the true class is high, or when the proba-
bility of rejection is high. To motivate the cross-entropy
loss for this case, consider k meta-classes defined as fol-
lows: {1, · · · , y ∨ ⊥, y + 1, · · · , k}, i.e., the reject op-
tion is merged only with the true class y. The predicted
probability of f over these meta-classes is given by: [(1 −
h⊥(x′ ;θ))h1(x′ ;θc), · · · , (1 − h⊥(x′ ;θ))hy(x′ ;θc) +
h⊥(x′ ;θ), · · · , (1−h⊥(x′ ;θ))hk(x′ ;θc)]

2. For an input
(x′, y) to be either rejected or accepted and predicted into
class y, the target k-dimensional one-hot probability vector
has a 1 corresponding to the meta-class y ∨ ⊥, and zeros
elsewhere. We propose to use the cross-entropy loss between
this target one-hot probability and the predicted probability
of f , given by

`rej
CE(x′, y ;θ) = − log

[
(1− h⊥(x′ ;θ))hy(x′ ;θc)

+ h⊥(x′ ;θ)
]
. (7)

This loss function approaches 0 when i) the probability of
rejection is close to 1, or ii) the probability of rejection is
close to 0 and the predicted probability of class y is close to
1. Note that both the loss functions have a range [0,∞).

Robust Training Objective
Given clean labeled samples (x, y) from a data distribution
D, a perturbation budget for robust classification ε > 0, and
a smaller perturbation budget ε0 ∈ [0, ε], we propose the
following training objective for learning a robust classifier
with a reject option:

L(θ) = E
(x,y)∼D

[
`CE(x, y ;θ) + β max

x′ ∈N (x,ε0)
`CE(x′, y ;θ)

+ γ max
x′ ∈N (x,ε)

`rej
CE(x′, y ;θ)

]
. (8)

2Note that this is a valid probability distribution over the meta-
classes that sums to 1.



The first term corresponds to the standard cross-entropy loss
on clean inputs from the data distribution. The second term
corresponds to the robust loss for small perturbations in the
ε0-neighborhood that we would like the classifier to accept
and correctly classify. The third term corresponds to the
robust loss for large perturbations in the ε-neighborhood
that we would like the classifier to either reject or accept
and correctly classify. The classifier parameters θc and the
detector parameters θd are jointly learned by minimizing
L(θ). The hyper-parameters β ≥ 0 and γ ≥ 0 control the
trade-off between the natural error and robust error terms of
the classifier. We use standard PGD attack (Madry et al. 2018)
to solve the inner maximization in our training objective.

Comments. Suppose we choose the detector to always ac-
cept inputs, i.e., h⊥(x ;θ) = 0, ∀x, and fix ε0 = ε, β = 1,
γ = 0, then the training objective specializes to standard ad-
versarial training. The proposed training objective (8) differs
from adversarial training by allowing large perturbations of
an input to be rejected, when the classifier is likely to predict
them incorrectly. As we show experimentally, the proposed
method of robust training with rejection typically has higher
robustness on unseen adversarial attacks that have a larger
perturbation budget ε than that used in training, whereas the
robustness of standard adversarial training drops significantly
on those unseen adversarial attacks.

Choice of the Detector
Recall that we defined the detector as a general para-
metric function of the classifier’s un-normalized predic-
tion, that outputs the probability of rejection h⊥(x ;θ) =

u(h̃(x ;θc) ;θd). We explored a few approaches for defin-
ing u(· ;θd) based on smooth approximations of the predic-
tion confidence maxy∈Y hy(x ;θc). For instance, we used
a temperature-scaled log-sum-exponential approximation to
the max function, followed by an affine transformation and
the Sigmoid function (in order to get a probabilistic out-
put). We also explored a multilayer fully-connected neural
network to model the detector, which takes the prediction
logits as its input and predicts the probability of rejection.
We found the neural network-based model of the detector to
have consistently better performance compared to the sim-
ple confidence-based approaches. Therefore, we adopt this
model of the detector in our experiments.

Design of Adaptive Attacks
We design strong adaptive attacks to evaluate the robustness
with rejection of our method. To compute robustness with
rejection at budgets ε0 and ε, we need to generate two adver-
sarial examples x′ ∈ N (x, ε0) and x′′ ∈ N (x, ε) for each
clean input (x, y). We generate the adversarial example x′

within the ε0-ball N (x, ε0) using the following objective:

x′ = argmax
x′∈N (x,ε0)

− log (1 − h⊥(x′ ;θ)) .

The goal of the adversary is to make the detector reject the
adversarial input by pushing the probability of rejection close

to 1 3. We generate the adversarial example x′′ within the
larger ε-ball N (x, ε) via the following objective:

x′′ = argmax
x′′∈N (x,ε)

`rej
CE(x′′, y ;θ).

By solving this objective, the adversary attempts to push
both the probability of rejection h⊥(x′′ ;θ) and the predicted
probability of the true class hy(x′′ ;θc) close to 0. Thus, the
goal of the adversary is to make the classifier-detector accept
and incorrectly classify the adversarial input.

We use the Projected Gradient Descent (PGD) method
with Backtracking proposed by (Stutz, Hein, and Schiele
2020) to solve the attack objectives. The hyperparameters
for PGD with backtracking are specified in the experiment
section. Adaptive attacks for evaluating the baseline methods
are discussed in the Appendix.

Experiments
In this section, we perform experiments to evaluate the pro-
posed method (SATR) and compare it to the baseline methods.
Our main findings are summarized as follows:

1) SATR achieves higher robustness with rejection compared
to adversarial training (with and without confidence-based
rejection) and CCAT (Stutz, Hein, and Schiele 2019).

2) On small perturbations, SATR has a much lower rejec-
tion rate compared to CCAT, which often rejects a large
fraction of the perturbed inputs;

3) Our method outperforms both CCAT and adversarial train-
ing under unseen attacks;

We next provide details on the experimental setup, datasets
and DNN architectures, baseline methods, and the perfor-
mance metric.

Setup

We describe the important experimental settings in this sec-
tion, and provide additional details about our method and the
baselines in the appendix.

Datasets. We perform experiments on the MNIST (LeCun
1998) and CIFAR-10 (Krizhevsky, Hinton et al. 2009) im-
age datasets. MNIST contains 50,000 training images and
10,000 test images from 10 classes corresponding to hand-
written digits. CIFAR-10 contains 50,000 training images and
10,000 test images from 10 classes corresponding to object
categories. Following the setup in (Stutz, Hein, and Schiele
2020), we compute the accuracy of the models on the first
9,000 images of the test set and compute the robustness of
the models on the first 1,000 images of the test set. We use
the last 1,000 images of the test set as a validation dataset for
selecting the rejection threshold of the methods.

3We appeal to the definition of robust error with rejection in
Eq. (2), where rejecting a perturbed input in the ε0-neighborhood is
considered an error.



Baseline Methods. We compare the performance of SATR
with the following three baselines: (1) AT: standard adver-
sarial training without rejection (i.e. accepting every in-
put) (Madry et al. 2018); (2) AT + Rejection: adversarial
training with rejection based on the prediction confidence;
(3) CCAT: confidence-calibrated adversarial training (Stutz,
Hein, and Schiele 2020).

DNN Architectures. On MNIST, we use the LeNet net-
work architecture (LeCun et al. 1989) for the classifier θc, and
use a three-layer fully-connected neural network with width
256 and ReLU activation function for the detector θd. On
CIFAR-10, we use the ResNet-20 network architecture (He
et al. 2016) for the classifier θc, and use a seven-layer fully-
connected neural network with width 1024, ReLU activation
function and a batch normalization layer for the detector θd.

Training Details. On both MNIST and CIFAR-10, we train
the model for 100 epochs with a batch size of 128. We use
standard stochastic gradient descent (SGD) starting with a
learning rate of 0.1. The learning rate is multiplied by 0.95
after each epoch. We use a momentum of 0.9 and do not
use weight decay for SGD. We split each training batch
into two sub-batches of equal size, and use the first sub-
batch for the first and the third loss terms in our training
objective (Eq. (8)), and use the second sub-batch for the
second loss term in our training objective. This is similar
to the 50% adversarial training strategy used e.g., in (Stutz,
Hein, and Schiele 2019). We set the hyper-parameters β =
1 and γ = 1 in our training objective without tuning. On
MNIST, we train the model from scratch, while on CIFAR-
10 we use an adversarially-trained model to initialize the
classifier parameters θc. On CIFAR-10, we also augment the
training images using random crop and random horizontal
flip. We use the standard PGD attack (Madry et al. 2018)
to generate adversarial training examples. On MNIST, we
use the PGD attack with a step size of 0.01, 40 steps and a
random start. On CIFAR-10, we use the PGD attack with a
step size of 2/255, 10 steps and a random start. In the training
objective, by default, we set ε = 0.3 and ε0 = 0.1 for MNIST,
and set ε = 8/255 and ε0 = 2/255 for CIFAR-10.

Performance Metric. We use the robustness with rejection
at budgets ε0 and ε, defined as 1 − Rrej

ε0,ε(f), as the evalu-
ation metric. For a fixed ε, we vary ε0 from 0 to ε over a
given number of values. Note that the ε0 in this performance
metric is different from the fixed ε0 that is used in the train-
ing objective of the proposed method. For convenience, we
define the factor α := ε0 / ε ∈ [0, 1], and calculate the ro-
bustness with rejection metric for each of the α values from
the set {0, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 1.0}. Note that each
α value corresponds to an ε0 value equal to α ε. We plot
a robustness curve for each method, where the α value is
plotted on the x-axis and the corresponding robustness with
rejection metric is plotted on the y-axis. A larger value of
robustness corresponds to better performance. Referring to
Fig. 3, we note that at the right end of this curve (ε0 = ε), the
robustness 1 − Rrej

ε,ε(f) corresponds to the standard defini-
tion of adversarial robustness without rejection (Madry et al.
2018). At the left end of this curve (ε0 = 0), the robustness

1−Rrej
0,ε(f) corresponds to the robustness with rejection de-

fined by (Tramèr 2021). In practice, we are mainly interested
only in the robustness for small values of α, where the radius
of perturbations (to be accepted) is small.

Evaluation. We use the same approach to set the rejection
threshold for all the methods. Specifically, on MNIST, we
set the threshold such that only 1% of clean validation inputs
are rejected. On CIFAR-10, we set the threshold such that
only 5% of clean validation inputs are rejected. We consider
`∞-norm bounded attacks and generate adversarial examples
to compute the robustness with rejection metric via the PGD
attack with backtracking (Stutz, Hein, and Schiele 2020). We
use a base learning rate of 0.05, momentum factor of 0.9, a
learning rate factor of 1.25, 200 iterations, and 10 random
restarts for generating adversarial examples x′ within the
ε0-ball N (x, ε0). For generating adversarial examples x′′
within the larger ε-ball N (x, ε), we use a base learning rate
of 0.001, a momentum factor of 0.9, a learning rate factor of
1.1, 1000 iterations, and 10 random restarts.

Results
We discuss the performance of the proposed method and the
baselines on the CIFAR-10 and MNIST datasets.

Evaluation under seen attacks. Figure 3 compares the ro-
bustness with rejection of the methods as a function of α for
the scenario where the adaptive attacks used for evaluation
use the same ε budget that was used for training the methods.
For the proposed SATR, the ε0 value used for training is
indicated (with the corresponding α value) using the vertical
dashed line. We observe that CCAT has comparable robust-
ness to AT only for α = 0, but its robustness quickly drops
for larger α. This suggests that CCAT rejects a large fraction
of small input perturbations based on its confidence threshold-
ing method. AT with confidence-based rejection has higher
robustness compared to standard AT on both datasets, which
suggests that including even a simple rejection mechanism
can help improve the robustness. On CIFAR-10, the proposed
SATR has significantly higher robustness with rejection for
small to moderate α, and its robustness drops only for large
α values (which are not likely to be of practical interest). On
MNIST, the robustness of SATR is slightly better than or
comparable to AT + Rejection for small to moderate α. This
suggests that SATR is successful at accepting and correctly
classifying a majority of adversarial attacks of small size.

Evaluation under unseen attacks. Figure 4 compares the
robustness with rejection of the methods as a function of α for
the unseen-adaptive-attack scenario, wherein a larger ε (com-
pared to training) is used for evaluation. AT, both with and
without rejection, performs poorly in this setting, suggesting
that it does not generalize well to unseen (stronger) attacks.
CCAT has relatively high robustness for α = 0; however, its
robustness sharply drops for larger α values. The significantly
higher robustness of SATR for a range of small to moderate
α values suggests that the proposed training method learns to
reject larger input perturbations, even if the attack is unseen.

Ablation study. We performed an ablation experiment to
study the effect of the hyper-parameter ε0 used by SATR
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Figure 3: Results on MNIST and CIFAR-10 datasets under seen adaptive attacks. On MNIST we set the perturbation budget ε = 0.3, while
on CIFAR-10 we set the perturbation budget ε = 8/255. The vertical dashed line corresponds to the ε0 = αε used for training SATR.
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Figure 4: Results on MNIST and CIFAR-10 datasets under unseen adaptive attacks. On MNIST, we set the perturbation budget ε = 0.4,
while on CIFAR-10 we set the perturbation budget ε = 10/255. The vertical dashed line corresponds to the ε0 = αε used for training SATR.

during training. The result of this experiment is shown in
Figure 5 for a few different ε0 values. Clearly, the choice
ε0 = 0 leads to poor robustness with rejection, suggesting
that a small non-zero value of ε0 is required for training to
ensure that SATR does not reject too many small adversarial
perturbations. We also observe that a larger ε0 during train-
ing typically leads to a higher robustness for large α values.
However, this may come at the expense of lower robustness
for small α, as observed on CIFAR-10 for ε0 = 4/255.

Conclusion
We explored the problem of learning an adversarially-robust
classifier with a reject option. We conducted a careful the-
oretical analysis of the problem and motivate the need for
not rejecting small perturbations of the input. We proposed
a novel metric for evaluating the robustness of a classifier
with reject option that subsumes prior definitions of robust-
ness, and provides a more fine-grained analysis of the radius
(size) of perturbations rejected by a given method. We pro-
posed a novel training objective for learning a robust classifier
with rejection that encourages small input perturbations to
be accepted and classified correctly, while allowing larger

input perturbations to be rejected when the classifier’s predic-
tion may be incorrect. Experimental evaluations using strong
adaptive attacks demonstrate significant improvement in the
adversarial robustness with rejection of the proposed method,
including the setting where unseen attacks with a larger ε
budget are present during evaluation.
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Appendix

Proof for Theorem 1
Theorem 2 (Restatement of Theorem 1). Consider binary
classification. Let g(x) be any decision boundary (i.e., any
classifier without a rejection option). For any 0 ≤ ε0 ≤ ε,
there exists a classifier f with a rejection option such that

Rrej
ε0,ε(f) ≤ R(ε0+ε)/2(g). (9)

Moreover, the bound is tight: there exist simple data dis-
tributions and g such that any f must have Rrej

ε0,ε(f) ≥
R(ε0+ε)/2(g).

Proof. For any r > 0, let N (g, r) denote the region within
distance r to the decision boundary of g:

N (g, r) := {x ∈ X : ∃x′, d(x′,x) ≤ r and g(x′) 6= g(x)}.

Consider a parameter δ ∈ [0, ε] and construct a classifier fδ
with rejection as follows:

fδ(x) :=

{
⊥ if x ∈ N (g, δ),

g(x) otherwise.
(10)

We will show that any sample (x, y) contributing error to
Rrej
ε0,ε(fδ) must also contribute error to Rε′(g), where ε′ =

max{ε0 + δ, ε− δ}. This will prove that Rrej
ε0,ε(fδ) ≤ Rε′(g),

which specializes toRrej
ε0,ε(fδ) ≤ R(ε0+ε)/2(g) for the choice

δ = (ε− ε0)/2. Consider the following two cases:

• Consider the first type of error in Rrej
ε0,ε(fδ):

maxx′∈N (x,ε0) 1 [fδ(x
′) 6= y] = 1. This implies

that there exists x′ ∈ N (x, ε0) such that fδ(x′) 6= y. So
there are two subcases to consider:

(1) x′ ∈ N (g, δ): in this case x ∈ N (g, δ + ε0).
(2) g(x′) 6= y: in this case either g(x) 6= y, or g(x) =

y 6= g(x′) and thus x ∈ N (g, ε0).
In summary, either g(x) 6= y or x ∈ N (g, ε0 + δ).

• Next consider the second type of error in Rrej
ε0,ε(fδ):

maxx′′∈N (x,ε) 1 [fδ(x
′′) 6∈ {y,⊥}] = 1. This means

there exists an x′′ ∈ N (x, ε) such that fδ(x′′) 6∈ {y,⊥},
i.e., x′′ 6∈ N (g, δ) and g(x′′) 6= y. This implies that all
z ∈ N (x′′, δ) should have g(z) = g(x′′) 6= y. In par-
ticular, there exists z ∈ N (x′′, δ) with d(z,x) ≤ ε − δ
and g(z) 6= y. It can be verified that z = δ

ε x + ε−δ
ε x′′,

which is a point on the line joining x and x′′, satisfies
the above condition. In summary, either g(x) 6= y, or
g(x) = y 6= g(z) and thus x ∈ N (g, ε− δ).

Overall, a sample (x, y) contributing error to Rrej
ε0,ε(fδ) must

satisfy either g(x) 6= y or x ∈ N (g, ε′), where ε′ =
max{ε0 + δ, ε− δ}. Clearly, such a sample also contributes
an error to Rε′(g). Therefore, we have

Rrej
ε0,ε(fδ) ≤ Rε′(g), (11)

which leads to the desired bound when δ = (ε− ε0)/2 and
ε′ = (ε+ ε0)/2.

To show that the bound is tight, consider the following
data distribution. Let x ∈ R and y ∈ {−1,+1}, 0 < ε0 < ε,
and let α ∈ (0, 1/2) be some constant: (x, y) is (−4ε,−1)
with probability (1 − α)/2, (−ε0/4,−1) with probability
α/2, (ε0/4,+1) with probability α/2, and (4ε,+1) with
probability (1 − α)/2. Let g(x) := sign(x + ε). It is clear
thatR(ε0+ε)/2(g) = α/2. It is also clear that any f must have
Rrej
ε0,ε(f) ≥ α/2 since the points x = −ε0/4 and x = ε0/4

have distance only ε0/2 but have different labels.

Experimental Details
General Setup
Software and Hardware. We ran all our experiments with
PyTorch and NVDIA GeForce RTX 2080Ti GPUs.

Number of Evaluation Runs. We ran all experiments
once with fixed random seeds.

Dataset. MNIST (LeCun 1998) is a large dataset of hand-
written digits. Each digit has 5,500 training images and
1,000 test images. Each image is 28×28 grayscale. CIFAR-
10 (Krizhevsky, Hinton et al. 2009) is a dataset of 32×32
color images with ten classes, each consisting of 5,000 train-
ing images and 1,000 test images. The classes correspond to
different objects such as dogs, frogs, ships, trucks, etc. We
normalize the range of pixel values to [0,1].

Multiple restart PGD Attacks. We use PGD attacks
with multiple restarts for evaluating the robustness. Follow-
ing (Stutz, Hein, and Schiele 2020), we initialize the pertur-
bation δ uniformly over directions and norm:

δ = u ε
δ′

‖δ′‖∞
, δ′ ∼ N (0, I), u ∼ U(0, 1)

where δ′ is sampled from the standard Gaussian and u ∈
[0, 1] from a uniform distribution. We also consider zero
initialization, i.e., δ = 0. We allocate one restart for zero ini-
tialization, and multiple restarts for the random initialization.
We finally select the perturbation corresponding to the best
objective value obtained throughout the optimization.

Baselines
We consdier three baselines: (1) AT: adversarial training with-
out rejection (i.e. accepting every input); (2) AT+Rejection:
adversarial training with confidence-based rejection; (3)
CCAT: confidence-calibrated adversarial training. We pro-
vide their training details below.

AT and AT+Rejection. We consider the standard adver-
sarial training proposed in (Madry et al. 2018) and use the
following training objective:

L(θ) = E
(x,y)∼D

[
`CE(x, y ;θ) + max

x′ ∈N (x,ε)
`CE(x′, y ;θ)

]
.

We train on 50% clean and 50% adversarial examples per
batch. On MNIST, we use the LetNet network architec-
ture (LeCun et al. 1989) and train the network for 100 epochs
with a batch size of 128. We use standard stochastic gradi-
ent descent (SGD) starting with a learning rate of 0.1. The



learning rate is multiplied by 0.95 after each epoch. We use
a momentum of 0.9 and do not use weight decay for SGD.
We use the PGD attack to generate adversarial training ex-
amples with ε = 0.3, a step size of 0.01, 40 steps and a
random start. On CIFAR-10, we use the ResNet-20 network
architecture (He et al. 2016) and train the network following
the suggestions in (Pang et al. 2021a). Specifically, we train
the network for 110 epochs with a batch size of 128 using
stochastic gradient decent (SGD) with Nesterov momentum
and learning rate schedule. We set momentum 0.9 and `2
weight decay with a coefficient of 5× 10−4. The initial learn-
ing rate is 0.1 and it decreases by 0.1 at 100 and 105 epoch
respectively. We augment the training images using random
crop and random horizontal flip. We use the PGD attack to
generate adversarial training examples with ε = 8/255, a
step size of 2/255, 10 steps and a random start.

CCAT. We follow the original training settings for CCAT
in (Stutz, Hein, and Schiele 2020) and train models on
MNIST and CIFAR-10 using standard SGD. On MNIST,
we use the LetNet network architecture (LeCun et al. 1989)
and train the network for 100 epochs with a batch size of
100 and a learning rate of 0.1. On CIFAR-10, we use the
ResNet-20 network architecture (He et al. 2016) and train
the network for 200 epochs with a batch size of 100 and a
learning rate of 0.075. We augment the training images using
random crop and random horizontal flip on CIFAR-10. On
both MNIST and CIFAR-10, we use learning rate schedule
and the learning rate is multiplied by 0.95 after each epoch.
We use a momentum of 0.9 and do not use weight decay for
SGD. We use the PGD attack with backtracking to generate
adversarial training examples: we use a learning rate of 0.005,
a momentum of 0.9, a learning rate factor of 1.5, 40 steps
and a random start. We randomly switch between the random
initialization and zero initialization. We train on 50% clean
and 50% adversarial examples per batch.

Adaptive Attacks for Confidence-based Detectors
We design adaptive attacks to evaluate the robustness with
rejection of classifiers using confidence (or maximum soft-
max score) to reject adversarial inputs (e.g. AT+Rejection
and CCAT). To compute robustness with rejection at bud-
gets ε0 and ε, we need to generate two adversarial examples
x′ ∈ N (x, ε0) and x′′ ∈ N (x, ε) for each clean input (x, y).
We generate the adversarial example x′ within the ε0-ball
N (x, ε0) using the following objective:

x′ = argmax
x′∈N (x,ε0)

−
k∑
j=1

hj(x
′ ;θc)

2.

The goal of the adversary is to make the detector reject the ad-
versarial input by pushing the softmax output of the network
close to uniform.

We generate the adversarial example x′′ within the larger
ε-ball N (x, ε) via the following objective:

x′′ = argmax
x′∈N (x,ε)

max
j 6=y

hj(x
′ ;θc).

By solving this objective, the adversary attempts to find mis-
classified adversarial examples with high confidence. Thus,

the goal of the adversary is to make the classifier-detector
system accept and incorrectly classify the adversarial input.

We use the Projected Gradient Descent (PGD) method
with Backtracking proposed by (Stutz, Hein, and Schiele
2020) to solve the attack objectives. The hyperparameters
for PGD with backtracking are specified in the experiment
section of the main paper.

Additional Results
Evaluation on clean test inputs. We evaluate our method
and the baselines on clean test inputs. We calculate the ac-
curacy with rejection defined as the accuracy on accepted
test inputs, and the rejection rate defined as the fraction of
rejected test inputs. The results given in Table 1 show that our
method SATR has comparable performance to the baselines
on clean test inputs.

Dataset Method Acc. with Rej. Rej. Rate

MNIST

AT 99.08 0.00
AT+Rejection 99.68 1.71
CCAT 99.88 1.51
SATR (Ours) 99.76 1.61

CIFAR-
10

AT 88.07 0.00
AT+Rejection 90.73 5.42
CCAT 91.78 5.80
SATR (Ours) 91.51 4.86

Table 1: Evaluation on clean test inputs. The accuracy with rejec-
tion is defined as the accuracy on the accepted test inputs and the
rejection rate is defined as the fraction of test inputs that are rejected.
All values are in percentages.


