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Figure 1. Our proposed Latent Motion Prior (LaMP) framework provides a robust, universal latent motion prior suitable for both text-
to-motion generation and optimization-based downstream tasks. Motion Blending: LaMP generates a smooth transition (yellow) between
two distinct input motions (blue), such as standing and performing a cartwheel. Motion Editing: The model adapts a motion sequence to
reach a specific target position (indicated by the red sphere). Collision Avoidance: Given an input motion that intersects with an obstacle
(left), LaMP optimizes the trajectory to avoid the red obstacle while preserving the original motion semantics (right). Motion Refinement:
LaMP effectively removes artifacts from a noisy input (left) to produce a physically plausible, refined motion (right).

Abstract

We present Latent Motion Prior (LaMP) , a novel frame-
work for learning a generalizable human motion prior
that enables efficient optimization for a wide range of
motion-related tasks, including text-to-motion generation,
motion editing, motion blending, motion refinement, and
environment-aware collision avoidance. LaMP employs a
body part-based encoder to learn a disentangled latent rep-
resentation of human motion, together with a masked train-
ing strategy that encourages the model to capture the most
informative structural and dynamic aspects of the motion.
As a result, LaMP produces a robust and expressive la-
tent space that serves as a latent motion prior across di-
verse downstream tasks. We evaluate the learned represen-

tation on a wide range of optimization-based downstream
tasks. Experimental results show that the current fami-
lies of text-to-motion models are generally not suitable to
serve as a motion prior, while LaMP consistently outper-
forms the state-of-the-art methods across all optimization
tasks. The code is available at: https://github.
com/lvsean/LaMP.

1. Introduction

Human movement is purposeful and reactive: people plan
whole-body actions to achieve intentions while adapting to
environmental feedback. Modeling and generating such be-
havior is a central goal across robotics, graphics, biome-



chanics, and virtual environments, where the key chal-
lenge is to produce realistic, controllable motion that re-
spects physics and high-level intent. Recent data-driven
approaches [2, 3, 10, 11, 41, 49] condition on text, ac-
tion labels, video, or 2D/3D poses, with diffusion- and
transformer-based models now leading the field and en-
abling coherent, human-like motion for immersive VR/AR
applications.

The diversity of these motion-centric applications high-
lights the need for a universal human motion prior ca-
pable of capturing the underlying patterns across disparate
tasks [19, 20, 36, 38, 39, 46]. Such human motion prior
should encapsulate the inherent expectations of human
movement, including kinematic constraints, realistic joint
trajectories, and the fundamental dynamics of everyday ac-
tions. By filtering out anatomically or physically implau-
sible motions, this prior serves as a critical regularizer for
downstream tasks like 2D/3D pose estimation [36, 46], con-
ditioned generation [20], and action understanding [51].
Ideally, an effective prior is data-efficient and transferable
across various downstream tasks without requiring special-
ized models or retraining. The development of such a gen-
eralizable prior is particularly vital given the scarcity of
human-motion data [12, 26, 42, 50], especially datasets
for task-specific supervision, which are even more lim-
ited [34, 35, 40].

Recent lines of task-specialized motion generation work,
especially for text-to-motion, have achieved notable im-
provements in performance but often at the cost of flex-
ibility and generalization. Discrete tokenization meth-
ods [10, 14, 31, 32] utilize transformers, demonstrating
strong performance in text-to-motion. However, by quan-
tizing motion into discrete tokens, they discard the con-
tinuous nature of motion data, making them unsuitable for
optimization-based tasks such as editing. On the other hand,
diffusion-based approaches [2, 21, 41, 43, 49] can serve as
powerful motion priors, but prevailing designs often opti-
mize for a higher text-to-motion score at the expense of
its applicability to other tasks by collapsing to overly low-
dimensional latent space that discards kinematic detail [15].
Furthermore, we observe that adversarial objectives can in-
advertently narrow the latent space, further hindering gen-
eralization to unseen tasks.

To address these challenges, we propose a novel frame-
work LaMP to learn a robust latent motion prior. Our key
insight is that the quality of a diffusion-based motion prior
heavily depends on the structure of the latent space. The
proposed method utilizes a part-based encoder to preserve
local kinematic details and introduce a spatial-temporal
masking training strategy during training. This strategy
forces the model to distill the most informative features
from redundant raw motion data. This enables the model
to learn a compact yet expressive latent space.

Unlike previous works [2, 10, 32] that rely on either
high-dimensional or overly compressed representations, our
model provides a balanced latent space that enables an ef-
fective motion prior which supports various downstream
tasks, including motion generation, editing, refinement,
blending, and physically-aware tasks like collision avoid-
ance. The main contributions of this paper are:
1. We introduce a novel Masked Motion Autoencoder

to learn a low-dimensional and semantically meaning-
ful representation of human motion. We developed a
diffusion-based generative model over this latent space,
enabling flexible and robust human motion synthesis.

2. We tested and showed that popular text-to-motion
pipelines are generally not suitable as a motion prior for
the downstream tasks.

3. We evaluate our method on benchmark human motion
datasets and demonstrate that it produces realistic, di-
verse, and controllable motion sequences across diverse
scenarios, including motion generation, editing, and re-
finement, achieving state-of-the-art performance with
improved control and generality.

2. Related Work
2.1. Human motion representation

Human motion representation is fundamental in synthesiz-
ing human movement. Early approaches relied on mo-
tion capture datasets such as CMU Mocap [16], where
motion was typically encoded as joint trajectories or pro-
jected into latent spaces using PCA. Traditional representa-
tions [7, 41] were largely human-designed, leveraging ve-
locities and other kinematic or dynamic features. How-
ever, these representations are often sparse and redundant,
forcing models to waste capacity on high-dimensional noise
rather than learning the underlying motion distribution from
limited data.

To overcome these limitations, sequence-to-sequence
models [4, 25] have been employed to learn latent embed-
dings for motion prediction generation. Variational Autoen-
coders (VAEs) [2, 43] further advanced this direction by
learning compact latent spaces for motion, though VAEs of-
ten struggle to preserve fine-grained motion details. Recent
autoregressive models [10, 14, 32] have shifted attention to
discrete vector quantization, which trades off the inherent
continuity of natural human motion for learning a more reg-
ularized and structured latent space.

2.2. Human Motion Generation

Recent advancements in human motion generation have ex-
plored various modalities to drive the synthesis of realis-
tic movements. Those works generate human motion both
conditionally and unconditionally [29, 37, 45, 47, 48]. The
condition signals include inputs from different modalities
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Figure 2. Approach Overview of LaMP. Stage (a): We first train a Masked Autoencoder to learn a robust latent space for human motion.
Each training sequence is encoded using six part-based encoders and one full-body encoder to combine them. During training, a portion of
the motion sequence is randomly masked. The model then reconstructs it from the remaining visible parts. Stage (b): We use the frozen
MME to encode motion data into the latent space. Then, we train a latent diffusion model following the standard text-to-motion setting.
Stage (c): Finally, we demonstrate that the resulting model can be used as a general motion prior for downstream tasks, including motion
refinement, motion editing, motion blending, and collision avoidance, where the desired motion can be found by optimizing the latent
diffusion noise.

such as text [1, 2, 7, 9, 32], audio [17, 18, 22], and ac-
tions [3, 11, 30]. Text-driven approaches leverage natu-
ral language descriptions to generate corresponding human
motions, enabling intuitive control over the motion.

VQ and transformer-based methods [10, 21, 27, 31–
33] remain competitive for text-to-motion generation, while
lacking the ability to do fine-grained, differentiable con-
trol. Diffusion-based models offer a continuous space but
also exhibit limitations. MDM [41] uses high-dimensional
representations, leading to sparse and unstable latent noise
spaces. MLD [2], on the other hand, compresses motions
into low-dimensional vectors losing the details of motions.
More recent EMDM [49] incorporating adversarial losses
(e.g., GANs) narrows the optimization space, reducing the
generalizability and robustness of the model.

2.3. Human Motion Prior

Recent advances in text-to-motion generation have shown
impressive progress, but their generalization ability to other
tasks remains limited. In computer vision, human motion

priors are often employed as statistical or generative models
that capture the inherent regularities of human movement.
Emerging research demonstrates that learning more expres-
sive motion priors can significantly benefit a wide range of
downstream tasks [19, 20, 24, 36, 38, 39, 44, 46].

DNO [15] demonstrates that the learned diffusion space
can serve as an effective prior for optimization-based mo-
tion tasks, although this optimization is confined to a joint
representation space. The challenge of optimization, start-
ing from the latent space of diffusion models [2], remains
unresolved. Our model demonstrates that optimization over
latent space can be achieved within the learned representa-
tion of the motion prior.

3. Method

Figure 2 shows the overall approach of LaMP, which is
composed of three stages. The first stage learns a flexi-
ble and robust latent representation from raw human motion
using a Masked Motion Autoencoder. The model architec-



ture is introduced in Sec. 3.1. In the second stage, using
the frozen encoder, we learn a Latent Diffusion Model that
generates motion tokens conditioned on text prompts, as de-
scribed in Sec. 3.2. Finally, we demonstrate that the learned
diffusion process can serve as a general motion prior for
downstream tasks via optimization in the diffusion noise
space in Sec. 3.3.

3.1. Masked Motion Autoencoder

Our goal is to learn a sequence of latent motion tokens in
continuous space from partially observed raw human mo-
tion input and reconstruct the original sequence. We in-
troduce a Masked Motion Autoencoder that follows the
training paradigm of [13], with body part-based encoders
that observe only a subset of spatio-temporal patches and a
lightweight decoder that reconstructs the masked motion.

Notation. Let a motion clip be X ∈ RL×J with L
frames and a J-dimensional representation for N joints
(e.g. 3D positions and rotation parameters). We parti-
tion the body skeleton into P = 6 disjoint parts P =
{Head,Left Arm,Right Arm,Left Leg,Right Leg,Root},
with part joint index sets Sp ⊂ {1, . . . , J} and Jp = |Sp|
so that

∑P
p=1 Jp = J .

3.1.1 Part-based Encoder

Patchify the Motion We segment the sequence along
time into non-overlapping windows of length τ frames,
yielding L′ = ⌊L/τ⌋ temporal patches. For each part p and
time index l ∈ {1, . . . , L′} we extract a spatio-temporal
patch X

(p)
l ∈ Rτ×Jp , which we vectorize and linearly

project to a fixed d-dimensional token:

h
(p)
l = X

(p)
l W

(p)
emb + b

(p)
emb, h̃

(p)
l = h

(p)
l + ptime

l + ppart
p ,

where W
(p)
emb ∈ R(τJp)×d, h

(p)
l ∈ Rd. This yields N =

L′·P tokens. We add a temporal positional encoding ptime
l ∈

Rd and a learned part-based type embedding ppart
p ∈ Rd:

Random Masking Following the training paradigm
from [13], we randomly sample a mask Mp ⊂
{1, . . . , L′}, p ∈ {1, . . . , P} for each body part by mask-
ing a fraction ρ ∈ (0, 1) of tokens uniformly. The visible
set is Vp = {1, . . . , L′} \Mp with |Vp| = (1− ρ)L′. Only
the visible tokens are fed into the corresponding part-wise
Transformer encoders, while masked tokens will be masked
out as zero, which mitigates bias towards specific joints or
keyframes and forces the model to learn strong motion pri-
ors across parts and time.

Full Body Transformer Encoder The model then con-
catenates the encoded tokens from the part-wise encoders
to form a unified token sequence for the full body represen-
tation.

ul = concatPp=1h̃
(p)
l ∈ RD, D = P × d,

Therefore, the input sequence u will have a shape L′ ×D.
The masked token sequence is fed to a stack of Transformer
blocks (ViT-style) with pre-norm, multi-head self-attention,
and MLP. Let z ∈ RL′×D denote the final output from the
transformer as the latent representation for the input motion
X, enabling cross-part interaction and global motion under-
standing. Collectively, z = E(u) ∈ RL′×D.

3.1.2 Part-based Decoder

The decoder receives learned mask tokens and reconstructs
the motion from the latent representation z. We add the
same positional encoding as in the encoder and a shared
Transformer decoder predicts latent representations for all
tokens. A part-specific linear head projects each decoded
token back to the vectorized patch space:

X̂l = D(z)l ∈ Rτ×J ,

Finally, we unpatchify by reshaping X̂l to Rτ×J and stitch-
ing all parts and time windows to obtain the reconstruction
(we drop trailing frames if L is not divisible by τ ).

3.1.3 Variational Regularization

To encourage a structured and robust latent space, we aug-
ment the encoder with a variational branch that predicts
token-wise mean µ and variance σ that parameterize a di-
agonal Gaussian posterior for each visible token:

q(z | X) = N
(
µ, diag(σ2)

)
,

During training we apply the reparameterization trick for
visible tokens and replace z by ẑ in the decoder input.

3.1.4 Training Objective

The overall objective is a weighted sum of three terms:

L = αLrec + γ Ljoint + β LKL,

Reconstruction Loss We impose a reconstruction loss on
the recovered motion representation:

Lrec =
1

T ′J

T ′∑
t=1

J∑
j=1

∥∥X̂(j)
t −X

(j)
t

∥∥2
2
,



Joint-space consistency After unpatchifying, we enforce
accuracy in the original joint space using a forward kine-
matics function Π that maps predicted parameters to 3D
joints.

Ljoint =
1

T ′τ

T ′τ∑
s=1

1

N

N∑
n=1

∥∥∥Π(X̂s,n,:

)
−Π

(
Xs,n,:

)∥∥∥2
2
,

KL divergence We regularize the token-wise posterior
towards the standard normal prior:

LKL = DKL
(
N
(
µ, diag(σ2)

) ∥∥ N (0, I)
)
,

Modeling at the part level preserves fine-grained motion
details while the shared Transformer enables cross-part in-
formation. The masking training strategy prevents short-
cut copying and encourages the encoder learning a more
robust motion prior. The variational prediction provides a
calibrated latent space that supports sampling and improves
robustness.

3.2. Latent Diffusion on Motion Tokens

After training the masked autoencoder, we freeze the en-
coder and follow [28] to train a latent text-to-motion diffu-
sion model.

Denoiser For each text/motion training data pair, we learn
a latent diffusion model conditioned on the text to generate
latent token sequence with full observation of the motion
z0 ∈ RL′×D, where D = P · d. A transformer denoiser
ϵθ predicts noise conditioned on the given timestep and op-
tional conditioning signal c (text input)

ϵ̂ = ϵθ(zt, t, c),

We train with the simple objective using classifier-free guid-
ance by randomly dropping c with probability p∅.

Ldiff = Et,z0,ϵ∥ϵ− ϵθ(zt, t, c)∥22,

Generation At inference time, we sample zTs
∼N (0, I),

iterate reverse steps to z0, then decode to motion via the
frozen decoder pipeline: (i) split z0 to tokens (t, p), (ii) run
the decoder heads and unpatchify to get X̂. Guided sam-
pling uses ϵguided = (1+w) ϵθ(·, c) − w ϵθ(·, ∅) with scale
w.

3.3. Optimization on Diffusion Noise

The learned diffusion model introduced in Sec. 3.2 is able
to generate motion sequences conditioned on text prompts.
Beyond text-to-motion generation, the learned diffusion
process itself serves as a powerful motion prior. Instead
of treating the denoiser as a black-box generator, we can
explicitly optimize the initial noise to satisfy downstream
objectives.

Noise optimization formulation Given an initial Gaus-
sian noise ϵ0 ∼ N (0, I), the diffusion process generates a
motion sequence via the reverse dynamics of the denoiser
ϵθ. Instead of fixing ϵ0, we optimize it with respect to a
downstream task objective Ltask(X̂), where X̂ is the recon-
structed motion. The optimization is performed by back-
propagating through the full denoising chain with a learning
rate η:

ϵ0 ← ϵ0 − η∇ϵ0 Ltask(X̂),

Applications We adopt this optimization strategy for
downstream motion-related tasks introduced in [15] by
defining task-specific objectives Ltask:
• Motion Refinement Given a noisy motion X∗, motion

refinement projects X∗ to the closest clean motion in the
prior by minimizing the distance between noisy motion
and the generated motion:

Lrefine =
1

LT

T∑
t=1

J∑
j=1

∥∥∥X̂t,j −X∗
t,j

∥∥∥2
2
,

• Obstacle Collision Avoidance Considering an obstacle
O, let sdf(p,O) denote the signed distance field from a
joint position p to the obstacle surface. Obstacle collision
avoidance task penalizes the collision with the object:

Lcoll =
1

T

T∑
t=1

[
min

(
0, sdf(X̂t,O)

)]2
,

• Motion Editing Given a set key-frames K =
{(tk,X∗

tk
)}, motion editing task edits the input motion

at the supervised frames:

Ledit =
1

|K|
∑

(tk,X∗
tk

)∈K

∥∥∥X̂tk −X∗
tk

∥∥∥2
2
,

• Motion Blending Motion blending task is to interpolate
smooth transition between two motion clips XA and XB

while preserving the start of motion XA and the end of
motion XB :

Lblend =
∥∥∥X̂start −XA

start

∥∥∥2
2
+
∥∥∥X̂end −XB

end

∥∥∥2
2
,

Each of these objectives is differentiable, enabling end-
to-end optimization of the initial noise ϵ0. The optimization
procedure effectively adapts the generated motion to satisfy
external constraints while preserving the motion semantic
through the strong motion prior imposed by the diffusion
model.

4. Experiments
We first evaluate our approach on the standard text-to-
motion task in Sec. 4.1. Then, we assess the learned model



Table 1. Performance of Text-to-Motion Generation on the
HumanML3D [6] dataset. R@3 denotes R-Precision (Top 3).

Methods Optimization Support FID ↑ R@3 ↓ MM Dist ↓ Diversity→

Real 0.002 0.797 2.974 9.503

Momask [10] ✗ 0.045 0.807 2.958 -
MMM [32] ✗ 0.089 0.804 2.926 9.577
BAMM [31] ✗ 0.055 0.808 2.936 9.636

T2M [7] ✓ 1.067 0.740 3.340 9.188
MDM [41] ✓ 0.544 0.611 5.566 9.559
MLD [2] ✓ 0.473 0.773 3.196 9.724
EMDM [49] ✓ 0.112 0.786 3.110 9.551

LaMP(Res) ✓ 0.469 0.700 3.609 9.317
LaMP(ViT) ✓ 0.292 0.752 3.293 9.465

as a motion prior across various downstream applications in
Sec. 4.2, demonstrating its effectiveness as a prior in opti-
mization. For each task, we compare against state-of-the-art
baselines in terms of motion quality, controllability, accu-
racy, and diversity. Additionally, we conduct ablation stud-
ies to show the impact of each design decision in Sec. 4.3.
We also train a ResNet-based variant of LaMP; in what fol-
lows, we refer to it as LaMP(Res), and we use LaMP(ViT)
for the model trained with a ViT architecture.

4.1. Text-to-Motion Generation

We conduct experiments in text-to-motion generation to
show that the LaMP feature improves motion generation by
learning a better motion representation. Our study utilizes
HumanML3D [6] for text-to-motion generation experiment.

Dataset HumanML3D [6] encompasses 14,616 unique
human motion sequences from AMASS [23] and Human-
Act12 [5] datasets with 44,970 individual text annotations.
For uniformity, all motion sequences HumanML3D are
padded to a length of 256 frames for training.

Metrics (1) Fréchet Inception Distance (FID) measures
the distributional gap between real and generated motions
by computing the Fréchet distance between their feature
embeddings extracted with a pretrained model [8]. (2) R-
Precision@3. For each generated sequence, we compare
its embedding to 32 candidate texts (1 ground-truth + 31
distractors) using Euclidean distance and report whether
the correct text appears in the top-3. (3) Diversity. As-
sesses coverage by averaging pairwise embedding distances
over randomly paired generations across the test prompts.
(4)MM-Dist measures intra-prompt diversity by averaging
pairwise embedding distances among multiple samples gen-
erated from the same input text.

Results As shown in Tab. 1, our method achieves com-
parable performance with state-of-the-art diffusion models.
The VQVAE-based methods [10, 31, 32] obtain the best
scores in terms of FID, R-Precision, and Diversity, but they
lack the ability to optimize for the target objectives. In the

following experiments, we will demonstrate that although
some diffusion-based baselines [49] achieve higher scores
on text-to-motion metrics, their latent distributions are less
robust for optimization, leading to failure in motion-related
downstream tasks.

4.2. Optimization Based Motion Tasks

4.2.1 Motion Refinement

Table 2. Performance Metrics for Motion Refinement

Action FID ↓
(gen)

Dist ↓
(gen/gt)

FID ↓
(gen/gt)

Foot ↓
skating ratio

MLD [2] 4.86 0.04 4.55 3.44
MDM-DNO [15] 2.06 0.02 2.65 0.12
EMDM [49] 22.89 0.07 23.19 0.68
LaMP(Res) 1.01 0.01 1.43 0.12
LaMP(ViT) 0.72 0.01 0.91 0.12

Given a noisy input motion, motion refinement aims to
refine the noisy motion to be more realistic by projecting the
input motion to the motion prior. The optimization-based
approach addresses this by initializing the latent with a ran-
dom xT ∼ N (0, I), setting the target objective to the noisy
input, and optimizing Lrefine.

In this experiment, we compare the learned latent mo-
tion prior of LaMP representation with baselines across
MDM [49], MLD [2], and EMDM [49]. The original
DNO [15] is built on the MDM diffusion model. Therefore,
we labeled them in the same column. We sample 1,024 mo-
tions from the HumanML3D test dataset and add three types
of noise—Gaussian, Perlin, and Sinusoidal—to each body
joint as the noisy joint input and see the refined motion from
each model.

Metrics We evaluate each optimized motion from two
perspectives: (1) Realism with respect to the training data
assessed via the Foot skating ratio and the FID (gen) score.
The Foot skating ratio measures the incoherence between
the human motion by calculating the proportion of frames
in which a foot skates for more than a certain distance (2.5
cm) which contact with the ground (foot height ≤ 5 cm).
FID (gen) computes the distance between the refined mo-
tions feature distribution and the ground truth motions fea-
ture distribution. (2) Fidelity to the original noisy input as-
sessed by measuring the MSE distance of latent representa-
tions between the refined and the original motions (reported
as dist (gen/gt) in the table), as well as the FID (gen/gt),
which is computed as the difference between the distribu-
tion of the refined motions and the original motions.

Results As shown in Tab. 2, LaMP achieves the best per-
formance on the test data for both foot-skating ratio and
FID (gen). These results show that input noisy motions are



refined by our model into motions which are more close
to the ground truth distribution. Moreover, LaMP (ViT) at-
tains the lowest dist(gen/gt) and FID(gen/gt) scores, demon-
strating that the refined motions maintain high fidelity to the
original inputs.

4.2.2 Obstacle Collision Avoidance

We further evaluated our method in obstacle collision avoid-
ance. In this task, the input motion must navigate around
obstacles while preserving the original semantics. For the
experiment, we randomly sampled 1,024 motion sequences
from the test dataset and placed eight spherical obstacles
with a radius of 30 cm around the initial position of each
motion. The objective function is to minimize Lcoll such
that collisions with obstacles are avoided. Since this task
needs to obtain the initial noise of the input motion, while
EMDM [49] doesn’t provide a solution to obtain the initial
noise from the given motion, we do not include it as a base-
line here.

We assess performance using four metrics: FID(gen),
dist(gen/gt), FID(gen/gt), and collision loss. The collision
loss is defined as the mean distance between the charac-
ter’s feet and the obstacles in frames where collisions oc-
cur, normalized by the sequence length. Other metrics are
mentioned before.

Table 3. Performance Metrics for SDF Collision Avoidance

Model FID ↓
(gen)

Dist ↓
(gen/gt)

FID ↓
(gen/gt)

Collision ↓
loss(m)

MLD [2] 2.19 0.02 1.07 2.28
MDM-DNO [15] 1.47 0.00 0.55 0.00
LaMP(Res) 1.24 0.01 0.52 0.00
LaMP(ViT) 1.36 0.00 0.35 0.00

Results As shown in Tab. 3, LaMP with ViT architecture
achieves the lowest collision loss, demonstrating the capa-
bility to guide avoiding obstacle collisions based on envi-
ronmental feedback. At the same time, it maintains a low
FID (gen), indicating that the optimized motions remain
realistic. It also reaches the lowest dist (gen/gt) and FID
(gen/gt), further confirming that doing optimization on the
learned motion prior closely preserves the characteristics of
the original sequences. We can also find that MDM [49]
provides worse but reasonable results. However, MLD [2]
model fails to avoid the collision since its compressed latent
representation loses the details of the motion.

4.2.3 Motion Editing

We then conduct experiments on motion editing task.
For evaluation, we sampled 1,024 motions from the Hu-
manML3D test set. Given an input motion, we randomly

Table 4. Performance Metrics for Motion Editing

Model FID ↓
(gen)

Dist ↓
(gen/gt)

Foot ↓
skating ratio

Objective ↓
Error(m)

MLD [2] 13.07 0.08 12.55 0.46
MDM-DNO [15] 7.12 0.03 0.10 0.01
LaMP(Res) 5.58 0.03 0.11 0.00
LaMP(ViT) 1.35 0.00 0.10 0.01

selected a target pelvis position within a range of −3 m to
+3 m relative to the initial position and edited the motion
to align with the target. To further analyze semantic preser-
vation in edited motions, we followed prior work [15] and
examined four representative motion types—jumping, long
jumping, walking with raised hands, and crawling—to pro-
vide a detailed case study of editing performance.

Table 5. Performance Metrics for Motion Editing

Action Content ↑
Preserve

Objective ↓
Error (m)

Foot ↓
skating ratio

Jitter ↓

“jumping”
Input 1.00 1.59 0.00 0.23
MLD [2] 0.95 0.16 0.26 0.75
MDM-DNO [15] 0.85 0.00 0.01 0.67
LaMP(Res) 0.87 0.00 0.04 0.45
LaMP(ViT) 0.98 0.00 0.02 0.65

“doing a long jump”
Input 1.00 1.99 0.00 0.69
MLD 0.90 0.00 0.14 0.78
MDM-DNO 0.59 0.00 0.01 1.20
LaMP(Res) 0.78 0.00 0.04 1.45
LaMP(ViT) 0.96 0.00 0.04 1.05

“walking with raised hand”
Input 1.00 1.95 0.00 0.21
MLD 0.76 0.24 0.13 0.76
MDM-DNO 0.98 0.00 0.04 0.41
LaMP(Res) 0.90 0.00 0.04 0.44
LaMP(ViT) 0.98 0.00 0.04 0.72

“crawling”
Input 1.00 1.67 0.01 0.45
MLD 0.97 0.20 0.02 1.00
MDM-DNO 0.93 0.00 0.03 0.67
LaMP(Res) 0.96 0.00 0.09 1.89
LaMP(ViT) 0.97 0.00 0.05 1.26

We evaluate motion editing with four metrics: FID
(gen), dist (gen/gt), foot-skating ratio, and objective er-
ror. The objective error is the Euclidean distance (in me-
ters) between the edited motion’s pelvis (root) position and
the target position at the specified frame.

For the four selected motion types, we additionally re-
port the semantic preservation ratio—the proportion of
frames whose semantic label matches that of the target mo-
tion. We therefore omit FID (gen) in this setting since com-
puting the distribution distance between the test set and a
single class of motion is unreliable. Instead, we report the
Jittering Ratio, defined as the mean per-joint change in ac-
celeration (jerk) over time, reported in 102 m/s3.



Results As shown in Tab. 4, our method achieves the best
performance. In contrast, the MLD [2] exhibits the highest
objective error, as its latent representation lacks fine-grained
control, leading to difficulty in reaching target positions.

From Tab. 5, our method also achieves the highest se-
mantic preservation ratio across all four motion types,
demonstrating that semantic meaning is preserved during
optimization in the latent motion prior. Although the
MDM [49]-based editing method produces lower jittering
ratios, this improvement comes at the cost of semantic fi-
delity. For example, in the case of long jumping, the MDM
latent space fails to preserve the semantic structure of re-
peated forward jumps, instead producing a smoother but se-
mantically inconsistent motion.

4.2.4 Motion Blending

In this experiment, we evaluate the performance of our
method in producing a smooth transition between the two
input motions. We randomly sample 1,024 pairs of motions
from the HumanML3D test dataset, concatenate each pair to
form a single motion sequence, and mask the intermediate
frames. The objective is to use the diffusion model to gener-
ate a new motion that produces a smooth transition between
the two input motions. We evaluate blending performance
using FID(gen), dist(gen/gt), Diversity, and Objective Er-
ror. The metrics is the same as the previous sections.

Table 6. Performance Metrics for Motion Blending

Model FID ↓ Dist ↓
(gen/gt)

Diversity ↑ Objective ↓
Error(m)

MLD 9.04 0.06 11.69 3.00
MDM-DNO 3.65 0.02 6.65 0.60
EMDM 25.04 0.06 2.51 0.16
LaMP(Res) 2.24 0.02 6.99 0.89
LaMP(ViT) 2.77 0.02 6.72 0.87

Results As shown in Tab. 6, LaMP based methods
achieve the lowest FID(gen), dist(gen/gt), demonstrating
strong fidelity to the original motion, and a high Diversity
score, showing that the model generates various transitions.
In contrast, MDM [49] and EMDM [49] methods achieve
lower Objective Error; however, their latent spaces fail to
produce plausible motions in the unseen portions of the se-
quence, resulting in higher FID(gen) scores.

4.3. Ablation Studies

We conduct ablation studies to analyze the impact of dif-
ferent design choices in our method. The two most crit-
ical components are the part-based encoder–decoder and
the masking-based training strategy. As shown in Tab. 7,
we systematically remove either the part-wise encoder–
decoder, the masking strategy, or both, and evaluate the

performance on the motion refinement task. The re-

Table 7. Ablation for Motion Refinement

Part-wise
Encoder

Masking
Training

FID ↓
(gen)

Dist ↓
(gen/gt)

FID ↓
(gen/gt)

Foot ↓
skating ratio

✗ ✗ 1.12 0.02 1.52 0.12
✗ ✓ 0.78 0.02 1.00 0.11
✓ ✗ 1.10 0.02 1.47 0.12
✓ ✓ 0.72 0.01 0.91 0.12

sults demonstrate that the model combining both compo-
nents consistently achieves the lowest scores in FID(gen),
dist(gen/gt), and FID(gen/gt), while also yielding the
second-lowest foot-skating ratio. These results indicate that
the part-wise encoder/decoder learns disentangled motion
representations for different body parts, while the masking
strategy encourages to learn more informative features from
partially observed motion. Together, these components lead
to a more effective latent representation of the motion space,
which ultimately serves as a robust motion prior for improv-
ing performance on the motion-related task.

5. Conclusion and Limitations

Conclusion We present LaMP, a masked motion autoen-
coder paired with latent diffusion, as a new approach on
learning transferable motion priors. The core design, the
part-based encoder, and the masking training strategy yield
a compact yet expressive latent space that preserves the con-
tinuity and semantics of human motion while enabling ef-
fective optimization in various downstream applications. In
summary, our results indicate that a carefully structured la-
tent space provides a promising foundation for motion pri-
ors that scale beyond task-specific supervision. We believe
LaMP is a step toward a versatile, data-efficient motion
prior that can support a broad range of applications.

Limitations Using the existing text–to–motion datasets,
we observe that the data is biased toward common ac-
tions, single-person scenes, and curated capture conditions.
Consequently, rare skills, complex multi-agent interactions,
and contact-rich human–object behaviors are underrepre-
sented in the learned motion prior. Future extensions in-
clude modeling human–human and human–object interac-
tions, egocentric motion prediction, tighter scene/physics
coupling, and continual or domain-adaptive learning to mit-
igate dataset bias. We leave these directions to future work.
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