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ABSTRACT

Recent advancements in Large Language Models (LLMs) have spurred numerous
attempts to apply these technologies to embodied tasks, particularly focusing on
high-level task planning and task decomposition. To further explore this area,
we introduce a new embodied task planning benchmark, ET-Plan-Bench 1, which
specifically targets embodied task planning using LLMs. It features a controllable
and diverse set of embodied tasks varying in different levels of difficulties and
complexities, and is designed to evaluate two critical dimensions of LLMs’ appli-
cation in embodied task understanding: spatial (relation constraint, occlusion for
target objects) and temporal & causal understanding of the sequence of actions in
the environment. By using multi-source simulators as the backend simulator, it
can provide immediate environment feedback to LLMs, which enables LLMs to
interact dynamically with the environment and re-plan as necessary. We evaluated
the state-of-the-art open source and closed source foundation models, including
GPT-4, LLAMA and Mistral on our proposed benchmark. While they perform
adequately well on simple navigation tasks, their performance can significantly
deteriorate when faced with tasks that require a deeper understanding of spatial,
temporal, and causal relationships. Thus, our benchmark distinguishes itself as a
large-scale, quantifiable, highly automated, and fine-grained diagnostic framework
that presents a significant challenge to the latest foundation models. We hope it
can spark and drive further research in embodied task planning using foundation
models.

1 INTRODUCTION

Embodied planning refers to an agent’s ability to formulate plans and execute tasks within a phys-
ical environment. Large Language Models (LLMs) and Vision Language Models (VLMs) have
demonstrated significant advancements in vision understanding, natural language comprehension, and
generation. Although LLMs and VLMs are not inherently designed for embodied planning, there is
potential for these models to contribute to this field. LLMs and VLMs possess an extensive repository
of knowledge derived from their training data, which enables them to comprehend and generate
contextually relevant advice and strategies. Additionally, they have the capability to translate complex
tasks into step-by-step instructions through interactions with humans. Furthermore, they can refine
plans based on feedback from the environment or human interventions. In the context of embodied
planning, LLMs focus on the decomposition of complex tasks. The LLM acts both as a translator and
a mediator. Each sub-task, such as navigating to a specific location or grabbing a particular object,
can be executed using advanced Reinforcement Learning (RL) methods. However, currently, LLMs
and VLMs face some challenges in understanding the physical world (Jia et al., 2022; Chen et al.,
2024; Jain et al., 2023), including spatial understanding. Effective spatiotemporal reasoning often
necessitates the integration of knowledge from multiple domains, such as physics and human behavior.
These domains may not be adequately represented in the training data of existing foundational models.
To further explore this area, we introduce a new embodied task planning benchmark, ET-Plan-Bench,

1The benchmark and source code will be publicly released once the paper is accepted. Attached in the
supplementary material for this submission.
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which features an automatic embodied task generation and evaluation pipeline that is designed to
evaluate tasks with spatial and temporal understanding of the environment.

For spatial understanding, our benchmark aims to assess the LLMs’ ability to complete tasks with
relational, size, and occlusion constraints between objects, which are pivotal for effective interaction
within a given space. In our benchmark, the spatial aspect is currently not associated with the
understanding of left and right directions. In terms of temporal understanding, we focus on evaluating
LLMs’ ability to understand the causality and sequence between preceding and subsequent actions
during the execution of embodied tasks. This aspect tests how well the models can plan and execute
actions that depend on each other in a meaningful sequence.

Compared to existing benchmarks in the field of embodied AI, our approach offers unique features
that allows a thorough evaluation on existing foundation models for their embodied task planning
ability. Distinguishing itself from the standard benchmarks that often rely on manual curation for
embodied tasks (Puig et al., 2018; 2020; Shridhar et al., 2020a; Li et al., 2023; Wan et al., 2022), our
framework employs LLMs to autonomously generate a wide array of embodied tasks with different
spatial and temporal constraints in a systematic way, incorporating tasks with variety of objects,
scene and room layouts in different level of difficulties. Another important category of benchmarks
is embodied question answering (EQA), which is designed to evaluate the capability of LLMs to
answer questions based on first-person or third-person videos instead of task decomposition and
long-horizon planning (Jia et al., 2022; Majumdar et al., 2024; Cheng et al., 2024). However, most of
these EQA datasets depend on videos and lack interaction with the physical or vitual environment,
while our benchmark features end-to-end (long-horizon) task planning through interaction with a
dynamic environment.

This comprehensive embodied benchmark aims to identify both the capabilities and limitations of
current foundation models in navigating and interacting within complex, dynamic environments. Our
findings are intended to provide deeper insights into the practical applications of these models in
real-world settings. The main contributions of our work state as follows:

Embodied task generation with various difficulties We have developed an embodied task generation
pipeline which can produce different levels of difficulties and complexities through introducing spatial
and temporal constraints. It supports automatic task generation and task success criteria generation,
allowing automatic task planning evaluation in an end-to-end manner.

Benchmark: Using the task generation pipeline, we introduce a benchmark focusing on various
aspects of spatial (relation constrain, object occlusion and global layout map) and temporal under-
standing (actions dependency and optimal moving path for robot). It provides a detailed and thorough
diagnostic assessment of existing foundation models.

LLM agent baseline comparison: We provide a comprehensive set of our proposed LLM agent
baseline results, featuring both recently released LLMs such as GPT-4 and open-source foundation
model like LLAMA (Touvron et al., 2023) and Mixtral 8x7B (Jiang et al., 2024). Particularly, we
demonstrates that a supervised fine-tuned (SFT) small-size LLAMA-7B model using our benchmark
EQA data can match the state-of-the-art closed-source model GPT-4, highlighting the effectiveness
of our benchmark in enhancing understanding of embodied environments.

2 RELATED WORK

Table 1 presents a comparison of recent benchmarks for household embodied planning. This
comparison spans multiple dimensions, including modality (natural language, vision, or both),
vocabulary type (open or constrained), data size, and the capacity for unlimited data generation via
the provided pipeline. Additionally, it assesses whether benchmarks evaluate the planning abilities of
large language models (LLMs), whether data generation is automated or human-annotated, and the
consideration of spatial, temporal, or causal constraints. We provide a concise survey of related work
here; a comprehensive version is available in the Appendix A.3.

Evaluation of foundation models for household embodied planning LLMs are used in task
planning for their generalization capabilities across various tasks(Brown et al., 2020; Ahn et al.,
2022; Huang et al., 2022). Recent work shows significant advances in using LLMs for long-horizon
planning (Zhao et al., 2024), but challenges like hallucination and poor spatial reasoning remain

2
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Table 1: Comparison of our proposed dataset with prior work. EQA: Embodied Question Answering,
MQA: Multiple Question Answering, TGP: Task Generation & Planning, P: Partial, G: Global, FP:
Partial observation with large Furnitures

Dataset Task Multi-
Modality

Data
Size

Auto
Data

LLM
Eval

Open
Voc

Level of
Obs

Spatial Temporal/
Causal

Env
Inter

ActivityPrograms(Puig
et al., 2018)

" 2821 % % " P % % "

WAH(Puig et al.,
2020)

% 1211 % % % P/ G % % "

ALFRED(Shridhar
et al., 2020a)

" 8055 % % " P % % "

WAH-NL(Choi et al.,
2024)

% 611 % " " P % % "

RoboGen(Wang et al.,
2023)

" ∞ " " " P % % "

BEHAVIOR(Srivastava
et al., 2022)

% 100 % % % P % % "

Mini-BEHAVIOR(Jin
et al., 2023)

TGP % 20 % % % P % % "

BEHAVIOR-1K(Li
et al., 2023)

% 1000 % % % P % % "

EgoCOT(Mu et al.,
2024)

" 129 % " " P % % %

EgoPlan-Bench(Chen
et al., 2023)

" 2406 " " " P % % "

EgoPlan-IT(Chen
et al., 2023)

" 50K " " " P % % "

HandMeThat(Wan
et al., 2022)

% 300K " % " P/ G % % "

EgoVQA(Fan, 2019) " 520 % % " P/ G % % %

EgoTaskQA(Jia et al.,
2022)

EQA " 40K % % " P " " %

Egothink(Cheng et al.,
2024)

" 700 % " " P " " %

OpenEQA(Majumdar
et al., 2024)

" 1600 % " " P % % "

ET-Plan-Bench TGP " ∞ " " " P/ FP/ G " " "

(Valmeekam et al., 2024; Dziri et al., 2024). An automatic evaluation of LLM-based planners is
crucial, yet performance comparison is complicated by factors such as prompt construction and
model selection. Despite advances in task planning with LLMs, related benchmarks and automatic
evaluations remain limited.

Evaluating LLM-based task planners requires datasets and simulators with task goal conditions,
natural language instructions, and high-level APIs for simulator validation. ActivityProgram (Puig
et al., 2018) provides household activity descriptions but lacks goal success conditions, relying
on human annotators for success evaluation. Watch-And-Help (Puig et al., 2020), also based on
Virtual Home (Puig et al., 2018), focuses on human-robot interactions but lacks natural language
task descriptions. LoTa-BENCH (Choi et al., 2024) extends this with natural language in WAH-NL,
yet the tasks remain simple, centered around object rearrangement with short action sequences.
LLM-MCTS (Zhao et al., 2024) and EgoPlan-Bench (Chen et al., 2023) attempt to create complex
tasks by combining simpler ones. LLM-MCTS uses the WAH dataset to define complex tasks just as
combinations of simple tasks, while EgoPlan-Bench employs hierarchical reasoning, breaking tasks
into subgoals. However, these approaches may not capture the real-world complexity of household
tasks, as it fails to consider temporal or causal constraints between actions. Behaviour (Srivastava
et al., 2022) sources diverse and complex household tasks from the American Time Use Survey,
though its manual data generation limits scalability. HandMeThat (Wan et al., 2022) introduces
ambiguity to tasks and includes an observational step, but interactions remain only to text. Conversely,
ALFRED (Shridhar et al., 2020a) uses AI2-THOR (Kolve et al., 2017) and ALFWORLD (Shridhar
et al., 2020b) to create visually complex, partially observable environments. RoboGen (Wang et al.,

3
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Figure 1: Evaluation task statistics of ET-Plan-Bench, which includes a diverse set of navigation and
manipulation tasks, along with their advanced versions with spatial and temporal constraints.

2023) employs LLMs to generate infinite tasks and scenes for its simulation engine. Our work
distinguished by its focus on generating complex tasks in a controlled manner, utilizing various types
of constraints to create more realistic and challenging embodied tasks. To the best of our knowledge,
no other work claims to offer a similar infinite task and data generation pipeline.

Embodied question answering Unlike end-to-end task planning and decomposition, embodied
question answering tasks use egocentric visual signals to query environmental information (Fan,
2019; Majumdar et al., 2024) or formulate the task planning as a multiple question-answering problem
(Chen et al., 2023; Mu et al., 2024). However, they do not allow interaction with the simulation
environment for potential replanning when mistakes are made.

Position of our work We introduce a benchmark for household embodied task planning rather than
question answering about the environment. This benchmark includes task descriptions and success
criteria within a virtual environment. Any methods employing LLMs can be evaluated using our
benchmark due to the substantial diversity in task descriptions, ensuring that LLMs will be employed
for task decomposition at least once. Currently, the LLM component of the proposed LLM agent
baseline focuses on skill-level task decomposition rather than lower-level control. Compared to other
similar benchmarks on task planning, we design diverse tasks that impose various spatial, temporal,
and causal constraints for navigation tasks and navigation & manipulation tasks. These tasks increase
the level of complexity in a controlled manner and are able to diagnose foundation models’ abilities
in embodied task planning in a fine-grained fashion. While spatial and temporal constraints have
been considered in the generation of embodied question-answering benchmarks such as OpenEQA
(Majumdar et al., 2024), to the best of our knowledge, they have not yet been addressed in the context
of embodied planning tasks. Additionally, we consider different levels of access to prior environment
information, which determines the agent’s knowledge about the state of the environment and is crucial
for decision-making.

3 BENCHMARK DESCRIPTION

Since we propose a task generation pipeline, we can generate infinite task data given the preferred
constraints and task difficulties. We include a subset of those task data as the evaluation task data.
Figure 1 and Table 2 summarize our embodied planning evaluation benchmark, which includes
navigation and manipulation tasks, along with their variants under spatial and temporal constraints.

3.1 BENCHMARK TASK DEFINITION

In our benchmark, we mainly provide three task categories: navigation tasks with or without spatial
constraints, navigation and manipulation tasks with or without spatial constraints, and navigation
and manipulation tasks with temporal constraints. For each task category, we divide it into several
sub-task categories based on different aspects that require spatial and temporal understanding for the
embodied agents. We introduce higher levels of task difficulty by combining the basic tasks. We
further discuss the 5 key aspects that will impact the task difficulties in Appendix A.5.
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Navigation Navigation tasks are common in everyday household scenarios, such as locating items.
We define navigation tasks more specifically as object navigation, where the agent is required to
navigate to an instance of a specified object category in unseen environments.

Navigation with layout map In real-world scenarios, robots often possess knowledge about certain
environmental priors, such as a layout map which contains the locations of large pieces of furniture
(e.g., sofas and refrigerators), which are less frequently moved compared to smaller objects. This
information enables the robot to perform its navigation tasks more efficiently.

Navigation with spatial relation constraint This task requires the robot to identify a specific target
object that meets given criteria, such as locating a box on the wall self. This spatial relation constraint
could assess the LLM agent’s perception ability of relative positions between objects. In general,
these tasks are more challenging than navigation tasks without constraints.

Navigation with occlusion due to small object size ’Occlusion’ refers to situations where large
objects or barriers obstruct the view of target items, challenging an agent to provide strategies to
uncover or reach these hidden target objects. This scenario is common in small object navigation,
where the object will not be directly visible for the robot and complicating the robot’s visual field and
increase the difficulty of the tasks.

Navigation with occlusion due to distant initial position We designed tasks that target objects
located far from the robot’s initial position. The robot is then required to locate the target object over
a greater distance. This setup poses greater challenges for the agent as it navigates through the room,
with objects more likely to be obscured by large pieces of furniture.

Navigation and manipulation The most common embodied tasks, typically involve moving and
then organizing items. For example, one might pick up one object and relocate it to a designated
area, which could be a container or a furniture surface. Other task categories, such as navigation and
manipulation with spatial constraints or occlusions, are similarly described in the earlier description.

Navigation and manipulation with temporal and causal constraints Compared to simply combin-
ing tasks that are order-invariant, temporal constraints involve actions that must be performed in a
strict sequence. For example, an agent might need to prepare a meal where each step is executed in a
specific order to ensure the dish is correctly completed. Alternatively, tasks may require the agent to
optimize the order of actions to minimize the number of steps needed to complete a task. Additionally,
some tasks feature Dependency Chains, where certain actions can only start once previous steps have
been completed, such as needing to unlock and open a door before entering a room. Our designed
navigation and manipulation tasks include both temporal and causal constraints. For example, the
agent must sequentially place object A into container B, and then place object A and container B
together into container C, in the correct order. Alternatively, the task requires the agent to sequentially
find the target objects, grasp them, locate the recipient area, and place the object in the designated
spot in the correct order. These tasks are crucial for assessing the agent’s ability to understand the
temporal and causal effects of environmental states and the actions it performs.

Navigation and manipulation multiple objects in an optimal path with two arms In navigation
and manipulation tasks, a typical scenario involves preparing various items to achieve specific goals.
This requires the robot to handle multiple objects simultaneously, such as gathering a pen and a
notebook for writing. Virtual Home supports this by equipping the robot with two arms, allowing
it to use either one or both arms to complete tasks. We design embodied tasks that specifically
exploit these unique features. Using both arms can often be more efficient and optimal, for example,
by reducing the moving distance and the number of exploration plan steps. We offer two versions
for navigating and manipulating multiple objects: one-arm and two-arm configurations, enabling a
comparison of their performance. We consider the two-arm version to be the optimal path.

3.2 TASK GENERATION USING LLMS

To efficiently generate a large and diverse set of tasks with various spatial and temporal constraints,
we have incorporated large language models into the task generation pipeline. To enhance the
generalizability of our task generation pipeline, each component can be adapted by a human to the
specific simulator in use, incorporating a human-in-the-loop approach. Specifically, the pipeline
includes the following steps, as illustrated in Figure 2:
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- Grabbable
- Size
- ...

Object Property
- Furniture: table, ...
- Appliance: fridge, ...
- ...

Object ListEnvironment
Scene Graph

- Move
- Grab
- ...

Action

GPT4

Spatial Relation

Occlusion-size
Navigation

+Manipulation

+Multi-objects
Occlusion-Distance

Temporal Dependency

Constraints
Task Category

Combine

Nav & Mani +
Spatial Relation

Task Template

- apple ON place
- bow IN cabinet
- ...

Object Relation

1. Find an apple from the fridge
and place it on the table.
...

Example

<obj_1>, <obj_2>, <obj_3>

Objects

1. <obj_1> is grabbable and
movable by a human.
2. <obj_2> is a surface or
container. 
...

Rules

Prompt

Object
Filtering

New Tasks

- Rule check (constraints,
common-sense, etc..)
- Executability

Post-processing

Completion Criteria
Generation

Task Requirements

Environment Info

Retrieve

Figure 2: Task generation pipeline. Task-specific requirements and scene graph from the simulator
are used as inputs for automatic task generation. More details are given in Section 3.2

Table 2: Experiment results on our benchmark tasks

Success Rate Seq Length Longest Common Seq (Ratio) Moving Distance

Tasks GPT4 LLAMA
7B SFT GPT4 LLAMA

7B SFT GPT4 LLAMA
7B + SFT GPT4 LLAMA

7B+ SFT

Navigation Tasks with or without Spatial Constraints

Navi + Layout Map 90.77% 91.13% 3.76 3.96 1.32 (89.64%) 1.34 (90.11%) 10.79 10.83
Navi 79.26% 80.58% 6.77 6.75 1.59 (78.74%) 1.62 (80.01%) 14.10 14.59
Navi + Occlusion_Size 72.46% 76.05% 7.99 7.89 1.53 (74.95%) 1.59 (78.14%) 14.08 16.65
Navi + Occlusion_Distance 73.65% 76.65% 7.94 7.69 1.60 (77.40%) 1.65 (80.24%) 19.36 17.38

Navi + Relation 62.61% 64.09% 9.20 9.20 1.78 (88.75%) 1.75 (86.05%) 12.45 14.08
Navi + Relation + Occlusion_Size 60.74% 61.48% 9.68 9.91 1.74 (85.19%) 1.70 (83.21%) 13.26 16.05
Navi + Relation + Occlusion_Distance 54.81% 55.56% 10.41 10.31 1.73 (86.67%) 1.67 (82.96%) 15.75 16.22

Navigation & Manipulation Tasks with or without Spatial Constraints

Navi & Mani + Layout Map 83.98% 83.96% 12.36 12.09 4.20 (82.68%) 4.17 (81.97%) 22.22 21.67
Navi & Mani 73.76% 74.33% 17.02 16.47 4.17 (78.56%) 4.22 (78.92%) 28.51 26.99
Navi & Mani + Occlusion_Size 65.85% 67.60% 20.00 19.21 3.94 (75.00%) 4.00 (75.27%) 29.46 28.79
Navi & Mani + Occlusion_Distance 72.09% 74.66% 18.83 17.20 4.06 (75.50%) 4.21 (78.08%) 37.92 30.45

Navi & Mani + Relation 49.65% 50.35% 24.08 23.78 4.11 (73.60%) 4.12 (72.14%) 27.70 27.72
Navi & Mani + Relation + Occlusion_Size 43.03% 42.75% 26.52 26.39 3.81 (69.02%) 3.82 (67.05%) 31.55 28.42
Navi & Mani + Relation + Occlusion_Distance 49.88% 50.00% 23.96 23.79 4.20 (73.69%) 4.25 (72.57%) 34.85 30.83

Navigation & Manipulation Tasks with Temporal Constraints

Navi & Mani + Multi Objects 56.73% 55.05% 38.25 42.80 7.57 (69.92%) 7.85 (69.09%) 50.39 47.40
Navi & Mani + Multi Objects + Optimal Path with 2 Arms 72.04% 74.21% 28.12 28.51 5.60 (66.07%) 5.61 (64.32%) 38.25 39.17
Navi & Mani + Multi Objects + Temp Dependency 58.60% 60.35% 43.43 41.04 6.00 (64.05%) 5.96 (62.71%) 51.38 45.52

Generating task template. The first step is to define a task template for a specific type of task.
Each template includes a task description and completion criteria. The description accounts for the
number of objects involved, their properties, and any additional spatial or temporal constraints. This
information is integrated as placeholders into various phrasings of the task. The completion criteria
comprise the necessary state of relations between the elements involved at specific points during
task execution. For example, for a task involving finding an apple and placing it in a fridge, the final
success criteria would be (CLOSE, robot, fridge) & (INSIDE, apple, fridge).

Gathering environment information from the simulator. Given the specific task template, we
gather related information about the simulation environments through its scene graph. We select all
possible object candidates that satisfy the required constraint from the task template. For example, if
the task template specifies finding objects with certain relational constraints such as “INSIDE”, we
will fetch the target objects and their corresponding objects that satisfy the “INSIDE” relation.

LLMs assist task generation After retrieving the relevant information from the environment, we
shortlist all possible item combinations that meet the requirements of the commission template. For
instance, the task of placing object A into container B necessitates retrieving both object A and
container B from the environment. We subsequently employ LLMs to generate tasks adhere to
principles of logical common sense and are rephrased in diverse ways to increase the diversity of
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Navigation & Manipulation

Completion
Check

No

360o Observation

Action List

Task 
Library

Prompt: Please classify the task into one of
the following types:
1. Navigation and Manipulation
    ...
Ans: <task-type>

Task Classification RetrieveTask: Grab the apple in the
fridge and put it on the table
in kitchen
Completion Criteria: 
    - (ON, apple, table)
    - ...

Prompt: Determine which room
may contain the object [object
name], and the room list is [room
list] ...
Ans: <room>

Nav-Room

Room ListEnvironment

Memory

Action: 
Walk <room> 

Action: 
Walk <object> 

Determine the proper action
based on <task>, <object> and
the property of the object.
Action: <action> <object>

Manipulation
Prompt: The robot is in the room [room name]
and can see objects [visible object list]. Determine
which one of the visible objects should be checked
in order to find the object [object name].
Ans: <object>

Nav-Object

Spatial/Temporal Constraint

Eval. Pipeline

Prompt Example

Task-specific

Figure 3: The LLM agent pipeline for evaluation comprises an automatic prompt selection module, a
navigation module, and a manipulation module. More details are given in Section 4.1

descriptions. The LLMs receive both the environmental information and the task template as part of
the prompt, which also includes rules and examples to ensure the tasks generated are realistic.

Post-filtering based on the executability in simulator. The tasks generated from the LLM are
tested for their executability in the simulator. Any tasks that violate the physical rules encoded in the
simulator are discarded and only executable tasks are kept.

Ground truth planning label generation We generate the ground truth planning sequence using
the scene graph in each layout. We find the shortest path between the robot and the target items. A
detailed elaboration of the ground truth action sequence generation is included in Appendix A.6.

Human evaluation is essential for ensuring the quality of generated tasks. To assess this, we randomly
selected 5 simulation environments and chose 50 tasks from each environment. Human annotators
then evaluated the reasonableness of these complex tasks. Our findings indicate that approximately
4% to 8% of the tasks were deemed unreasonable. The primary cause of the LLM’s failure to correctly
classify these tasks was ambiguity or misinterpretation in the descriptions of the objects involved. For
instance, a task such as "Find the face cream tube and put it into the folder" might pass the LLM’s
post-checking process because the term "folder" could sometimes refer to a larger container. Overall,
LLMs perform well in identifying unreasonable tasks.

4 BENCHMARK EVALUATION

4.1 OVERALL EVALUATION PIPELINE

While some existing methods rely on labor-intensive human evaluation (Huang et al., 2022), we
propose an LLM agent baseline for automatic quantitative evaluation. As illustrated in the Figure 3,
our LLM agent processes tasks through the following steps:

Task classification Firstly, the LLM agent determines the type of task, as listed in Section 3, based
on the task description. Subsequently, tools and prompt examples specific to the identified task type
are retrieved from the library and utilized in subsequent processes.

Navigation-room The object search algorithm employs a top-down hierarchical approach, beginning
with the room where the target object is most likely to be found. The sequence of rooms to be
searched is determined by the LLM agent, based on the task description and the list of rooms in the
environment. For tasks involving spatial relation constraints, the room containing both the target
object and the anchor object will be prioritized. If the anchor object is limited to a single room, only
that room needs to be explored.

Navigation-object After arriving at a designated room, a 360-degree scan is conducted, and the
objects within the field of view are identified by the perception module. If the target object is not

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Navi + Relation
Task: Can you get the box on the wall shelf?

1: Walk to the livingroom
2: Walk to the wall shelf (1)
3: Walk to the wall shelf (2)
4: Walk to the wall shelf (3)
5: Walk to the bedroom
6: Walk to the wall shelf (4)
7: Walk to the kitchen
8: Walk to the box

1 2

3
4 5 6

7
8

Box
Wall shelf

Wall shelf

Wall shelf

Wall shelf

Wall shelf

Figure 4: An example of a spatial constrained task. The robot explores different rooms and wall
shelves to find one in which the relationship constraint matches the goal of the task. The images were
generated using the Virtual Home simulator.

located, the LLM agent will actively select the most relevant visible object, such as large objects or
pieces of furniture, for further exploration. The observed objects and their corresponding locations
are stored in the agent’s memory, and this information will be utilized to assist in locating subsequent
objects if the task involves multiple items.

Manipulation For tasks involving the manipulation of target objects, the specific manipulation action
will be executed as required by the LLM agent. Depending on the task requirements, the robot can
employ one of several manipulation skills, including OPEN, CLOSE, GRAB, PUT, and PUTIN, to
interact with the target object within the virtual environment.

Completion check and iteration The completion criteria will be evaluated after each navigation
or manipulation step, as needed. If the criteria are not met, an additional round of navigation and
manipulation will be carried out. The task will be deemed unsuccessful if the maximum number of
action steps is reached before the task is completed.

4.2 EVALUATION RESULTS

Experiments were conducted in 8 NVIDIA Tesla V100 32G GPUs with Intel(R) Xeon(R) Gold
6140 CPU @ 2.30GHz. We use five evaluation metrics to evaluate the performance on our proposed
embodied tasks, including success rate, action sequence length, longest common subsequence (LCS)
length, LCS ratio with the ground truth action sequence, and moving distance for executing the tasks.
A detailed explanation of these metrics is discussed in the Appendix A.9.

To verify the validity of our proposed benchmark and to demonstrate that tasks become more chal-
lenging after the addition of spatial or temporal constraints, we present comprehensive experimental
results to explore the performance of our proposed LLM agent across various tasks in multiple
simulators, including Virtual Home (Puig et al., 2018) and Habitat (Khanna et al., 2024). We analyze
the performance on tasks of varying difficulty within the Virtual Home environment. In Appendix
A.10, we examine whether Chain of Thought (CoT) prompting and few-shot in-context learning aid
in task planning.

Main results in Virtual Home Table 2 displays the main results of various metrics for different types
of tasks in Virtual Home simulator. In navigation tasks, the addition of spatial constraint dramatically
impact the success rate. For occlusion cased by size or distance, we selected two subsets of tasks:
The tasks of which the target object’s size is the 20% smallest; And the tasks of which the distance
between the robot’s initial position and the target object position is top 20% largest. We observe a
drop of 7% to 6% in success rate for both tasks, indicating that the occlusion caused by small object
size or long distance increases the difficulty of the tasks. Consequently, the average sequence length
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Table 3: Evaluation with open source and closed source LLMs including GPT-4, Llama3-70B,
Mistral-8x7B and Llama3-8B.

Success Rate

GPT-4 Llama3-70B Mistral-8x7B Llama3-8B

Navi + Layout Map 90.77% 89.04% 89.04% 83.99%
Navi 79.26% 77.39% 75.84% 69.66%
Navi + Relation 62.61% 66.06% 62.41% 27.74%

and moving distance increase. Similar trend can be observed for tasks with spatial relation constraints.
Combining relation and occlusion constraint is even more challenging for the agent to succeed.

The layout map significantly enhanced the success rate for both navigation and navigation & manipu-
lation tasks. This improvement is attributed to the agent’s prior global knowledge of large objects,
such as substantial furniture, within the environment. Consequently, the agent could locate the target
object more efficiently without necessitating extensive exploration.

It can be observed that when navigating and manipulating multiple objects, the success rate decreases,
compared to that of one object. This indicates that as the sequence length of the task increases, there
are more chances for the robot to make mistakes and fail the task. Besides, the average moving
distance significantly decreases when the robot chooses the optimal path to manipulate multiple
objects. The success rate also increases with the optimal path, suggesting that better planning is
critical to the success of the tasks. When adding dependency to the task, the possible plans to
complete the task get more limited, which enhances the difficulty level of the tasks. Therefore, the
tasks with temporal dependency in average have lower success rate compared to the tasks completed
with the optimal path.

Results with additional LLMs To assess the impact of various LLMs on the evaluation process, we
have additionally evaluated the benchmark with more LLM models as shown in the Table 3. While
other powerful open-source LLMs like Llama3-70B and Mixtral-8x7B show similar performance as
GPT-4, smaller model Llama3-8B struggles with navigation task, with only 27.74% success rate for
navigation tasks with spatial constraint.

Supervised finetuning To evaluate whether generated data can enhance the ability of smaller LLMs
to do embodied reasoning and follow instructions better, we introduce additional data from other
layout environments to conduct supervised fine-tuning (Tasks from 34 room layout for training, 5 for
validation and 10 for evaluation, please refer to Appendix A.7 for details). This setup allows us to
assess generalization across different environments. Using the data generation pipeline described in
Section 4.1, with the assistance of GPT-4 (Achiam et al., 2023), we generated question-and-answer
(QA) pairs and executable action plans from the training data. These QA pairs were then used for
supervised fine-tuning (SFT) a smaller open-source LLM, LLAMA2-7B (Touvron et al., 2023), and
its performance was compared with other LLMs, such as GPT-4. Furthermore, this generated data
has the potential to enhance foundation models’ capabilities in both real-world understanding and
task decomposition.

The performance of SFT LLAMA closely matches that of GPT-4. In most cases, SFT LLAMA
slightly outperforms GPT-4, primarily because SFT LLAMA tends to identify at least one large object
that allows the robot to explore, whereas GPT-4 may indicate that no visible objects need exploration
in these tasks. The training data teaches the LLMs to actively explore the environment. This results
in SFT LLAMA having a longer moving distance than GPT-4 in navigation tasks, thereby increasing
the likelihood of finding the target object through more comprehensive exploration.

Results in Habitat In addition to the Virtual Home environment, we conducted experiments on
navigation tasks using another widely used household task simulator, Habitat 2.0 (Figure 5). The
results presented in Table 4 demonstrate that our fine-tuning strategy significantly enhances the
performance of small-scale LLMs, enabling them to achieve a level comparable to state-of-the-art
models like GPT-4. Moreover, the fine-tuned LLMs performs especially well on instruction following.
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Huawei Proprietary - Restricted Distribution1

step=1 step=2 step=3 step=4 step=5 step=6

Task: find a bowl

Figure 5: In a mapless task scenario, the robot begins in the bedroom, gradually explores the living
room and kitchen, and ultimately discovers the bowl. The images were generated using the Habitat
2.0 simulator.

Table 4: Comparison for results from different simulators.

Navigation Tasks
(Virtual Home 3.0)

Navigation Tasks
(Habitat 2.0)

GPT-4 79.26% 72.2%
LLAMA - SFT 80.58% 71.9%

4.3 CASE STUDY

Figure 4 illustrates one example of successful cases where the robot explores different rooms before
finding the target box with relation constraint. Some failed cases are shown in Appendix A.2.

Some instances of failure are attributable to defects in the perception module, which is provided by
the Virtual Home API. In addition, the target object could not be found even if it is very close, if the
robot is not directly facing it. The spatial relation constraints poses extra challenges. For example, if
the task requires finding a glass near a monitor, the monitor might block the glass from the robot’s
view, preventing it from correctly verifying the spatial relationship. Detailed explanation can be
found in Appendix A.2.

5 CONCLUSION

Our study has some limitations worth noting. The evaluation was conducted in two virtual envi-
ronments. While we can benefit from controlled experimentation, it might not fully capture the
complexities of real-world settings, potentially leading to a sim-to-real gap. Furthermore, there are
areas within the perception module that could benefit from further exploration and improvement.

In this work, we present an automatic embodied planning task generation and an LLM agent
baseline for benchmark evaluation. We introduce spatial and temporal constraints in navigation
and manipulation tasks, which are barely touched by existing embodied planning benchmarks.
The method is scalable and can generate infinite number of diverse embodied planning data. The
experiment results demonstrate that addition of spatial and temporal constraints, which are common
in real world embodied tasks, poses significant challenge to the agent with the most advanced LLM
GPT-4, because the success rate dramatically reduces for the tasks involving spatial or temporal
constraints. Through supervised finetuning, the much smaller model like LLAMA-7B can match
or even slightly outperform GPT-4. Given that we merely introduced an LLM agent as a baseline
for benchmark evaluation, there remains considerable potential for baseline improvement in future
research. Overall, our proposed benchmark can assist researchers in evaluating the performance of
their LLM agents in completing complex embodied planning tasks that involve spatial and temporal
constraints.
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A APPENDIX

A.1 SUCCESSFUL CASES OF EMBODIED PLANNING TASKS

Some successful cases of different types of planning tasks are shown in figs. 6 to 15. We added extra
annotations as task type and bounding boxes. All of our examples highlight the main object(s) in
both the task description and figure with different colors for a clearer understanding on what the goal
is and which actions followed up to complete it. Not all of our examples have relation constrains, but
for those that have, we highlight those relations with different bounding boxes and dotted lines to
distinguish different objects in the scene. As well, for those examples whose relation is set as "object
A facing object B", we also provide two perspective views to frame the spatial relation between the
objects.

Navigation
Task: Can you lead me to 
the desk?

1: Walk to the bedroom
2: Walk to the closet
3: Walk to the bookshelf

4: Walk to the cabinet (1)
5: Walk to the cabinet (2)
6: Walk to the livingroom
7: Walk to the desk

Desk

1

2

3

4

5

6

7

Figure 6: An example of a simple navigation task. The robot explores the rooms and successfully
finds the desk.
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1

23

4

56

7
8

Navi & Mani
Task: Please place the cutlets on 
the kitchen table.

1: Walk to the kitchen 
2: Walk to the cutlets
3: Grab the cutlets
4: Walk to the kitchen 

5: Walk to the kitchen counter (1)
6: Walk to the kitchen counter (2) 
7: Walk to the kitchen table
8: Put the cutlets in the kitchen 
table

Cutlets

Kitchen table

Kitchen table

Cutlets

Cutlets

Cutlets

Kitchen table

Figure 7: An example of a simple navigation and manipulation task. The robot successfully finds the
cutlets and then places them on the kitchen table.

Navi + Relation
Task: Can you bring me 
the pie facing the TV?

1: Walk to the livingroom
2: Walk to the tv (1)
3: Walk to the kitchen
4: Walk to the tv (2)
5: Walk to the pie

Pie

TV

TV

TV

Pie

Relation constrain 
between pie and TV.

1
2

3

4

5

Figure 8: An example of a navigation task with spatial relation constraint. The robot successfully
finds the pie facing the TV.
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TV

1

2

3

4

5

6

Navi + Relation
Task: Can you locate the 
bookshelf facing the TV?

1: Walk to the livingroom 
2: Walk to the tv (1) 
3: Walk to the bedroom 
4: Walk to the kitchen 
5: Walk to the tv (2) 
6: Walk to the bookshelf

Relation constrain 
between bookshelf 
and TV.

TV

TV

Bookshelf

Bookshelf

Figure 9: An example of a navigation task with spatial relation constraint. The robot successfully
finds the book shelf facing the TV.

Navi + Relation + Occlusion size
Task: Can you locate the condiment 
shaker inside the kitchen?

1: Walk to the kitchen
2: Walk to the kitchen counter (1)
3: Open the kitchen counter
4: Close the kitchen counter
5: Walk to the kitchen cabinet (1)

6: Open the kitchen cabinet
7: Close the kitchen cabinet
8: Walk to the kitchen cabinet (2)
9: Open the kitchen cabinet
10: Walk to the bookshelf 
11: Walk to the condiment shaker

1

3 4
2

5 8
6 7 9

10
11

Condiment
shaker

Condiment
shaker

Figure 10: An example of a navigation task with spatial relation and size constraint. The robot tries
to locate a small object inside of the cabinets, and find it among other small objects on the book shelf.
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Navi + Relation + Occlusion size
Task: Can you bring me the 
toothbrush from inside the 
bathroom
1: Walk to the bathroom
2: Walk to the bathroom counter (1)

3: Open the bathroom counter
4: Close the bathroom counter
5: Walk to the wall shelf (1)
6: Walk to the toothbrush

ToothbrushToothbrush

1

23 4
5

6

Toothbrush is 
semi-obstructed 
by the glass.

Figure 11: An example of a navigation task with spatial relation and size constraint. The robot tries
to locate a toothbrush, and find it finally in the bathroom counter, partially obscured by the glass. The
robot has to walk to the counter before the toothbrush can be seen.

Navi & Mani + Occlusion size
Task: Find the mug and put it 
inside the fridge. 

1: Walk to the kitchen 
2: Walk to the mug
3: Grab the mug
4: Walk to the kitchen 
5: Walk to the livingroom 

6: Walk to the closet
7: Walk to the fridge
8: Open the fridge
9: Put the mug inside the fridge
10: Close the fridge

1

2
3

6

5

4 8
7 9

10

Mug

Mug

Mug
Mug

Fridge Fridge Fridge

Fridge

Fridge

Figure 12: An example of a navigation and manipulation task with size constraint. The robot locates
a small object, a mug, and place it insider a container, the fridge.
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Candle Candle

1

2

3
4

Navi + Relation + Occlusion distance
Task: Can you find the candle inside the bedroom?
1: Walk to the bedroom
2: Walk to the desk
3: Walk to the bed
4: Walk to the candle

Figure 13: An example of a navigation task with distance constraint. The robot has to walk from the
living room to the bedroom on the other side of the apartment to find the candle placed in a table
inside the bedroom.

Navi & Mani w/ Multiple objects
Task: Find a wineglass and a mug, then 
put them on the kitchen cabinet

1: Walk to the kitchen
2: Walk to the wineglass
3: Grab the wineglass
4: Walk to the kitchen cabinet (1)
5: Open the kitchen cabinet 

6: Put the wineglass inside the kitchen 
cabinet 
7: Walk to the mug 
8: Grab the mug
9: Walk to the kitchen cabinet (1)
10: Put the mug inside the kitchen cabinet 
11: Close the kitchen cabinet

1

2
3

4
56

78

91011

Mug

Wineglass

Wineglass

Mug

Mug

Kitchen 
cabinet

Kitchen 
cabinet

Kitchen 
cabinet

Kitchen 
cabinet

Kitchen 
cabinet

Kitchen 
cabinet

Wineglass

Figure 14: An example of a navigation and manipulation task involving multiple objects. The robot
has to find both objects and put them on the kitchen cabinet. The robot completes this task using only
one arm.
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Dishwasher

Dishwasher

Dishwasher

DishwasherDishwasher

Dishwasher

Wineglass

Coffeepot

Navi & Mani w/ Multiple objects 
+ Optimal path
Task: Gather the coffeepot and wineglass
and then lay them into the dishwasher.

1: Walk to the kitchen
2: Walk to the dishwasher
3: Open the dishwasher
4: Walk to the coffeepot

5: Grab the coffeepot
6: Walk to the wineglass
7: Grab the wineglass
8: Walk to the dishwasher
9: Put the coffeepot inside the dishwasher
10: Put the wineglass inside the dishwasher
11: Close the dishwasher

Figure 15: A navigation and manipulation task involving multiple objects. In this scenario, the
robot successfully completes the task in an optimal path. It firsts opens the dishwasher where the
objects needs to be placed, then grab both objects using both arms, and finally place them inside the
dishwasher.

A.2 FAILED CASES OF EMBODIED PLANNING TASKS

Some failed cases of the planning tasks are shown in figs. 16 to 19. For these instances of failure, a
cropped view and a brief description were added to elucidate the reasons behind the task’s failure.

Navigation
Task: Can you show me
where the bench is?

1: Walk to the livingroom
2: Walk to the bedroom
3: Walk to the kitchen
4: Walk to the bathroom

1

2

4

B
e

n
chB

e
n

ch

The LLM decided not to explore
any of the rooms other than
the initial observation.

Both benches are obscured by
the table.

3

3

Figure 16: An example of a failed task caused by occlusion. Both benches are obscured by the table
and cannot be seen by the robot in this case.
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Navi & Mani + Relation + Occlusion distance
Your task is to get paper inside livingroom and
move it to toilet inside bathroom.

1: Walk to the livingroom
2: Walk to the paper
3: Grab the paper
4: Walk to the bathroom

Paper

1

2

4

3

Unexplored area

The toilet was blocked by a
wall and the LLM decided not
to explore near this area.W

all

Toilet

Figure 17: An example of a failed task caused by occlusion. The toilet is obstructed by a wall.

Navi + Relation
Task: Can you bring me the 
deodorant close to the 
toothpaste?

1: Walk to the bathroom
2: Walk to the deodorant
3: Walk to the toilet
4: Walk to the bedroom
5: Walk to the cabinet (1)

6: Open the cabinet
7: Close the cabinet
8: Walk to the closet drawer (1)
9: Walk to the closet drawer (2)
10: Walk to the closet
11: Walk to the kitchen
12: Walk to the livingroom
13: Walk to the wall shelf (1)
14: Walk to the wall shelf (2)
15: Walk to the wall shelf (3)
16: Walk to the wall shelf (4)

1

2

3

4

5
6 7

8910
11

12

13
14

15
16

The objects in the
counter obstruct the
visibility and relations
between them.

Figure 18: An example of a failed task due to occlusion is when the robot detects the deodorant but is
unable to see the toothpaste, as it is obstructed from view.
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Navi + Relation + Occlusion size
Task: Can you get a cutlery fork from 
inside the kitchen?

1: Walk to the kitchen
2: Walk to the kitchen cabinet (1)
3: Open the kitchen cabinet
4: Close the kitchen cabinet

5: Walk to the kitchen cabinet (2)
6: Open the kitchen cabinet
7: Close the kitchen cabinet
8: Walk to the kitchen counter (1)
9: Open the kitchen counter
10: Close the kitchen counter
11: ….

The LLM decides not to explore
larger objects like the kitchen
table, where the goal object is
located.

123
4

9

56
7

8
10

Figure 19: An example of a failed task due to inefficient exploration involves a robot tasked with
finding a cutlery fork in a kitchen. Despite the fork being located on the kitchen table, the robot
only explores various containers that might contain the cutlery. As a result, it exhausts its maximum
exploration steps before it has a chance to search the table.

A.3 A COMPREHENSIVE RELATED WORK SURVEY

A.3.1 EVALUATION OF FOUNDATION MODELS FOR HOUSEHOLD EMBODIED PLANNING

LLMs are used in task planning for their generalization capabilities across various tasks(Brown
et al., 2020; Ahn et al., 2022; Huang et al., 2022). Recent works show significant advances in using
LLMs for long-horizon planning (Zhao et al., 2024), but challenges like hallucination and poor
spatial reasoning remain (Valmeekam et al., 2024; Dziri et al., 2024). An automatic evaluation of
LLM-based planners is crucial, yet performance comparison is complicated by factors such as prompt
construction and model selection. Despite advances in task planning with LLMs, related benchmarks
and automatic evaluations remain limited.

Evaluating LLM-based task planners requires datasets and simulators that include goal conditions of
tasks, natural language instructions, and a high-level API that facilitates validation using the simulator.
ActivityProgram (Puig et al., 2018) is a dataset of household activity descriptions in Virtual Home
(Puig et al., 2018). However, it does not include goal conditions, leaving the evaluation of task success
to human annotators. Watch-And-Help (Puig et al., 2020) (WAH), another dataset based on Virtual
Home (Puig et al., 2018) focusing on human-robot interactions, lacks natural language descriptions
of the household tasks. LoTa-BENCH (Choi et al., 2024) proposes WAH-NL, an extension to the
Watch-And-Help dataset that includes natural language descriptions. However, all tasks in both
datasets are generally about object rearrangement and only have a similar level of complexity with
short sequences of actions.

LLM-MCTS (Zhao et al., 2024) attempts to create more complex tasks using the WAH dataset by
defining a complex task as a composition of multiple simple tasks. However, combining simple
tasks does not necessarily increase the difficulty of planning, and this approach does not represent
the complexity of household tasks in real-world cases. EgoPlan-Bench (Chen et al., 2023) also
provides hierarchical reasoning for tasks, claiming that the goal can be broken down into subgoals
and secondary subgoals. However, it still follows the idea that combining simpler tasks creates more
complex tasks, ignoring the potential constraints and obstacles that can make tasks more challenging
in a real-world setting.
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Instead of generating tasks, Behaviour (Srivastava et al., 2022) takes household activities from
the American Time Use Survey, focusing on the diversity and complexity of tasks. However, the
generation of data is not automatic, rendering it hard to scale. HandMeThat (Wan et al., 2022)
proposes another benchmark dataset to add ambiguity to the generated tasks, forcing the agent to
retrieve more implicit information from the task. Like WAH (Puig et al., 2020), HandMeThat (Wan
et al., 2022) also includes a watch step where the agent observes actions performed by humans. They
generate their tasks by instantiating them from the human-annotated tasks in Behaviour (Srivastava
et al., 2022). However, they only interact with a text-based environment.

Datasets such as ALFRED (Shridhar et al., 2020a) are also generated to benchmark embodied
planning tasks using AI2-THOR (Kolve et al., 2017) or ALFWORLD (Shridhar et al., 2020b) by
generating more visually complex scenes of partially observable environments. RoboGen (Wang
et al., 2023) adopts a generative approach to generate diverse tasks, simulation scenes, and training
supervisions. They leverage Large Language Models for generating tasks, scene configurations, and
task decomposition and finally deploy the generated scenes in a generative simulation engine.

In this research, we focus on household activity planning, which is a combination of object navigation
and manipulation. There is other research more focused on lower-level manipulation tasks that we
did not mention here, for example ManiSkill2 (Gu et al., 2023), which is out of the scope of high
level task planning.

A.3.2 EMBODIED QUESTION ANSWERING

Ego-centric Visual Question Answering (EgoVQA) is a crucial task for many robotic applications.
EgoVQA (Fan, 2019) is a benchmark dataset focusing on first-person VideoQA tasks instead of third-
person videos. They collected and manually annotated the egocentric VideoQA pairs. EgoTaskQA (Jia
et al., 2022) is a dataset of question-answer pairs for ego-centric videos of human activities; however,
it specifically focuses on descriptive, predictive, explanatory, and counterfactual questions, attempting
to understand spatial, temporal, and causal relationships in the tasks. OpenEQA (Majumdar et al.,
2024) is another benchmark that includes human-generated questions about the environment with
open-vocabulary answers. The questions are categorized into two main types: those where the agent
needs to use episodic memory, such as video, to extract the answer, and those where the agent needs to
explore the environment to find the answer. They leverage LLMs as evaluators to score the answers.

The task of Embodied Question Answering (EQA) has also influenced task planning. EgoPlan-Bench
(Chen et al., 2023) designs the planning task as a multiple question-answering problem, and EgoCOT
(Mu et al., 2024) constructs the task planning data by generating questions about how the task must
be planned. In this work, we focus on task planning using different levels of complexity rather than
answering questions about the environment. However, we continue to employ a question-and-answer
format to prompt the Large Language Model to generate a plan for the task.

A.4 DETAILS FOR EACH TASK GENERATION PROCESS AND BENCHMARK TASKS

We provide several categories of concrete tasks in our benchmark: navigation; navigation with spatial
constraints; navigation and manipulation; navigation and manipulation with spatial constraints; and
navigation and manipulation with temporal constraints. The generation of each task follows the
pipeline described in Section 3.2. The completion criteria, description and examples used for each
task are displayed in Table 5. The details of each task description are provided as following:

Navigation. This category of tasks consists of easy tasks in which the robot needs to find a certain
object. The LLM agent determines where the object might appear and guides the robot to explore the
room until the task is successfully completed.

Navigation + Relation. In this category of tasks, the robot is asked to find a certain object in a
specific place. The LLM agent needs to provide answers about where the object might be, considering
the location where the object is situated.

Navigation & Manipulation. This type of task requires the robot to find a specific object, grab it,
and place it inside a container or on the surface of another object or the piece of furniture. The large
language model needs to help the robot locate both objects. Since there are more possibilities for the
stalling of the robot and it is harder to find the objects, the LLM agent is required to solve a more
complex reasoning problem.
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Table 5: Task description.

Task Category Description Example Intermediate
Criteria

Success Criteria

Navigation Find an object Find an apple. - (CLOSE, robot, ap-
ple)

Navigation + Re-
lation

Find an object at
certain place

Find the apple in
a fridge.

(INSIDE, ap-
ple, fridge)

(CLOSE, robot, ap-
ple)

Navigation & Ma-
nipulation

Find an object and
put it inside or on
an another object

Find an apple and
put it in a fridge.

- (CLOSE, robot, ap-
ple)(CLOSE, robot,
fridge)(INSIDE, ap-
ple, fridge)

Navigation & Ma-
nipulation + Rela-
tion

Find an object at
certain place and
put it in or on an-
other object at cer-
tain place.

Find an apple
close to a cup and
put it in a fridge
in a kitchen.

(CLOSE,
robot, ap-
ple)(CLOSE,
apple, cup)

(CLOSE, robot,
fridge)(INSIDE,
fridge,
kitchen)(INSIDE,
apple, fridge)

Navigation & Ma-
nipulation + Mul-
tiple objects

Find multiple ob-
jects and put them
inside or on an-
other object

Please obtain
toothpaste and
toothbrush and
place on the
kitchen counter

- (CLOSE, robot,
toothpaste) (CLOSE,
robot, tooth-
brush)(CLOSE,
robot, kitchen-
counter)(ON,
toothpaste, kitchen-
counter)(ON, tooth-
brush, kitchen-
counter)

Navigation &
Manipulation +
Temporal Depen-
dency

Find and place
multiple objects
with logical de-
pendency

Find milk and
pour it into a cup
and put it into the
oven to heat it up.

(CLOSE,
robot,
milk)(CLOSE,
robot,
cup)(INSIDE,
milk, cup)

(CLOSE, robot,
microwave)(INSIDE,
cup, mi-
crowave)(INSIDE,
milk, cup)

Navigation & Manipulation + Relation. In this type of task, the robot is asked to find object A,
which is related to object B in the environment, grab it, and then place it inside or on object C, which
is related to object D in the environment. This relational constrain increases the difficulty of finding
the objects to complete the task. Therefore, the LLM agent must consider the relationship between
objects to make decisions about the robot’s plan.

Navigation & Manipulation + Multiple objects. Rather than locating multiple objects (two or
more), grabbing each one sequentially (each grab is an independent sub-task), and then placing them
on or inside another object, the LLM agent will tackle the challenge of optimizing the traversal path
and the order of completing each subtask, aiming to complete the tasks more efficiently.

Navigation & Manipulation + Temporal Dependency. Each task consists of a sequence of subtasks,
where each subtask must be completed before the next one can begin. This results in a more strict
planning path for the LLM agent. Therefore, the large language model needs to think more logically
to guide the robot in exploring the environment and completing the task. The prompts used for LLM
to filter out unreasonable tasks are illustrated in Table 8 and Table 9.

A.5 FACTORS THAT IMPACT EMBODIED TASK DIFFICULTIES

Based on tasks described in Table 2 of the main paper, we categorize them into various difficulty
levels according to 5 aspects: action sequence length, prior knowledge, spatial relation constraints,
occlusion, and temporal constraints.
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Action sequence length Based on the action sequence length, we categorize our benchmark dataset
into three sub-datasets: 1. Navigation tasks with or without spatial constraints: These are the simplest
tasks as they only require the agent to find the target object. Reaching the target object requires at
least one step. 2. Navigation and manipulation tasks with or without constraints: These tasks are
more challenging as they necessitate not only finding the target object and the recipient location, but
also moving the target object to the recipient location. Completing the task requires at least four steps:
walking to the target object, grabbing the target object, walking to the recipient location, and placing
the target object at the recipient location. 3. Navigation and manipulation multiple objects: These
are the most complex tasks, requiring the agent to locate multiple target objects and the recipient
location, move all objects to the recipient location sequentially, and determine whether the recipient
location can accommodate both objects simultaneously.

Prior knowledge Prior knowledge is categorized into three levels of environmental semantic infor-
mation: visible information, visible information supplemented with a layout map, and comprehensive
environmental information with full scene graph. "Visible information" implies that the agent can only
obtain details about the environment through its embodied vision capabilities, simulating a real-world
scenario in which a robot explores an entirely unknown environment from scratch. This scenario
presents the most challenging task for the robot to complete. In another real-world scenario, the robot
might possess knowledge of certain environmental details, such as the locations of large, immovable
furniture. This additional information makes it relatively easier for the robot to complete the task.
In the final scenario, the robot has detailed information about the entire environment including the
location of all small objects, making it the easiest task to complete, as the robot can navigate directly
to its destination without the need for any exploration.

Spatial relation constraints Tasks with spatial relation constraints are more challenging than those
without because verifying the spatial relationship between two objects requires advanced scene
understanding abilities of the agent. However, in some scenario, these constraints also provide
additional information, facilitating more efficient exploration.

Occlusion As discussed in section 3.1, tasks involving occlusion are more challenging, either because
the size of the object is small or because the initial distance between the robot and the target object is
far, compared to those without occlusion.

Temporal constraints Tasks involving the navigation and manipulation of multiple objects with
temporal constraints are more challenging than those without, as the robot must adhere to a specific
sequence of steps. Unlike tasks with completion criteria only at the final stage, these tasks include
various intermediate completion criteria due to their causal dependencies.

A.6 GROUND TRUTH GENERATION

For each task, we are able to generate ground truth data directly from the scene graph of the layout
provided in the simulator, where objects are represented as nodes and the relationships between
them are represented as edges. For example, in order to find an apple located inside a fridge in the
kitchen, the shortest path between the robot and the apple can be extracted from the scene graph:
kitchen-fridge-apple. Then the path is translated into sequence of actions which could be executed in
the simulator. If the action list can be successfully executed and the goal conditions are met, the data
is saved as ground truth that represents the shortest action list to complete the task. The tasks that
cannot be completed in this way are removed from the dataset. This happens mostly due to inherent
bugs of the simulator.

The environment may contain multiple instances of objects with the same name. For tasks involving
spatial constraints, the target object meeting the specified requirements is identified. Utilizing the
unique object ID, the shortest path to the specific target object is then determined. For the tasks that
require object manipulation, the actions of "grab" or "place" are added to the target object or the
recipient location after navigation.

The tasks with temporal constraints, such as firstly placing object A inside object B then placing
object B that contains A into object C, can be decomposed into two sub-tasks: (1) find object A and
put it in object B; (2) grasp object B and put it into object C. The ground truth for each sub-task can
be generated using the aforementioned logics.
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For tasks involving navigation and manipulation of multiple objects (e.g., placing both object A
and object B at location C), the single-arm approach generates the ground truth by moving the two
target objects to the destination one by one. It is a straightforward combination of two navigation &
manipulation tasks involving a single object. In contrast, the two-arm approach involves first locating
both objects, then proceeding to the destination while carrying one object in each hand, and finally
placing them down.

A.7 TRAINING, VALIDATION AND TESTING DATA FOR OUR SFT EXPERIMENTS

In order to evaluate the generalization ability across different environments, We partitioned tasks
based on Virtual Home environments. We use tasks from 34 environment for training, 5 for validation,
and 10 for testing and evaluation. We used the LLM agent baseline on the training tasks to generate
question-and-answer (QA) pairs and executable action plans (see one example details in Table 10).
To test the effectiveness of the generated data, we fine-tuned LLAMA-7B using these QA pairs, and
compared its performance with GPT-4.

To evaluate the generalization ability across various task types, we employed QA data, comprising
a total of 5457 QA pairs, from four types of training tasks: navigation, navigation with spatial
relation constraints, navigation & manipulation, and navigation & manipulation with spatial relation
constraints. This data was utilized to fine-tune the LLAMA-7B model. Subsequently, we integrated
the fine-tuned LLAMA-7B model into the LLM agent to evaluate all testing tasks.

The validation data is used for hyper-parameter tuning for SFT. Results for the testing tasks are
presented in Table 2 of the main paper. In future works, these data could potentially used to enhance
the foundation models’ capabilities in long-horizon task decomposition in real-world environment.

A.8 EVALUATION DETAILS FOR EACH TASK

Our benchmark provides the completion criteria for each task. We developed an LLM agent to
interpret embodied planning tasks with various constraints and effectively follow instructions. The
initial phase involves task classification, which is accomplished using the prompt displayed in the
Table 11.

The LLM agent’s exploration strategy involves locating the target object using its vision, navigation,
and manipulation capabilities. Virtual Home offers an API to access the visible graph, which details
the objects within the field of view and their relationships from a first-person perspective. It also
enables navigation through the execution of the WALK action, specified by the object name and ID.
Additionally, the robot has various manipulation skills such as OPEN, CLOSE, and GRAB during its
exploration. The core algorithm governing the robot’s exploration logic is detailed in Algorithm 1.
The primary idea involves systematically exploring rooms and potential large visible objects one
by one in a 360-degree manner until either the target object is found or the maximum exploration
steps are reached. The prompt template for ranking rooms is presented in Table 12, while the prompt
template for the selection of large objects is shown in Table 13. In Virtual Home, each TURNRIGHT
action corresponds to a 30-degree right turn. Therefore, we perform the TURNRIGHT action 12
times to simulate a complete 360-degree exploration. The LLM is involved in ranking rooms and the
selection of large objects, thereby enhancing the agent’s cognitive capabilities.

In tasks involving navigation with spatial constraints, the main concepts are similar to those in
Algorithm 1, with two key differences: 1. After locating the target object, the robot must verify if
the object meets the spatial constraint criteria. 2. If the robot observes only the target object or the
constrained object, it should proceed to investigate one of these objects further, instead of exploring
other large pieces of furniture. Detailed steps of this algorithm are provided in Algorithm 2.

The LLM agent for evaluating navigation and manipulation tasks is detailed in Algorithm 3. This
task can be broken down into four subtasks: navigating to the object to be manipulated, grasping
the object, navigating to the recipient location, and placing the object at the recipient location. The
grasping and placing actions can be executed using the Virtual Home GRAB, PUT, or PUTIN actions.
The navigation to the object to be manipulated follows the procedure outlined in Algorithm 1. During
the navigation process, all visible objects are stored in "memory". If the recipient location is already
in memory, the robot can navigate there directly, avoiding redundant exploration. Otherwise, the robot

24



1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

must locate the recipient by following Algorithm 1 again. Additionally, the LLM agent for evaluating
navigation and manipulation with spatial constraints combines Algorithm 2 and Algorithm 3.

The aforementioned tasks involve the navigation and manipulation of a single object. For the tasks that
involve navigating and manipulating two objects, such as placing object A and object B at recipient
location C, the task can be decomposed into the following eight sequential steps: 1. Navigate to
object A, 2. Grab object A, 3. Navigate to recipient location C, 4. Place object A at recipient location
C, 5. Navigate to object B, 6. Grab object B, 7. Navigate to recipient location C, and 8. Place object
B at recipient location C. The navigation steps can follow Algorithm 1, while Virtual Home provides
the necessary manipulation skills for the task.

Given that the character in Virtual Home can manipulate objects using both arms, we propose a
task decomposition pipeline that entails navigation and the use of two arms to handle two objects
simultaneously. This process differs slightly from single-arm manipulation and involves the following
steps: 1. Navigate to object A, 2. Grab object A, 3. Navigate to object B, 4. Grab object B, 5.
Navigate to recipient location C, and 6. Place objects A and B at recipient location C sequentially. If
the task involves placing objects into a container that needs to be open first, the robot must temporarily
place one of the objects on a nearby surface before executing the OPEN action. Therefore, we have
two versions of plans for navigation and manipulation involving two objects. The plan with the
shortest walking distance to complete the task will be determined as the optimal plan.

For tasks involving navigation and manipulation with temporal constraints, a straightforward example
is placing object A into object B, and subsequently placing object B into object C. The ultimate goal
is to have object A inside object B, which is itself inside object C. This type of task involves stringent
temporal constraints because the robot must complete the first sub-task before initiating the second
one.

Prior global information from the environment To complete the task with prior layout map
information, we utilize the pipeline described in Algorithm 1 or Algorithm 3. We identify and
extract large immovable furniture in Virtual Home by identifying objects that are neither movable
nor grabbable. If the task involves finding an object inside one of these selected pieces of furniture,
the agent can navigate directly to it. Otherwise, when the agent is exploring a room, we assume it
knows the locations of these pieces of furniture, even if they are not currently visible. Then, the LLM
agent can also determine if the target object is inside or near the pre-identified, yet previously unseen,
furniture, facilitating further exploration. For task completion with comprehensive environmental
information, we employ the ground truth generation pipeline as described in Appendix A.6.

Algorithm 1 Robot’s exploration algorithm

Require: Find the object A
Ensure: Reset Virtual Home environment and create a character at a random location

Get all rooms from the Virtual Home environment
LLM determines whether the object A is inside these rooms and ranks rooms based on the
likelihood of its presence.
for Walk to and explore ranked rooms do

Get visible object lists from 360 degrees exploration
if Object A is inside visible object lists then

Find object A! Finish the task successfully
else if LLM determines whether the object A is inside or obscured by currently visible objects

and return any potential large objects then
for Walk to and explore potential large objects do

Get visible object lists from 360 degrees exploration
if Object A is inside visible object lists then

Find object A! Finish the task successfully
end if

end for
end if

end for
if Cannot find object A after exploration then

Failed to finish the task
end if
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Algorithm 2 Robot’s exploration algorithm to finish the navigation task with spatial constraint

Require: Find the object A which is close to object B
Ensure: Reset Virtual Home environment and create a character at a random location

Get all rooms from the Virtual Home environment
LLM determines whether both the object A and object B are inside these rooms and ranks rooms
based on the likelihood of its presence.
for Walk to and explore ranked rooms do

Get visible object lists from 360 degrees exploration
if Object A is inside visible object lists then

if Object B is inside visible object lists and meet criteria (object A, CLOSE, object B) then
Find the object A which is close to object B! Finish the task successfully

else
Agent walks to object A and get visible object lists from 360 degrees exploration
if Object B is inside visible object lists and meet criteria (object A, CLOSE, object B)

then
Find the object A which is close to object B! Finish the task successfully

end if
end if

else if Object B is inside visible object lists then
Agent walks to object B and get visible object lists from 360 degrees exploration
if Object A is inside visible object lists and meet criteria (object A, CLOSE, object B) then

Find the object A which is close to object B! Finish the task successfully
end if

else if LLM determines whether both the object A and object B are inside or obscured by
currently visible objects and return any potential large objects then

for Walk to and explore potential large objects do
Get visible object lists from 360 degrees exploration
if Object A is inside visible object lists and object B is inside visible object lists and

meet criteria (object A, CLOSE, object B) then
Find the object A which is close to object B! Finish the task successfully

end if
end for

end if
end for
if Cannot find the object A which is close to object B after exploration then

Failed to finish the task
end if

A.9 EVALUATION METRICS

Given our automated quantitative evaluation pipeline, we utilize various metrics to assess results
across different levels of tasks.

Success Rate The criteria for determining the success of a sample vary slightly depending on the
task. For navigation tasks, a task is deemed successful if it finds the target object. For navigation
tasks with spatial constraints, the robot must find a specific object that meets spatial relation criteria.
For example, if the task is to find an apple in the fridge but the robot finds an apple on the table, it is
not considered as a success. Success rate is calculated as the number of successfully completed cases
divided by the total number of cases, with a higher success rate being more favorable.

Sequence Length Another key metric is the sequence length, which is the number of action steps
required to complete the task. For failed tasks, we use the predefined maximum number of steps as
the sequence length. We then average the sequence lengths across all tasks. Shorter sequence lengths
are desirable, as they indicate quicker task completion.

Longest Common Subsequence (LCS) Length The longest common sequence metric measures the
similarity between the agent’s exploration actions and the ground truth actions. Typically, in the most
successful cases, the length of the longest common sequence matches the length of the ground truth
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Algorithm 3 Robot’s navigation and manipulation algorithm

Require: Put object A on object B
Ensure: Reset Virtual Home environment and create a character at a random location

Get all rooms from the Virtual Home environment
Find object A using Algorithm 1 and record all seen objects information during exploration into
memory
if Find object A after exploration then

Agent grabs object A
else

Failed to finish the task, exit
end if
if Object B is in memory then

Agent walk to object B and place object A on object B. Finish the task successfully
else

Find object B using Algorithm 1 and regard objects in the memory as a part of visible objects
during exploration.

if Find object B then
Agent walk to object B and place object A on object B. Finish the task successfully

else
Failed to finish the task

end if
end if

actions. For a specific task, a longer longest common sequence indicates that the exploration actions
are more similar to the ground truth actions.

Longest Common Subsequence Ratio Using longest common sequence as evaluation metric can be
biased as it favors complex tasks with longer action lists. To ensure fair comparisons between tasks
of varying action lengths, we introduce the longest common subsequence ratio, which is calculated
by dividing LCS length with ground truth (GT) length. The optimal value for this ratio is 1.

Moving Distance We also introduce an additional evaluation metric: moving distance for successful
cases. For these cases, a shorter moving distance indicates a more efficient moving path. The total
distance is calculated incrementally as the agent moves to new positions.

A.10 ADDITIONAL EXPERIMENT RESULTS

A.10.1 TASK PLANNING RESULTS WITH CHAIN OF THOUGHT

Chain of Thought (CoT) is frequently employed in large language models (LLMs) to enhance their
reasoning capabilities (Wei et al., 2022). Notably, several zero-shot CoT methods (Kojima et al.,
2022) have achieved fairly good performance across diverse task domains. For instance, merely
appending "Let’s think step by step" can improve results consistently.

As shown in Table 6, navigation tasks with CoT achieves slightly better success rates and LCS ratio.
Moreover, CoT enhances the interpretability of the planning process, which is crucial for household
robots and potentially enhancing the human-robot interaction experience.

Two prompts with Chain of Thought (CoT) reasoning are presented in Table 14 and Table 15.
Additionally, GPT-4 provides reasonable responses based on these prompts. Two demonstration
examples are shown in Table 16 and Table 17.

Prompt engineering is crucial for inspiring the best performance in large language models. We made
sufficient efforts to evaluate and choose the most effective prompt for our final use. While it may
not be the absolute best, since it’s impossible to definitively determine the best prompt, we can
confidently say that our chosen prompt is sufficient for our tasks. Overall, we kept our prompts
simple, clear, and with in-context examples, following standard prompt design guidelines.
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Table 6: Comparison for results with/without Chain of Thought

Success Rate Seq Length Longest Common Seq (Ratio) Moving Distance

Navigation 79.26% 6.77 1.59 (78.74%) 14.10
Navigation + CoT 79.73% 6.78 1.62 (80.21%) 14.38

Table 7: Comparison between zero-shot prompt and few-shot prompt

Task Success Rate Seq Length LCS (Ratio) Moving Distance
Zero-shot prompt + Navi 79.26% 6.77 1.59 (78.74%) 14.10
Few-shot prompt + Navi 77.81% 7.08 1.57 (77.61%) 14.08

Zero-shot prompt + Navi + Relation 62.61% 9.20 1.78 (88.75%) 12.45
Few-shot prompt + Navi + Relation 62.59% 9.12 1.77 (88.63%) 11.97

A.10.2 TASK PLANNING RESULTS WITH FEW-SHOT PROMPTING

We conducted a comprehensive evaluation of the performance of few-shot prompting and provided
a comparison with zero-shot prompting, as shown in the Table!7. Our findings indicate that the
performance difference between few-shot and zero-shot prompting is negligible. For the sake of
simplicity, we retained the zero-shot prompt version.

A.10.3 OBJECT DETECTION ANALYSIS IN VIRTUAL HOME

We aimed to incorporate visual input to propose a multi-modal benchmark for embodied planning,
recognizing that in real-world scenarios, robots primarily perceive information through visual data. To
this end, we evaluated Grounding-DINO (Liu et al., 2023), one of the state-of-the-art object detection
methods, as a perception module, along with two different vision-language models: GPT-4V, and
LLaVA-7B.

To evaluate the object detection capabilities of these models in Virtual Home, we simulated the
360-degree perspective used in our search algorithm across all 50 environments, each containing 4
rooms. This process generated a total of 1,155 images after filtering out views with no visible objects.

For Grounding-Dino we feed the list of assets in Virtual Home separated with a ’.’, to detect each
object as a particular class. The list of assets can be found in Table 19. For the prompt used for
GPT-4V and LLaVA see Table 18.

Figure 20: This figure shows the improvement of the mean F1 score before (red) and after (blue)
applying the embedding matching with cosine similarity technique. The improvement goes around
2% to 3% among VLMs.

To mitigate the problem where the output of the VLMs don’t match the asset name in Virtual Home,
due to the zero-shot setting, we followed the same strategy as (Zhao et al., 2024) to match word-pairs
using sentence-BERT (Reimers & Gurevych, 2019). We calculate the word embedding for each asset
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in the output, as well as each asset from Virtual Home, and then select the most similar pair using
cosine similarity. We defined a similarity threshold of 0.8 to decide if we match these words. This
way we make the models output to be compatible with Virtual Home, e.g. "dish washing liquid" to
"dishwashingliquid". General improvement for each model is shown at Figure 20.

(a) F1 Score (b) Accuracy

Figure 21: Evaluation results for the object detection in Virtual Home images. We observe similar
performances between GPT-4V and GroundingDINO, and a poor performance for LLaVA.

(a) Inference time (b) Inference time after filtering outliers

Figure 22: Figure 22a shows a high peak inference on LLaVA. As explained in Figure 23, this comes
because of the model repeating the output. For a clearer comparison, we filtered these outlier cases
in Figure 22b. We see GroundingDINO has the lowest inference, much faster than VLMs, being
3x faster than LLaVA (filtered results). Since GPT-4V is employed via an API, its inference time is
incomparable to that of the other two methods.

To evaluate the correctness of the output of these visual models, we calculated the F1 score and the
accuracy using the object list retrieved by Virtual Home as the ground truth for each image. We also
evaluated the inference response to measure the performance gain with higher computation cost for
each model. Results showed in Figure 21 demonstrate that there is not a big performance gain by
using current state-of-the-art VLM models against an object detection model as GroundingDINO.
More than that, we can see in Figure 22 that using VLMs increase the inference time significantly.
This makes it unfeasible for our embodied task planning method, and its one of the reasons why we
decide to use the Virtual Home API instead. Since Habitat does not provide a perception module API
like Virtual Home, we utilized Grounding-DINO as the perception module for the LLM agent within
the Habitat virtual environment.

There are a couple reasons why these object detection models are not reliable for our method. First,
the images provided by Virtual Home are in low resolution, what leads to ambiguous interpretation
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LLaVA Output

• False negative: ['toothbrush', 'hairproduct',
'toothpaste', 'plate', 'clothespile', 'candle',
'bookshelf', 'creamybuns', 'creamybuns',
'chips', 'chocolatesyrup’]

• False positive: ['bottle', 'bottle', 'bottle',
'bottle', 'bottle', 'bottle', 'bottle', 'bottle',
'bottle', 'bottle', 'bottle', 'bottle', 'bottle',
'bottle', 'bottle', 'bottle', 'bottle', 'bottle',
'bottle', 'bottle’,….]

Figure 23: For some images, LLaVA will steadily repeat the same object in the output until the
maximum number of tokens is reached. Particularly, 356 out of 1,155 (30.82%) images evaluated
presented this repeating problem with LLaVA, which shows a poor instruction following ability with
LLAVA-7B model. This behavior causes larger inferences as shown in Figure 22a.

GPT-4V Output

• True positive: ['chair', 'chair', 'chair', 'pie', 'plate',
'plate', 'faucet’]

• False negative: ['toaster', 'breadslice', 'breadslice',
'coffeemaker', 'condimentbottle',
'condimentbottle', 'condimentshaker', 'coffeepot',
'orchid', 'bananas', 'dishbowl', 'mincedmeat',
'cutlets’, 'dishwashingliquid', 'washingsponge’,
'kitchencabinet', 'kitchencabinet', 'kitchencabinet',
'kitchencabinet', 'kitchencabinet', 'kitchencabinet',
'kitchencounter', 'dishwasher',]

• False positive: ['refrigerator', 'table', 'chair', 'plant',
'cupcake', 'cupcake', 'cupcake', 'coffee pot',
'cabinet', 'cabinet', 'cabinet', 'cabinet', 'cabinet',
'cabinet', 'cabinet', 'cabinet’]

Figure 24: In this example with GPT-4V we see objects that are visible are not detected by Virtual
Home, therefore being categorized as false positives, e.g. cupcakes, refrigerator, table, etc. Other
objects like the kitchen cabinets or the orchid fail the embedding-matching with their corresponding
model outputs, cabinet and plant.

of the objects in the image even for humans, particularly the smaller ones. As shown in Figure 22
and Figure 23, inference times can be significant, and as high as 30 seconds per inference. This issue
represents a significant bottleneck in the current stage of integrating multi-modality into our LLM
agent.
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GPT-4V Output

• False negative: ["book", "book",
"door"]

• False_positive: ["wall light", "wall
light", "bed"]

Figure 25: In this example with GPT-4V, we see objects that are visible in the image not being
included in Virtual Home’s ground truth object list, therefore being categorized as false positives.

Grounding Dino Output

• True positive: ['towel', 'faucet', 'towel',
'toothpaste', 'towel', 'barsoap’]

• False negative: ['stall', 'sink', 'closet',
'toothbrush', 'deodorant', 'facecream',
'painkillers', 'wallpictureframe',
'powersocket’]

• False positive: ['rug', 'mug', 'cutleryfork’]

Figure 26: GroundingDINO provides bounding boxes along with their corresponding confidence
scores, adding a layer of interpretability that is often lacking with VLMs. However, it still requires us
to specify the classes we want to detect as input to achieve good detection accuracy. Additionally, it
struggles with low-resolution images from Virtual Home.

Other reason is our current way to match words using embedding. Some outputs, like as in Figure 24,
show that there is still margin of improvement in how we align the output of our model and the
Virtual Home environment.

There are also cases where the Virtual Home API provide objects not visible in the image, or vice
versa, don’t include obvious visible objects in the list, as shown in Figure 25. Even with a perfect
detection model, we cannot fully rely on it due to these inherent errors from Virtual Home.
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Table 8: Task generation prompt for navigation & manipulation + multiple objects

I will give a task [task] to put object 1 and object 2 inside or on the object 3. Please make a decision whether
it makes sense in the realistic world. Besides, there are rules that needs to be considered. If the task does not
meet the rules, it is still considered as unreasonable.
1. The object 1 needs to be grabbable reasonably for a human.
2. The object 2 needs to be grabbable reasonable for a human as well.
3. In general, the object 1 and object 2 together needs to be smaller than the object 3.
4. The object 1 and object 2 are reasonably related. For instance, a apple and a banana is related as they are
both fruits. A apple and a knife are also related, as we can use a knife to cut a apple.
5. Based on common sense, the task needs to make sense in realistic world. For instance, putting desk and
table into the frying pan is not a reasonable task.
Following are examples:
task: Find an apple and a knife, then put them into the box
conclusion: Reasonable
task: Can you find knife and the apple, and put them into a tray for later use
conclusion: Reasonable
task: Please put the bowl and the cellphone into the sink
conclusion: Unreasonable
task: Locate the toothbrush and the condiment shaker, then place them on the bed
conclusion: Unreasonable
task: Find a computer mouse and a peach, then place them on the bench
conclusion: Unreasonable
Please only output ’Reasonable’ or ’Unreasonable’ as output. Do not output thinking process, or extra words
such as ’conclusion’ or API_key

We didn’t directly test the bounding box capabilities of VLM, that we have with Grounding-DINO,
as seen in Figure 26, but zero-shot outputs showed it might hallucinate these values. Virtual Home
assets don’t have specific properties on the class names, like colors, shapes, etc. For future work, it
still needs study to evaluate how these models perform detecting more specific objects, e.g. big red
apple.

A.11 ACCESSIBILITY

URL to code and dataset: The code and benchmark data samples are included in supplementary
material and will be publicly released once the paper is accepted. We commit to maintaining both the
data and the code. Our data are intended for academic use.

Benchmark dataset meta data Our benchmark dataset is primarily composed of four key compo-
nents: task descriptions, task completion criteria, environment information, and ground truth action
plans.

Author statement: We acknowledge full responsibility for any violation of rights that may occur
during data collection or related activities, and we will take appropriate action as needed, such as
removing any data implicated in such issues.

License: ET-Plan-Bench is released under CC BY-NC 4.0 License.

A.12 PROMPTS
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Table 9: Task generation prompt for navigation & manipulation + temporal dependency

I will give a task [task] to put object 1 inside object 2 and then put them on or inside the object 3. Please make
a decision whether it makes sense in the realistic world. Besides, there are rules that needs to be considered.
If the task does not meet the rules, it is still considered as unreasonable
1. The object 1 needs to be grabbable reasonably for a human.
2. The object 2 needs to be grabbable reasonable for a human as well.
3. The object 1 needs to be smaller than the object 2.
3. The object 1 and object 2 together needs to be smaller than the object 3.
4. There needs to be a reason why the object 1 needs to be put inside object 2 before being placed on the
object 3. For instance, a apple is placed into a small box before placed on the kitchen counter, because the
counter top can look more organized this way.
5. Based on common sense, the task needs to make sense in realistic world. For instance, place telephone
into the frying pan and then place them into the sink is not a reasonable task.
Following are examples:
task: Please put book into box and then put them on the desk
conclusion: Reasonable
task: Can you put the knife into the box, and place them together on the kitchen counter
conclusion: Reasonable
task: Please put the cellphone into the bowl and put bowl on the table
conclusion: Unreasonable
task: Locate the toothbrush into condiment shaker, then place them on the floor
conclusion: Unreasonable
Please only output ’Reasonable’ or ’Unreasonable’ as output. Do not output thinking process, or extra words
such as ’conclusion’ or API_key

Table 10: Generated Question-and-Answer (QA) pairs and executable action plans

Task: Where is the toilet?
Prompt (Question): Determine which room may contain the object toilet, and the room list is [’bathroom’,
’bedroom’, ’kitchen’, ’livingroom’]. Please ranking these rooms based on the possibility and only output a
Python-style list. The number of output rooms should be the same as the number of rooms in the original
room list. Please do not output the answer like ’As an AI language model, I don not have the ability to
physically determine the location of objects or bring them to you.’ Please do not output the thinking process.
GPT4 Response (Answer): [’bathroom’, ’bedroom’, ’livingroom’, ’kitchen’]
Prompt (Question): Currently, the robot is in the room bathroom and can see objects [’hairproduct’,
’mug’, ’plate’, ’character’, ’cpuscreen’, ’candle’, ’wallshelf’, ’stall’, ’desk’, ’facecream’, ’toothpaste’,
’bathroom’, ’painkillers’, ’bathtub’, ’door’, ’faucet’, ’towel’, ’mouse’, ’bathroomcounter’, ’wallpictureframe’,
’washingmachine’, ’chair’, ’bedroom’, ’barsoap’]. Since the target object could be obscured by some larger
visible objects, the robot needs to explore the room further. Is this possible the object toilet is located inside or
nearby one of these visible objects? If yes, please only output these possbile visible objects in a Python-style
list and in the order of possibility, if not, please only output None. Please do not output the thinking process.
GPT4 Response (Answer): ["stall", "bathtub"]
Executable Action Plans:
1. walk bathroom
2. walk stall
3. walk toilet
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Table 11: Task classification prompt

Please classify the task: [task name]. Total classes are:
1. simple navigation: this class involves navigating something or giving something to a person.
2. constrained simple navigation: this class involves navigating or finding something with spatial constraints.
3. pick and place: the class involves navigating and picking the first object, and then placing the first object
to another place, rather than a person.
4. constrained pick and place: this class involves navigating and picking the first object with spatial
constraints, and then placing the first object to another place with spatial constraints.
5. pick two objects and place jointly: this class involves picking two objects and placing them to another
place, rather than a person.
Here are some examples:
1. Task: Can you pick up an apple for me? Class: simple navigation.
2. Task: Give me an apple in the fridge. Class: constrained simple navigation.
3. Task: Can you please place the clothespants on the kitchen table? Class: pick and place.
4. Task: Please locate the breadslice inside the kitchen and place it on the kitchentable also inside the kitchen.
Class: constrained pick and place.
5. Task: Find the cereal and the keyboard, then put them into the drawer for storage. Class: pick two objects
and place jointly.
6. Task: Can you point me to the microwave? Class: simple navigation.
7. Task: Can you close the curtains? Class: simple navigation.
8. Task: Can you bring me the mug on the desk? Class: constrained simple navigation.
9. Task: Can you get the barsoap from inside the bathroom? Class: constrained simple navigation.
10. Task: Can you find the condiment shaker and put it in the garbage can? Class: pick and place.
11. Task: Can you place the peach close to the dishbowl on the bench on the rug? Class: constrained pick
and place.
12. Task: Can you please find the crackers facing the TV and put them on the chair inside the bedroom?
Class: constrained pick and place.
13. Task: Find the cereal and the condiment shaker, then put them on the stove for preparing breakfast. Class:
pick two objects and place jointly.
Please only output the class name at the last line of the answer. Let’s think step by step.

Table 12: Navigation ranking rooms prompt

Determine which room may contain the object [object name], and the room list is [all rooms list]. Please
rank these rooms based on the possibility and only output a Python-style list. The number of output rooms
should be the same as the number of rooms in the original room list. Please do not output the answer like ’As
an AI language model, I don not have the ability to physically determine the location of objects or bring
them to you.’ Please do not output the thinking process.

Table 13: Navigation large objects selection prompt

Currently, the robot is in the room [room name] and can see objects [visible objects list]. Since the target
object could be obscured by some larger visible objects, the robot needs to explore the room further. Is this
possible the object [object name] is located inside or nearby one of these visible objects? If yes, please only
output these possible visible objects in a Python-style list and in the order of possibility, if not, please only
output None. Please do not output the thinking process.

Table 14: Navigation ranking rooms prompt with CoT

Determine which room may contain the object [object name], and the room list is [all rooms list]. Please
ranking these rooms based on the possibility and only output a Python-style list. The number of output rooms
should be the same as the number of rooms in the original room list. Please do not output the answer like ’As
an AI language model, I do not have the ability to physically determine the location of objects or bring them
to you.’ Please output the thinking process and the final answer. The final answer should be in the last line
and should follow the format mentioned above. Please do not output useless text in the line of final answer,
such as ’The final answer:’, ’The final answer is’, and so on. Let’s think step by step.
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Table 15: Navigation large objects selection prompt with CoT

Currently, the robot is in the room [room name] and can see objects [visible objects list]. Since the target
object could be obscured by some larger visible objects, the robot needs to explore the room further. Is this
possible the object [object name] is located inside or nearby one of these visible objects? If yes, please only
output these possible visible objects in a Python-style list and in the order of possibility, if not, please only
output None. Please output the thinking process and the final answer. The final answer should be in the last
line and should follow the format mentioned above. Please do not output useless text in the line of final
answer, such as ’The final answer:’, ’The final answer is’, and so on. Let’s think step by step.

Table 16: Navigation ranking rooms prompt-response demo

Prompt Determine which room may contain the object whippedcream, and the room list is [’bathroom’,
’bedroom’, ’kitchen’, ’livingroom’]. Please ranking these rooms based on the possibility and only output a
Python-style list. The number of output rooms should be the same as the number of rooms in the original
room list. Please do not output the answer like ’As an AI language model, I don not have the ability to
physically determine the location of objects or bring them to you.’ Please output the thinking process and
the final answer. The final answer should be in the last line and should follow the format mentioned above.
Please do not output useless text in the line of final answer, such as ’The final answer:’, ’The final answer is’,
and so on. Let’s think step by step.
GPT4 Response To determine which room might contain whipped cream among the options provided
’bathroom’, ’bedroom’, ’kitchen’, ’livingroom’, we can analyze typical usage and storage behavior for
whipped cream:
1. **Kitchen**: Whipped cream is commonly used in cooking and food preparation. It is typically stored in
a refrigerator which is mostly located in the kitchen. This makes the kitchen the most likely place to find
whipped cream.
2. **Living Room**: While not typical for storing food items, sometimes during gatherings or parties,
food items including whipped cream might be temporarily placed in the living room for accessibility and
convenience. However, this is less likely than finding it in the kitchen.
3. **Bedroom**: It’s rather uncommon to store food in the bedroom, especially whipped cream, which
requires refrigeration. However, without totally disregarding the possibility, whipped cream might be found
here in less conventional situations, perhaps during a special occasion like breakfast in bed.
4. **Bathroom**: It is highly unlikely to find whipped cream stored in a bathroom due to the need for
refrigeration and the typical use of bathrooms for hygiene products and medications. With this analysis,
we can rank the rooms by likelihood of containing whipped cream: [’kitchen’, ’livingroom’, ’bedroom’,
’bathroom’]
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Table 17: Navigation large objects selection prompt-response demo

Prompt Currently, the robot is in the room bathroom and can see objects [’wallshelf’, ’faucet’, ’character’,
’painkillers’, ’chair’, ’candle’, ’plate’, ’mouse’, ’bedroom’, ’bathtub’, ’bathroom’, ’washingmachine’, ’towel’,
’door’, ’hairproduct’, ’facecream’, ’wallpictureframe’, ’stall’, ’toothpaste’, ’bathroomcounter’, ’cpuscreen’,
’barsoap’, ’mug’, ’desk’]. Since the target object could be obscured by some larger visible objects, the robot
needs to explore the room further. Is this possible the object toilet is located inside or nearby one of these
visible objects? If yes, please only output these possible visible objects in a Python-style list and in the order
of possibility, if not, please only output None. Please output the thinking process and the final answer. The
final answer should be in the last line and should follow the format mentioned above. Please do not output
useless text in the line of final answer, such as ’The final answer:’, ’The final answer is’, and so on. Let’s
think step by step.
GPT4 Response To address the prompt, the task is to determine if the object "toilet" can be found inside or
close to one of the visible objects listed. Here is the breakdown of our thought process:
1. **Analyzing Visible Objects**: We must first identify objects from the list that are commonly found in a
bathroom and large enough to potentially obscure or be in close proximity to a toilet.
2. **Common Bathroom Objects**: From the list, objects like ’bathtub’, ’bathroomcounter’, ’stall’, and
’door’ immediately stand out as potentially relevant. These objects are typical in bathrooms and are large
enough to either hide a toilet from view or be positioned near it.
3. **Exploring the Selected Objects**: - **Bathtub**: While it is a large fixture in a bathroom next
to which toilets are often positioned, assignment obstruction is less likely but proximity is possible. -
**Bathroomcounter**: Typically houses sinks and associated elements but isn’t usually positioned very
close to toilets. - **Stall**: Public or larger bathrooms might have toilets inside stalls, making this a likely
candidate if the robot is in such a setting. - **Door**: As the entry to potentially secluded toilet sections or
individual toilet rooms (especially in spaces like public restrooms), this could be relevant.
4. **Practical Considerations**: The context provided by the visibility in a bathroom setting (or similarly
structured spaces) implies either partial obstruction by these objects or close proximity to them.
5. **Order of Possibility**: - **Stall**: Very high likelihood if the setup includes individual stalls typically
containing toilets. - **Door**: High possibility if it serves as an entryway to an individual toilet room or
section. - **Bathtub**: Moderate possibility depending on the bathroom layout; often positioned close to
a toilet. - **Bathroomcounter**: Lower likelihood compared to others, usually houses sink and storage
spaces.
By synthesizing these observations, one can make an informed hypothesis about where the toilet might be
located or obscured. [’stall’, ’door’, ’bathtub’]

Table 18: Object detection analysis prompt

Prompt: Your task is to detect all the objects in the given image(s), and return them in a list. If there are no
valid reasons why an object is in the image, don’t include it in the response. Please do not output something
like: ’I’m sorry, but I cannot assist with requests involving the analysis or processing of images or videos.’
In the last line of your answer, output only the name of the detected objects as classes in a Python-style
list. For example: [’apple’, ’banana’, ’peach’]. If there are multiple objects of the same class, add them
individually. For example, if there are 2 apples and 1 plate in the image, output: [’apple’, ’apple’, ’plate’]
and not [’apples’, ’plate’]
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Table 19: Virtual Home object assets

[’rug’, ’chair’, ’towelrack’, ’candle’, ’box’, ’ceilinglamp’, ’wallshelf’, ’faucet’, ’closetdrawer’, ’walllamp’,
’doorjamb’, ’tablelamp’, ’coffeetable’, ’tvstand’, ’garbagecan’, ’desk’, ’kitchentable’, ’curtains’, ’bench’, ’toi-
let’, ’bookshelf’, ’slippers’, ’clothesshirt’, ’clothespile’, ’remotecontrol’, ’keyboard’, ’mouse’, ’cellphone’,
’radio’, ’clock’, ’wallphone’, ’microwave’, ’lightswitch’, ’ceilingfan’, ’stovefan’, ’speaker’, ’computer’,
’powersocket’, ’amplifier’, ’cpuscreen’, ’bananas’, ’cupcake’, ’whippedcream’, ’chips’, ’crackers’, ’can-
dybar’, ’breadslice’, ’lime’, ’chocolatesyrup’, ’creamybuns’, ’peach’, ’plum’, ’pie’, ’cereal’, ’bellpepper’,
’salmon’, ’waterglass’, ’oventray’, ’cutleryknife’, ’mug’, ’dishwashingliquid’, ’condimentbottle’, ’fryingpan’,
’cutleryfork’, ’washingsponge’, ’wineglass’, ’dishbowl’, ’plate’, ’condimentshaker’, ’coffeepot’, ’cooking-
pot’, ’pancake’, ’milkshake’, ’chicken’, ’juice’, ’cutlets’, ’hairproduct’, ’barsoap’, ’towel’, ’toothpaste’,
’facecream’, ’toothbrush’, ’toiletpaper’, ’deodorant’, ’perfume’, ’folder’, ’book’, ’paper’, ’crayons’, ’notes’,
’magazine’, ’papertray’, ’wallpictureframe’, ’orchid’, ’toy’, ’boardgame’, ’guitar’, ’painkillers’, ’box’,
’closet’, ’sink’, ’cabinet’, ’kitchencabinet’, ’bathroomcabinet’, ’sofa’, ’bed’, ’bathroomcounter’, ’clothes-
pants’, ’hanger’, ’pillow’, ’tv’, ’mousemat’, ’washingmachine’, ’stove’, ’fridge’, ’printer’, ’apple’, ’pear’,
’salad’, ’sundae’, ’mincedmeat’, ’pie’, ’alcohol’, ’milk’, ’pudding’, ’cuttingboard’, ’knifeblock’, ’toaster’,
’coffeemaker’, ’microwave’]
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