
TimeSeAD: Benchmarking Deep Time-Series
Anomaly Detection

Anonymous authors
Paper under double-blind review

Abstract

Developing new methods for detecting anomalies in time series is of great
practical significance, but progress is hindered by the difficulty of assessing
the benefit of new methods, for the following reasons. (1) Public bench-
marks are flawed (e.g., due to questionable anomaly labels), (2) there is
no widely accepted standard evaluation metric, and (3) evaluation proto-
cols are mostly inconsistent. In this work, we address all three issues: (1)
We critically analyze several of the most widely-used multivariate datasets,
identify a number of significant issues, and select the best candidates
for evaluation. (2) We introduce a new evaluation metric for time-series
anomaly detection, which—in contrast to previous metrics—is recall con-
sistent and takes temporal correlations into account. (3) We analyze and
overhaul existing evaluation protocols and provide the largest benchmark of
deep multivariate time-series anomaly detection methods to date. We focus
on deep-learning based methods and multivariate data, a common setting
in modern anomaly detection. We provide all implementations and analy-
sis tools in a new comprehensive library for Time Series Anomaly Detection,
called TimeSeAD1.

1 Introduction

Anomaly detection (AD) on time series is a fundamental problem in machine learning and
significant in various applications, from monitoring patients and uncovering financial fraud
to detecting faults in manufacturing and critical process conditions in chemical plants (Ruff
et al., 2021). The aim in AD is to automatically identify significant deviations to the norm—
so-called anomalies. There are two principal approaches to AD on time series: An anomaly
detector assigns a score either to each time step separately (point-wise) or the entire time
series (globally). This work focuses on the point-wise setting, but the methods developed
for it can also be applied to the global setting by aggregating the local labels.

Evaluating the accuracy of an anomaly detector for time series is not straightforward. Most
authors apply point-wise metrics, particularly the F1-score, which has become a standard in
recent years. However, time series exhibit complex temporal dependencies not found in other
data. Point-wise metrics ignore these dependencies, which may lead to incorrect results. The
few prior attempts to introduce specialized evaluation metrics for time-series AD have not
caught on in the community, primarily due to their complexity and the counterintuitive
results they can produce.

Beyond inadequate metrics, the other major problem in time-series AD is the data. Recently,
Wu & Keogh (2021) have exposed major flaws in many widely used univariate datasets,
ranging from surface-level issues (such as mislabeled points) to deep-rooted problems (such
as positional bias and trivial features). These flaws alone invalidate many evaluations and
present an impossible-to-ignore hurdle for the field. The present work shows that such (and
other) flaws are also prevalent in multivariate datasets, particularly in high-dimensional
ones. As a result, there exists no sound, comprehensive analysis of AD on multivariate
times-series data yet.

1We provide the code in the supplementary material, and later through a GitHub link.

1

The distinct flaws of datasets, metrics, and evaluation protocols complicate any comparison
and make it hard to determine any meaningful progress in the field. This work examines
the most popular datasets, metrics, and evaluation protocols in detail and proposes a gen-
eral evaluation framework to address the identified problems. We have created a detailed,
extendable, and user-friendly library, where we implemented 25 deep-learning based multi-
variate time-series AD methods. This library is an unprecedented asset enabling researchers
to quickly and reliably develop, test, and evaluate new methods. It provides a set of tools
to analyze datasets and methods alike.

Our main contributions are the following:

• We conduct a thorough analysis of the most widely used datasets, metrics,
and evaluation protocols for multivariate time-series AD, revealing significant
problems with all three.

• We propose a new evaluation metric that is provably recall consistent and em-
pirically provides a reasonable ordering of evaluated methods.

• We present the largest comprehensive benchmark so far for multivariate time-
series AD, comparing 25 deep-learning methods on 21 datasets.

2 Related Work

Several papers have attempted to summarize the vast number of time-series AD approaches.
However, most prior work is focused either on a subclass of network architectures (Linde-
mann et al., 2021; Lee et al., 2021; Wen et al., 2022) or on a specific application domain and
methods specifically applied therein (Luo et al., 2021). Others discuss multiple methods
and concepts in a high-level overview (Blázquez-Garćıa et al., 2021), with a strong focus
on application. Choi et al. (2021) use point-wise metrics to selectively evaluate some meth-
ods on three datasets that we find being problematic (see Section 3.1). Other papers have
evaluated small selections of methods in a similar setting (Lai et al., 2021; Audibert et al.,
2022).

Schmidl et al. (2022) evaluate a large collection of more than 20 deep and several shallow
methods primarily on univariate or low-dimensional datasets. However, deep methods truly
shine in high-dimensional settings (analyzed in the present paper). Their evaluation relies
on a slow (quadratic in time) implementation of time-series precision and recall (Tatbul
et al., 2018). Speed is essential in deep learning, which is known to be computation-heavy.
As a result, they excluded results where the computation took too long. Other libraries
mostly focus on shallow or basic deep methods (Bhatnagar et al., 2021).

For the analysis of datasets, we build upon the work of Wu & Keogh (2021). They thoroughly
analyzed several of the most popular univariate time-series datasets, identified multiple
flaws, and concluded that many datasets do not allow for fair evaluation of AD algorithms.
Following their work, we find several similar problems with the most widely used multivariate
time-series datasets.

Overcoming the inherent problems of point-wise metrics on time-series data is no easy task.
Huet et al. (2022) provide an overview of existing attempts and introduce a metric based on
the distance of predicted anomaly windows to the nearest anomaly. They report their results
on datasets, in which we identify several problems. Others modify the predictions before
evaluation (Xu et al., 2018; Scharwächter & Müller, 2020; Kim et al., 2022) or consider only
the beginning of anomaly windows (Doshi et al., 2022). Some metrics are clearly biased
towards extreme cases of anomaly detectors (Hundman et al., 2018). Lavin & Ahmad
(2015) introduced the first metric to directly address the problems of point-wise evaluations
by penalizing late predictions in anomaly windows. With its numerous hyperparameters,
the metric was too complex and varied to be widely adapted (Xu et al., 2018). Tatbul
et al. (2018) proposed time-series precision and recall, a generalization of previous concepts
in many ways. For a long time, the only publicly available implementations were too slow
and cumbersome to use in practice. Garg et al. (2021) propose a variation of time-series
precision and recall that ignores any overlap between prediction and anomalies in the recall.

2

3 The Illusion of Progress

In this section, we uncover several issues that are causing evaluations in (multivariate) time-
series AD to be unreliable, resulting in an illusion of progress. Our analysis first examines
some of the most commonly used datasets, SWaT (Goh et al., 2016), WADI (Ahmed et al.,
2017), and SMAP and MSL (Hundman et al., 2018). These datasets are the backbone of
time-series AD evaluation and have been used in virtually all major comparisons in the field
(Schmidl et al., 2022; Garg et al., 2021; Choi et al., 2021; Jacob et al., 2020). Our analysis
reveals several significant flaws in these datasets. Second, we investigate the shortcomings
of frequently used evaluation metrics, particularly the F1-score and its adaptations. Lastly,
we examine the inconsistencies and other problems within established evaluation protocols.

3.1 Datasets

In the following, we outline several general problems found in time-series datasets and
summarize our findings on SWaT, WADI, SMAP, and MSL2.

Anomaly density refers to the fraction of anomalies in the test set. Anomalies are usually
rare deviations and their density in the test set should reflect this. However, with the excep-
tion of WADI, all datasets contain ≥ 10% anomalies, which is too high to be representative
of realistic scenarios. Ideally, the anomaly density should be ≤ 5%.

Positional bias is introduced when the distribution of the relative positions of anomalies
deviates significantly from a uniform distribution. For example, anomalies can be biased
towards the end, when an anomaly means a fatal error for the generating process (Wu &
Keogh, 2021). Any algorithm accounting for this shift has an immediate advantage over its
competitors. To investigate this bias, we examine the relative positions of anomalous time
steps in each time series in the test sets and find clear positional bias in both SMAP and
MSL (see Figure 1a).

(a) Histogram of relative anomaly positions (b) Histogram of anomaly window lengths

Figure 1: (a) The relative positions of anomalies in the test set of SMAP show clear positional bias
towards the latter half of the time series. (b) The distribution of anomaly window lengths in SWaT
shows the existence of exceptionally long anomaly windows.

Long anomalies can introduce problems in the evaluation. Some methods may rely on
normal context in each window to predict subsequent anomalies and are thus at a disad-
vantage when long anomalies occur. Long anomalies also interact with adapted evaluation
protocols, which we discuss in Section 3.3. Although not inherently negative, both effects
should be kept in mind when using data containing long anomalies for evaluation. We found
that the vast majority of anomalous time steps in all datasets belong to one or several long
anomalies (for example, see Figure 1b).

Constant features appear in all datasets. Some datasets have features that remain con-
stant, even throughout both training and test sets (see Figure 2). While such features may
be valuable in practical applications, they add unnecessary complexity to the benchmark.

Distributional shift between normal training and test data breaks one of the fundamental
assumptions of AD. For an unbiased and fair evaluation, anomalies should be labeled, where
they occur in the data. Effects that show in a sensor only after the labeled anomaly (see

2We provide descriptions and detailed examples for all datasets in Appendix B.

3

(a) Train set feature distribution (b) Test set feature distribution

Figure 2: Mean and standard deviation of features in SWaT for normal points (black) and anomalies
(red), reveal several features that are constant across the entire dataset and one particular feature
for which the normal points experience clear distributional shift between training and test set.

Figure 3a) pose an impossible problem for any anomaly detector. This holds especially true
for long-lasting changes in the data, often permanently changing the distribution of the
system (see Figure 3b)3.

(a) 2 P 004 SPEED (b) 2A AIT 002 PV

Figure 3: Two features from the test set of WADI show where anomalies seem to cause (a) delayed
or (b) long-term effects in the data. Red shaded areas are ground truth anomalies. The feature in
(b), normalized to range in [0, 1] on the training set, jumps to unprecedented values on the test set.

SWaT and WADI contain the clearest examples of delayed and long-term effects in the
data, where the distribution changes drastically in the second half of the test set. We found
exceptionally long anomalies in both datasets, especially in SWaT. Thus evaluations on these
two datasets are highly unreliable. In our opinion, they are not suited for AD evaluation.

SMAP and MSL contain time series with one feature representing a sensor measurement,
while the rest represent binary encoded commands. The command features are often con-
stant, in particular in sections where anomalies occur. Furthermore, since several sensors
have been used to construct the dataset, each time series in both datasets should be con-
sidered separately. SMAP contains a clear positional bias towards the end, and both seem
to include significant distributional shifts caused by anomalies. Thus both MSL and SMAP
are not suited for general AD evaluation in their current iteration.

3.2 Metrics

An anomaly detector produces an anomaly score for each time point in a time series. Anoma-
lies are then predicted by thresholding these scores. Point-wise metrics consider each predic-
tion separately, with the point-wise F1-score as the most popular choice, oftentimes reported
alongside precision and recall. Ignoring the temporal dependency between time steps comes
at a price: Any two methods that differ only in a predictive pattern (the structure of their
predictions) on some anomaly window are indistinguishable for any point-wise metric (see
Figure 4a as an example). Predictive patters matter for separating early and late or con-
sistent and fragmented predictions, and their differences should be reflected in the metric
used to compare them.

Time-series precision and recall (Tatbul et al., 2018) is an attempt to overcome these issues.
Consider the set of anomaly windows in a dataset A and the set of predicted windows P,

3For a detailed description, discussion, and more examples, refer to Appendix B.

4

(a) Two predictions of equal size with distinct
predictive patterns on an anomaly.

(b) Anomaly score and predictions P1, P2, where
only the larger persists for both thresholds t1, t2.

Figure 4: (a) A point-wise metric cannot distinguish between two methods that differ only in their
predictive pattern on anomalies. (b) Counterintuitively, TRec with a constant bias and γ(x) = x−1

increases when the threshold increases from t1 to t2.

and let PA = {P ∈ P | |A ∩ P | > 0}. Then time-series recall is defined as

TRec(A,P) =
1

|A|
∑
A∈A

α1(|PA| > 0) + (1− α)γ(|PA|)
∑
P∈P

∑
t∈P∩A

δ(t−minA, |A|)∑
t∈A

δ(t−minA, |A|)

 (1)

with weight 0 ≤ α ≤ 1, monotone decreasing cardinality function γ with γ(1) = 1, and
bias function δ ≥ 1. This metric can generally produce unintuitive results. For example,
consider two disjoint predictions P1, P2 ⊂ A ∈ A for a threshold λ, such that

∑
t∈P1∩A δ(t−

minA, |A|) >
∑

t∈P2∩A δ(t − minA, |A|). Then, if there exists a threshold greater than λ

such that P1 is kept intact while P2 vanishes, TRec increases (see Figure 4b for illustration).

While the point-wise recall is monotonically decreasing with an increasing threshold—a
property we entitle recall consistency—the example shows that TRec generally is not recall
consistent, particularly for the recommended default parameter choices (Tatbul et al., 2018).
This behavior is counterintuitive and can lead to problems when computing aggregated met-
rics that assume recall consistency. To compute the corresponding precision, the positions
of A and P are exchanged in the computation of the recall, i.e. TPrec(A,P) = TRec(P,A).
This choice encourages any algorithm to predict many small anomaly windows, as all predic-
tions are weighted equally, which clearly conflicts with the choice of a decreasing cardinality
function. Even though clearly flawed, time-series recall and precision are the best attempts
to include the temporal structure of time series in an evaluation metric so far.

3.3 Evaluation Protocol

Alongside various metrics, the actual evaluation protocols are often vastly inconsistent. Be-
yond preprocessing, feature selection, and data cleaning, Xu et al. (2018) proposed point
adjustment to complement the point-wise nature of the F1-score. Point adjustment consid-
ers any anomaly window with at least one correctly predicted time step predicted correctly.
However, even random methods have a decent chance to predict at least one point in larger
anomaly windows, where they can easily reach the performance of most complex methods
or even outperform them (Kim et al., 2022; Doshi et al., 2022). Despite these flaws, this
technique was adopted by many papers (Su et al., 2019; Audibert et al., 2020; Zhao et al.,
2020; Zhang et al., 2021; Xiao et al., 2021; Chen et al., 2021; Wang et al., 2021; Challu
et al., 2022; Hua et al., 2022; Chambaret et al., 2022; Zhang et al., 2022b;a). Often the use
of point-adjustment and preprocessing methods is not definitively disclosed. In combination
with a general lack of details and official implementations, this means results are often hard
or even impossible to reproduce consistently4. Combined with the general inconsistencies
across publications, this leads to inconsistent and questionable reports at the very least.
We encountered a lot more problems in evaluation protocols when trying to reproduce the
results of many papers. Potential problems include hyperpparameters tuned on the test set,

4See Appendix C for details on all considered methods.

5

results aggregated over multiple datasets, and many more such details. It is clear to see,
that these inconsistencies further complicate any comparison.

4 TimeSeAD: Benchmarking Deep Multivariate Time-Series AD

In this section, we propose how to benchmark time-series AD methods in a way that mit-
igates the issues discussed in Section 3. We discuss the strengths and weaknesses of two
datasets, SMD (Su et al., 2019) and Exathlon (Jacob et al., 2020) and propose how their
flaws can be mitigated. Further, we introduce a modified version of time-series recall that
is recall consistent and a modified version of its corresponding precision that addresses its
bias. Finally, we discuss our evaluation protocol and implementation.

4.1 Datasets

In the previous section, we uncovered flaws in several commonly used benchmark datasets.
However, there are also datasets that are more suited for benchmarking, namely SMD Su
et al. (2019) and Exathlon Jacob et al. (2020).

SMD contains 28 time series generated from different processes and thus comprises 28
datasets. Some of its datasets suffer from distributional shift and have been removed from
evaluations in the past (Li et al., 2021b). To the best of our knowledge, there is no auto-
matic statistical test to identify distributional shift in time series, thus we rely on manual
inspection of all datasets. We exclude several datasets from the final evaluation, where we
suspect delayed or long-term effects caused by anomalies, and only report those results in
Appendix E. In total, we remove 13 datasets.

Exathlon comprises eight datasets collected from applications run on a cluster. The time
series in Exathlon suffer from missing values, which the creators suggest be replaced with
default values. This inadvertently injects unlabeled anomalies in the data, where the de-
fault values follow a different distribution. Instead, we replace any missing values with the
respective preceding value. We omit two applications, one, for which we identify a severe
distributional shift, and one with a too small test set, leaving six datasets. Overall, we
find several more instances of possible delayed effects and distributional shift, which might
be attributed to background effects. Nonetheless, we strongly encourage further careful
inspection by application experts.

4.2 Metrics

In Section 3.2 we discussed the potential and shortcomings of TRec and TPrec. We propose
new default parameters for TRec and a variation of TPrec to address their flaws. Let us
first note the discrepancy between the two terms in Equation (1). The first term counts
the number of anomaly windows for which at least one point was predicted correctly. In
contrast, the second term is entirely concerned with the predictive structure within each
anomaly window. Since the first term is completely oblivious to the size of the anomalies,
the range of both terms could vary wildly for each task, and the terms would need to
be balanced for each task individually. Furthermore, the second term already implicitly
acknowledges the existence of anomalies in their overlap. Thus, we suggest to use α = 0.

To prevent unintuitive results, we further require any cardinality function to guarantee recall
consistency. Thus, we define a class of functions for which recall consistency always holds.

Theorem 1 TRec is recall consistent for any cardinality function of the form

γ(1, A) = 1, γ(n,A) = max
0<m<n

∑
t∈A

δ(t−minA, |A|)− n+m∑
t∈A

δ(t−minA, |A|)
γ(m,A).

Proof: We provide the detailed proof in Appendix A.

6

Theorem 2 With constant bias the cardinality function has the closed-form solution

γ∗(n,A) =

(
|A| − 1

|A|

)n−1

.

Proof:5 We show the proposition by induction. First, note that γ∗(n,A) =
(

|A|−1
|A|

)0

= 1.

Now assume γ∗(m,A) =
(

|A|−1
|A|

)m−1

for all m ≤ n. Then it holds

γ∗(n+ 1, A) = max
0<m<n+1

∑
t∈A

δ(t−minA, |A|)− n− 1 +m∑
t∈A

δ(t−minA, |A|)
γ(m,A)

= max
0<m<n+1

|A| − n− 1 +m

|A|

(
|A| − 1

|A|

)m−1

≥ |A| − 1

|A|

(
|A| − 1

|A|

)n−1

=

(
|A| − 1

|A|

)n

Furthermore, it holds

γ∗(n+ 1, A) = max
0<m<n+1

∑
t∈A

δ(t−minA, |A|)− n− 1 +m∑
t∈A

δ(t−minA, |A|)
γ(m,A)

Lemma 1
≤ max

0<m<n+1

(
|A| − 1

|A|

)n+1−m (
|A| − 1

|A|

)m−1

=

(
|A| − 1

|A|

)n

□

We call TRec with cardinality function γ∗ and constant bias TRec∗. The general formulation
preserves the bias function as tunable parameter. It is important to retain this degree of
generality, as we can still adapt the metric to specific use-cases, such as early prediction.

Finally, we address the bias of time-series precision by weighing each term according to the
size of the anomaly. Thus, instead of using equal weights |P|−1, we weigh each term inside

the sum by |P |
(∑

P∈P |P |
)−1

. Using these implementations of precision and recall, we can
compute an F1-score and the area under precision recall curve (AUPRC). Empirically we
find that this F1-score produces reasonable orderings of methods, see Figure 5.

(a) LSTM-P scores (b) TCN-AE scores

Figure 5: Scores from two different methods on a test time series of Exathlon 2, where (b) performs
better according to our score, but worse according to the point-wise F1-score, providing an ordering
aligned with our intuition.

5We provide details on the technical Lemma 1 in Appendix A.

7

Table 1: Cross-validation results on Exathlon and SMD. We report the ranks according to the best F1-score based on TRec∗ and TPrec∗ averaged
over all test folds. µExa

s and µSMD
s are the ranked average scores over all datasets in Exathlon and SMD respectively and µall

s shows the ordering of
the weighted average over all datasets from both Exathlon and SMD, weighted by the number of datasets in Exathlon and SMD. We provide the full
results in Appendix E.

Exathlon SMD

ID 1 2 4 5 6 9 µExa
s 1 6 8 9 10 11 13 14 16 17 20 21 24 26 27 µSMD

s µall
s

re
co
n
st
ru
ct
io
n

LSTM-AE 24 2 20 21 21 23 22 4 3 5 10 1 8 4 1 1 3 3 1 2 4 3 1 4
LSTM-Max-AE 5 23 22 19 20 7 20 3 22 21 12 21 17 6 18 20 11 21 22 12 7 11 17 22

MSCRED 10 1 2 14 3 1 1 8 19 1 20 19 24 21 24 13 9 24 21 20 21 18 20 12

FC-AE 4 20 10 15 13 10 10 7 13 8 9 11 13 9 8 6 6 14 6 9 8 2 7 7
USAD 7 18 9 11 16 19 15 23 20 19 18 20 11 10 10 23 13 12 14 19 22 15 15 16

TCN-AE 8 5 14 9 18 2 3 20 15 6 23 22 23 23 22 16 16 5 19 21 1 22 21 17

GenAD 3 25 3 10 1 25 4 19 25 22 24 24 25 8 19 22 18 25 25 18 14 13 24 23

STGAT-MAD 14 17 8 20 2 15 14 12 7 14 4 4 10 14 4 3 7 4 10 8 2 5 5 3

p
re
d
ic
ti
o
n LSTM-P 19 12 21 8 25 12 24 1 1 2 14 6 9 2 2 4 2 11 7 11 12 4 2 10

LSTM-S2S-P 13 19 1 23 12 5 11 6 16 3 19 23 21 24 23 10 15 17 17 15 13 20 18 18

DeepAnt 12 10 6 12 11 13 7 9 12 12 5 17 15 15 9 7 14 10 13 6 10 19 12 11

TCN-S2S-P 15 7 12 13 23 16 19 15 2 4 6 9 7 16 12 2 1 2 5 5 11 1 3 5
GDN 2 6 16 16 8 4 2 2 14 7 11 7 14 13 14 15 10 14 11 4 19 10 10 2

V
A
E
s

LSTM-VAE 20 14 13 2 7 17 6 14 11 17 21 2 5 7 13 9 20 8 2 7 23 14 9 8
Donut 23 22 7 4 19 9 16 16 6 9 3 3 6 19 5 18 5 1 9 1 24 9 6 6
LSTM-DVAE 18 24 17 3 22 18 17 24 10 15 22 8 4 18 3 12 23 9 3 10 20 23 13 13

GMM-GRU-VAE 21 11 18 6 5 3 5 10 5 11 2 5 1 17 6 14 4 6 8 3 15 6 4 1
OmniAnomaly 25 21 25 1 4 11 21 17 4 16 8 16 2 1 15 5 21 18 15 14 25 7 11 14

SIS-VAE 17 16 5 7 6 21 12 5 9 10 7 12 12 11 7 8 8 7 12 13 3 8 8 9

G
A
N
s BeatGAN 6 3 15 18 14 14 8 18 18 18 15 13 16 12 17 21 12 16 16 22 17 17 16 15

MAD-GAN 9 15 11 22 9 22 18 21 21 13 17 18 22 22 16 17 24 13 23 25 18 25 23 24

LSTM-VAE-GAN 11 8 4 24 15 6 13 13 17 20 1 15 19 3 21 24 22 21 18 24 6 12 19 20

TADGAN 1 4 19 17 17 20 9 11 24 25 16 14 20 5 20 19 17 19 20 17 5 24 22 21

o
th
er LSTM-AE OC-SVM 16 9 23 25 24 24 25 25 23 23 25 25 18 25 25 25 19 23 24 23 9 16 25 25

MATD-GAT 22 13 24 5 10 8 23 22 8 24 13 10 3 20 11 11 25 20 4 16 16 21 14 19

8

4.3 Evaluation

To ensure a fair evaluation, we implemented, trained, and evaluated all methods and datasets
in python using PyTorch (Paszke et al., 2019). Several methods rely on an unlabeled
validation set to adapt parameters of the anomaly detector, for which we split off 25%
of the training set. To tune the hyperparameters of each method, we partition the test
set into five folds of roughly equal size, optimize the parameters on each, and evaluate the
performance of the best model on the rest. Furthermore, we exclude the folds directly next
to the validation fold to mitigate the bias introduced by temporal dependencies. Finally,
we report the evaluation averaged over all folds. For our experiments we implemented a
sacred-based plugin (Greff et al., 2017) for our library to manage all experiments. We use
our fast (linear in time) implementation of TRec∗ and TPrec∗ to compare all implemented
methods using the corresponding F1-score6.

5 Results

We report the main results of our evaluation on SMD and Exathlon in Table 1. We select
a reasonable grid of hyperparameters such that we can fully train and evaluate all methods
on Exathlon and SMD within two days each7. On SMD, we can see a consistently strong
performance by older (simpler) methods, such as LSTM-AE (Malhotra et al., 2016) and
LSTM-P (Malhotra et al., 2015). In contrast, several modern methods partially seem to
perform poorly on SMD (Zhou et al., 2019; Li et al., 2019; Said Elsayed et al., 2020; Hua
et al., 2022). We find no method that outperforms its competitors on all datasets. However,
the autoencoder- and prediction-based methods seem to be able to perform consistently
across multiple datasets and GAN-based methods appear to struggle most among all meth-
ods. Methods performing well on SMD generally don’t perform well on Exathlon and the
other way around.

The variational autoencoder based method GMM-GRU-VAE (Zhang et al., 2021) and the
prediction based method GDN (Deng & Hooi, 2021) perform the most consistent across all
datasets.

6 Conclusion

Many datasets are severely flawed and form a shaky foundation for AD evaluations. Even
carefully constructed datasets (such as those in Exathlon) reveal flaws under careful scrutiny.
Despite their well-known problems, point-wise metrics are still the de-facto standard in
most evaluations. These (and other) issues create an illusion of progress in time-series
AD. We have proposed a general evaluation protocol and a metric that considers temporal
dependencies and produces reliable results, as we demonstrate. Evaluating 25 methods in
this setting reveals no method that consistently outperforms its competitors. We found that
especially modern approaches struggle to reach the performance of older methods.

Our proposed metric is recall consistent and allows for individual bias functions; however,
more research on appropriate cardinality functions and their closed-form solutions could
reveal new insights. We hope that our comprehensive TimeSeAD library helps to shed some
light on the progress of (deep) time series AD methods, and further, aids the community to
measure the gain of new algorithms in the future.

6In Appendix E we provide the complete results, including point-wise metrics and in Appendix D
we discuss the evaluation protocol in detail.

7We release the full grids alongside the library.

9

References

Chuadhry Mujeeb Ahmed, Venkata Reddy Palleti, and Aditya P Mathur. Wadi: a wa-
ter distribution testbed for research in the design of secure cyber physical systems. In
Proceedings of the 3rd international workshop on cyber-physical systems for smart water
networks, pp. 25–28, 2017.

Martin Arjovsky, Soumith Chintala, and Léon Bottou. Wasserstein generative adversarial
networks. In Doina Precup and Yee Whye Teh (eds.), Proceedings of the 34th International
Conference on Machine Learning, volume 70 of Proceedings of Machine Learning Research,
pp. 214–223. PMLR, 2017. URL https://proceedings.mlr.press/v70/arjovsky17a.
html.

Julien Audibert, Pietro Michiardi, Frédéric Guyard, Sébastien Marti, and Maria A Zuluaga.
Usad: Unsupervised anomaly detection on multivariate time seriesammann2020anomaly.
In Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Dis-
covery & Data Mining, pp. 3395–3404, 2020.

Julien Audibert, Pietro Michiardi, Frédéric Guyard, Sébastien Marti, and Maria A Zuluaga.
Do deep neural networks contribute to multivariate time series anomaly detection? arXiv
preprint arXiv:2204.01637, 2022.

Aadyot Bhatnagar, Paul Kassianik, Chenghao Liu, Tian Lan, Wenzhuo Yang, Rowan Cas-
sius, Doyen Sahoo, Devansh Arpit, Sri Subramanian, Gerald Woo, et al. Merlion: A
machine learning library for time series. arXiv preprint arXiv:2109.09265, 2021.

Ane Blázquez-Garćıa, Angel Conde, Usue Mori, and Jose A Lozano. A review on out-
lier/anomaly detection in time series data. ACM Computing Surveys (CSUR), 54(3):
1–33, 2021.

Chris U Carmona, François-Xavier Aubet, Valentin Flunkert, and Jan Gasthaus. Neural
contextual anomaly detection for time series. arXiv preprint arXiv:2107.07702, 2021.

Cristian I Challu, Peihong Jiang, Ying Nian Wu, and Laurent Callot. Deep generative
model with hierarchical latent factors for time series anomaly detection. In International
Conference on Artificial Intelligence and Statistics, pp. 1643–1654. PMLR, 2022.

Guillaume Chambaret, Laure Berti-Equille, Frédéric Bouchara, Emmanuel Bruno, Vincent
Martin, and Fabien Chaillan. Stochastic pairing for contrastive anomaly detection on time
series. In International Conference on Pattern Recognition and Artificial Intelligence, pp.
306–317. Springer, 2022.

Wenchao Chen, Long Tian, Bo Chen, Liang Dai, Zhibin Duan, and Mingyuan Zhou. Deep
variational graph convolutional recurrent network for multivariate time series anomaly
detection. In International Conference on Machine Learning, pp. 3621–3633. PMLR,
2022.

Zekai Chen, Dingshuo Chen, Xiao Zhang, Zixuan Yuan, and Xiuzhen Cheng. Learning
graph structures with transformer for multivariate time series anomaly detection in iot.
IEEE Internet of Things Journal, 2021.

Kukjin Choi, Jihun Yi, Changhwa Park, and Sungroh Yoon. Deep learning for anomaly
detection in time-series data: review, analysis, and guidelines. IEEE Access, 2021.

Ailin Deng and Bryan Hooi. Graph neural network-based anomaly detection in multivariate
time series. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 35,
pp. 4027–4035, 2021.

Keval Doshi, Shatha Abudalou, and Yasin Yilmaz. Tisat: Time series anomaly transformer.
arXiv preprint arXiv:2203.05167, 2022.

Kamil Faber, Marcin Pietron, and Dominik Zurek. Ensemble neuroevolution-based approach
for multivariate time series anomaly detection. Entropy, 23(11):1466, 2021.

10

https://proceedings.mlr.press/v70/arjovsky17a.html
https://proceedings.mlr.press/v70/arjovsky17a.html

Daniel Fährmann, Naser Damer, Florian Kirchbuchner, and Arjan Kuijper. Lightweight
long short-term memory variational auto-encoder for multivariate time series anomaly
detection in industrial control systems. Sensors, 22(8):2886, 2022.

Pavel Filonov, Andrey Lavrentyev, and Artem Vorontsov. Multivariate industrial time series
with cyber-attack simulation: Fault detection using an lstm-based predictive data model.
arXiv preprint arXiv:1612.06676, 2016.

Astha Garg, Wenyu Zhang, Jules Samaran, Ramasamy Savitha, and Chuan-Sheng Foo.
An evaluation of anomaly detection and diagnosis in multivariate time series. IEEE
Transactions on Neural Networks and Learning Systems, 33(6):2508–2517, 2021.

Alexander Geiger, Dongyu Liu, Sarah Alnegheimish, Alfredo Cuesta-Infante, and Kalyan
Veeramachaneni. Tadgan: Time series anomaly detection using generative adversarial
networks. In 2020 IEEE International Conference on Big Data (Big Data), pp. 33–43.
IEEE, 2020.

Jonathan Goh, Sridhar Adepu, Khurum Nazir Junejo, and Aditya Mathur. A dataset
to support research in the design of secure water treatment systems. In International
conference on critical information infrastructures security, pp. 88–99. Springer, 2016.

Klaus Greff, Aaron Klein, Martin Chovanec, Frank Hutter, and Jürgen Schmidhuber. The
sacred infrastructure for computational research. In Proceedings of the 16th python in
science conference, volume 28, pp. 49–56, 2017.

Yifan Guo, Weixian Liao, Qianlong Wang, Lixing Yu, Tianxi Ji, and Pan Li. Multidimen-
sional time series anomaly detection: A gru-based gaussian mixture variational autoen-
coder approach. In Asian Conference on Machine Learning, pp. 97–112. PMLR, 2018.

Yangdong He and Jiabao Zhao. Temporal convolutional networks for anomaly detection
in time series. In Journal of Physics: Conference Series, volume 1213, pp. 042050. IOP
Publishing, 2019.

Hajar Homayouni, Sudipto Ghosh, Indrakshi Ray, Shlok Gondalia, Jerry Duggan, and
Michael G Kahn. An autocorrelation-based lstm-autoencoder for anomaly detection on
time-series data. In 2020 IEEE International Conference on Big Data (Big Data), pp.
5068–5077. IEEE, 2020.

Xiaolei Hua, Lin Zhu, Shenglin Zhang, Zeyan Li, Su Wang, Dong Zhou, Shuo Wang, and
Chao Deng. Genad: General representations of multivariate time seriesfor anomaly de-
tection. arXiv preprint arXiv:2202.04250, 2022.

Alexis Huet, Jose Manuel Navarro, and Dario Rossi. Local evaluation of time series anomaly
detection algorithms. In Proceedings of the 28th ACM SIGKDD Conference on Knowledge
Discovery and Data Mining, pp. 635–645, 2022.

Kyle Hundman, Valentino Constantinou, Christopher Laporte, Ian Colwell, and Tom Soder-
strom. Detecting spacecraft anomalies using lstms and nonparametric dynamic thresh-
olding. In Proceedings of the 24th ACM SIGKDD international conference on knowledge
discovery & data mining, pp. 387–395, 2018.

Vincent Jacob, Fei Song, Arnaud Stiegler, Bijan Rad, Yanlei Diao, and Nesime Tatbul.
Exathlon: A benchmark for explainable anomaly detection over time series. arXiv preprint
arXiv:2010.05073, 2020.

Wenqian Jiang, Yang Hong, Beitong Zhou, Xin He, and Cheng Cheng. A gan-based anomaly
detection approach for imbalanced industrial time series. IEEE Access, 7:143608–143619,
2019.

Siwon Kim, Kukjin Choi, Hyun-Soo Choi, Byunghan Lee, and Sungroh Yoon. Towards a rig-
orous evaluation of time-series anomaly detection. In Proceedings of the AAAI Conference
on Artificial Intelligence, volume 36, pp. 7194–7201, 2022.

11

Kwei-Herng Lai, Daochen Zha, Junjie Xu, Yue Zhao, GuanchuWang, and Xia Hu. Revisiting
time series outlier detection: Definitions and benchmarks. In Thirty-fifth Conference on
Neural Information Processing Systems Datasets and Benchmarks Track (Round 1), 2021.

Alexander Lavin and Subutai Ahmad. Evaluating real-time anomaly detection algorithms–
the numenta anomaly benchmark. In 2015 IEEE 14th international conference on machine
learning and applications (ICMLA), pp. 38–44. IEEE, 2015.

Chang-Ki Lee, Yu-Jeong Cheon, and Wook-Yeon Hwang. Studies on the gan-based anomaly
detection methods for the time series data. IEEE Access, 9:73201–73215, 2021.

Dan Li, Dacheng Chen, Jonathan Goh, and See-kiong Ng. Anomaly detection with gener-
ative adversarial networks for multivariate time series. arXiv preprint arXiv:1809.04758,
2018a.

Dan Li, Dacheng Chen, Baihong Jin, Lei Shi, Jonathan Goh, and See-Kiong Ng. Mad-gan:
Multivariate anomaly detection for time series data with generative adversarial networks.
In International Conference on Artificial Neural Networks, pp. 703–716. Springer, 2019.

Longyuan Li, Junchi Yan, Haiyang Wang, and Yaohui Jin. Anomaly detection of time series
with smoothness-inducing sequential variational auto-encoder, 2021a.

Yaguang Li, Rose Yu, Cyrus Shahabi, and Yan Liu. Diffusion convolutional recurrent neu-
ral network: Data-driven traffic forecasting. In International Conference on Learning
Representations, 2018b. URL https://openreview.net/forum?id=SJiHXGWAZ.

Zhihan Li, Youjian Zhao, Jiaqi Han, Ya Su, Rui Jiao, Xidao Wen, and Dan Pei. Multivariate
time series anomaly detection and interpretation using hierarchical inter-metric and tem-
poral embedding. In Proceedings of the 27th ACM SIGKDD Conference on Knowledge
Discovery & Data Mining, pp. 3220–3230, 2021b.

Benjamin Lindemann, Benjamin Maschler, Nada Sahlab, and Michael Weyrich. A survey
on anomaly detection for technical systems using lstm networks. Computers in Industry,
131:103498, 2021.

Yuan Luo, Ya Xiao, Long Cheng, Guojun Peng, and Danfeng Yao. Deep learning-based
anomaly detection in cyber-physical systems: Progress and opportunities. ACM Comput-
ing Surveys (CSUR), 54(5):1–36, 2021.

Pankaj Malhotra, Lovekesh Vig, Gautam Shroff, and Puneet Agarwal. Long short term
memory networks for anomaly detection in time series. In 23rd European Symposium
on Artificial Neural Networks, ESANN 2015, Bruges, Belgium, April 22-24, 2015, 2015.
URL http://www.elen.ucl.ac.be/Proceedings/esann/esannpdf/es2015-56.pdf.

Pankaj Malhotra, Anusha Ramakrishnan, Gaurangi Anand, Lovekesh Vig, Puneet Agarwal,
and Gautam Shroff. Lstm-based encoder-decoder for multi-sensor anomaly detection.
arXiv preprint arXiv:1607.00148, 2016.

Ali H Mirza and Selin Cosan. Computer network intrusion detection using sequential lstm
neural networks autoencoders. In 2018 26th signal processing and communications appli-
cations conference (SIU), pp. 1–4. IEEE, 2018.

Mohsin Munir, Shoaib Ahmed Siddiqui, Andreas Dengel, and Sheraz Ahmed. Deepant: A
deep learning approach for unsupervised anomaly detection in time series. Ieee Access, 7:
1991–2005, 2018.

Zijian Niu, Ke Yu, and Xiaofei Wu. Lstm-based vae-gan for time-series anomaly detection.
Sensors, 20(13):3738, 2020.

Daehyung Park, Yuuna Hoshi, and Charles C Kemp. A multimodal anomaly detector for
robot-assisted feeding using an lstm-based variational autoencoder. IEEE Robotics and
Automation Letters, 3(3):1544–1551, 2018.

12

https://openreview.net/forum?id=SJiHXGWAZ
http://www.elen.ucl.ac.be/Proceedings/esann/esannpdf/es2015-56.pdf

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan,
Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An im-
perative style, high-performance deep learning library. Advances in neural information
processing systems, 32, 2019.

Joao Pereira and Margarida Silveira. Unsupervised anomaly detection in energy time series
data using variational recurrent autoencoders with attention. In 2018 17th IEEE interna-
tional conference on machine learning and applications (ICMLA), pp. 1275–1282. IEEE,
2018.

Danilo Rezende and Shakir Mohamed. Variational inference with normalizing flows. In Fran-
cis Bach and David Blei (eds.), Proceedings of the 32nd International Conference on Ma-
chine Learning, volume 37 of Proceedings of Machine Learning Research, pp. 1530–1538,
Lille, France, 2015. PMLR. URL https://proceedings.mlr.press/v37/rezende15.
html.

Lukas Ruff, Jacob R. Kauffmann, Robert A. Vandermeulen, Grégoire Montavon, Wojciech
Samek, Marius Kloft, Thomas G. Dietterich, and Klaus-Robert Müller. A unifying review
of deep and shallow anomaly detection. Proc. IEEE, 109(5):756–795, 2021.

Mahmoud Said Elsayed, Nhien-An Le-Khac, Soumyabrata Dev, and Anca Delia Jurcut.
Network anomaly detection using lstm based autoencoder. In Proceedings of the 16th
ACM Symposium on QoS and Security for Wireless and Mobile Networks, pp. 37–45,
2020.

Erik Scharwächter and Emmanuel Müller. Statistical evaluation of anomaly detectors for
sequences. arXiv preprint arXiv:2008.05788, 2020.

Sebastian Schmidl, Phillip Wenig, and Thorsten Papenbrock. Anomaly detection in time
series: a comprehensive evaluation. Proceedings of the VLDB Endowment, 15(9):1779–
1797, 2022.

Bernhard Schölkopf, John C. Platt, John Shawe-Taylor, Alex J. Smola, and Robert C.
Williamson. Estimating the Support of a High-Dimensional Distribution. Neural Com-
putation, 13(7):1443–1471, 07 2001. ISSN 0899-7667. doi: 10.1162/089976601750264965.
URL https://doi.org/10.1162/089976601750264965.

Lifeng Shen, Zhuocong Li, and James Kwok. Timeseries anomaly detection using temporal
hierarchical one-class network. Advances in Neural Information Processing Systems, 33:
13016–13026, 2020.

Maximilian Sölch, Justin Bayer, Marvin Ludersdorfer, and Patrick van der Smagt. Vari-
ational inference for on-line anomaly detection in high-dimensional time series. arXiv
preprint arXiv:1602.07109, 2016.

Ya Su, Youjian Zhao, Chenhao Niu, Rong Liu, Wei Sun, and Dan Pei. Robust anomaly
detection for multivariate time series through stochastic recurrent neural network. In
Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery
& Data Mining, pp. 2828–2837, 2019.

Nesime Tatbul, Tae Jun Lee, Stan Zdonik, Mejbah Alam, and Justin Gottschlich. Precision
and recall for time series. Advances in neural information processing systems, 31, 2018.

Markus Thill, Wolfgang Konen, and Thomas Bäck. Time series encodings with temporal
convolutional networks. In International Conference on Bioinspired Methods and Their
Applications, pp. 161–173. Springer, 2020.

Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Liò, and
Yoshua Bengio. Graph attention networks. In International Conference on Learning
Representations, 2018. URL https://openreview.net/forum?id=rJXMpikCZ.

Taras K. Vintsyuk. Speech discrimination by dynamic programming. Cybernetics, 4(1):
52–57, January 1968. ISSN 1573-8337. doi: 10.1007/BF01074755. URL https://doi.
org/10.1007/BF01074755.

13

https://proceedings.mlr.press/v37/rezende15.html
https://proceedings.mlr.press/v37/rezende15.html
https://doi.org/10.1162/089976601750264965
https://openreview.net/forum?id=rJXMpikCZ
https://doi.org/10.1007/BF01074755
https://doi.org/10.1007/BF01074755

Lan Wang, Yusan Lin, Yuhang Wu, Huiyuan Chen, Fei Wang, and Hao Yang. Forecast-
based multi-aspect framework for multivariate time-series anomaly detection. In 2021
IEEE International Conference on Big Data (Big Data), pp. 938–947. IEEE, 2021.

Qingsong Wen, Tian Zhou, Chaoli Zhang, Weiqi Chen, Ziqing Ma, Junchi Yan, and Liang
Sun. Transformers in time series: A survey. arXiv preprint arXiv:2202.07125, 2022.

Renjie Wu and Eamonn Keogh. Current time series anomaly detection benchmarks are
flawed and are creating the illusion of progress. IEEE Transactions on Knowledge and
Data Engineering, 2021.

Qinfeng Xiao, Shikuan Shao, and Jing Wang. Memory-augmented adversarial autoencoders
for multivariate time-series anomaly detection with deep reconstruction and prediction.
arXiv preprint arXiv:2110.08306, 2021.

Haowen Xu, Yang Feng, Jie Chen, Zhaogang Wang, Honglin Qiao, Wenxiao Chen, Nengwen
Zhao, Zeyan Li, Jiahao Bu, Zhihan Li, and et al. Unsupervised anomaly detection via
variational auto-encoder for seasonal kpis in web applications. Proceedings of the 2018
World Wide Web Conference on World Wide Web - WWW ’18, 2018. doi: 10.1145/
3178876.3185996. URL http://dx.doi.org/10.1145/3178876.3185996.

Jiehui Xu, Haixu Wu, Jianmin Wang, and Mingsheng Long. Anomaly transformer: Time
series anomaly detection with association discrepancy. arXiv preprint arXiv:2110.02642,
2021.

Jun Zhan, Siqi Wang, Xiandong Ma, Chengkun Wu, Canqun Yang, Detian Zeng, and Shilin
Wang. Stgat-mad: Spatial-temporal graph attention network for multivariate time series
anomaly detection. In ICASSP 2022-2022 IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP), pp. 3568–3572. IEEE, 2022.

Chuxu Zhang, Dongjin Song, Yuncong Chen, Xinyang Feng, Cristian Lumezanu, Wei Cheng,
Jingchao Ni, Bo Zong, Haifeng Chen, and Nitesh V Chawla. A deep neural network
for unsupervised anomaly detection and diagnosis in multivariate time series data. In
Proceedings of the AAAI conference on artificial intelligence, volume 33, pp. 1409–1416,
2019.

Hongjing Zhang, Fangzhou Cheng, and Aparna Pandey. One-class predictive autoencoder
towards unsupervised anomaly detection on industrial time series. In ANDEA ’22, 2022a.

Kai Zhang, Yushan Jiang, Lee Seversky, Chengtao Xu, Dahai Liu, and Houbing Song. Feder-
ated variational learning for anomaly detection in multivariate time series. In 2021 IEEE
International Performance, Computing, and Communications Conference (IPCCC), pp.
1–9. IEEE, 2021.

Weiqi Zhang, Chen Zhang, and Fugee Tsung. Grelen: Multivariate time series anomaly
detection from the perspective of graph relational learning. In Lud De Raedt (ed.),
Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence,
IJCAI-22, pp. 2390–2397. International Joint Conferences on Artificial Intelligence Orga-
nization, 7 2022b. doi: 10.24963/ijcai.2022/332. Main Track.

Hang Zhao, Yujing Wang, Juanyong Duan, Congrui Huang, Defu Cao, Yunhai Tong, Bix-
iong Xu, Jing Bai, Jie Tong, and Qi Zhang. Multivariate time-series anomaly detection
via graph attention network. In 2020 IEEE International Conference on Data Mining
(ICDM), pp. 841–850. IEEE, 2020.

Bin Zhou, Shenghua Liu, Bryan Hooi, Xueqi Cheng, and Jing Ye. Beatgan: Anomalous
rhythm detection using adversarially generated time series. In IJCAI, pp. 4433–4439,
2019.

14

http://dx.doi.org/10.1145/3178876.3185996

A Metrics

Let X ∈ RT×F be a time series of length T and dimension F and let y ∈ RT the corre-
sponding labels. Given an online anomaly detector s : RT×F → RT that computes a score
for each time step in X based only on points that came before it. The set of anomalies is

A = {[a, b] ⊂ [T] | ∀t ∈ [a, b] : y[t] = 1;∄[a′, b′] ⊋ [a, b] : ∀t ∈ [a′, b′] : y[t] = 1}

and the set of all predictions for a threshold λ ∈ R is

Pλ = {[a, b] ⊂ [T] | ∀t ∈ [a, b] : s(x)[t] ≥ λ;∄[a′, b′] ⊋ [a, b] : ∀t ∈ [a′, b′] : s(x)[t] ≥ λ}.

Given a cardinality function γ : N × P([T]) → R≥0 and a bias function δ : R → R≥0, time-
series recall is given by

TRec(A,P) =
1

|A|
∑
A∈A

α1(|PA| > 0) + (1− α)γ(|PA|, A)
∑
P∈P

∑
t∈P∩A

δ(t−minA, |A|)∑
t∈A

δ(t−minA, |A|)

with PA = {P ∈ P | |A ∩ P | > 0}. The cardinality function is monotone decreasing in its
first argument and γ(1, ·) = 1.

Proof of Theorem 1: It is straight-forward to see, that γ is monotone decreasing, as the
maximum is over all values with smaller inputs multiplied by a factor smaller than one. It
remains to show, that the resulting TRec is recall consistent.

Since the terms within the sum are all non-negative, it suffices show, that each individual
term only ever decreases. Consider two thresholds λ, λ′ ∈ R with λ′ > λ and anomaly
A ∈ A such that Pλ

A ̸= Pλ′

A . Note that |Pλ
A| = 0 implies |Pλ′

A | = 0. If |Pλ′

A | = 0 the inner

sum is zero and the statement is true. Thus, we assume |Pλ′

A | > 0 and can therefore ignore

the first term inside the outer sum, since 1(|Pλ
A| > 0) = 1(|Pλ′

A | > 0) always holds.

First, we consider the case |Pλ′

A | ≥ |Pλ
A|. Since γ is monotone decreasing in its first argument

and the inner sum looses at least one non-negative term, the second term can either decrease
or stay the same.

Next, we consider the case |Pλ′

A | < |Pλ
A|. We want to show, that each term only ever

decreases with an increasing threshold, i.e.

γ(|Pλ
A|, A)

∑
P∈Pλ

A

∑
t∈P∩A

δ(t−minA, |A|)∑
t∈A

δ(t−minA, |A|)
≥ γ(|Pλ′

A |, A)
∑

P∈Pλ′
A

∑
t∈P∩A

δ(t−minA, |A|)∑
t∈A

δ(t−minA, |A|)
.

If γ(|Pλ′

A |, A) = 0, the recall does not not change, because γ is monotone decreasing. Thus

we assume γ(|Pλ′

A |, A) > 0, in which case the inequality above holds if and only if

γ(|Pλ
A|, A)

γ(|Pλ′
A |, A)

≥

∑
P∈Pλ′

A

∑
t∈P∩A

δ(t−minA, |A|)∑
P∈Pλ

A

∑
t∈P∩A

δ(t−minA, |A|)
.

Consider ∆δ =
∑

P∈Pλ
A

∑
t∈P∩A

δ(t − minA, |A|) −
∑

P∈Pλ′
A

∑
t∈P∩A

δ(t − minA, |A|) > 0. Then it

holds

∆δ ≥ |
⋃

P∈Pλ
A

P ′∈Pλ′
A

P \ P ′| ≥ |Pλ
A| − |Pλ′

A |

15

Since P ∩A ⊂ A, we also know∑
P∈Pλ′

A

∑
t∈P∩A

δ(t−minA, |A|)∑
P∈Pλ

A

∑
t∈P∩A

δ(t−minA, |A|)
=

∑
P∈Pλ

A

∑
t∈P∩A

δ(t−minA, |A|)−∆δ∑
P∈Pλ

A

∑
t∈P∩A

δ(t−minA, |A|)

≤

∑
t∈A

δ(t−minA, |A|)−∆δ∑
t∈A

δ(t−minA, |A|)

≤

∑
t∈A

δ(t−minA, |A|)− (|Pλ
A| − |Pλ′

A |)∑
t∈A

δ(t−minA, |A|)

Thus, if

γ(|Pλ
A|, A) ≥

∑
t∈A

δ(t−minA, |A|)− (|Pλ
A| − |Pλ′

A |)∑
t∈A

δ(t−minA, |A|)
γ(|Pλ′

A |, A)

holds true for all 0 < |Pλ′

A | < |Pλ
A|, the resulting recall is recall consistent. □

Lemma 1 For any x ∈ R≥1 it holds
(
x−1
x

)n ≥ x−n
x for all n ∈ N.

Proof: We know
(
x−1
x

)1
= x−1

x . By induction over n it holds(
x− 1

x

)n+1

≥ x− 1

x

x− n

x
=

x− (n+ 1)

x
+

n

x2
≥ x− (n+ 1)

x

□

16

B Datasets

In this section we provide a more detailed description and analysis of all considered datasets.
Additionally we provide further examples of any issues we found. First and foremost, we
provide the general statistics of each datasets, see Table 2.

Table 2: Statistics of each dataset

Dataset Features train size test size Anomalies
SWaT 51 495000 449919 35 12.1%
WADI 123 784571 172801 14 5.8%
SMAP 25 140825 444035 69 12.8%
MSL 55 58317 73729 36 10.5%
SMD 0 38 28479 28479 8 9.5 %
SMD 1 38 23694 23694 10 2.3 %
SMD 2 38 23702 23703 12 3.4 %
SMD 3 38 23706 23707 12 3.0 %
SMD 4 38 23705 23706 7 0.4 %
SMD 5 38 23688 23689 30 15.7 %
SMD 6 38 23697 23697 13 10.1 %
SMD 7 38 23698 23699 20 3.2 %
SMD 8 38 23693 23694 13 4.9 %
SMD 9 38 23699 23700 11 12.0 %
SMD 10 38 23688 23689 10 1.1 %
SMD 11 38 23689 23689 20 7.2 %
SMD 12 38 23688 23689 21 4.1 %
SMD 13 38 28743 28743 8 1.5 %
SMD 14 38 23696 23696 20 1.8 %
SMD 15 38 23702 23703 1 0.7 %
SMD 16 38 28722 28722 10 6.1 %
SMD 17 38 28700 28700 4 1.1 %
SMD 18 38 23692 23693 13 4.4 %
SMD 19 38 28695 28696 3 0.7 %
SMD 20 38 23702 23703 10 4.7 %
SMD 21 38 23703 23703 26 2.7 %
SMD 22 38 23687 23687 8 4.1 %
SMD 23 38 23690 23691 11 1.8 %
SMD 24 38 28726 28726 11 4.2 %
SMD 25 38 28705 28705 5 1.5 %
SMD 26 38 28703 28704 6 4.8 %
SMD 27 38 28713 28713 4 1.1 %
Exathlon 1 19 41382 49810 9 17.1 %
Exathlon 2 19 68917 96535 9 17.6 %
Exathlon 3 19 115160 15270 7 16.0 %
Exathlon 4 19 208720 133223 11 12.6 %
Exathlon 5 19 133411 190372 21 9.5 %
Exathlon 6 19 303087 97221 11 9.6 %
Exathlon 9 19 273247 103511 14 13.0 %
Exathlon 10 19 178685 106251 13 13.9 %

Papers that evaluate on SWaT include (Li et al., 2018a; 2019; Audibert et al., 2020; Shen
et al., 2020; Faber et al., 2021; Zhang et al., 2021; Xiao et al., 2021; Deng & Hooi, 2021;
Carmona et al., 2021; Xu et al., 2021; Li et al., 2021b; Fährmann et al., 2022; Doshi et al.,
2022; Zhan et al., 2022; Zhang et al., 2022b;a).

Papers that evaluate on WADI include (Li et al., 2019; Audibert et al., 2020; Faber et al.,
2021; Deng & Hooi, 2021; Xu et al., 2021; Li et al., 2021b; Fährmann et al., 2022; Zhan
et al., 2022; Zhang et al., 2022b;a).

17

Papers that evaluate on SMAP include (Hundman et al., 2018; Audibert et al., 2020; Geiger
et al., 2020; Zhao et al., 2020; Shen et al., 2020; Zhang et al., 2021; Xiao et al., 2021;
Carmona et al., 2021; Xu et al., 2021; Challu et al., 2022; Chen et al., 2022; Doshi et al.,
2022; Hua et al., 2022; Chambaret et al., 2022; Zhang et al., 2022a)

Papers that evaluate on MSL include (Hundman et al., 2018; Su et al., 2019; Audibert et al.,
2020; Geiger et al., 2020; Zhao et al., 2020; Shen et al., 2020; Zhang et al., 2021; Xiao et al.,
2021; Wang et al., 2021; Xu et al., 2021; Challu et al., 2022; Chen et al., 2022; Doshi et al.,
2022; Hua et al., 2022; Chambaret et al., 2022; Zhang et al., 2022a)

Papers that evaluate on SMD include (Su et al., 2019; Audibert et al., 2020; Xiao et al.,
2021; Wang et al., 2021; Carmona et al., 2021; Xu et al., 2021; Li et al., 2021b; Challu et al.,
2022; Chen et al., 2022; Doshi et al., 2022; Hua et al., 2022; Zhan et al., 2022; Zhang et al.,
2022b)

Papers that evaluate on Exathlon include (Schmidl et al., 2022).

B.1 Secure Water Treatement (SWaT)

The Secure Water Treatment (SWaT) dataset Goh et al. (2016) originates from the operation
of a miniature water-treatment plant. 51 sensors were recorded during 11 days of plant
operation at a sampling rate of 1 Hz. The dataset is split into a training set and a test set.
The training set corresponds to the first six days of operation, during which no incidents
occurred. The remaining five days make up the test set. During this time, 36 attacks on
the miniature plant were conducted, both against the plant’s physical components and its
control software. A time step is labeled anomalous, if an attack occurred at that time. In
total, Goh et al. (2016) conducted 36 attacks against the system, of which two overlap,
so they make up a single anomaly window. The average attack length is around 600 time
steps (10minutes). Goh et al. (2016) note that the data recording started when the plant
was offline, and the first 5 hours correspond to the plant’s start-up procedure. They have
already removed the first 30 minutes from the dataset, but we follow Li et al. (2019) and
remove the 4.5 hours after that as well. Otherwise, those data points could hamper some
methods attempting to model the distribution or process that generates normal data.

With roughly 12% of points anomalous, SWaT’s anomaly density is barely acceptable. The
distribution of anomaly positions in SWaT, see Figure 6a, reveals no clear bias, except
for one large cluster in the middle of the time-series. Looking at the lengths of anomaly

(a) Relative anomaly positions (b) Anomaly window lengths

Figure 6: Relative position of anomalies (a) and the distribution of anomaly lengths (b) in the test
set of SWaT.

windows, see Figure 6b reveals an extremely long anomaly window containing more than
35,000 points (8.5 hours). This lengths by far exceeds any reasonable setting for window
sizes, which usually are smaller than 100.

Looking at the mean and standard deviation of the features in SWaT, see Figure 7, reveals
clear instances of distributional shift, some features that are constant throughout training
and test set, and several features that seem trivial to solve. The consistently constant fea-
tures mostly correspond to backup actuators that only become active when their primary
counterpart fails for some reason. As this does not occur during the training period, the
backup actuators never activate. We test a trivial thresholding method on each feature, by
using the distance to the mean computed from the training set as anomaly score. Indeed,

18

(a) Train set feature distribution (b) Test set feature distribution

Figure 7: Mean and standard deviation for each feature in SWaT of normal points (black) and
anomalies (red). Multiple features are constant across the entire dataset (diamond), some even
across training and test set (orange box). Other features suggest a distributional shift between
training and test set (blue box). Some features appear almost trivial in the test set (purple box).

for several features, we can achieve comparable performance to several deep methods. How-
ever, many modern methods still outperform the trivial baseline. Inspecting the features
in question reveals one large anomaly responsible for the deviating mean. Multiple smaller
anomalies, however, are not trivially reflected in the feature alone, see Figure 8. The spec-

(a) FIT503 (b) FIT504

Figure 8: Two features from the test set of SWaT.

ification reveals, that these sensors are flow meters. Even though a thresholding method
on these features presents a strong baseline, especially with respect to point-wise metrics,
these features do not seem trivial.

Looking at other features in SWaT, reveals some instances, where anomalies seem to cause
late- or long-term effects, see Figure 9. In on instance (Figure 9b), the behaviour of a feature

(a) P403 (b) AIT201

Figure 9: Two features from the test set of SWaT. Each feature was normalized based on the
statistics of the training-set.

drastically changes after some anomalies have occured, causing a severe distributional shift
in that feature. Another example shows a sudden abnormal spike shortly after an anomaly
window. Since such sikes or distributional shift does not appear in the training set, it does
not seem reasonable for a fully trained anomaly detection algorithm to ignore such instances.

19

B.2 WAter DIstribution (WADI)

The Water Distribution (WADI) (Ahmed et al., 2017) dataset is similar to SWaT. Its 123
features correspond to sensor values/actuator states in a miniature water-distribution grid
connected to the SWaT water-treatment plant. Ahmed et al. (2017) recorded the operation
of the grid for 16 continuous days at a sample rate of 1 Hz and launched a total of 15 attacks
in the last two days. Thus, the test set is a single time series corresponding to the last two
days of operation, whereas the training set consists of the first 14 days. We use version
A2 of the dataset, where the authors removed a good chunk of the original data (425,030
of 1,209,601 data points) from the middle of the training set, which is therefore now split
into two TS. Note that the dataset file actually contains 127 columns. However, 4 of those
do not contain any value at any time step, so we remove them entirely. There are also
some spurious missing values in the remaining data, which we simply replace with the last
available value for the affected feature.

The anomaly density in WADI seems reasonable with 6% and the anomalies seem reasonably
distributed, even if they are mostely clustered at the beginning, end, and middle of the time
series, see Figure 10a. There is now extermely long anomaly window such as in SWaT.

(a) Relative anomaly positions (b) Anomaly window lengths

Figure 10: Relative position of anomalies (a) and the distribution of anomaly lengths (b) in the
test set of WADI.

However, several windows contain over 1,000 points, which we sould still consider too long
in general. Looking at the feature distribution, see Figure 11, we can see one feature in
particular, for which the distributions vastly differ. Examining the piping diagram of WADI

(a) Train set feature distribution (b) Test set feature distribution

Figure 11: Mean and standard deviation for each feature in SWaT of normal points (black) and
anomalies (red). Multiple features are constant across the entire dataset (diamond).

reveals that the exploding feature belongs to a turbidity sensor, and the authors claim that
the previous attack introduces contaminated water to the grid. Therefore, it is not unlikely
that the attack was the cause for the explosion of that feature. We are no experts on the
subject, but the sensor data jumps to about 200 after normalization, see Figure 12b. If
this is intended behaviour, there is no way to infer this based on the training set. In other
sensors we can observe possible late effects as well, see Figure 12a.

20

(a) 2 P 004 SPEED (b) 2A AIT 002 PV

Figure 12: Two features from the test set of WADI. Each feature was normalized based on the
statistics of the training-set.

B.3 Soil Moisture Active Passive (SMAP)

The Soil Moisture Active Passive dataset (Hundman et al., 2018) contains 55 time series.
All but one feature in each time series correspond to commands sent to a satellite at a given
point in time and are represented by binary features. The remaining feature contains the
actual sensor values reported by the satellite. Each time series corresponds to a possibly
different telemetry channel of that satellite. Thus, at least one feature is different for all
time series. Furthermore, we were not able to find a specification of the remaining features.
Thus, we have no way of verifying their consistency across different time series. All things
considered, the time series in SMAP are technically generated by different processes and
should be treated as such. To illustrate the extent of the differences between individual
time series, we visualize the sensor feature from multiple time series in the training set, see
Figure 13.

Figure 13: The sensor feature from different time series in the training set of SMAP.

Beyond the conceptual flaws, we still find a clear positional bias towards the latter half of
the time series, see Figure 14a, and several anomalies longer than 2000 time points, see
Figure 14b.

Since the time series are generated by different processes, we examine the distributional
changes within each time series. We find instances, where all command features are constant
throughout the test time series or at least after some initial period, see Figure 15. Since
all methods rely on windowing, the sensor feature provides the only context for prediction,
see Figure 16. Since the feature is constant before and after the anomaly and no additional
information is provided by the command features, this does not seem to be reasonable task
for anomaly detection. The example shows an instance, where anomalies seem to cause
long-term effects, which are not reflected in the label. We can find more examples of this
behaviour throughout the dataset, see Figure 17.

21

(a) Relative anomaly positions (b) Anomaly window lengths

Figure 14: Relative position of anomalies (a) and the distribution of anomaly lengths (b) in the
test set of SMAP.

(a) Train set feature distribution (b) Test set feature distribution

Figure 15: Example of the feature means and standard deviations

(a) Sensor in training set (b) Sensor in test set

Figure 16: Example of the sensor feature in training and test set.

Figure 17: Example of distributional shift in the sensor feature in the test set of SMAP.

22

B.4 Mars Science Lab (MSL)

The Mars Sience Lab dataset (Hundman et al., 2018) is similarly constructed as SMAP. It
contains 27 time series, each containing a single telemetry value feature and binary encoded
command for the rest. Thus, it shares many of the same problems as SMAP, see Figure 18.

Figure 18: The sensor feature from different time series in the training set of MSL.

The positional bias, see Figure 19a, and long anomalies, see Figure 19b, are not as pro-
nounced as in SMAP, but still noticable.

(a) Relative anomaly positions (b) Anomaly window lengths

Figure 19: Relative position of anomalies (a) and the distribution of anomaly lengths (b) in the
test set of SMAP.

Similarly to SMAP, we can identify instances of possible distributional shift and long-term
effects, see Figure 20.

(a) Sensor in training set (b) Sensor in test set

Figure 20: Example of the sensor feature in training and test set of MSL. In a wide window around
the anomaly window all other features are constant.

Taking all these issues together, both SMAP and MSL do not seem suited for the evaluation
of general deep time-series AD. Specialized methods that exploit the intricacies of the data
will most likely outperform any general algorithms. Because the datasets are lacking a
detailed documentation it is difficult to assess the extent to which the long-term effects

23

seemingly caused by anomalies are intended behavior. Even then, the datasets might be
more suited to change point detection methods. Since the command features are constant
for a large portion of both datasets, it begs the question how much they can contribute for
general algorithms and if the problem is as complex as their presence suggests.

B.5 Server Machine Data (SMD)

The Server Machine Data dataset (Su et al., 2019) consists of 28 time series. According to
the authors, the dataset was collected from a large internet company over a period of five
weeks. The first half of the dataset comprises the training set and the latter half the test
set. Unfortunately we were not able to find any more information on this dataset. However,
because each time series was apparently sampled under different conditions, each time series
in this dataset should be considered independently.

Looking at the distribution of anomaly positions in each time series, we can identify three
instances with clear positional bias towards the end of the time series, see Figure 21a top.
For one server in particular, see Figure 21 middle, the distribution is dominated by one large
anomaly. For most time series, however, anomaly windows never exceed 1,000 time steps

(a) Relative anomaly positions (b) Anomaly window lengths

Figure 21: Relative position of anomalies (a) and the distribution of anomaly lengths (b) in the
test set of different time series in SMD.

and usually not even 500 time steps. Most time series contain only few anomalies, making
any definitive statement on their distribution difficult. One time series even contains just
one anomaly. Time series, for which we can identify positional bias include: machine-1-1,
machine-2-1, machine-2-2, machine-2-9, and machine-3-8.

Most time series suffer from consistently constant features, see Figure 22. Several of the
constant features are constant for all time series. Since we cannot say for certain what those
features represent due to the lack of documentation, we are reluctant to outright remove
those features. We do not expect the performance to suffer much from their inclusion as
they make up only very small percentage of features.

In several time series we have found possible delayed effects of anomalies, see Figure 23. In
other time series we strongly suspect anomalies had long term effects on the system, see
Figure 24. For most instances we can observe the effects across multiple features. That and

24

(a) Train set feature distribution (b) Test set feature distribution

Figure 22: Example of the feature distribution of a time series in SMD.

(a) feature 8 of machine-1-1 (b) feature 19 of machine-1-5

(c) feature 4 of machine-1-6 (d) feature 13 of machine-1-8

(e) feature 15 of machine-2-5 (f) feature 3 of machine-3-5

Figure 23: Instances where we suspect anomalies had delayed effects.

the unusual ranges seem to affirm our assessment.

For one time series in particular, we could observe a feature dropping to zero and staying
constant directly after an anomaly occurs, see Figure 25. However, we can also observe a
constant period at the start of the training set. This effect might be caused by a startup
period in the training set and a crash in the test set. Without full knowledge of the under-
lying process we can not give a definitive judgment on this case. However, this illustrates,
that this dataset needs to undergo careful scrutiny by experts familiar with the underly-
ing process. Until then we exclude machine-1-1, machine-1-3, machine-1-4, machine-1-5,
machine-1-6, machine-1-8, machine-2-5, machine-2-8, machine-3-4, machine-3-5, machine-3-
7, machine-3-10, and machine-3-11 from our final report. However, we still evaluate and
report on all datasets from SMD. We will provide the missing results in Appendix E.

25

(a) feature 4 of machine-1-3 (b) feature 4 of machine-1-4

(c) feature 15 of machine-2-8 (d) feature 5 of machine-3-11

(e) feature 6 of machine-3-4 (f) feature 4 of machine-3-7

Figure 24: Instances where we suspect anomalies had long-term effects.

(a) Training set (b) Test set

Figure 25: Feature 34 of machine-3-10.

B.6 Exathlon

The Exathlon dataset (Jacob et al., 2020) was created from ten applications running on a
Spark cluster with four nodes. The authors collected 2,283 metrics from the monitoring
system and the underlying operating system. They remark, that the collected metrics
could very well be correlated and suggest a curated subset of 19 features to use instead.
Furthermore, in their implementation, they remove all time series from two applications
(ids 7 and 8). One application contains no anomalies in the test set and the other has
no training set. Thus, we only consider applications 1-6 and 9-10. The final dataset thus
consists of eight datasets, each consisting of the execution traces of a single application. For
the test set, they insert six types of anomalies in the cluster. One anomaly in particular,
uses up memory until the application crashes due to memory constraints, which means at
least seven timer series suffer from positional bias, which is generally weakened by the other
time series of each application. A detailed description of all applications and anomalies can
be found on the GitHub page of the original implementation8.

Overall we find a slight positional bias in several datasets, mostly attributed to the one
anomaly discussed prior. We found no consistently constant features throughout the entire
dataset. Most time series in the dataset contain unusual spikes, which the authors attribute

8https://github.com/exathlonbenchmark/exathlon/wiki/Dataset

26

https://github.com/exathlonbenchmark/exathlon/wiki/Dataset

to background activities on the cluster. Since such background activity is considered normal
we ignore such cases in general. However, we would like to draw attention to one particular
instance, where the spike reaches a new high directly after an anomaly occurs, see Figure 26.
Since the effect of this spike is reflected in multiple features and we found no other such

(a) driver StreamingMetrics streaming lastCom-
pletedBatch processingDelay value

(b) 1 diff avg executor runTime count

Figure 26: Two features from a time series in the test set of application 1 in Exathlon. The
anomalies injected in this time series are of the type cpu contention anomaly.

example, we believe this instance warrants a closer inspection by experts in the future.

In total, we omit only one additional application. In the test set of application 10, we can
observe a strong distributional shift in one feature, see Figure 27. Since this change persists

(a) Feature in train set (b) Feature in test set

Figure 27: Feature 1 diff avg executor shuffleRecordsRead count of a time series in the test set of
application 10.

throughout the entire test time series independent of any anomalies present, we suspect this
might be unintentional. We still report our results on this application in Appendix E, but
exclude the application from our main evaluation. Lastly, we also omit application 3 from
our main evaluation. The time series in the test set of this application are comparatively
short, leaving only about 500 to 1,000 time steps for evaluation folds. Together with sparse
anomalies, leaves several folds with no anomalies at all, complicating the evaluation.

27

C Methods

Most approaches, in particular recent ones, rely on a combination of multiple architectural
elements. Thus we focus on the method for computing the final anomaly scores. In our
setting, we expect each method to compute an anomaly score for each time step based only
on the knowledge from prior time steps. Some methods are built to compute anomaly scores
for entire time-series or windows. For most we can adapt the method to produce local scores
based on the context of a window. We discuss global methods separately at the end of this
section. In the following, we will discuss each class of methods in its own section.

C.1 Reconstruction-based methods

Based on the idea of the classical autoencoder (AE), some methods use an encoder network
followed by a decoder network to map the input data into a smaller latent space and back into
the input space. The idea is based on the intuition, that the information in the latent space
should be enough to adequately reconstruct the input data, and, because the latent space is
smaller than the input space, the networks can thus not simply learn an identity function.
Since the method is generally only trained on normal data, we expect the reconstruction to
fail for anomalous inputs. Thus, such methods rely on the reconstruction error to compute
the anomaly score. Most of the time, the mean squared error (MSE) is used to train such
methods and is later used for the anomaly score as well. Since squaring is strictly monotone
for non-negative values, the resulting order is equivalent to the absolute error, which is
sometimes used in its stead.

LSTM-AE Malhotra et al. (2016) propose to use an LSTM network as the encoder and
as the decoder. The decoder LSTM takes the final hidden state of the encoder LSTM as
the initial hidden state and reconstructs the input in reverse order. During training, it uses
the true input data as inputs, but during testing, it uses its own predictions.

LSTM-Max-AE Mirza & Cosan (2018) propose to use use the mean or maximum of
the hidden states of the encoder instead. Additionally, they use the latent representation
as input for all time steps during reconstruction. Contrary to Malhotra et al. (2016) they
reconstruct the inputs in the same order.

MSCRED Instead of raw inputs, Zhang et al. (2019) capture the correlation of time-
series segments in signature matrices before applying a fully 2D-convolutional network and
feeding its output into a 2D-convolutional LSTM encoder and decoder.

USAD Audibert et al. (2020) use two autoencoders with a shared encoder. Training
consists of two phases: First, both train to minimize the reconstruction error. Afterward,
training shifts to an adversarial setting. Here, the second autoencoder aims to distinguish
real samples from those generated by the first autoencoder, whereas the first autoencoder
tries to fool the adversary. During inference, a combination of reconstruction and adversarial
loss yields the anomaly score for each point.

TCN-S2S-AE Thill et al. (2020) propose a fully convolutional AE architecture with a
temporal convolutional network (TCN) in the encoder and a transposed TCN in the decoder.
Instead of the usual MSE loss, they use the LogCosh loss as their training objective. A
Gaussian is fitted on the errors over the test set during testing. However, this avoids using
the method in an online setting. Therefore, we fit the Gaussian to a held-out validation set
to be comparable to other methods.

IDEAL Homayouni et al. (2020) propose another LSTM-based AE that determines its
ideal window size based on the input time serie’s autocorrelation. However, it seems to us
that eq.(2) in the paper has some mistakes, as there is a sum over index i and i is never used
and the authors attempt to compute a confidence interval using the cumulative distribution
function of a standard normal distribution instead of its inverse. Furthermore, the authors
do not specify any details regarding the dimensionality of the latent space and how the

28

decoder uses the latent vector to produce the reconstructed sequence. Thus, we cannot
implement IDEAL for our library.

GenAD Hua et al. (2022) split an input TS into 5 folds of equal size. During training,
they mask a random fraction of input features in the last fold by replacing them with the
values of another randomly chosen feature. After that, they apply several multi-head self
attention layers to the masked input sequence. Each layer computes attention along the
time and feature dimensions separately. Their outputs are interpolated with a learnable
weight to produce the final reconstructed sequence. During training, GENAD computes
the LogCosh reconstruction loss over the previously masked features. The paper does not
clearly describe the detection procedure, hence, the following is what we implemented in the
absence of specific details: We mask each feature in the input TS once and let the GENAD
model compute its reconstruction. If the reconstruction error, measured by the LogCosh
metric, is larger than some threshold, we consider that feature anomalous. Finally, if more
than a predetermined fraction of the input features at a certain point in time is anomalous,
we consider the entire TS to be anomalous at that time point.

STGAT-MAD 9 Zhan et al. (2022) process an input TS by applying several 1D-
convolution layers with different kernel sizes before passing each of the resulting sequences
through several graph attention and graph convolution layers in parallel. Then they con-
catenate the output of those layers and feed them to a bi-LSTM decoder, which attempts to
reconstruct the original input TS. STGAT-MAD uses the squared error as both its training
loss and anomaly score.

C.2 Prediction-based methods

Prediction-based methods—sometimes also called forecasting methods—attempt to predict
the next k ≥ 1 time steps, called prediction horizon, when given an input time series. After
training on normal data, they should be capable of accurately predicting the next time steps
as long as the input time series and the points that are to be predicted are not anomalous.
However, if any point in the prediction horizon is anomalous, the model will usually produce
a higher prediction error for those points. Methods in this category use this prediction error
as the basis for their anomaly score. Most methods measure the prediction error in therms
of the MSE or mean absolute error (MAE).

LSTM-P Malhotra et al. (2015) use a multilayer LSTM to extract features and an FC
NN to generate l-steps ahead predictions. An MSE loss is used during training, and at
inference, a multivariate Gaussian is fitted to the errors of the held-out validation set. Given
the learned distribution, the negative log-likelihood corresponds to the anomaly scores.

LSTM-S2S-P Similar to LSTM-P, Filonov et al. (2016) use a multilayer LSTM. How-
ever, they use the hidden features at each time step to predict the forecast, making their
model a sequence-to-sequence predictor. An exponentially weighted moving average of the
reconstruction errors yields the anomaly scores.

DeepANT/TCN-P Munir et al. (2018) use a TCN with max pooling and an MLP after
that to predict the next k points from the input window x. They train the model with the
MAE. However, the anomaly score is simply the MSE between a point and its prediction.
If the prediction horizon k > 1 and there are multiple predictions for a single time step, we
take their average and compute the MSE for that.

TCN-S2S-P He & Zhao (2019) pass the input window through a dilated causal TCN and
concatenate the outputs of the last three layers along the feature dimension to pass this to
a final convolution layer with kernel size one and D filters. The output of their method is a
window of size w×D shifted by one time step compared to the input window. TCN-S2S-P
uses the MSE loss during training and fits a Gaussian distribution to the prediction errors,

9https://github.com/zhanjun717/STGAT

29

https://github.com/zhanjun717/STGAT

just like LSTM-P. Note that during detection, we can only use the last point in the predicted
window due to the requirement that the detector must work in an online setting.

GDN 10 Deng & Hooi (2021) construct a graph with features as its nodes and edges
representing relations between features. They train an embedding vector for each feature
and add directed edges from each feature to the topm ∈ N features based on cosine similarity
between the feature embeddings. Thus the graph is dynamically recreated for each input
batch. After that, they apply a graph attention mechanism (Veličković et al., 2018) to this
dynamic graph and pass the outputs to an MLP that returns the prediction for the next time
step. The authors use the MSE as their training loss and the MAE, which they normalise
using each feature’s median and interquartile range, as their anomaly score. They compute
the two statistics over the test set, making GDN an offline method. However, computing
the statistics over held-out normal data performed poorly due to constant features in the
datasets. Hence, we decided to use the unscaled MSE as the anomaly score instead.

C.3 Generative methods

Generative methods model the data-generating distribution directly by training a generative
model on some latent space with a predefined prior that produces samples close to the real
data. Those models usually offer some way of computing the marginal likelihood of a data
point under the model they learned, which can be used to derive anomaly scores.

C.3.1 VAE-based methods

LSTM-VAE Sölch et al. (2016) choose both the likelihood p(x | z) and the posterior
approximation q(z | x) to be Gaussian and instantiate all NNs as single-layer LSTMs. Their
encoder returns a mean and covariance component for each time step. Furthermore, they
use p(z) = N (µ, I) as a prior, where µ = (µ1, . . . , µT) is produced by another LSTM. The
anomaly score is the negative ELBO.

Donut 11 Xu et al. (2018) chose to use MLPs for both encoder and decoder. Furthermore,
they mask some time steps in the input by setting them to zero. During training, Donut
maximizes a modified version of the ELBO that accounts for the input masking. Their
anomaly score is the so-called “reconstruction probability” Ez∼q(z|x)[− log p(x | z)], although
they combine it with elaborate mechanisms to reconstruct missing data. However, those are
not relevant to this work since we do not have to deal with missing data. Note that the
original formulation only supports univariate TS. We extend it to the multivariate case by
simply applying the MLPs to the flattened multivariate input window, and we do not mask
entire time steps but random features in random time steps instead.

LSTM-DVAE Park et al. (2018) apply zero-mean Gaussian noise to any input before
feeding it to the encoder, and their prior mean for each time step is computed as

µt =

(
1− t

T

)
v1 +

t

T
vT ,

where v1, vT ∈ RD′
are learnable parameters of the model. Furthermore, they use the

reconstruction probability as their anomaly score. Apart from that, the method is exactly
the same as the LSTM-VAE.

GMM-GRU-VAE Guo et al. (2018) use GRUs for both their encoder and decoder. Addi-
tionally, they chose a Gaussian mixture distribution with K components as their variational
posterior approximation. Their prior is also a Gaussian mixture with learnable parameters
µk,Σk for each of the K components. GMM-GRU-VAE uses the reconstruction probability
as its anomaly score.

10https://github.com/d-ailin/GDN
11https://github.com/NetManAIOps/donut

30

https://github.com/d-ailin/GDN
https://github.com/NetManAIOps/donut

BI-LSTM-VAE Pereira & Silveira (2018) propose to use a bi-directional LSTM for both
encoder and decoder. They compute mean and variance for the latent Gaussian distribution
from the last hidden state of the encoder. Additionally, the authors apply self-attention to
the sequence of encoder hidden states and use the results to instantiate another Gaussian
distribution at each time step. The samples from those distribution are combined with the
sample from the original latent distribution at each time step to form the input for the
decoder. However, the paper does not mention how exactly this sample is combined with
the samples from the attention results at each time step. We contacted the authors on this
matter but did not receive any response. Thus, we decided not to implement BI-LSTM-VAE
as part of our library.

OmniAnomaly 12 Su et al. (2019) use a GRU-based encoder and decoder. They also
apply a planar normalising flow (Rezende & Mohamed, 2015) to the latent variable z after
they sample it from a multivariate normal distribution with parameters defined by the
encoder. Furthermore, they choose a linear Gaussian state space model, i.e., a Kalman
filter, for the prior p(z). OmniAnomaly also uses the reconstruction probability as its
anomaly score.

SIS-VAE Li et al. (2021a) propose another GRU-based VAE. They encourage the VAE to
reconstruct smooth TS by adding a KL-divergence term between adjacent time steps term
to the ELBO. Intuitively, this term encourages that the distributions for two neighbouring
points in the predicted TS are similar to each other. Like most other VAE-based methods,
SIS-VAE uses the reconstruction probability as its anomaly score.

C.3.2 GAN-based methods

BeatGAN 13 Zhou et al. (2019) use a TCN-based AE as the generator and a TCN-based
discriminator. Technically speaking, their method is not really generative since they simply
pass the input TS x through a deterministic AE and treat the reconstructed sample x̂ as the
“generated” input for a GAN discriminator. Furthermore, they only use the reconstruction
error (MSE) of the AE as their anomaly score, completely discarding the discriminator
after training. Nevertheless, we decided to put BeatGAN in the GAN category because
it shares some architectural elements with the other GAN-based approaches. However,
it would also be justified to think of BeatGAN as a reconstruction-based method with
adversarial regularisation, similar to USAD. The TCN AE trains to minimise the MSE
between input x and reconstruction x̂ as well as the MSE between their feature maps in the
discriminator’s second-to-last layer. The discriminator, on the other hand, is trained on the
standard GAN loss. Note that the authors augment the input dataset during training by
applying dynamic time warping (Vintsyuk, 1968) to each input window and concatenating
the resulting distorted window to the original dataset.

MAD-GAN 14 Li et al. (2019) use LSTMs as generator and discriminator in their GAN-
based approach. Besides the usual discriminator score, they also use a ”reconstruction“
score. They start with a random latent variable z ∼ N (0, I) and pass it through the
generator to obtain x̂. Now they use a Gaussian/RBF kernel to compute the similarity
between the current input x and the generated sample x̂ and use 1 − sim(x, x̂) as the
reconstruction error. They minimise this error using gradient-based methods on z until
it falls below a certain threshold. Then, they compute the MAE between original and
reconstructed input and use it as the anomaly score together with the discriminator’s output.

Conv-GAN Jiang et al. (2019) extract a fixed set of 16 features from an input time series
and pass this vector trough a fully convolutional AE. Like BeatGAN, they consider the re-
constructed vector as their “generated” sample. Conv-GANS’s discriminator is also a CNN.
Furthermore, they add an additional encoder to the generator that takes the reconstructed
input and transforms it to the latent space again, trying to match the latent vector of the

12https://github.com/NetManAIOps/OmniAnomaly
13https://github.com/hi-bingo/BeatGAN
14https://github.com/LiDan456/MAD-GANs

31

https://github.com/NetManAIOps/OmniAnomaly
https://github.com/hi-bingo/BeatGAN
https://github.com/LiDan456/MAD-GANs

original AE. However, from table 3 in the paper it seems that the authors input the 16
extracted features as a 4×4 matrix into the model, but they do not specify which extracted
feature goes where in the matrix. Furthermore, they also write that they do not use any
feature extraction on some datasets but do not specify how the model works in that case.
Thus, we decided not to implement Conv-GAN.

LSTM-VAE-GAN Niu et al. (2020) use the decoder of an LSTM-based VAE as the
generator of a GAN with an LSTM discriminator. Instead of computing the likelihood of
the VAE’s output on the input x directly, they pass both original and reconstructed sequence
through all but the last layer of the discriminator. The discriminator should not just be
capable of detecting a transformed sample generated from a standard normal distribution
but also transformed samples from the posterior approximation. Therefore, its loss has
an additional term to detect samples from the posterior approximation.LSTM-VAE-GAN’s
anomaly score is a convex combination of the MAE between x and its reconstruction, and
the negative discriminator score.

TadGAN 15 Geiger et al. (2020) propose to use bidirectional LSTMs as decoder and
encoder of an AE. Additionally, they consider both the decoder and the encoder as generators
of two separate Wasserstein GANs (Arjovsky et al., 2017). One GAN uses the decoder as its
generator, which maps random samples z ∈ N (0, I) to the input data space, and its TCN-
based discriminator then attempts to distinguish a real input x from the generated sample
x̂. However, the generator of the second GAN is the encoder, which maps a data point x to
the latent space. The TCN discriminator of that second GAN must now distinguish if its
input is a random sample from a standard normal distribution or an encoded data point.
Note that the loss function also contains the reconstruction error of the AE measured by
the MSE. The authors compute both the MSE and the discriminator score during detection
and normalize both using their means and standard deviations in the test set. After taking
the absolute value of both, they return a convex combination of the two scores as their final
anomaly score. Like in the case of TCN-AE, we compute the statistics of both scores during
training on a held-out part of the training set instead, turning TADGAN into an online
method.

C.4 Hybrid methods

Some methods cannot be clearly assigned to one of the classes mentioned above, since they
use principles of more than one class. For example, models could compute both recon-
struction and prediction error for an input time series before combining them into a single
anomaly score. We decided to place such methods in their own “hybrid” category.

LSTM-AE OC-SVM Said Elsayed et al. (2020) train an AE with multi-layer LSTMs
as encoder and decoder. However, instead of deriving their anomaly score from the recon-
struction error of the AE, the authors train an OC-SVM (Schölkopf et al., 2001) on the
latent vectors produced by applying the encoder to the held-out clean validation set in-
stead. This OC-SVM then yields the anomaly scores during detection. Note that we return
the raw scores, i.e., a point’s signed distance from the OC-SVM’s separating hyperplane,
instead of predictions (0 or 1) to stay consistent with the other methods in this thesis and
to avoid putting the OC-SVM at a disadvantage by using a fixed threshold. Unfortunately,
the authors do not describe how they pass the latent vector to the decoder in detail, so we
decided to use the same architecture as the LSTM-Max-AE. Although this method shares
many similarities with some of the reconstruction-based methods (especially LSTM-AE and
LSTM-Max-AE), we do not consider it a reconstruction-based method since its anomaly
score is not derived from the AE’s reconstruction error.

15https://github.com/sintel-dev/Orion

32

https://github.com/sintel-dev/Orion

MTAD-GAT Zhao et al. (2020)16 apply two graph attention modules (Veličković et al.,
2018) on top of a TCN, one taking features as nodes and one taking time points in a window
as nodes. Both feed their output concatenated to the original input into a GRU. Unlike
GDN, they just use a fully connected graph as the input and do not build a dynamic graph.
The final hidden state of the GRU serves as the input for an MLP to predict the next time
point and as the latent variable for a VAE with an MLP decoder. They additively combine
the MSE of the prediction with the VAE’s ELBO loss to train the model. The anomaly
score also combines the MSE of the prediction and the reconstruction probability of the
VAE using a trade-off coefficient γ ∈ [0, 1].

C.5 Other methods

We list methods that do not fall into any of the above categories here. This includes, for
example, one-class approaches, which are more widely used for AD on other data types.

GRELEN Zhang et al. (2022b) use multi-head self attention along the feature dimension
to encode an input TS. More specifically, they compute the attention weights but use a
softmax normalisation along the attention head axis. Those weights are then used as prob-
abilities for a Gumbel softmax distribution, which the authors sample from. They consider
this sample as h adjacency matrices, where h is the number of attention heads. GRELEN
uses those adjacency matrices as inputs to a DCGRU (Li et al., 2018b) layer that aims to
predict the next time step for each point in the input TS. During training, GRELEN uses
a VAE style loss, where the DCGRU output is the mean of a normal distribution with con-
stant variance and the Gumbel softmax distribution is considered the latent distribution.
During testing, GRELEN uses the KL divergence between the latent distribution and a
predefined prior. However, the paper lacks many important details, e.g., the value of the
constant variance, and we could not understand how a second anomaly score described in
the paper works.

16The authors included a link to https://github.com/Azure/Multivariate-AD in their paper,
claiming that this repository contains their code and data, but as of now (27.09.2022) it is just an
empty repository.

33

https://github.com/Azure/Multivariate-AD

D Details about our evaluation procedure

Each time-series AD dataset consists of an unlabelled training set Dul := {x(1), . . . , x(N)},
where each x(i) ∈ RTi×D is one time series and a labelled test set Dl :=
{(x(1), y(i)), . . . , (x(N), y(N

′)}, where x(i) ∈ RTi×D and y(i) ∈ {0, 1}T ′
i are the ground truth

anomaly labels. We split the unlabelled data into two distinct sets Dtrain and Dval1 such
that Dtrain contains 75% of the available time points and Dval1 contains 25%. If N > 1,
we can achieve this split (approximately) by assigning the entire time series to either set.
However, several datasets (e.g., SWaT, WADI, SMD) contain only as a single time series in
both their labeled and unlabelled data. Hence, we decided to split each time series along the
time dimension and assigned the resulting sub-sequences to Dtrain and Dval1, respectively.
We train each method for up to 100 epochs on Dtrain, using early stopping on the validation
loss calculated over Dval1 for all methods except USAD and the GAN-based approaches.
Some methods also require Dval1 for fitting parameters of their anomaly detection module,
e.g., mean and covariance matrices over reconstruction errors to use in a Gaussian distribu-
tion. USAD, BeatGAN, MAD-GAN, and LSTM-VAE-GAN use neither early stopping nor
do their detectors require any parameter fitting, so we train them on the entire unlabelled
data.

Since we perform a grid search to tune each method’s hyperparameters, we also need to split
the labeled data into another validation set Dval2 and a test set Dtest. Using a simple split
here might introduce an unwanted bias into our evaluation for the case where only one time
series of labeled data is available. In this case, the anomalies in the validation set might be of
a different type compared to the ones in the test set. Since the split is arbitrary, this might
put some methods at an unfair disadvantage if we report only the scores on the test set. We
cannot entirely eliminate this issue, but we attempt to mitigate it by performing a modified
5-fold cross validation. For that, we split the time series into five equally sized folds and
use each fold as the validation set once. The remaining folds, excluding the ones directly
next to the validation fold to reduce possible statistical interdependencies, form the test
set. We choose the hyperparameters that perform best on the validation set in terms of the
best F1∗-score and evaluate the corresponding model on the test set. The scores reported
in our tables are averages over all five folds. To ensure a fair comparison between methods
that incorporate their run time/computational complexity, we adapt the hyperparameter
grid size of each method, s.t. it takes roughly 48h to evaluate them on a dataset collection
like Exathlon or SMD. We provide the hyperparameter grid for each method as part of our
source code repository17.

All methods use sliding windows as their inputs, although window size and step size may
differ between them as we consider them to be hyperparameters. Furthermore, we sub-
sample the Exathlon dataset by partitioning each time series into windows of size five and
computing the mean over each window.

We implemented all methods and datasets as part of our TimeSeAD library based on Py-
Torch (Paszke et al., 2019). To keep track of our training and evaluation experiments, we
also developed a plugin for our library based on sacred (Greff et al., 2017). This plugin au-
tomatically saves all results, configuration, random seeds, and artifacts, e.g., model weights,
that our experiments produce. Furthermore, we provide a list of all packages we use with
their corresponding version numbers as part of our source code repository17.

17We provide the code in the supplementary material, and later through a GitHub link.

34

E Detailed Benchmark Results

In the following, we present additional results from our benchmark experiments. Table
Table 3 shows the ranked average scores for Exathlon and SMD. Here, we average the
scores for both, Exathlon and SMD, only over the datasets, which we think fit the purpose
of evaluating time series AD methods. Details about why and which specific datasets are
excluded can be found in Appendix B. In order to fit on one paper, we use the following
abbreviations: (1) F pw

1 AUPRCpw stand for the point-wise best F1 score and area und
the precision-recall curve (AUPRC), respectively, (2) for the appropriate F1 and AUPRC
introduce by (Tatbul et al., 2018), and, (3) for our modified metric.

Table 4, Table 5 and Table 6 display detailed results for Exathlon based on point-wise,
(Tatbul et al., 2018) and our metric, respectively. Whereas, Table 7 to Table 12 show
results on the SMD dataset. For a clear visual appearance, all scores are multiplied by 100.
Note, that due to spacial constraints we have limited ourselves to only present the SMD
datasets which we find to be best applicable for evaluation. See Appendix B for a detailed
analysis on which and why we ignore specific datasets. Full results on all SMD servers will
be made available with the publication of our library on GitHub.

35

Table 3: Ranked average scores of relevant datasets for Exathlon and SMD on six different evaluation metrics.

Exathlon SMD

F pw
1 AUPRCpw F ts

1 AUPRCts F our
1 AUPRCour F pw

1 AUPRCpw F ts
1 AUPRCts F our

1 AUPRCour

LSTM-AE 21 20 14 20 22 21 1 1 5 1 1 1
LSTM-Max-AE 14 13 12 17 20 16 21 22 19 19 17 20

MSCRED 1 3 3 1 1 3 16 13 8 13 20 19

FC-AE 5 4 21 12 10 4 7 9 14 5 7 8
USAD 8 5 19 14 15 5 19 17 12 14 15 16

TCN-AE 4 17 1 2 3 17 18 24 2 24 21 24

GenAD 3 1 25 4 4 1 24 14 25 12 24 14

STGAT-MAD 6 6 10 6 14 9 5 4 7 4 5 4

LSTM-P 22 22 5 24 24 24 2 2 4 2 2 2
LSTM-S2S-P 18 21 2 3 11 22 13 15 1 10 18 21

DeepAnt 10 10 15 8 7 7 10 10 16 11 12 10

TCN-S2S-P 19 19 11 13 19 19 3 3 6 3 3 3
GDN 2 2 13 10 2 2 9 6 13 8 10 9

LSTM-VAE 11 11 20 16 6 11 11 11 18 15 9 11

Donut 15 16 4 9 16 15 6 5 11 6 6 6
LSTM-DVAE 16 15 22 23 17 18 12 19 22 22 13 15

GMM-GRU-VAE 7 12 16 21 5 10 4 8 10 7 4 5
OmniAnomaly 23 24 17 22 21 20 15 16 21 21 11 12

SIS-VAE 13 8 9 11 12 6 8 7 15 9 8 7

BeatGAN 20 14 24 19 8 8 17 18 17 17 16 17

MAD-GAN 12 9 18 18 18 14 23 23 3 18 23 23

LSTM-VAE-GAN 17 18 7 7 13 13 22 20 23 23 19 18

TadGAN 9 7 8 5 9 12 20 21 9 16 22 22

LSTM-AE OC-SVM 25 25 23 25 25 25 25 25 24 25 25 25

MTAD-GAT 24 23 6 15 23 23 14 12 20 20 14 13

36

Table 4: Cross-validation results on Exathlon evaluated with the point wise metric.

Best F 1-score (point wise) AUPRC (point wise)

App ID App ID
1 2 3 4 5 6 9 10 avg 1 2 3 4 5 6 9 10 avg

LSTM-AE 47.3 77.4 57.1 77.0 45.0 48.1 34.5 43.7 53.8 (20) 49.5 75.0 51.7 68.5 43.8 34.9 32.3 31.6 48.4 (19)
LSTM-Max-AE 64.0 63.1 55.4 76.1 45.1 50.8 47.2 45.2 55.9 (14) 69.9 60.8 51.6 73.8 42.8 36.4 38.0 38.2 51.4 (12)
MSCRED 65.0 72.3 79.1 90.5 50.4 63.1 48.9 54.3 65.4 (1) 57.0 66.3 75.9 89.1 48.0 40.9 44.2 46.9 58.5 (1)
FC-AE 64.4 62.4 55.2 85.5 48.5 54.5 42.3 46.9 57.5 (5) 69.7 61.6 51.3 83.9 45.9 38.9 39.7 40.4 53.9 (6)
USAD 61.8 62.2 49.5 87.7 52.1 53.3 38.5 48.3 56.7 (8) 67.2 61.5 46.8 84.1 48.4 40.4 36.4 40.5 53.2 (8)
TCN-AE 55.8 66.5 40.7 83.6 59.2 51.7 49.0 44.8 56.4 (12) 52.1 56.5 35.1 72.9 57.3 32.5 42.6 34.5 47.9 (20)
GenAD 68.5 57.4 42.4 91.7 50.9 68.5 34.2 38.2 56.5 (10) 70.8 59.4 52.1 84.7 51.8 67.0 37.9 32.4 57.0 (3)
STGAT-MAD 56.0 62.5 62.3 87.7 46.7 64.4 39.1 46.2 58.1 (3) 60.3 61.7 58.4 83.6 45.5 50.1 36.0 39.6 54.4 (4)

LSTM-P 47.9 71.2 46.5 75.2 47.4 38.4 41.0 43.4 51.4 (22) 48.7 66.2 50.5 62.6 46.3 25.3 38.2 29.2 45.9 (23)
LSTM-S2S-P 58.3 42.8 54.1 91.8 49.0 52.9 43.1 42.3 54.3 (18) 53.8 31.6 45.6 88.8 46.8 38.0 31.1 30.5 45.8 (24)
DeepAnt 57.7 60.4 45.9 89.2 50.3 55.1 41.4 46.2 55.8 (16) 62.8 54.7 39.3 84.1 49.5 39.0 38.1 38.2 50.7 (14)
TCN-S2S-P 53.1 67.5 53.3 86.0 44.8 47.7 38.1 39.6 53.8 (19) 56.2 62.5 52.6 77.7 44.0 32.1 35.2 28.2 48.6 (18)
GDN 74.8 64.3 68.2 83.3 47.7 55.4 48.5 48.8 61.4 (2) 79.7 62.6 65.5 80.5 47.4 38.5 43.1 42.0 57.4 (2)

LSTM-VAE 47.8 62.1 59.9 84.8 63.1 60.2 33.7 46.8 57.3 (6) 49.9 61.0 55.0 81.9 63.9 48.2 22.7 40.4 52.9 (10)
Donut 45.2 61.2 60.4 88.9 54.2 53.3 40.1 48.2 56.4 (11) 48.4 54.3 56.3 83.8 53.5 38.8 36.4 41.7 51.6 (11)
LSTM-DVAE 51.6 57.4 60.5 86.7 59.2 50.6 35.1 46.0 55.9 (13) 53.0 57.5 55.8 81.8 55.5 42.2 26.9 37.8 51.3 (13)
GMM-GRU-VAE 50.0 62.9 48.0 82.7 47.2 63.7 49.2 42.9 55.8 (15) 52.0 59.0 45.8 78.2 36.1 56.9 43.0 29.8 50.1 (15)
OmniAnomaly 45.5 58.5 62.0 41.0 61.6 62.3 40.1 44.3 51.9 (21) 42.9 59.0 59.7 31.1 60.3 51.2 35.7 40.0 47.5 (21)
SIS-VAE 51.9 61.7 63.9 88.3 51.1 58.8 36.8 43.8 57.0 (7) 57.2 61.2 59.0 84.9 48.3 44.4 33.8 38.6 53.5 (7)

BeatGAN 58.8 61.3 37.0 82.7 44.3 50.9 35.4 40.0 51.3 (23) 58.9 61.7 37.6 81.7 42.8 41.4 33.2 33.9 48.9 (17)
MAD-GAN 61.3 61.7 60.1 85.9 48.8 54.9 37.8 42.6 56.6 (9) 66.5 63.3 56.8 79.2 45.5 38.6 36.4 38.3 53.1 (9)
LSTM-VAE-GAN 58.6 56.1 57.2 89.3 35.1 54.6 45.2 45.4 55.2 (17) 57.8 51.4 52.4 87.5 30.4 41.0 40.8 33.6 49.4 (16)
TadGAN 74.8 62.6 65.3 80.1 48.9 50.3 38.4 44.1 58.1 (4) 79.4 61.4 60.1 77.8 44.6 37.7 34.3 37.3 54.1 (5)

LSTM-AE OC-SVM 51.3 67.2 36.3 73.8 41.4 38.7 35.0 40.8 48.0 (25) 52.7 64.4 29.7 63.0 35.4 30.6 32.0 35.1 42.8 (25)
MTAD-GAT 50.3 60.2 49.5 51.3 51.2 57.6 37.7 46.4 50.5 (24) 55.0 61.0 45.3 39.3 47.3 47.4 32.3 40.4 46.0 (22)

37

Table 5: Cross-validation results on Exathlon evaluated with the metric from Tatbul et al. (2018).

Best F 1-score (Tatbull et al.) AUPRC (Tatbull et al.)

App ID App ID
1 2 3 4 5 6 9 10 avg 1 2 3 4 5 6 9 10 avg

LSTM-AE 60.5 47.2 28.4 27.6 27.2 44.1 40.0 57.4 41.5 (20) 43.9 51.7 28.0 51.1 30.8 42.4 22.9 22.9 36.7 (22)
LSTM-Max-AE 61.6 47.6 45.0 35.3 17.3 25.5 61.7 66.0 45.0 (11) 49.0 41.8 39.2 73.0 31.5 33.6 27.7 24.6 40.0 (14)
MSCRED 68.6 69.4 76.4 72.1 48.7 64.9 77.0 56.1 66.7 (2) 67.2 60.7 60.9 86.7 49.1 58.1 52.0 39.0 59.2 (1)
FC-AE 62.3 37.9 44.8 33.8 20.9 32.5 45.1 61.0 42.3 (14) 50.4 38.8 30.6 71.9 34.3 44.6 27.1 24.9 40.3 (13)
USAD 51.0 38.9 54.7 38.2 26.5 38.3 45.3 47.8 42.6 (13) 49.7 39.8 39.7 72.1 37.5 42.4 23.4 25.7 41.3 (12)
TCN-AE 65.3 69.5 64.4 79.3 77.3 66.9 75.2 72.3 71.3 (1) 56.3 50.7 34.1 76.0 58.9 47.5 48.8 40.2 51.6 (2)
GenAD 38.1 34.8 37.5 54.3 19.3 34.0 16.4 34.3 33.6 (25) 53.4 47.1 42.6 81.9 38.4 75.2 28.8 25.1 49.1 (4)
STGAT-MAD 60.9 47.7 41.9 33.4 25.2 41.2 49.4 69.9 46.2 (7) 46.7 43.8 36.4 72.4 35.7 59.6 24.4 26.1 43.1 (7)

LSTM-P 57.7 49.7 39.1 26.4 26.7 45.1 79.0 68.5 49.1 (5) 43.0 48.9 17.0 48.1 34.5 27.9 32.7 27.7 35.0 (24)
LSTM-S2S-P 60.5 75.0 60.9 82.2 75.4 58.6 55.5 55.7 65.5 (3) 54.6 43.7 35.2 89.8 60.4 44.8 39.0 35.8 50.4 (3)
DeepAnt 60.5 44.5 46.2 38.2 32.9 38.5 31.2 46.4 42.3 (15) 49.2 41.7 29.3 72.6 41.3 49.9 24.8 24.9 41.7 (11)
TCN-S2S-P 54.8 52.8 36.3 27.5 32.4 45.1 42.7 61.1 44.1 (12) 45.9 44.8 25.3 64.8 36.2 45.7 27.8 20.9 38.9 (17)
GDN 61.1 41.8 35.9 32.9 24.1 38.2 48.6 50.9 41.7 (18) 57.3 38.5 39.9 69.0 36.2 44.2 31.7 24.9 42.7 (8)

LSTM-VAE 51.1 42.1 39.9 23.8 31.8 38.8 48.5 58.2 41.8 (17) 39.8 42.6 30.0 66.6 42.5 50.1 16.6 22.4 38.8 (18)
Donut 58.4 59.1 42.8 32.6 31.1 48.6 78.9 65.4 52.1 (4) 45.0 45.2 33.5 67.4 36.3 50.1 34.7 24.0 42.0 (9)
LSTM-DVAE 50.2 34.7 41.3 30.9 30.2 33.8 51.1 48.4 40.1 (22) 45.4 31.6 36.1 68.3 37.6 37.3 18.8 21.5 37.1 (21)
GMM-GRU-VAE 52.6 35.3 33.8 26.8 25.2 42.8 60.2 56.4 41.7 (19) 37.2 38.7 22.9 59.1 27.3 45.4 33.8 20.1 35.6 (23)
OmniAnomaly 58.6 35.3 43.3 21.6 33.8 36.1 57.3 42.1 41.0 (21) 52.0 40.0 39.9 27.7 43.1 50.2 26.9 20.2 37.5 (19)
SIS-VAE 56.1 33.9 43.5 36.0 33.9 39.8 63.5 68.5 46.9 (6) 43.5 39.5 38.3 73.3 39.0 50.4 28.6 23.3 42.0 (10)

BeatGAN 28.2 58.0 55.9 35.2 22.2 25.0 39.8 38.9 37.9 (24) 37.1 43.0 19.8 75.1 36.3 40.2 22.3 24.5 37.3 (20)
MAD-GAN 45.5 38.6 40.8 26.7 48.5 32.2 46.8 55.2 41.8 (16) 47.5 42.4 37.1 65.9 38.8 38.1 23.3 22.9 39.5 (16)
LSTM-VAE-GAN 58.4 56.0 46.4 45.1 30.2 40.1 43.5 49.7 46.2 (8) 50.1 45.7 35.9 77.9 30.6 42.4 34.6 28.9 43.3 (6)
TadGAN 56.7 48.4 49.9 43.1 47.4 32.1 38.2 49.4 45.7 (9) 60.9 47.1 38.8 75.8 45.7 39.8 29.4 26.5 45.5 (5)

LSTM-AE OC-SVM 50.5 30.4 36.9 49.0 30.1 37.3 32.6 46.4 39.1 (23) 39.8 38.0 30.5 55.6 34.0 30.2 22.0 19.7 33.7 (25)
MTAD-GAT 62.4 43.3 38.2 35.2 40.4 39.5 55.8 47.2 45.2 (10) 45.7 44.9 29.7 60.8 36.1 46.0 27.5 25.6 39.5 (15)

38

Table 6: Cross-validation results on Exathlon evaluated with our metric.

Best F 1-score (ours) AUPRC (ours)

App ID App ID
1 2 3 4 5 6 9 10 avg 1 2 3 4 5 6 9 10 avg

LSTM-AE 53.7 64.7 60.6 74.8 43.7 48.7 31.7 44.2 52.8 (23) 56.3 63.1 42.9 66.6 42.4 36.0 29.1 35.7 46.5 (21)
LSTM-Max-AE 67.3 50.8 59.1 73.2 44.0 51.7 41.5 37.4 53.1 (21) 72.2 49.3 53.6 72.7 44.4 40.4 33.9 31.6 49.7 (16)
MSCRED 64.2 64.7 84.0 90.9 49.0 63.5 50.1 54.8 65.1 (1) 56.4 62.4 29.8 89.6 47.7 41.6 44.4 48.3 52.5 (7)
FC-AE 68.1 52.1 71.3 84.0 47.4 55.1 38.9 42.6 57.4 (5) 72.8 52.7 69.9 85.4 47.8 42.7 37.8 36.7 55.8 (3)
USAD 65.5 52.6 54.6 85.6 51.3 53.4 34.4 43.8 55.1 (16) 70.4 53.4 56.5 84.3 50.0 43.6 32.9 36.8 53.5 (4)
TCN-AE 64.8 57.3 61.9 83.1 52.8 52.2 49.8 41.5 57.9 (3) 59.6 51.2 36.9 73.0 51.8 32.6 41.2 29.3 47.0 (19)
GenAD 70.6 47.7 42.4 89.7 52.3 68.0 25.2 33.1 53.6 (19) 74.5 53.1 51.6 87.2 53.1 67.4 35.7 32.3 56.8 (2)
STGAT-MAD 59.5 52.6 69.3 86.2 43.9 66.3 34.7 40.8 56.7 (11) 64.2 53.3 55.7 84.7 43.3 51.4 33.3 35.5 52.7 (6)

LSTM-P 55.1 54.1 68.6 73.2 52.8 38.3 37.3 43.1 52.8 (22) 57.5 53.2 55.2 61.4 51.5 26.0 34.5 32.6 46.5 (22)
LSTM-S2S-P 61.8 52.2 60.5 91.2 41.4 55.2 43.5 38.1 55.5 (14) 55.1 34.9 53.1 87.0 39.5 37.0 32.0 30.3 46.1 (24)
DeepAnt 63.4 54.8 64.7 87.3 51.0 56.0 36.6 41.0 56.8 (10) 66.9 50.5 47.2 85.1 49.9 42.9 36.2 33.4 51.5 (10)
TCN-S2S-P 58.3 56.5 68.8 83.7 50.0 47.7 34.6 38.4 54.8 (17) 62.0 54.7 35.2 76.0 48.1 32.1 33.2 30.9 46.5 (20)
GDN 76.5 56.9 69.4 81.7 46.6 57.9 46.1 42.5 59.7 (2) 80.4 55.4 68.7 82.0 45.1 44.3 40.5 38.4 56.8 (1)

LSTM-VAE 54.7 53.0 68.6 83.2 65.5 59.1 34.6 40.3 57.4 (6) 57.9 53.5 40.4 81.8 65.3 47.2 22.8 37.6 50.8 (14)
Donut 54.2 50.9 71.0 86.8 57.0 51.9 39.3 44.5 56.9 (8) 56.5 46.7 51.8 82.4 57.3 37.5 33.6 41.9 51.0 (12)
LSTM-DVAE 56.2 50.0 67.9 81.3 63.8 47.8 34.4 42.4 55.5 (15) 55.6 48.4 53.8 77.2 61.1 39.5 26.4 38.2 50.0 (15)
GMM-GRU-VAE 54.7 54.7 67.3 79.4 53.5 61.9 47.9 40.5 57.5 (4) 58.2 52.8 53.9 76.6 42.1 56.2 42.8 34.1 52.1 (9)
OmniAnomaly 53.4 51.6 69.5 44.7 68.3 62.3 37.8 39.5 53.4 (20) 53.5 52.7 57.2 37.9 67.4 51.7 33.4 35.4 48.7 (18)
SIS-VAE 56.8 52.7 70.3 88.2 53.0 61.1 32.4 38.8 56.6 (12) 61.6 53.3 55.9 87.1 52.1 48.7 30.8 33.9 52.9 (5)

BeatGAN 65.9 64.7 68.9 82.3 44.0 54.3 36.5 38.4 56.9 (9) 67.1 55.4 31.0 81.0 49.1 44.4 33.5 32.7 49.3 (17)
MAD-GAN 64.4 52.7 67.9 84.0 43.3 56.5 32.1 36.2 54.6 (18) 68.3 54.4 54.7 79.3 42.4 43.2 32.4 33.1 51.0 (13)
LSTM-VAE-GAN 63.9 55.7 62.1 89.3 39.5 54.0 41.6 44.7 56.3 (13) 67.0 49.7 49.1 89.7 35.4 42.5 37.9 38.3 51.2 (11)
TadGAN 78.6 58.8 70.4 77.7 46.1 52.7 33.0 39.5 57.1 (7) 82.7 54.3 55.1 75.1 44.0 40.8 31.5 34.3 52.2 (8)

LSTM-AE OC-SVM 57.5 54.9 46.0 71.7 38.5 39.7 29.1 37.2 46.8 (25) 58.2 53.1 48.9 63.5 33.3 32.4 27.3 34.2 43.9 (25)
MTAD-GAT 54.6 54.0 67.7 53.0 55.5 56.4 40.0 36.6 52.2 (24) 59.5 53.4 52.0 42.4 50.0 46.6 33.3 34.3 46.4 (23)

39

Table 7: Cross-validation results on SMD evaluated with F1 point wise.

Server ID
1 6 8 9 10 11 13 14 16 17 20 21 24 26 27 avg.

LSTM-AE 47.1 68.9 29.4 33.9 60.4 30.6 56.8 64.5 51.9 74.6 14.7 42.3 65.3 23.4 78.1 49.5 (1)
LSTM-Max-AE 52.7 32.2 23.0 33.9 33.0 29.7 58.1 44.4 35.8 56.2 14.0 11.8 52.4 25.4 61.3 37.6 (21)
MSCRED 53.9 49.5 43.7 28.0 40.2 22.1 48.8 37.6 48.2 60.8 12.3 24.4 47.5 20.5 57.7 39.7 (16)
FC-AE 49.0 56.4 30.7 34.2 48.7 27.7 56.9 58.4 44.8 64.8 14.4 32.7 57.0 23.5 79.4 45.2 (7)
USAD 37.7 48.6 20.9 33.8 35.7 38.0 56.9 58.6 34.6 56.8 13.5 27.9 46.6 17.9 58.4 39.1 (19)
TCN-AE 47.0 52.7 36.6 23.9 33.9 23.6 44.7 35.9 44.4 63.3 16.8 24.2 55.2 31.5 52.8 39.1 (18)
GenAD 44.6 21.0 12.7 26.6 22.4 15.7 52.5 46.7 31.2 55.2 10.5 7.1 48.4 21.1 59.6 31.7 (24)
STGAT-MAD 48.1 64.5 24.2 34.7 55.9 26.6 56.7 58.1 49.5 65.6 15.9 33.0 59.5 25.4 78.2 46.4 (5)

LSTM-P 54.7 73.8 36.5 32.7 58.2 31.8 56.6 63.0 49.5 69.5 14.4 37.1 59.2 23.9 78.7 49.3 (2)
LSTM-S2S-P 53.0 54.5 43.1 27.2 28.2 28.7 43.8 34.8 47.7 54.4 14.4 34.8 58.0 29.5 55.7 40.5 (13)
DeepAnt 50.6 60.4 26.8 35.0 42.2 28.9 56.2 59.6 45.7 61.4 14.3 30.0 60.6 24.8 61.0 43.8 (10)
TCN-S2S-P 41.9 73.2 34.6 34.1 52.5 31.9 54.0 55.1 51.5 78.3 16.2 36.3 60.7 26.0 80.9 48.5 (3)
GDN 58.9 58.6 32.0 34.2 53.9 26.3 56.4 56.6 43.9 63.3 13.4 30.0 59.9 20.2 68.2 45.0 (9)

LSTM-VAE 45.7 62.1 22.9 26.7 60.5 32.0 57.7 54.1 44.9 50.0 14.5 39.2 57.2 21.9 63.9 43.6 (11)
Donut 42.7 62.8 27.6 35.4 63.2 40.0 50.1 60.9 40.6 70.7 17.1 29.5 64.3 14.5 74.1 46.2 (6)
LSTM-DVAE 40.1 61.3 24.0 23.4 51.7 35.7 52.8 62.2 42.4 39.1 15.7 38.0 58.7 22.9 49.0 41.1 (12)
GMM-GRU-VAE 44.4 64.2 25.3 34.1 62.0 36.0 55.6 58.7 40.3 71.2 16.1 32.1 60.2 22.9 77.7 46.7 (4)
OmniAnomaly 38.9 63.1 23.6 33.3 32.7 31.2 60.6 50.8 50.1 42.1 13.7 24.1 54.1 13.8 73.4 40.4 (15)
SIS-VAE 53.9 63.0 27.5 34.6 47.4 27.4 56.9 59.8 43.5 64.0 15.0 28.8 55.4 23.7 75.8 45.1 (8)

BeatGAN 44.5 48.8 24.1 33.2 45.5 33.2 57.0 45.1 38.3 58.8 13.4 24.7 42.8 23.0 57.8 39.3 (17)
MAD-GAN 41.5 33.9 30.2 33.9 44.6 20.3 38.8 45.7 42.4 47.6 15.4 9.8 32.1 25.7 32.7 33.0 (23)
LSTM-VAE-GAN 47.8 45.0 21.2 36.7 51.8 25.3 58.0 35.9 28.4 51.6 14.0 19.6 31.3 27.7 60.6 37.0 (22)
TadGAN 49.7 28.2 14.1 33.9 51.1 31.1 58.3 45.8 35.3 54.9 14.9 21.9 54.3 27.0 48.9 38.0 (20)

LSTM-AE OC-SVM 16.9 25.2 13.7 19.2 18.3 31.5 22.0 35.2 19.7 50.5 14.6 10.7 40.3 27.6 56.7 26.8 (25)
MTAD-GAT 40.3 67.8 13.2 33.2 51.6 50.2 44.8 47.7 40.7 39.8 12.6 31.9 50.9 26.5 55.1 40.4 (14)

40

Table 8: Cross-validation results on SMD evaluated with AUPRC point wise.

Server ID
1 6 8 9 10 11 13 14 16 17 20 21 24 26 27 avg.

LSTM-AE 32.9 68.9 23.6 23.4 59.3 26.8 48.7 62.8 51.9 73.7 8.3 32.2 62.4 23.8 76.8 45.0 (1)
LSTM-Max-AE 41.6 17.2 20.3 23.2 21.5 26.2 49.4 35.6 35.9 54.0 6.5 7.0 48.9 24.6 57.5 31.3 (22)
MSCRED 48.3 36.6 41.0 15.0 25.7 16.2 42.8 47.4 45.6 60.2 5.7 19.3 47.1 17.4 55.5 34.9 (13)
FC-AE 42.0 46.1 26.2 24.7 41.8 22.8 47.1 51.7 42.7 63.5 5.4 24.1 53.6 23.6 77.6 39.5 (9)
USAD 31.3 39.6 15.7 21.3 29.7 36.8 46.8 50.4 28.4 54.4 7.1 19.5 42.6 18.5 54.3 33.1 (17)
TCN-AE 27.4 36.8 24.1 13.3 14.4 17.4 22.2 21.8 41.1 57.9 8.8 13.3 36.1 27.6 33.9 26.4 (24)
GenAD 40.6 21.3 25.8 19.3 35.3 23.0 49.7 55.5 34.6 60.9 8.7 12.6 50.5 20.8 55.4 34.3 (14)
STGAT-MAD 38.2 56.8 22.0 25.2 50.9 23.2 48.9 55.1 49.4 65.0 8.2 24.5 59.9 25.6 73.8 41.8 (4)

LSTM-P 48.3 71.8 29.4 23.7 54.9 29.7 49.1 54.2 50.2 67.6 7.6 28.0 59.5 23.1 75.5 44.8 (2)
LSTM-S2S-P 50.2 37.0 39.0 16.3 20.1 19.2 39.8 28.4 46.2 50.4 7.1 27.8 49.2 26.2 52.2 34.0 (15)
DeepAnt 42.0 52.3 21.3 25.2 35.2 23.3 48.4 52.9 43.6 58.3 6.5 18.7 61.7 24.0 58.7 38.1 (10)
TCN-S2S-P 31.0 72.3 27.2 24.0 47.2 29.2 48.0 46.7 51.6 76.7 9.1 27.1 60.5 23.5 77.3 43.4 (3)
GDN 50.6 50.6 28.4 24.0 50.7 23.8 48.6 48.9 40.6 61.3 5.9 19.4 61.6 20.2 64.7 40.0 (6)

LSTM-VAE 27.1 51.1 17.4 19.3 48.3 31.4 50.3 43.5 41.8 47.6 7.2 24.8 53.0 17.1 60.7 36.0 (11)
Donut 27.1 52.1 19.7 26.8 59.1 33.1 41.2 53.8 40.4 70.6 10.7 21.1 66.0 12.0 71.5 40.3 (5)
LSTM-DVAE 22.8 51.1 16.6 14.7 34.3 34.9 45.7 45.4 39.5 32.9 6.5 24.1 53.2 19.1 43.0 32.2 (19)
GMM-GRU-VAE 31.8 53.8 19.2 26.4 44.9 35.7 47.2 51.2 35.9 68.3 6.8 17.3 61.3 22.3 74.8 39.8 (8)
OmniAnomaly 22.2 54.1 17.7 26.5 18.0 28.4 52.2 36.8 52.0 41.3 8.3 12.5 56.2 10.0 70.5 33.8 (16)
SIS-VAE 43.8 57.9 22.2 24.8 41.5 22.3 49.2 53.6 42.7 60.9 6.4 19.8 55.0 24.1 73.3 39.8 (7)

BeatGAN 35.8 34.8 21.3 21.4 39.5 29.0 47.0 37.8 33.2 55.5 6.2 16.4 39.1 23.6 52.2 32.8 (18)
MAD-GAN 30.8 26.6 20.5 20.8 39.9 16.0 27.1 32.9 43.2 48.2 6.5 4.4 26.9 22.9 31.2 26.5 (23)
LSTM-VAE-GAN 38.7 37.3 18.1 30.5 46.2 16.4 51.0 33.4 31.2 49.0 6.9 13.6 25.4 29.1 55.9 32.2 (20)
TadGAN 34.7 16.3 9.1 22.1 44.3 26.8 47.5 40.4 31.2 52.0 8.0 13.0 51.4 24.9 48.6 31.4 (21)

LSTM-AE OC-SVM 8.4 19.7 9.9 9.2 12.8 23.7 13.3 28.2 17.5 45.8 7.5 4.8 32.1 26.7 48.3 20.5 (25)
MTAD-GAT 28.1 63.4 9.2 22.5 49.7 49.3 40.2 38.5 35.8 33.7 6.4 24.6 49.0 22.6 51.0 34.9 (12)

41

Table 9: Cross-validation results on SMD evaluated with the F1 metric introduced by (Tatbul et al., 2018).

Server ID
1 6 8 9 10 11 13 14 16 17 20 21 24 26 27 avg.

LSTM-AE 17.8 47.5 28.8 69.6 54.3 39.8 52.0 43.2 60.1 50.7 23.8 42.8 48.3 61.5 51.1 46.1 (5)
LSTM-Max-AE 26.7 50.3 22.5 72.8 35.7 15.0 54.4 25.7 62.9 34.6 14.4 15.6 45.5 59.3 35.3 38.0 (19)
MSCRED 37.9 37.4 36.9 58.6 41.5 32.9 50.3 9.7 61.7 71.2 25.1 8.1 52.4 64.4 64.9 43.5 (8)
FC-AE 23.1 36.1 24.6 66.3 31.1 26.5 53.3 42.9 58.2 45.6 26.5 33.1 46.7 53.7 42.8 40.7 (14)
USAD 25.8 43.2 29.3 76.3 44.3 20.9 53.1 42.6 57.9 36.8 19.5 29.3 53.4 59.2 42.2 42.3 (12)
TCN-AE 46.5 48.3 47.7 60.2 41.3 46.8 44.3 18.1 67.5 63.1 39.6 29.7 53.0 68.2 57.1 48.8 (2)
GenAD 23.4 17.0 22.6 53.7 29.0 5.9 47.1 33.1 51.6 25.4 4.7 2.8 43.6 56.9 38.1 30.3 (25)
STGAT-MAD 19.8 44.4 27.7 67.9 47.4 41.8 52.6 40.0 58.1 47.9 27.0 32.4 48.7 59.5 50.7 44.4 (7)

LSTM-P 34.0 55.1 30.6 68.7 56.7 44.0 53.2 40.4 55.2 52.4 22.1 35.5 51.9 55.1 49.4 47.0 (4)
LSTM-S2S-P 58.1 50.2 46.0 64.0 42.5 40.0 50.9 29.0 66.4 67.7 45.7 28.2 62.4 59.3 60.2 51.4 (1)
DeepAnt 23.3 39.3 27.0 66.8 28.1 23.8 52.3 42.2 58.0 52.6 20.7 30.0 44.1 51.1 38.9 39.9 (16)
TCN-S2S-P 16.2 51.3 29.5 70.0 47.1 46.2 51.2 31.3 54.8 61.1 29.6 34.9 48.7 49.3 58.1 45.3 (6)
GDN 24.7 40.1 25.5 62.2 35.7 27.9 52.4 39.9 63.3 41.4 22.7 30.7 44.6 65.2 38.2 41.0 (13)

LSTM-VAE 18.6 33.6 34.5 60.5 37.8 39.6 48.7 37.5 54.5 32.7 23.4 35.6 38.1 45.2 39.0 38.6 (18)
Donut 18.4 33.7 25.7 62.4 44.0 37.0 43.0 42.0 47.3 60.3 27.1 35.7 53.1 46.7 61.0 42.5 (11)
LSTM-DVAE 17.2 34.6 28.0 58.8 26.4 39.3 45.2 36.7 45.4 34.2 21.7 33.2 40.4 49.0 29.6 36.0 (22)
GMM-GRU-VAE 21.0 35.5 26.9 69.9 34.8 47.6 49.1 41.2 46.9 64.2 25.0 29.5 44.6 51.6 52.1 42.7 (10)
OmniAnomaly 17.6 30.7 31.4 67.1 15.6 41.8 45.6 31.9 49.4 45.9 16.7 20.3 33.2 41.4 52.0 36.0 (21)
SIS-VAE 24.6 37.6 26.2 63.8 30.4 29.1 52.7 44.0 59.3 40.4 22.1 31.2 47.0 54.0 42.1 40.3 (15)

BeatGAN 26.9 39.9 33.8 78.6 33.4 16.9 52.6 32.9 64.6 34.6 23.1 26.3 43.1 49.0 29.4 39.0 (17)
MAD-GAN 28.5 47.3 45.9 74.4 44.9 66.1 50.4 37.3 62.9 60.5 33.4 25.0 52.8 60.7 39.9 48.7 (3)
LSTM-VAE-GAN 20.7 35.4 23.9 63.9 33.6 22.2 52.4 16.0 52.8 29.1 20.3 38.1 33.6 53.6 33.3 35.3 (23)
TadGAN 33.6 35.1 41.7 72.3 30.0 27.1 55.7 32.6 63.5 33.5 18.9 37.7 52.7 59.0 46.9 42.7 (9)

LSTM-AE OC-SVM 9.9 27.0 21.3 51.9 11.4 18.5 21.3 9.9 62.5 53.7 26.3 32.1 32.4 56.1 58.4 32.8 (24)
MTAD-GAT 19.2 44.8 26.1 56.9 40.6 42.5 21.1 48.8 64.4 17.0 17.1 38.3 27.1 45.9 35.1 36.3 (20)

42

Table 10: Cross-validation results on SMD evaluated with the AUPRC metric introduced by (Tatbul et al., 2018).

Server ID
1 6 8 9 10 11 13 14 16 17 20 21 24 26 27 avg.

LSTM-AE 18.5 53.3 15.8 33.1 50.5 29.9 44.1 38.1 40.3 70.9 17.0 32.2 57.6 25.4 74.9 40.1 (1)
LSTM-Max-AE 28.4 24.6 12.8 30.9 23.5 11.4 45.7 13.3 37.5 53.4 5.9 7.4 53.0 28.7 55.8 28.8 (19)
MSCRED 38.0 28.3 25.4 13.4 23.8 15.8 45.2 20.9 33.8 69.7 8.6 4.9 52.6 25.2 62.0 31.2 (13)
FC-AE 25.3 35.8 14.7 30.2 29.1 18.2 44.2 31.3 39.8 60.5 10.7 21.1 53.8 26.3 71.7 34.2 (5)
USAD 21.2 39.2 12.5 31.1 25.6 19.3 43.3 31.3 30.6 54.3 8.2 17.6 49.4 24.7 58.3 31.1 (14)
TCN-AE 28.4 31.4 19.5 10.1 17.5 16.0 23.0 7.9 33.1 57.0 13.0 9.7 35.2 28.4 40.6 24.7 (24)
GenAD 27.4 25.3 25.1 22.4 39.8 16.2 43.4 41.5 31.5 56.5 10.0 13.2 50.9 26.3 49.2 31.9 (12)
STGAT-MAD 22.4 44.2 15.7 31.4 40.2 24.2 45.1 33.0 41.0 63.4 15.8 22.2 57.6 29.4 73.1 37.2 (4)

LSTM-P 35.4 59.4 17.9 33.2 46.6 32.3 46.8 29.0 34.3 68.6 13.5 24.0 58.1 21.4 75.5 39.7 (2)
LSTM-S2S-P 44.4 38.8 28.1 19.8 31.1 13.6 42.3 12.4 35.5 59.2 15.0 14.5 58.9 25.6 54.4 32.9 (10)
DeepAnt 24.6 41.3 14.6 30.8 27.8 16.6 43.8 29.9 39.6 56.3 11.0 14.3 54.8 24.4 55.0 32.3 (11)
TCN-S2S-P 18.2 55.3 16.7 32.8 41.2 33.8 45.1 21.2 35.6 72.9 18.4 21.8 54.2 18.5 75.5 37.4 (3)
GDN 29.8 39.3 15.8 28.7 33.1 16.1 43.5 28.5 40.5 54.6 10.0 18.3 52.4 30.7 55.5 33.1 (8)

LSTM-VAE 14.3 30.0 12.0 26.5 32.8 32.7 44.1 21.9 30.2 49.0 13.4 24.5 46.3 14.1 60.2 30.1 (15)
Donut 13.3 31.7 11.5 28.1 40.2 31.7 37.0 30.8 27.5 66.3 18.3 24.1 59.6 11.5 69.4 33.4 (6)
LSTM-DVAE 11.4 33.3 10.9 22.7 22.5 37.2 40.3 22.5 23.1 39.1 13.8 19.8 45.3 16.6 43.2 26.8 (22)
GMM-GRU-VAE 14.6 34.2 13.1 31.9 28.5 42.5 41.9 28.8 23.7 70.4 14.8 13.7 50.9 15.1 75.4 33.3 (7)
OmniAnomaly 10.9 32.0 11.5 33.6 9.8 35.1 40.5 13.8 31.3 59.6 10.7 9.2 46.0 10.1 68.0 28.1 (21)
SIS-VAE 25.5 40.7 14.5 30.4 28.0 18.4 44.1 32.2 39.5 53.7 10.6 17.7 49.3 25.6 65.7 33.0 (9)

BeatGAN 24.7 34.7 14.3 28.8 30.1 13.7 45.1 16.0 35.5 53.5 10.0 13.4 44.7 22.7 51.6 29.2 (17)
MAD-GAN 29.1 33.1 18.9 31.1 28.7 11.8 43.2 22.0 32.5 53.9 13.0 9.5 42.4 24.2 41.0 29.0 (18)
LSTM-VAE-GAN 23.0 35.6 11.7 31.7 27.7 9.5 45.3 7.1 32.3 43.9 7.9 12.3 30.4 27.2 53.4 26.6 (23)
TadGAN 32.7 19.8 13.1 32.3 29.4 12.4 44.9 17.6 41.1 51.7 9.6 11.7 53.2 29.6 50.1 29.9 (16)

LSTM-AE OC-SVM 5.6 20.6 6.8 7.7 6.6 10.7 13.9 4.5 25.9 46.9 7.7 7.3 29.6 26.5 52.9 18.2 (25)
MTAD-GAT 16.4 43.8 7.8 21.5 33.3 46.5 32.3 27.9 29.4 30.5 10.0 27.5 38.3 15.3 47.3 28.5 (20)

43

Table 11: Cross-validation results on SMD evaluated with our adapted best F1 score metric, using TRec∗ and TPrec∗.

Server ID
1 6 8 9 10 11 13 14 16 17 20 21 24 26 27 avg.

LSTM-AE 53.1 70.2 42.4 65.1 68.6 39.8 55.0 62.3 79.7 80.7 25.0 48.7 64.0 62.4 84.6 60.1 (1)
LSTM-Max-AE 55.8 28.6 30.3 64.8 34.9 24.6 54.3 26.1 63.1 68.8 16.1 10.6 58.8 61.4 72.4 44.7 (17)
MSCRED 51.3 46.3 47.0 58.5 36.1 14.0 47.0 10.1 70.3 73.0 14.3 14.4 52.1 54.3 64.3 43.5 (20)
FC-AE 52.2 61.1 40.3 65.1 51.0 29.8 53.0 48.2 75.7 77.2 18.0 36.4 60.3 61.2 85.4 54.3 (7)
USAD 43.0 45.0 31.7 63.9 36.0 33.2 52.9 45.2 59.4 68.1 18.7 26.3 52.4 53.7 68.6 46.5 (15)
TCN-AE 43.7 49.4 42.1 56.1 34.4 17.1 44.3 17.2 67.1 63.5 23.1 19.1 51.4 66.7 56.1 43.4 (21)
GenAD 44.8 17.7 26.6 50.6 28.2 12.3 53.8 25.7 60.2 61.7 5.3 2.9 53.6 58.3 68.9 38.0 (24)
STGAT-MAD 48.3 66.5 36.4 66.0 62.6 34.1 52.5 52.5 77.9 77.0 24.0 34.7 60.6 65.0 83.8 56.1 (5)

LSTM-P 61.7 73.4 46.7 64.2 61.5 37.6 56.7 59.2 77.0 81.4 18.8 35.5 60.0 60.0 83.9 58.5 (2)
LSTM-S2S-P 52.4 48.5 46.5 60.1 29.0 20.1 40.3 14.4 71.5 67.5 17.1 23.2 56.1 58.3 61.7 44.5 (18)
DeepAnt 50.6 62.0 37.7 65.9 40.8 28.4 52.0 47.0 75.5 68.1 19.2 29.1 61.3 60.2 63.8 50.8 (12)
TCN-S2S-P 47.2 73.3 44.6 65.5 57.7 42.6 51.6 42.3 78.8 84.5 27.2 37.2 61.6 60.0 85.5 57.3 (3)
GDN 57.8 58.3 40.9 64.9 58.6 29.2 52.7 41.5 67.9 72.5 18.0 33.8 61.6 55.4 74.5 52.5 (10)

LSTM-VAE 47.6 63.7 35.2 58.4 64.6 48.8 53.9 42.3 73.8 58.8 20.5 46.3 60.6 52.7 68.8 53.1 (9)
Donut 46.5 66.7 38.9 67.1 62.7 47.0 50.2 51.6 65.2 77.5 29.6 34.8 68.7 48.4 76.2 55.4 (6)
LSTM-DVAE 42.2 63.8 35.4 56.9 58.4 49.6 50.8 54.8 70.5 48.8 20.1 41.2 60.1 55.2 52.5 50.7 (13)
GMM-GRU-VAE 49.1 67.0 38.1 67.1 62.0 60.6 51.2 49.4 68.7 79.2 21.4 35.0 63.3 58.2 83.4 56.9 (4)
OmniAnomaly 45.3 67.7 35.3 65.3 42.9 57.7 62.0 40.7 77.0 57.1 16.9 25.7 56.8 44.6 82.4 51.8 (11)
SIS-VAE 52.6 65.7 38.4 65.4 50.8 30.9 52.9 49.0 74.9 73.0 21.2 32.8 58.1 63.8 79.1 53.9 (8)

BeatGAN 45.3 46.5 34.0 64.1 47.1 25.7 52.7 31.6 61.6 68.7 17.6 24.7 49.0 57.8 65.5 46.1 (16)
MAD-GAN 43.4 35.9 37.6 64.1 40.3 19.1 46.8 32.6 65.7 48.6 18.5 9.4 34.3 57.3 32.9 39.1 (23)
LSTM-VAE-GAN 47.9 46.9 31.0 67.9 44.4 23.1 56.3 17.8 57.1 56.6 16.1 19.5 37.9 61.6 69.8 43.6 (19)
TadGAN 49.0 27.3 22.9 64.1 45.4 22.0 54.4 23.9 64.0 63.3 16.6 18.7 54.5 62.2 49.5 42.5 (22)

LSTM-AE OC-SVM 19.0 28.2 24.6 49.3 13.3 23.4 23.5 8.4 50.7 61.6 14.6 8.8 40.5 60.4 67.3 32.9 (25)
MTAD-GAT 43.0 65.9 24.1 64.5 52.8 57.1 50.1 43.2 71.0 41.7 16.3 39.6 55.7 57.9 56.6 49.3 (14)

44

Table 12: Cross-validation results on SMD evaluated with our adapted AUPRC metric, using TRec∗ and TPrec∗.

Server ID
1 6 8 9 10 11 13 14 16 17 20 21 24 26 27 avg.

LSTM-AE 39.5 70.9 25.6 29.2 65.5 33.8 46.1 59.2 48.8 81.1 17.8 37.1 64.9 31.0 81.8 48.8 (1)
LSTM-Max-AE 43.0 18.5 18.5 28.7 24.7 19.4 45.9 14.5 34.7 64.5 6.4 6.1 53.0 30.9 67.8 31.8 (20)
MSCRED 45.4 34.9 36.1 13.5 20.1 10.3 40.4 22.5 37.7 68.7 5.5 10.1 49.9 21.0 61.1 31.8 (19)
FC-AE 46.3 54.1 24.3 30.0 43.2 23.5 43.8 37.6 43.5 73.0 7.9 24.5 57.3 30.6 82.4 41.4 (8)
USAD 35.8 41.9 16.3 26.6 28.9 29.9 43.2 33.4 25.5 63.5 9.2 15.6 46.2 23.3 61.3 33.4 (16)
TCN-AE 25.8 30.5 19.0 8.5 12.0 12.5 20.0 9.2 37.1 56.3 9.4 10.3 34.0 31.5 36.1 23.5 (24)
GenAD 41.8 28.3 27.6 21.5 39.5 21.3 48.7 40.1 33.7 65.6 10.1 12.8 52.5 28.0 63.1 35.6 (14)
STGAT-MAD 42.6 61.1 23.7 30.1 56.6 27.2 45.3 48.6 47.6 77.2 15.7 24.9 62.9 33.5 80.4 45.2 (4)

LSTM-P 57.8 71.4 30.2 29.0 55.6 34.3 48.6 49.9 46.8 78.8 12.1 27.6 63.0 27.9 82.0 47.7 (2)
LSTM-S2S-P 45.5 37.3 33.5 13.9 22.4 12.4 36.6 10.1 38.5 59.6 8.1 15.3 50.1 27.7 56.9 31.2 (21)
DeepAnt 45.4 58.3 21.9 30.4 34.1 22.7 45.0 36.5 43.1 64.4 10.8 15.8 62.0 29.5 63.3 38.9 (10)
TCN-S2S-P 37.6 71.6 28.0 29.5 51.5 35.8 45.5 33.6 48.1 84.8 19.1 24.6 63.9 26.9 82.9 45.6 (3)
GDN 52.8 53.7 27.1 29.1 52.2 25.0 45.2 30.8 37.3 70.7 8.6 21.8 63.8 25.1 73.3 41.1 (9)

LSTM-VAE 32.5 53.8 18.3 25.5 56.1 44.0 47.0 27.5 40.2 53.6 12.7 29.2 57.6 18.5 62.6 38.6 (11)
Donut 33.0 59.9 20.0 29.8 58.3 40.0 40.6 41.3 36.0 75.0 19.7 25.0 69.4 15.0 73.8 42.5 (6)
LSTM-DVAE 26.8 55.6 16.9 20.5 46.3 46.4 43.7 37.4 38.0 40.7 12.0 24.3 56.9 21.7 46.4 35.6 (15)
GMM-GRU-VAE 37.4 60.6 20.8 31.6 51.1 56.3 43.9 39.8 36.0 75.7 12.5 18.0 64.6 27.4 81.1 43.8 (5)
OmniAnomaly 28.9 57.6 18.5 33.1 25.0 49.1 52.4 23.2 47.8 49.1 11.4 12.7 57.7 11.3 82.2 37.3 (12)
SIS-VAE 47.0 63.9 22.4 30.0 42.8 23.1 45.8 36.2 43.3 68.9 11.0 20.2 57.3 32.4 78.2 41.5 (7)

BeatGAN 39.8 39.8 21.3 26.1 38.6 20.1 43.6 20.2 29.4 64.2 8.4 15.7 42.7 27.4 57.6 33.0 (17)
MAD-GAN 33.3 26.6 18.7 27.1 33.4 14.8 24.8 19.7 33.8 48.3 7.7 4.4 25.6 25.5 31.4 25.0 (23)
LSTM-VAE-GAN 40.7 44.2 18.3 34.7 35.3 14.3 49.5 12.2 29.1 53.1 9.1 11.3 29.7 33.2 65.0 32.0 (18)
TadGAN 34.9 17.6 8.3 28.2 36.9 17.8 44.0 17.8 31.1 56.8 9.9 9.4 51.6 30.3 48.6 29.6 (22)

LSTM-AE OC-SVM 10.2 22.8 9.5 7.3 8.8 16.9 14.0 6.7 17.8 53.0 8.0 3.9 31.9 28.7 56.9 19.8 (25)
MTAD-GAT 31.1 65.6 10.4 27.3 46.8 54.1 42.5 32.2 37.0 34.8 10.6 30.1 53.9 23.0 53.3 36.8 (13)

45

