
Myriad: a real-world testbed to bridge
trajectory optimization and deep learning

Nikolaus H. R. Howe
Mila, Université de Montréal
niki.howe@mila.quebec

Simon Dufort-Labbé
Mila, Université de Montréal

Nitarshan Rajkumar
University of Cambridge⇤

Pierre-Luc Bacon
Mila, Université de Montréal, Facebook CIFAR AI, IVADO

Abstract

We present Myriad, a testbed written in JAX which enables machine learning
researchers to benchmark imitation learning and reinforcement learning algorithms
against trajectory optimization-based methods in real-world environments. Myriad
contains 17 optimal control problems presented in continuous time which span
medicine, ecology, epidemiology, and engineering. As such, Myriad strives to serve
as a stepping stone towards application of modern machine learning techniques
for impactful real-world tasks. The repository also provides machine learning
practitioners access to trajectory optimization techniques, not only for standalone
use, but also for integration within a typical automatic differentiation workflow.
Indeed, the combination of classical control theory and deep learning in a fully
GPU-compatible package unlocks potential for new algorithms to arise. We present
one such novel approach for use in optimal control tasks. Trained in a fully end-to-
end fashion, our model leverages an implicit planning module over neural ordinary
differential equations, enabling simultaneous learning and planning with unknown
environment dynamics. All environments, optimizers and tools are available in the
software package at https://github.com/nikihowe/myriad.

1 Introduction

The rapid progress of machine learning (ML) algorithms is made clear by the yearly improvement we
see on standard ML benchmarks (Deng et al., 2009; Todorov et al., 2012; Bellemare et al., 2013).
Inevitably, the popularity of a given testbed creates a positive feedback effect, encouraging researchers
to develop algorithms that achieve good performance on that set of tasks (Kerner, 2020; Henderson
et al., 2018). We believe it is crucial that our algorithms be well-suited for positive-impact, real-world
applications. As such, we must be able to train and test them on real-world-relevant tasks.

To this end, we present Myriad, a real-world testbed for optimal control methods such as imitation
learning and reinforcement learning (RL). Myriad differs from previous testbeds in several key
aspects. First and most importantly, all tasks are inspired by real-world problems, with applications
in medicine, ecology, epidemiology, and engineering. Second, Myriad is, to our knowledge, the first
repository that enables deep learning methods to be combined seamlessly with traditional trajectory
optimization techniques. Figure 1 shows a visualization of applying a one such trajectory optimization
technique on an environment implemented in Myriad. Third, the system dynamics in Myriad are
continuous in time and space, offering several advantages over discretized environments. On the one
hand, these algorithms are adaptable to changing sampling frequencies, or even irregularly spaced

⇤Work done while at Mila, Université de Montréal.

36th Conference on Neural Information Processing Systems (NeurIPS 2022) Track on Datasets and Benchmarks.

https://github.com/nikihowe/myriad

data. At the same time, using continuous-time dynamics gives the user freedom to choose between
integration techniques, and opens the door to efficient variable-step integration methods. These can
take advantage of the local environment dynamics to effectively trade off speed and accuracy of
integration (Fehlberg, 1969).

0 2 4 6 8 10

0

5

10

st
at

e
(x

)

Predator population
Prey population

0 2 4 6 8 10
time (t)

0.2

0.4

co
nt

ro
l(

u)

Cost: 1.79
Defect: 0.00

Pesticide level

Trajectory Optimization � Predator Prey

Figure 1: The optimal trajectory of pesticide use over
time and resulting population dynamics in the Predator
Prey domain, which is included in Myriad (see Table 1
for a complete list of environments). Direct single shoot-
ing (see Section 4) was used to compute the optimal
control trajectory.

While the field of control theory has yielded
practical approaches to solve a plethora of prob-
lems in the industrial setting (Lenhart and Work-
man, 2007; Betts, 2010; Biegler, 2010), adop-
tion of such methods within the ML commu-
nity has been limited. This is in part due to
the historical focus of ML on scalability, and
of control theory on robustness and optimality,
and is further exacerbated by the lack of tools to
run control algorithms in a deep learning setting.
Yet trajectory optimization techniques can offer
excellent performance in systems with known
dynamics, and thus serve as a solid benchmark
against which to test RL techniques. Addition-
ally, trajectory optimization offers several ad-
vantages over standard RL, such as the ability
to impose safety constraints, which is crucial
in real-world applications (Betts, 2010; Biegler,
2010). As such, the Myriad repository allows for
the combination of trajectory optimization and
deep learning techniques into powerful hybrid
algorithms. As an example, we implement an
end-to-end trained implicit planning imitation
learning algorithm, and benchmark its perfor-
mance alongside that of trajectory optimization
on known and learned dynamics models.

The following sections present various aspects of Myriad, starting with a review of related work in
Section 2. In turn, Section 3 gives an overview of the Myriad repository and describes several of
the available control environments. The subsequent sections can be thought of as both presenting
the tools in Myriad, as well as describing the building blocks used to create the aforementioned
imitation learning algorithm. To start, Section 4 describes direct single shooting, a standard trajectory
optimization technique, and Section 5 shows how we can leverage GPU-accelerated first-order
methods to use trajectory optimization in a machine learning setting. Section 6 presents the system
identification problem, and how Myriad can be used to learn neural ordinary differential equation
models (Chen et al., 2018) of unknown system dynamics. Finally, Section 7 presents a new deep
imitation learning algorithm which includes a control-oriented inductive bias, trained end-to-end
using tools from Myriad. Section 8 concludes and discusses the limitations and potential societal
impact of this work.

We summarize our main contributions as follows:

• We present a testbed for real-world tasks, including learning dynamics models from data
and the problem of optimal control. The testbed contains 17 continuous-time real-world
tasks, and it is straight-forward to add additional systems to the repository.

• We provide a set of plug-and-play differentiable trajectory optimization algorithms
implemented in JAX (Bradbury et al., 2018), which can be used standalone or in conjunction
with machine learning techniques.

• We introduce a novel control-oriented imitation learning algorithm which combines
optimal control with deep learning. The tools in Myriad enable us to develop this method
and compare its performance to control methods which leverage known or learned dynamics.

• We collect benchmark reference scores for most environments, achieved using classical
optimal control techniques with the true system dynamics, as well as benchmark scores
achieved using trajectory optimization on two kinds of learned dynamics model. See
Appendix C for these scores along with details on how they were obtained.

2

2 Related work

Testbed: Within the context of RL, several testbeds have been influential in pushing forward the
state-of-the art, notably OpenAI Gym (Brockman et al., 2016) and the Arcade Learning Environment
(Bellemare et al., 2013). Yet, these environments are inherently discrete in time, and focus primarily
on game-like settings, abstracting away much of the challenge when working with real-world
problems. There also exists a rich collection of software for robotics tasks, some of which are
differentiable (Tedrake et al., 2019; Todorov et al., 2012; Coumans and Bai, 2021). However, these
are narrow in scope, only focusing on physics simulation, which makes them challenging to leverage
to build a testbed for other kinds of real-world problems.

While there exist ML testbeds for real-world tasks (Koh et al., 2021), Myriad is to our knowledge
the first to focus on learning and control, and to leverage trajectory optimization in a deep learning
context. Indeed, even packages which provide real-world trajectory optimization problems often rely
on symbolic differentiation and non-differentiable solvers to compute optimal trajectories (Antony,
2018; Andersson et al., 2019), making them unsuitable for use in a deep learning workflow.

Algorithm: Various attempts have been made to include optimal control techniques within a larger
neural network architecture, for example by creating a differentiable sub-network (Gould et al., 2016)
with gradients computed via loop unrolling (Okada et al., 2017; Pereira et al., 2018) or implicit
differentiation (Mairal et al., 2011; Amos and Kolter, 2017; Amos et al., 2018; Jin et al., 2020).
Yet, these works tend to focus on specific settings: Pereira et al. (2018) and Okada et al. (2017)
apply model predictive control to DAGGER (Ross et al., 2011) and to a Monte-Carlo-based recurrent
setting respectively, while Mairal et al. (2011) and Amos and Kolter (2017) instead focus on specific
problem formulations, such as solving a lasso (Tibshirani, 1996) problem or a quadratic program.

The works which are algorithmically most similar to ours are Amos et al. (2018) and Jin et al. (2020),
both of which attempt to learn arbitrary dynamics in an end-to-end fashion, with some caveats. Most
crucially, the techniques of both works can only learn the parameters of dynamics (and cost) functions
of which the functional form is already known. This relies on a human expert to craft a sufficiently
accurate description of the dynamics, which for complex dynamical systems can be an insurmountable
task. Myriad overcomes this challenge by using neural ordinary differential equations (Neural ODEs)
(Chen et al., 2018) to learn arbitrary system dynamics directly from data. Additionally, both works
only consider problems that are discrete in time, and also rely on non-differentiable solvers and thus
can only compute gradients at convergence via the implicit function theorem.

Furthermore, Amos et al. (2018) leverage a quadratic program solver to work with local quadratic
approximations of the dynamics, as opposed to fully nonlinear dynamics. As such, their approach is
unsuitable for use with learned dynamics parametrized by neural networks. In contrast, the solvers in
Myriad can be applied in nonconvex settings, unlocking the use of neural network-based dynamics
models.

While the approach of Jin et al. (2020) can be used with arbitrary dynamics, the authors treat system
identification and optimal control in isolation of one another, while Myriad enables the user to close
the loop by using gradients from control to improve system identification, and by gathering data based
on the current best guess for controls. Additionally, Jin et al. (2020) rely on a neural policy network
to compute controls in the optimal control setting, while Myriad instead plans controls directly from
learned dynamics.

To our knowledge, while there is active and diverse research in the areas related to this work, there
has remained an ongoing lack of real-world environments and plug-and-play trajectory optimization
tools for a deep learning workflow. As such, we believe that Myriad, which is implemented entirely
in JAX (Bradbury et al., 2018), is well-placed to bridge trajectory optimization and deep learning
with its collection of real-world tasks and differentiable optimal control algorithms.

3 Myriad: environments and optimizers

Myriad was developed with the machine learning community in mind, and offers environments
spanning medicine, ecology, epidemiology, and engineering (a full list is provided in Table 1). The
repository contains implementations of various trajectory optimization techniques, including single
and multiple shooting (Betts, 2010), trapezoidal and Hermite-Simpson collocation (Kelly, 2017),

3

and the indirect forward-backward sweep method (Lenhart and Workman, 2007). We also offer
algorithms for learning dynamics, both to identify the unknown parameters of an a priori model, and
to learn a black-box Neural ODE model (Chen et al., 2018).

With the exception of off-the shelf nonlinear program solvers such as ipopt (Wächter and Biegler,
2006) and SLSQP (Virtanen et al., 2020), every aspect of the systems and trajectory optimizers is
differentiable, allowing flexible use and easy incorporation in a deep learning practitioner’s workflow.

Myriad is extensible, enabling straightforward addition of new environments, trajectory optimization
techniques, nonlinear program solvers, and integration methods to the repository:

• We consider control environments (which we also call systems or environments) specified by
their dynamics function, cost function, start state, and final time. A system can optionally
include a required terminal state, a terminal cost function, and bounds on the state and con-
trols. In order to create a new system, the user can extend FiniteHorizonControlSystem,
an abstract class defined in systems/base.py. We present some of these environments
below; for a table of all environments and link to documentation including full environment
descriptions, see Appendices A and B.1.

• A trajectory optimizer has an objective function, a constraint function, control and state
bounds, an initial decision variable guess, and an unravel function for sorting the de-
cision variable array into states and controls. To implement a trajectory optimizer, the
user can extend the abstract class TrajectoryOptimizer, an abstract class defined in
optimizers/base.py. A table of the trajectory optimizers currently available in Myriad
is given in Appendix B.2.

• A nonlinear program solver is set to have the same function signature as those used by
standard off-the-shelf solvers such as ipopt and SLSQP. To implement a new solver, the
user can create a function with the same signature as those in nlp_solvers/.

Below we give an overview of some of the environments in Myriad. For a full description of the
environments, see the repository documentation; a link is in Appendix A. We note that many of these
environments were inspired by work of Lenhart and Workman (2007), and both the formulation and
framing of such environments should be attributed to them.

Medicine and Epidemiology

• In Cancer Treatment, we want to determine the optimal administration of chemotherapeutic
drugs to reduce the number of tumour cells. Control is taken to be the strength of the drug,
while the cost functional is the normalized tumour density plus the drug side effects, as
done by Panetta and Fister (2003). The dynamics assume that tumour cells will be killed in
proportion to the tumour population size (Skipper, 1964).

• In Epidemic, we aim to find the optimal vaccination strategy for managing an epidemic.
Control is the percentage rate of vaccination (what proportion of the population is newly
vaccinated every day), while the cost functional is the number of infectious people plus a
cost quadratic in vaccination effort. The dynamics follow a SEIR model (Joshi et al., 2006).

• In Glucose, we want to regulate blood glucose levels in someone with diabetes, following
the approach of Edelstein-Keshet (1991). Control is set to be insulin injection level, and the
cost is quadratic in both the difference between current and optimal glucose level, as well as
in the amount of insulin used.

Ecology and science

• In the Bear Populations setting, we manage the metapopulation of bear populations in a
forest and a national park within the forest, an important problem when it comes to ensuring
species preservation while also avoiding bears in human-populated areas, based on the work
of Salinas et al. (2005). The controls are the rates of hunting in the forest and the national
park. The cost is the number of bears that exit the forest, plus a hunting cost in each location.

• In Mould Fungicide, we want to decrease the size of a mould population with a fungicide.
Control is the amount of fungicide used, while the cost is quadratic in both population size
and amount of fungicide used.

4

• In Predator Prey, we wish to decrease the size of a pest population by means of a pesticide,
which acts as control. We assume that the pest population is prey to a predator in the
ecosystem, which we do not wish to impact. The dynamics follow a Lotka-Volterra model,
and the cost is the final prey population, plus a quadratic control cost.

Control

We also include several classical control environments, such as Pendulum (the dynamics and cost of
which match OpenAI Gym (Brockman et al., 2016)), Cart-Pole Swing-Up as presented by Kelly
(2017), and Mountain Car, which also matches Gym (Brockman et al., 2016) except for the function
describing the hill, which was changed from sinusoidal to quadratic to improve stability during Neural
ODE-based system identification. While these are standard problems, we believe it worthwhile to
reproduce them for study in the trajectory optimization setting. We also include other control
problems such as the challenging Rocket Landing domain described by Açıkmeşe et al. (2013), and
the forced Van der Pol oscillator, as presented by Andersson et al. (2019).

4 Trajectory optimization

Many control problems can be formulated in the language of trajectory optimization, in which an
optimization technique is used to find a control trajectory which minimizes an integrated cost. While
trajectory optimization approaches are rarely considered by RL practitioners, they often provide good
solutions when using a known dynamics model, and thus can serve as a useful benchmark for many
optimal control tasks. To give a flavour of the techniques used in trajectory optimization, here we
present the standard method of direct single shooting (Betts, 2010), which is implemented in Myriad
alongside other algorithms.

Letting u and x represent control and state functions, c the instantaneous cost and f the system
dynamics, the trajectory optimization problem can be written as

min
u(t) 8t2[ts,tf]

Z tf

ts

c(x(t),u(t), t) dt

such that ẋ(t) = f(x(t),u(t)) 8t 2 [ts, tf]

with x(ts) = xs

and* x(tf) = xf

and* xlower(t)  x(t)  xupper(t) 8t 2 [ts, tf]

and* ulower(t)  u(t)  uupper(t) 8t 2 [ts, tf]

(1)

where asterisks indicate optional constraints. Note that we allow time-dependent cost, but assume
time-independent dynamics. First, we augment the system dynamics with the instantaneous cost:

faug(x(t),u(t), t) =


f(x(t),u(t))
c(x(t),u(t), t)

�
. (2)

Then the integral 
xs

0

�
+

Z tf

ts

faug(x(t),u(t), t) dt =


xf

cf

�
(3)

will contain the integrated cost – the objective we want to minimize – as its final entry. Let be a
function which, given a sequence of controls and a timestamp, returns an interpolated control value.1

Letting x(ts) = xs and c(ts) = 0, we can construct the following nonlinear program (NLP):
decision variables û0, û1, û2, . . . , ûN

objective
Z tf

ts

faug

✓
x(t)
c(t)

�
, (û0:N , t), t

◆
dt

�
[-1]

equality constraints* xf = xs +

Z tf

ts

f(x(t), (û0:N , t)) dt

inequality constraints* ulower
i  ûi  uupper

i for i = 0, . . . , N

(4)

1How this interpolation is performed depends on the integration method applied. Matching the control
discretization with a fixed integration timestep circumvents the need for explicit interpolation.

5

To gain more intuition about direct single shooting, we visualize a toy problem of projectile motion,
in which we are trying to get a projectile to an altitude of 100m after exactly 100s by choosing a
launch velocity. Under simplifying assumptions, given state x = [x, ẋ]>, the dynamics can be written
as f(x) = [ẋ,�g]>, where g is gravitational acceleration. Figure 2 shows the outcome of applying
direct single shooting to this problem.

0 20 40 60 80 100
time [s]

�400

�300

�200

�100

0

100

200

he
ig

ht
[m

]

Single shooting, 100 steps

it 0
it 1
it 2
it 3
it 4

Figure 2: Trajectories computed after 0 to 4 iterations
of direct single shooting. At each iteration, the gradient
is propagated through the forward integration back to
the initial parameters, which are updated to decrease the
final defect.

Direct single shooting is the perhaps the sim-
plest of the trajectory optimization techniques,
but it comes with several shortcomings, of which
we mention the two most impactful. First, di-
rect single shooting does not allow us to impose
constraints on the state trajectory found by the
trajectory optimization solver. Yet, for an algo-
rithm to be safe to apply in real-world settings, it
is crucial that the user be able to restrict the sys-
tem to a set of safe states (in robotics, avoiding
collisions; in chemical engineering, avoiding un-
safe pressure/temperature levels, etc.). Second,
direct single shooting is inherently sequential,
making it possibly slower and less effective in
long-horizon tasks due to integration time and
vanishing gradients. Other optimization tech-
niques, such as direct multiple shooting (Betts,
2010) and direct collocation (Kelly, 2017) sup-
port parallelization, and might be much more
efficient when solving over long time horizons.
For a table of the trajectory optimization tech-
niques provided in Myriad (which includes those
mentioned above), see Appendix B.2.

5 Constrained optimization at scale

The nonlinear programs of Section 4 are usually solved using second-order techniques based on
Newton’s method (Boggs and Tolle, 1995; Nocedal and Wright, 2006). We would like to be able to
solve these nonlinear programs at scale, leveraging the advantages that GPU-based optimization has
brought to deep learning (Krizhevsky et al., 2012; Abadi et al., 2016). Unfortunately, many software
implementations such as ipopt and SLSQP are restricted to CPU, instead relying on sparse matrix
operations for computational efficiency (Wächter and Biegler, 2006; Virtanen et al., 2020). While
effective for small models, such higher-order techniques struggle when applied over a large number of
parameters, due to the size of the resulting Hessian matrix (Martens and Grosse, 2015). Indeed, since
GPU computation is more suitable for dense matrix operations (Fatahalian et al., 2004), the emphasis
on sparsity in traditional solvers is of little help when it comes to deep learning applications. Other
problems further exacerbate the challenge of using these solvers for ML: not only do higher-order
techniques tend to perform poorly in high-dimensional settings due to the prevalence of saddle-points
(Dauphin et al., 2014); these solvers are also non-differentiable, making them practically impossible
to use in methods where we need to propagate gradients through the solve itself (such as the imitation
learning technique presented in Section 7).

Here we present a simple technique with which we have found success on many Myriad environments,
and which runs fully on GPU. Let f be the objective function, and h the equality constraints (for
example, these could be the objective and equality constraints from Eq. (4) or Eq. (14)). We use
y = [x,u]> to denote decision variables of the NLP. The Lagrangian of our NLP is then

L(y,�) = f(y) + �>h(y), (5)

where � are known as the Lagrange multipliers of the problem. We see that a solution to the
NLP will correspond to the solution of the min-max game: miny max� L(y,�) (Kushner and
Sanvicente, 1975). In particular, this solution will satisfy the first-order optimality condition that
(D1 L)(y?,�?) = 0 (Bertsekas, 1999). We can attempt to find a solution by applying a first-order

6

Lagrangian method (Duguid, 1960; Uzawa et al., 1958) to find (y?,�?):

y(i+1) y(i) � ⌘y · (D1 f)(y(i),�(i))

�(i+1) �(i) + ⌘� · (D2 f)(y(i),�(i)).
(6)

As an instance of gradient descent-ascent (Lin et al., 2020), this method can suffer from oscillatory
and even divergent dynamics (Polyak, 1970). One way to mitigate this is the extragradient method
(Korpelevich, 1976; Gidel et al., 2018). Instead of following the gradient at the current iterate,
extragradient performs a “lookahead step”, effectively evaluating the gradient that would occur at a
future step. It then applies the lookahead gradient to the current iterate.

ȳ(i) y(i) � ⌘y · (D1 f)(y(i),�(i))

�̄(i) �(i) + ⌘� · (D2 f)(y(i),�(i))

y(i+1) y(i) � ⌘y · (D1 f)(ȳ(i), �̄(i))

�(i+1) �(i) + ⌘� · (D2 f)(ȳ(i), �̄(i)).

(7)

This approach has seen recent success in the generative adversarial model literature, and it seems likely
that further improvements can be made by leveraging synergies with game-theoretic optimization
(Schuurmans and Zinkevich, 2016; Kodali et al., 2017; Wiatrak and Albrecht, 2019).

In practice, since we are considering real-world systems, we often want to restrict the trajectories the
agent can take through state space to a safe subset. There are several ways to include inequalities
when using a Lagrangian-based approach; they are described in Appendix F.

6 System identification

Sections 4 and 5 showed how to solve a standard trajectory optimization problem assuming known
dynamics. While such techniques can be used as a basic benchmark for RL algorithms, it is often
more realistic to compare an RL approach with a setting in which trajectory optimization is performed
on learned dynamics. To this end, we turn our attention to learning system dynamics from data, i.e.,
the problem of system identification (SysID) (Keesman, 2011).

In control theory, SysID is typically performed to learn the parameters of a highly structured model
developed by field experts. Indeed, such highly structured models have been used even in recent work
at the intersection of learning and control (Amos et al., 2018; Jin et al., 2020). Not only is this task
comparatively simple due to having to learn only a handful of parameters; in the case of identifiable
systems, it is also easy to verify the accuracy of the learned model by simply checking the values of
the learned parameters.

Yet the construction of a structured model relies on the ability of a human expert to accurately describe
the dynamics, which is a lengthy process at best, and impossible for sufficiently complex systems.
RL circumvents this issue either by not using a world model, or by building one from data (Sutton
and Barto, 2018; Moerland et al., 2020). In order to provide a trajectory optimization benchmark,
we must learn a model directly from data. We do this by modelling the dynamics of a system with a
Neural ODE (Chen et al., 2018): a natural fit when it comes to continuous systems. While Neural
ODEs have not yet been extensively studied in the context of controllable environments (Kidger et al.,
2020; Alvarez et al., 2020), it is not challenging to extend them to this setting. In this case we would
like to find Neural ODE parameters ✓ which best approximate the true dynamics:

f(x(t),u(t),✓) ⌘ apply_net
�
✓, [x(t),u(t)]>

�
⇡ f(x(t),u(t)), (8)

where f(x(t),u(t)) is the true dynamics function. In order to train this model, consider a trajectory
of states2 x, sampled with noise from the true dynamics, given controls u0:N . We would like our
model to predict this trajectory. In particular, x̃ should approximate x:

x̃ =


x0,x0 +

Z t1

t0

f(x(t), (u0:N , t),✓) dt, . . . ,x0 +

Z tN

t0

f(x(t), (u0:N , t),✓) dt

�
. (9)

2Myriad offers several methods for generating trajectory datasets, including uniformly at random, Gaussian
random walk, and sampling around a candidate control trajectory.

7

We minimize the mean squared error between the two trajectories (N is number of timesteps, D is
state dimension, giving x and x̃ dimensions (D,N)). The loss is then calculated as3:

L(✓̂) =
1

ND
kx̃� xk2E , (10)

where k • k2E is the squared Euclidean norm (sum of squares of elements).

7 End-to-end SysID and control

0 1 2 3 4 5
time (t)

0

1

2

3

4

5

st
at

e
(x

)

Optimal Trajectory
True Dynamics
Learned Dynamics

System Identification – Mould Fungicide

Figure 3: Comparison of true dynamics and learned
dynamics (Neural ODE model) when applying optimal
controls in the Mould Fungicide domain. We observe
that the dynamics learned via SysID closely match the
true dynamics for this problem.

In the Neural ODE setting, the individual pa-
rameters no longer convey an intuitive phys-
ical meaning. Yet, we can still compare the
learned to the true dynamics by considering the
effect of a given control sequence across a range
of states. An example of such visualization is
shown in Figure 3, which compares the Neural
ODE learned model’s dynamics with those of
the true dynamics on a mould fungicide domain
(Lenhart and Workman, 2007). We use auto-
matic differentiation to calculate the gradient of
the loss in Eq. 10 with respect to network param-
eters; another approach is to apply the adjoint
sensitivity method as done by Chen et al. (2018).

As in other areas of machine learning, RL has
seen increasing interest in forgoing the use of
explicit models, instead structuring the policy
to include a planning inductive bias such that
an agent can perform implicit planning (Tamar
et al., 2016; Deac et al., 2020; Amos et al., 2018;
Jin et al., 2020). A classic example is value it-
eration networks (Tamar et al., 2016), which
replace explicit value iteration with an induc-
tive bias in the form of a convolutional neural
network (Fukushima, 1988; LeCun et al., 1989).

Inspired by implicit planning, we consider a fully differentiable algorithm which performs trajectory
optimization on an implicit model. By propagating gradients through the trajectory optimization
procedure itself, the agent can learn directly from the loss received from acting in the real environment.
In order to describe this approach – a form of “unrolled optimization” (Maclaurin et al., 2015) – we
consider a modification to the Lagrangian of Eq. (5), adding parameters ✓ which parametrize the
underlying dynamics function. We let y represent the primal variables (control and state decision
variables), � the dual variables (Lagrange multipliers), f the objective function, and h the equality
constraints. To simplify notation, we let z = [y,�]>, which gives the Lagrangian:

L (✓, z) = f(y,✓) + �>h(y,✓). (11)

Let be a function representing the nonlinear program solver, which takes parameter values ✓̂ and
returns ẑ, and let L be the loss function of Eq. 10. We would like to propagate the gradient of L with
respect to ✓̂ through at our current decision variables ŷ. The basic procedure to achieve this is
shown in Algorithm 1.

3In practice, the loss calculation is performed in parallel over a minibatch of training trajectories.

8

Algorithm 1 End-to-End � Theory

1: Initialize û0:N , ✓̂ with random values
2: while û0:N , ✓̂ not converged do
3: ẑ (✓̂) . solve NLP represented by Eq. (11)
4: x̂, û0:N , �̂ ẑ . extract controls
5: ✓̂ update using (D (L �))(✓̂)
6: end while
7: return û0:N

The clear challenge is the implementation of Line 5. By the chain rule we have that

(D (L �)) (✓) = (D L)((✓)) · (D)(✓). (12)

The first term, (D L)((✓)), can simply be calculated using automatic differentiation in the imitation
learning setting, or using a gradient approximation method in the RL setting (Williams, 1992). The
calculation of (D)(✓) is more challenging, since it involves differentiating through the NLP solver.
A natural first approach is to apply the implicit function theorem (IFT), which suggests that for (✓, z)
such that z = (✓) and (D1 L)(✓, z) is near zero, we have

(D)(✓) = � (D2D1 L)�1 (✓, z) ·
�
D2

1 L
�
(✓, z). (13)

In practice, we experienced several drawbacks when using this method. Most notably, we found
the requirement that (D1 L)(✓, z) be near zero in order for the implicit function theorem to hold
particularly challenging, since an unreasonable amount of computation must be spent to achieve such
high accuracy from the NLP solver.

A practical workaround is to use a partial solution at each timestep, and take gradients through
an unrolled differentiable NLP solver. By performing several gradient updates per iteration and
warm-starting each step at the previous iterate, we are able to progress towards an optimal solution
with a computationally feasible approach. We reset the warm-start after a large number of iterations,
as in (Jin et al., 2020), to avoid catastrophic forgetting of previously-seen dynamics. This approach,
which we use in our imitation learning algorithm implementation, is presented in Algorithm 2.

Algorithm 2 End-to-End Approach � Practice

1: Initialize û0:N , ✓̂ with random values
2: while û0:N , ✓̂ not converged do
3: ẑ, dz_dtheta simultaneously take several steps of (✓̂) and accumulate gradients
4: x̂, û0:N , �̂ ẑ . extract controls
5: dL_dz (D L)(ẑ) . using automatic differentiation or gradient approximation
6: dL_dtheta dL_dz · dz_dtheta . apply the chain rule
7: ✓̂ update with dL_dtheta
8: end while
9: return û0:N

We find that Algorithm 2 is able to learn effective models and propose good controls for several
environments. To gain intuition about how the model learns its environment over time, we take
snapshots of the controls proposed by our algorithm over the course of training. We give an example
of this in Figure 4, which shows the progress of end-to-end training of a Neural ODE model on a
cancer treatment domain (Lenhart and Workman, 2007).

8 Conclusion

Implemented in JAX, the systems and tools in Myriad fit seamlessly in a deep learning workflow,
and can serve both to develop new algorithms and benchmark them against existing optimal control
techniques. The current environments span medicine, ecology, epidemiology, and engineering, and

9

Figure 4: Visualization of how the controls, and corresponding states, evolve over the course of training a
Neural ODE model end-to-end on the Cancer Treatment domain. The control trajectory, and corresponding state
trajectory, are sampled regularly over the course of training. Each is plotted with a low alpha value to show
where the learning procedure spent time during training.

special attention has been made to allow easy integration of new environments, optimizers, and
nonlinear programming tools. We showcase the power of Myriad’s tools by developing a novel
control-oriented imitation learning algorithm which combines optimal control with deep learning in
an end-to-end trainable approach. Not only does the algorithm achieve good performance on several
environments; Myriad also enables comparison of this new technique with traditional trajectory
optimization over fixed or learned system dynamics.

Limitations: There are several limitations to the Myriad repository as well as to the imitation
learning algorithm developed with Myriad tools. First and foremost is the fact that many of the
environments in Myriad were selected in part because they were known to be amenable to solution
via traditional optimal control methods. As a result, the dimensionality of state observations in
all Myriad environments is low (<10 dimensions) compared with pixel-based tasks which require
representation learning of visual features (Mnih et al., 2015). Thus, Myriad is not at present useful
for benchmarking the effectiveness of learned visual representations in a deep RL setting. Technical
limitations are also present: for now, only fixed-step integration methods are supported, limiting our
ability to take advantage of regions of simple dynamics for faster integration. Another beneficial
enhancement would be the implementation of variable scaling, which would help avoid numerical
stability issues which can sometimes occur when integrating through rapidly changing dynamics.
Finally, an important shortcoming of the imitation learning algorithm is its inability to learn a cost
function, which in the general setting is not known during learning. It would be desirable to expand
the model’s learning capability to include a cost function – similar to the approach of Jin et al. (2020)
but using a more expressive Neural ODE model (Chen et al., 2018) – and benchmark its performance
compared with the current version.

Societal impact: Many of the environments presented in Myriad are inspired by real-world problems
(Lenhart and Workman, 2007; Betts, 2010). However, we caution that they should not by themselves
be used for medical, ecological, epidemiological, or any other real-world application, since they
abstract away real-world application-specific details which must be examined and approached on a
case-by-case basis by experts in the domain. For example, it is important to consider the safe limits of
operation and have a fallback control routine in the case of controlling robots or industrial processes.
Our goal is that the Myriad testbed will help build interest within the machine learning community to
bring our algorithms to application in impactful real-world settings.

Acknowledgements: Thank you to Lama Saouma for input regarding the feasibility of an end-to-end
approach for SysID and Control and to Andrei M. Romascanu for feedback on a previous version.
The authors are also thank Hydro-Québec, Samsung Electronics Co., Ldt., Facebook CIFAR AI, and
IVADO for their funding, and Calcul Québec and Compute Canada for compute resources.

10

References
Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean, J., Devin, M., Ghemawat, S., Irving, G.,

Isard, M., Kudlur, M., Levenberg, J., Monga, R., Moore, S., Murray, D. G., Steiner, B., Tucker,
P., Vasudevan, V., Warden, P., Wicke, M., Yu, Y., and Zheng, X. (2016). Tensorflow: A system
for large-scale machine learning. In 12th USENIX Symposium on Operating Systems Design and
Implementation (OSDI 16), pages 265–283.

Açıkmeşe, B., Carson, J. M., and Blackmore, L. (2013). Lossless convexification of nonconvex control
bound and pointing constraints of the soft landing optimal control problem. IEEE Transactions on
Control Systems Technology, 21(6):2104–2113.

Alvarez, V. M. M., Rosca, R., and Falcutescu, C. G. (2020). Dynode: Neural ordinary differential
equations for dynamics modeling in continuous control. arXiv preprint arXiv:2009.04278.

Amos, B. and Kolter, J. Z. (2017). Optnet: Differentiable optimization as a layer in neural networks.
In International Conference on Machine Learning, pages 136–145. PMLR.

Amos, B., Rodriguez, I. D. J., Sacks, J., Boots, B., and Kolter, J. Z. (2018). Differentiable mpc
for end-to-end planning and control. In Proceedings of the 32nd International Conference on
Neural Information Processing Systems, NIPS’18, page 8299–8310, Red Hook, NY, USA. Curran
Associates Inc.

Andersson, J. A. E., Gillis, J., Horn, G., Rawlings, J. B., and Diehl, M. (2019). CasADi – A
software framework for nonlinear optimization and optimal control. Mathematical Programming
Computation, 11(1):1–36.

Antony, T. (2018). Large Scale Constrained Trajectory Optimization Using Indirect Methods. PhD
thesis, Purdue University.

Bellemare, M. G., Naddaf, Y., Veness, J., and Bowling, M. (2013). The arcade learning environment:
An evaluation platform for general agents. Journal of Artificial Intelligence Research, 47:253–279.

Bertsekas, D. P. (1999). Nonlinear programming. Athena Scientific.

Betts, J. T. (2010). Practical methods for optimal control and estimation using nonlinear programming.
Siam.

Biegler, L. (2010). Nonlinear Programming: Concepts, Algorithms, and Applications to Chemical
Processes.

Boggs, P. T. and Tolle, J. W. (1995). Sequential quadratic programming. Acta numerica, 4:1–51.

Bradbury, J., Frostig, R., Hawkins, P., Johnson, M. J., Leary, C., Maclaurin, D., Necula, G., Paszke,
A., VanderPlas, J., Wanderman-Milne, S., and Zhang, Q. (2018). JAX: composable transformations
of Python+NumPy programs.

Brockman, G., Cheung, V., Pettersson, L., Schneider, J., Schulman, J., Tang, J., and Zaremba, W.
(2016). Openai gym.

Chen, T. Q., Rubanova, Y., Bettencourt, J., and Duvenaud, D. (2018). Neural ordinary differential
equations. CoRR, abs/1806.07366.

Coumans, E. and Bai, Y. (2016–2021). Pybullet, a python module for physics simulation for games,
robotics and machine learning. http://pybullet.org.

Dauphin, Y. N., Pascanu, R., Gulcehre, C., Cho, K., Ganguli, S., and Bengio, Y. (2014). Identifying
and attacking the saddle point problem in high-dimensional non-convex optimization. Advances in
neural information processing systems, 27.

Deac, A., Veličković, P., Milinković, O., Bacon, P.-L., Tang, J., and Nikolić, M. (2020). Xlvin:
executed latent value iteration nets. arXiv preprint arXiv:2010.13146.

Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., and Fei-Fei, L. (2009). ImageNet: A Large-Scale
Hierarchical Image Database. In CVPR09.

11

http://pybullet.org

Duguid, A. (1960). Studies in linear and non-linear programming, by k. j. arrow, l. hurwicz and h.
uzawa. stanford university press, 1958. 229 pages. Canadian Mathematical Bulletin, 3(3):196–198.

Edelstein-Keshet, L. (1991). Mathematical methods and models in the biological sciences vol. 1
(martin eisen). SIAM Review, 33(1):139–141.

Fatahalian, K., Sugerman, J., and Hanrahan, P. (2004). Understanding the efficiency of gpu algorithms
for matrix-matrix multiplication. In Proceedings of the ACM SIGGRAPH/EUROGRAPHICS
conference on Graphics hardware, pages 133–137.

Fehlberg, E. (1969). Low-order classical Runge-Kutta formulas with stepsize control and their appli-
cation to some heat transfer problems, volume 315. National aeronautics and space administration.

Fukushima, K. (1988). Neocognitron: A hierarchical neural network capable of visual pattern
recognition. Neural networks, 1(2):119–130.

Gidel, G., Berard, H., Vignoud, G., Vincent, P., and Lacoste-Julien, S. (2018). A variational inequality
perspective on generative adversarial networks. arXiv preprint arXiv:1802.10551.

Gould, S., Fernando, B., Cherian, A., Anderson, P., Cruz, R. S., and Guo, E. (2016). On differentiating
parameterized argmin and argmax problems with application to bi-level optimization. arXiv
preprint arXiv:1607.05447.

Henderson, P., Islam, R., Bachman, P., Pineau, J., Precup, D., and Meger, D. (2018). Deep rein-
forcement learning that matters. In Proceedings of the AAAI conference on artificial intelligence,
volume 32.

Jin, W., Wang, Z., Yang, Z., and Mou, S. (2020). Pontryagin differentiable programming: An end-to-
end learning and control framework. In Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M., and
Lin, H., editors, Advances in Neural Information Processing Systems 33: Annual Conference on
Neural Information Processing Systems 2020, NeurIPS 2020, December 6-12, 2020, virtual.

Joshi, H. R., Lenhart, S., Li, M. Y., and Wang, L. (2006). Optimal control methods applied to disease
models. Contemporary Mathematics, 410:187–208.

Keesman, K. J. (2011). System identification: an introduction. Springer Science & Business Media.

Kelly, M. (2017). An introduction to trajectory optimization: How to do your own direct collocation.
SIAM Review, 59(4):849–904.

Kerner, H. (2020). Too many ai researchers think real-world problems are not relevant. Opinion. MIT
Technology Review.

Kidger, P., Morrill, J., Foster, J., and Lyons, T. (2020). Neural controlled differential equations for
irregular time series. arXiv preprint arXiv:2005.08926.

Kodali, N., Abernethy, J., Hays, J., and Kira, Z. (2017). On convergence and stability of gans. arXiv
preprint arXiv:1705.07215.

Koh, P. W., Sagawa, S., Marklund, H., Xie, S. M., Zhang, M., Balsubramani, A., Hu, W., Yasunaga,
M., Phillips, R. L., Gao, I., Lee, T., David, E., Stavness, I., Guo, W., Earnshaw, B. A., Haque,
I. S., Beery, S., Leskovec, J., Kundaje, A., Pierson, E., Levine, S., Finn, C., and Liang, P. (2021).
WILDS: A benchmark of in-the-wild distribution shifts. In International Conference on Machine
Learning (ICML).

Korpelevich, G. (1976). An extragradient method for finding saddle points and for other problems.

Krizhevsky, A., Sutskever, I., and Hinton, G. E. (2012). Imagenet classification with deep convolu-
tional neural networks. Advances in neural information processing systems, 25:1097–1105.

Kushner, H. J. and Sanvicente, E. (1975). Stochastic approximation of constrained systems with
system and constraint noise. Automatica, 11(4):375–380.

12

LeCun, Y., Boser, B., Denker, J. S., Henderson, D., Howard, R. E., Hubbard, W., and Jackel, L. D.
(1989). Backpropagation applied to handwritten zip code recognition. Neural computation,
1(4):541–551.

Lenhart, S. and Workman, J. T. (2007). Optimal control applied to biological models. Chapman &
Hall/CRC.

Lin, T., Jin, C., and Jordan, M. (2020). On gradient descent ascent for nonconvex-concave minimax
problems. In International Conference on Machine Learning, pages 6083–6093. PMLR.

Maclaurin, D., Duvenaud, D., and Adams, R. (2015). Gradient-based hyperparameter optimization
through reversible learning. In International conference on machine learning, pages 2113–2122.
PMLR.

Mairal, J., Bach, F., and Ponce, J. (2011). Task-driven dictionary learning. IEEE transactions on
pattern analysis and machine intelligence, 34(4):791–804.

Martens, J. and Grosse, R. B. (2015). Optimizing neural networks with kronecker-factored approx-
imate curvature. In Bach, F. R. and Blei, D. M., editors, Proceedings of the 32nd International
Conference on Machine Learning, ICML 2015, Lille, France, 6-11 July 2015, volume 37 of JMLR
Workshop and Conference Proceedings, pages 2408–2417. JMLR.org.

Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness, J., Bellemare, M. G., Graves, A.,
Riedmiller, M., Fidjeland, A. K., Ostrovski, G., et al. (2015). Human-level control through deep
reinforcement learning. nature, 518(7540):529–533.

Moerland, T. M., Broekens, J., and Jonker, C. M. (2020). Model-based reinforcement learning: A
survey. arXiv preprint arXiv:2006.16712.

Niculae, V. (2020). Optimizing with constraints: reparametrization and geometry.

Nocedal, J. and Wright, S. (2006). Numerical Optimization: Springer Series in Operations Research
and Financial Engineering. Springer.

Okada, M., Rigazio, L., and Aoshima, T. (2017). Path integral networks: End-to-end differentiable
optimal control. arXiv preprint arXiv:1706.09597.

Panetta, J. C. and Fister, K. R. (2003). Optimal control applied to competing chemotherapeutic
cell-kill strategies. SIAM Journal on Applied Mathematics, 63(6):1954–1971.

Pereira, M., Fan, D. D., An, G. N., and Theodorou, E. (2018). Mpc-inspired neural network policies
for sequential decision making. arXiv preprint arXiv:1802.05803.

Polyak, B. (1970). Iterative methods using lagrange multipliers for solving extremal problems with
constraints of the equation type. USSR Computational Mathematics and Mathematical Physics,
10(5):42–52.

Ross, S., Gordon, G., and Bagnell, D. (2011). A reduction of imitation learning and structured
prediction to no-regret online learning. In Proceedings of the fourteenth international conference on
artificial intelligence and statistics, pages 627–635. JMLR Workshop and Conference Proceedings.

Salinas, R. A., Lenhart, S., and Gross, L. J. (2005). Control of a metapopulation harvesting model for
black bears. Natural Resource Modeling, 18(3):307–321.

Schuurmans, D. and Zinkevich, M. A. (2016). Deep learning games. In Advances in Neural
Information Processing Systems, pages 1678–1686.

Skipper, H. E. (1964). Experimental evaluation of potential anticancer agents xiii, on the criteria and
kinetics associated with" curability" of experimental leukemria. Cancer Chemotherapy Report,
35:3–111.

Sutton, R. S. and Barto, A. G. (2018). Reinforcement Learning: An Introduction. A Bradford Book,
Cambridge, MA, USA.

13

Tamar, A., Wu, Y., Thomas, G., Levine, S., and Abbeel, P. (2016). Value iteration networks. arXiv
preprint arXiv:1602.02867.

Tedrake, R., Development Team1, D., and Development Team2, D. (2019). Drake: Model-based
design and verification for robotics.

Tibshirani, R. (1996). Regression shrinkage and selection via the lasso. Journal of the Royal
Statistical Society: Series B (Methodological), 58(1):267–288.

Todorov, E., Erez, T., and Tassa, Y. (2012). Mujoco: A physics engine for model-based control. In
2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, pages 5026–5033.
IEEE.

Uzawa, H., Anow, K., and Hurwicz, L. (1958). Studies in linear and nonlinear programming.

Virtanen, P., Gommers, R., Oliphant, T. E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E.,
Peterson, P., Weckesser, W., Bright, J., van der Walt, S. J., Brett, M., Wilson, J., Millman, K. J.,
Mayorov, N., Nelson, A. R. J., Jones, E., Kern, R., Larson, E., Carey, C. J., Polat, İ., Feng, Y.,
Moore, E. W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero,
E. A., Harris, C. R., Archibald, A. M., Ribeiro, A. H., Pedregosa, F., van Mulbregt, P., and SciPy
1.0 Contributors (2020). SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python.
Nature Methods, 17:261–272.

Wächter, A. and Biegler, L. T. (2006). On the implementation of an interior-point filter line-search
algorithm for large-scale nonlinear programming. Mathematical programming, 106(1):25–57.

Wiatrak, M. and Albrecht, S. V. (2019). Stabilizing generative adversarial network training: A survey.

Williams, R. J. (1992). Simple statistical gradient-following algorithms for connectionist reinforce-
ment learning. Machine learning, 8(3):229–256.

14

Checklist
1. For all authors...

(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s
contributions and scope? [Yes] See Section 1 describing fully the paper structure.

(b) Did you describe the limitations of your work? [Yes] See Section 8.
(c) Did you discuss any potential negative societal impacts of your work? [Yes] See

Section 8.
(d) Have you read the ethics review guidelines and ensured that your paper conforms to

them? [Yes]
2. If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results? [N/A]
(b) Did you include complete proofs of all theoretical results? [N/A]

3. If you ran experiments (e.g. for benchmarks)...
(a) Did you include the code, data, and instructions needed to reproduce the main experi-

mental results (either in the supplemental material or as a URL)? [Yes] See Abstract
for URL, as well as Appendix A.

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [Yes] See Appendix C for training details of the benchmark references
scores.

(c) Did you report error bars (e.g., with respect to the random seed after running exper-
iments multiple times)? [N/A] The testbed allows for generation of new benchmark
scores; we reported the best performance we were able to achieve for a given setting.

(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUs, internal cluster, or cloud provider)? [N/A] The testbed allows for generation
of new benchmark scores; the reported scores can be generated on a personal laptop.

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...
(a) If your work uses existing assets, did you cite the creators? [Yes] All adapted/inspired

content was thoroughly cited.
(b) Did you mention the license of the assets? [Yes] The license is mentioned in the

repository.
(c) Did you include any new assets either in the supplemental material or as a URL? [Yes]

See last line of the abstract.
(d) Did you discuss whether and how consent was obtained from people whose data you’re

using/curating? [N/A]
(e) Did you discuss whether the data you are using/curating contains personally identifiable

information or offensive content? [N/A]
5. If you used crowdsourcing or conducted research with human subjects...

(a) Did you include the full text of instructions given to participants and screenshots, if
applicable? [N/A]

(b) Did you describe any potential participant risks, with links to Institutional Review
Board (IRB) approvals, if applicable? [N/A]

(c) Did you include the estimated hourly wage paid to participants and the total amount
spent on participant compensation? [N/A]

15

