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Abstract

Multi-head attention plays a crucial role in the001
recent success of Transformer, which leads002
to consistent performance improvements over003
conventional attention in various applications.004
The popular belief is that its effectiveness stems005
from the ability to attend multiple positions006
jointly. In this paper, we first demonstrate that007
jointly attending multiple positions is not a008
unique feature of multi-head attention, as multi-009
layer single-head attention also attends multi-010
ple positions. Then, we suggest the main ad-011
vantage of the multi-head attention is the train-012
ing stability, since it has fewer layers than the013
single-head attention when attending the same014
number of positions. Meanwhile, we show that,015
with recent advances in deep learning, we can016
successfully stabilize the training of the deep017
single-head Transformer. As the training dif-018
ficulty is no longer a bottleneck, substantially019
deeper single-head Transformers achieve con-020
sistent performance improvements.021

1 Introduction022

Transformers (Vaswani et al., 2017) have led to a023

series of breakthroughs in various deep learning024

tasks (Devlin et al., 2019; Velickovic et al., 2018b).025

One distinguishing characteristic of Transformer is026

that it does not contain any recurrent connections027

and can parallelize all computations in the same028

layer, thus leads to better effectiveness, efficiency,029

and scalability. Without using recurrent connec-030

tions, Transformer purely relies on the attention031

mechanism to capture the dependency among input032

tokens. Specifically, a multi-head attention module033

was proposed and used in Transformer to better034

capture the dependency among input tokens.035

This multi-head attention module has been ob-036

served to be one major reason behind the success037

of the Transformer. For example, on machine trans-038

lation benchmarks, Recurrent Neural Networks039

(RNNs) can outperform Transformers when both040

are using the multi-head encoder-decoder attention041

and would underperform without using the multi- 042

head attention (Chen et al., 2018). Besides Trans- 043

former, multi-head attention has also been incorpo- 044

rated into other models (Chen et al., 2018; Velick- 045

ovic et al., 2018a; Fang et al., 2019). More discus- 046

sions on related work is available at Appendix A.1. 047

Multi-head attention was proposed to jointly 048

attend multiple positions, while conventional at- 049

tention can only attend one position in one layer. 050

Specifically, multi-head attention projects the in- 051

puts into multiple different subspaces and conducts 052

multiple attention computations in parallel. 053

Our Contributions. Our point of start is demon- 054

strating that attending multiple positions is not a 055

unique feature of multi-head attention. In fact, 056

stacking multiple conventional attention modules 057

can also attend multiple positions. 058

Specifically, as in Figure 1, a multi-head at- 059

tention module can be viewed as an ensemble 060

model, which combines multiple single-head at- 061

tention modules by calculating their average. Thus, 062

by integrating these modules differently, we can 063

reconstruct a Transformer to be single-head1 and 064

substantially deeper. These two networks can at- 065

tend the same number of places (i.e., have the same 066

total number of attention heads), have roughly the 067

same number of parameters and inference com- 068

putation complexity, while the multi-head one is 069

shallower and the single-head one is deeper. 070

In our experiments, we observe that, compared 071

to the shallower multi-head Transformer, the deeper 072

single-head Transformer performs better but is 073

harder to train, which matches the common wis- 074

dom that model depth can increase model capacity 075

at the cost of training difficulty. Also, we observe 076

that, benefited from the recent advance of deep 077

learning (Liu et al., 2020b), the training difficulty 078

is no longer an obstacle. 079

1We use single-head/multi-head Transformer to refer
Transformer with single-head/multi-head Attention.
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1-Layer 2-Head Transformer and 2-Layer 1-Head Transformer have the same 
total attention head number and roughly the same model size 
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Figure 1: Left: both multi-head and single-head Transformer can attend multiple positions. Right: comparing to the
shallow multi-head Transformer, the deep single-head Transformer has the potential to achieve a lower PPL score,
while its training is more challenging (without Admin, the 48-layer 1-head Transformer training diverged).

2 Multi-Head and Single Head080

Intuitively, with the same set of modules, no matter081

how these modules are integrated, the model can082

attend the same number of places. Still, some mod-083

ule integration strategies could be more effective in084

integrating modules.085

In the original multi-head Transformer, modules086

in the same layer are combined in an ensemble man-087

ner and cannot enhance each other (more elabora-088

tions are included in Appendix A.3). For example,089

as in Figure 1, when constructed in a multi-head090

manner, the two attention heads would have the091

same input and are agnostic to each other. In this092

way, the second attention head cannot leverage or093

benefit from the information captured by the first094

attention head.095

Intuitively, it could be beneficial to allow the sec-096

ond attention head to stand on the shoulders of the097

first attention head. To this end, we integrate these098

modules differently and reconstruct the shallow099

multi-head Transformer into the deep single-head100

Transformer (as in Figure 1). Note that both mod-101

els have the same total number of attention heads,102

roughly the same model size, and roughly the same103

inference computation complexity.104

3 Stability Comparison105

As in Table 1, after changing the shallow multi-106

head Transformer to the deep single-head Trans-107

former, the training fails to converge well for 2108

out of 3 models. Note that, although the 1H-109

144L BERT-base model converges successfully,110

the model is sensitive to the choice of initializa-111

tion. Specifically, the BERT-base model and BERT-112

large model are initialized with truncated normal113

distribution with 0.02 variance, instead of follow-114

ing the common practice (e.g., using the Kaiming 115

initialization (He et al., 2015) or the Xavier initial- 116

ization (Glorot and Bengio, 2010)). We observe 117

that after changing the variance of the initialization, 118

or following the common practice, the training of 119

the 1H-144L BERT-base model would also fail. 120

Meanwhile, we show that, with the recent ad- 121

vances in deep learning, the training can be suc- 122

cessfully stabilized by Adaptive Model Initial- 123

ization (Admin), without changing any hyper- 124

parameters (Liu et al., 2020b). Also, after em- 125

ploying the Admin initializatioin, the 1H-144L 126

BERT-base model can be trained successfully when 127

following the standard Xavier initialization. This 128

shows that, although the deep single-head Trans- 129

former is harder to train, the training difficulty is 130

no longer an obstacle. 131

4 Performance Comparison 132

For machine translation, we summarize the model 133

performance in Table 2. With the same model 134

size, the deep single-head Transformer (1H-48L- 135

48L) achieves a 0.5 BLEU improvements over the 136

shallow multi-head Transformer. Also, the deep 137

single-head Transformer achieves the same perfor- 138

mance with the architecture search algorithm the 139

Evolved Transformer (So et al., 2019) and DARTS- 140

former (Zhao et al., 2021), with slightly less pa- 141

rameters. Specifically, Evolved Transformer and 142

DARTSformer conducts neural architecture search 143

on Transformer, and treat the multi-head attention 144

as the basic module (i.e., the deep single-head 145

Transformer is not in their search space). Our deep 146

single-head Transformer achieves comparable per- 147

formance without hyper-parameter tuning, which 148

further verifies its effectiveness. 149
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Transformer-base BERT-base BERT-large
8H-6L-6L 1H-48L-48L 12H-12L 1H-144L 16H-24L 1H-384L

Training ✓ × /✓(w. Admin) ✓ ✓ ✓ ×/✓(w. Admin)

Table 1: Deep single-head Transformers are harder to train than shallow multi-head Transformers.
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Figure 2: Performance with Different Model Size. Left: the performance of αH-6L-6L (α=1, 2, 4, 6, 8) and 1H-βL-
βL (β=6,12,24,36,48), whose per-head dimension is the same with Transformer-base. Right: the performance of
αH-12L (α=1, 3, 6, 12) and 1H-βL (β=12,36,72,144), whose per-head dimension is the same with BERT-base.

Model BLEU Param.

8H-6L-6L 27.90 63.2M
1H-48L-48L 28.40 63.6M

2D-CSANs(Yang et al., 2019) 28.18 88.0M

Evolved∗(So et al., 2019) 28.4 64.1M
DARTSformer∗(Zhao et al., 2021) 28.4 65.2M

Table 2: Performance on the WMT’14 EN-DE dataset.
∗ indicates neural architecture search methods.

As in Table 3, the deep single-head Transformer150

achieves consistent performance improvements151

over the original shallow multi-head Transformer.152

Table 4 shows the test performance on the GLUE153

benchmark. The deep single-head Transformer out-154

performs the shallow multi-head Transformer on155

7 out of 9 tasks, and improves the average score156

(GLUE) by roughly 1 point. In the mean time, it157

is worth mentioning that, on 2 out of 3 sentence158

similarity/paraphrase tasks, the shallow multi-head159

Transformer achieves better performance. This in-160

dicates the deep single-head Transformer can be161

further improved, and we will further explore this162

in the future work. These observations verified that163

the deep single-head Transformer could perform164

better than the shallow multi-head Transformer.165

Impact of Model Initialization. Here, we aim to166

understand the impact of model initialization on167

model performance. As the 1H-144L BERT-base168

model converges well with both the vanilla initial-169

ization and the Admin initialization, we not only170

conduct training with the Admin initialization, but 171

also the vanilla initialization. As summarized in 172

Table 3, the default initialization and the Admin 173

initialization achieve similar performance. This 174

observation supports our intuition that the major 175

benefit of the Admin initialization is on training sta- 176

bility, and the performance improvements mostly 177

come from the change from shallow multi-head 178

Transformer to deep single-head Transformer. 179

Impact of Head Number. Intuitively, the differ- 180

ence between deep single-head Transformers and 181

shallow multi-head Transformers is proportional to 182

the model size/head number (e.g., the difference 183

between 2H-6L and 1H-12L should be smaller than 184

the difference between 4H-6L and 1H-24L). We 185

conduct experiments on Transformers with differ- 186

ent head numbers, and visualize the results in Fig- 187

ure 2. It shows that when the architecture differ- 188

ence is between shallow multi-head Transformer 189

and deep single-head Transformer is larger (i.e., 190

with more number of heads), the performance im- 191

provement is also larger. 192

5 Efficiency Comparison 193

Inference Speed. The shallow multi-head Trans- 194

former and the deep single-head Transformer have 195

roughly the same model size and computation com- 196

plexity. Here, we calculated the average inference 197

speed on an idle RTX 3060 GPU2. We find that, 198

2We used the FasterTransformer (version 4.0) as in
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FLOPs # Param. # MNLI Acc. SQuAD v2.0
match mis-match exact match F1

12H-12L BERTBASE 46.3B 109.5M 84.4 84.4 77.4 80.4
1H-144L BERTBASE default 46.9B 110.0M 85.6 85.1 79.6 82.4
1H-144L BERTBASE Admin 46.9B 110.0M 85.2 85.4 79.2 82.5

16H-24L BERTLARGE 161.8B 335.1M 86.3 86.4 81.0 84.3
1H-384L BERTLARGE Admin 164.1B 337.4M 87.7 87.5 82.6 85.7

Table 3: The model performance on dev sets of MNLI and SQuAD 2.0. The FLOPs are calculated for the inference
computation of one 512-length input sequence.

GLUE CoLA SST-2 MRPC SST-B QQP MNLI-m/mm QNLI RTE WNLI

12H-12L 78.3 52.1 93.5 88.9/84.8 87.1/85.8 71.2/89.2 84.6/83.4 90.5 66.4 65.1
1H-144L 79.4 59.2 94.2 89.3/85.4 84.3/83.5 70.9/88.9 85.1/84.3 91.0 69.0 65.1

16H-24L 80.5 60.5 94.9 89.3/85.4 87.6/86.5 72.1/89.3 86.7/85.9 92.7 70.1 65.1
1H-384L 81.3 62.7 95.1 90.5/87.2 86.9/86.3 71.3/89.1 87.4/86.5 93.3 72.7 65.1

Table 4: The test performance on the GLUE benchmark with metrics described in Table 5.
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Figure 3: Transformer Training Efficiency (GPU Hours are calculated on an idle RTX 3060).

with an optimized implementation, the inference199

efficiency of the shallow multi-head Transformer200

and the deep single-head Transformer are roughly201

the same (visualized in Appendix, Figure 4).202

Training Speed. As in Figure 3, we can find that203

the training computation speed of the 1H-48L-48L204

Transformer is about two times slower than the205

8H-6L-6L Transformer. Meanwhile, the 8H-6L-6L206

Transformer converges faster with regard to epoch207

number, or GPU hours. This phenomenon verifies208

our intuition that the network depth of the 6-Layer209

Transformer has become a bottleneck of the model210

capacity, which restricts the model performance.211

6 Conclusion212

Here, we focus on understanding the effectiveness213

of the multi-head Transformer. We first show that214

deep single-head Transformer also attends multi-215

https://github.com/NVIDIA/FasterTransformer

ple positions and performs better than the popular 216

shallow multi-head Transformer. Then, we sug- 217

gest the main advantage of multi-head attention 218

is the training stability since it has fewer layers 219

than the single-head attention when attending the 220

same number of positions. We also show that, with 221

recent advances in deep learning, the training sta- 222

bility is no longer an obstacle and it can lead to 223

consistent performance improvements by turning 224

shallow single-head Transformer into deep multi- 225

head Transformer. 226

Our work opens up new possibilities to not only 227

further push the state-of-the-art but understand the 228

effectiveness of Transformer better. It leads to var- 229

ious interesting future work. For example, intu- 230

itively, both shallow multi-head Transformer and 231

deep single-head Transformer should not be the 232

optimal architecture, and neural architecture search 233

can be employed to find a good balance between 234

multi-head and single-head. 235
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A Appendix348

A.1 Related Work349

There exist two aspects of related work regarding350

the topic here, i.e., Attention and Transformer.351

Attention and Multi-Head Structure. Attention352

modules are first proposed to capture the long-353

term dependency in sequence-to-sequence mod-354

els (Graves et al., 2014; Bahdanau et al., 2015).355

To calculate the output for a token in the target356

sequence, the attention module would calculate a357

weighted average of source token representations,358

while the weight is calculated by applying softmax359

on attention scores. Different variants of attention360

modules calculate attention scores differently. For361

example, to calculate the attention score, Graves362

et al. (2014) uses the cosine similarity, Bahdanau363

et al. (2015) uses the perception network, and Lu-364

ong et al. (2015) uses dot product. While these365

modules can only attend one position in one layer,366

attempts like multi-head attention have been made367

to jointly attend multiple positions (Lin et al., 2017;368

Vaswani et al., 2017), which is identified as one ma-369

jor reason behind the success of Transformer (Chen370

et al., 2018). Also, it has inspired several follow-up371

studies to analyze the multi-head structure (Michel372

et al., 2019; Peng et al., 2020). Specifically, Michel373

et al. (2019) observes single-head Transformer per-374

forming better than multi-head Transformer for375

model pruning. Still, no study has been conducted376

on deep single-head Transformer training, due to377

its training difficulty.378

Transformer. Transformer (Vaswani et al., 2017)379

has led to a series of breakthroughs in various do-380

mains (Devlin et al., 2019; Velickovic et al., 2018b;381

Huang et al., 2019; Parmar et al., 2018; Ramachan-382

dran et al., 2019). Meanwhile, Transformer train-383

ing has been found to be more challenging and384

attracted lots of attention to analyze why Trans-385

former is harder to train and how to stabilize Trans-386

former training (Liu et al., 2020a; Baevski and Auli,387

2019; Nguyen and Salazar, 2019; Wang et al., 2019;388

Xiong et al., 2019; Liu et al., 2020b). Many efforts389

have been made to improve Transformer, e.g., rela- 390

tive position encoding (Shaw et al., 2018) or replac- 391

ing dot-product attention with locality-sensitive 392

hashing (Kitaev et al., 2020). Here, we choose to 393

focus our study on the original Transformer model 394

as proposed in Vaswani et al. (2017), and uses the 395

initialization technique Admin to stabilize model 396

training (Liu et al., 2020b), since this method does 397

not include any additional hyper-parameters and 398

its final model is equivalent to the original Trans- 399

former. 400

A.2 Transformer Architecture 401

The Transformer architecture contains two types 402

of sub-layers, i.e., Attention sub-layers and Feed- 403

forward sub-layers. Each sub-layer is constructed 404

with the shortcut connection and the Layer Norm. 405

Specifically, it calculates the output as xi+1 = 406

fLN(xi + f(xi)), where xi is the input of layer i 407

and the output of layer i− 1 (top layers have larger 408

indexes), fLN is the Layer Norm , and f(·) is multi- 409

head attention fATT(·) or feedforward fFFN(·) for 410

Attention sub-layers and Feedforward sub-layers 411

respectively. 412

Layer Norm. Layer norm (Ba et al., 2016) plays 413

a vital role in the Transformer architecture. It is 414

defined as fLN(x) = γ x−µ
σ +ν, where µ and σ are 415

the mean and standard deviation of x, γ and ν are 416

learnable parameters. 417

Feedforward. Transformers use two-layer per- 418

ceptrons as feedforward networks, i.e., fFFN(x) = 419

ϕ(xW (1))W (2), where W (·) are parameters, and 420

ϕ(·) is the non-linear function. Specifically, the 421

original Transformer ReLU as the activation func- 422

tion, while later study uses other types of activation 423

function, e.g., BERT uses GELU as the activation 424

function (Hendrycks and Gimpel, 2016). 425

Attention. Transformers use the multi-head atten- 426

tion to capture the dependency among input to- 427

kens, which is based on the scaled dot-product 428

attention. Scaled dot-product attention tries to 429

query information from the source sequence that 430

is relevant to the target sequence. Specifically, 431

assuming the length of the source sequence and 432

the target sequence to be n and hidden dimen- 433

sion to be m, the target sequence would be en- 434

coded as Q ∈ Rn×m, source sequence would 435

be encoded as K ∈ Rn×m and V ∈ Rn×m. 436

The scaled dot-product attention would calculate 437

the output as fScaled Dot-Product Attention(Q,K, V ) = 438
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Figure 4: The Inference Speed of BERT-base with Different Batch Size and Sequence Length.

softmax(QKT
√
m

)V , where softmax(·) is the row-439

wise softmax.440

One scaled dot-product attention is believed441

to attend only one position in each row (for each442

target token), since the output of softmax typically443

would have one dimension significantly larger444

than other dimensions in each row. Multi-head445

attention was proposed to jointly attend multi-446

ple positions, which employs multiple scaled447

dot-product attention in parallel. Specifically,448

it calculates the output as fATT(Q,K, V ) =449

[head1; · · · ; headh]W (O), where headi =450

fScaled Dot-Product Attention(QW
(Q)
i ,KW

(K)
i , V W

(V )
i ),451

W (·) are learnable parameters, and h is the number452

of heads.453

Transformer. Transformer has two types of454

layer configurations when serving as the encoder455

and the decoder respectively. Here, we use xi456

to mark the input of sub-layer i. Each Trans-457

former encoder layer contains two sub-layers,458

i.e., one attention sub-layer in a self-attention459

manner and one feedforward sublayer. Specif-460

ically, the attention sub-layer calculates outputs461

as x2i+1 = fLN(x2i + fATT(x2i,x2i,x2i)) and462

the feedforward sub-layer calculates outputs as463

x2i+2 = fLN(x2i+1 + fFFN(x2i+1). Notice that464

the attention sub-layer sets Q, K, and V as the465

same value x2i, capturing the dependency among466

tokens within the same sequence, which is referred467

to as self-attention.468

Each Transformer decoder layer contains three469

sub-layers, besides the self-attention sublayer and470

the feedforward sublayer, it also includes an471

encoder-decoder attention sub-layer between them.472

Specifically, the encoder-decoder attention sub-473

layer calculates outputs as x3i+2 = fLN(x3i+1 +474

fATT(x3i+1,h,h), where K and V are set to the475

encoder output h. 476

A.3 Implicit Ensemble Structure 477

As in Figure 1, multi-head attention sub-layers and 478

feedforward sub-layers have the implicit ensem- 479

ble structure, i.e., each of these sub-layers can be 480

viewed as an ensemble of smaller models. Now let 481

us proceed to introduce those parallel structures in 482

detail. Notations are introduced in Section A.2. 483

Attention. We split the weight matrix W (O) 484

into h parts by rows, i.e., we mark W (O) = 485

[W
(O)T

1 ; · · · ;W (O)T

h ]T . Then, the multi-head at- 486

tention calculates outputs as: 487

fATT(Q,K, V ) 488

=[head1; · · · ; headh]W (O) =

h∑
i=1

headiW
(O)
i 489

=
h∑

i=1

softmax(
QW

(Q)
i W

(K)T

j KT

√
m

)VW
(V )
i W

(O)
i 490

Note that each head can be viewed as a low- 491

rank version of the general attention (Luong et al., 492

2015). 493

Thus, the multi-head attention can be viewed 494

as jointly attending multiple places by ensembling 495

multiple conventional attention modules. Specifi- 496

cally, the general attention module (Luong et al., 497

2015) calculates outputs as: 498

fGeneral Attention(Q,K, V ) = softmax(QW1K
T )VW2 499

Comparing fATT and fGeneral Attention, we can find 500

their major difference is that the multi-head 501

attention decomposes the m × m matrix W1 502

and W2 into W
(Q)
i W

(K)T

i√
m

and W
(V )
i W

(O)
i , where 503

W
(Q)
i ,W

(K)
i ,W

(V )
i ,W

(O)T

i ∈ Rm×m
h . With this 504
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low-rank decomposition, the parameter number505

and computation complexity of the multi-head at-506

tention module would stay the same no matter what507

the value of h is (i.e., how many heads one layer508

has).509

Feedforward. Similar to the Attention mod-510

ule, we can also rewrite the Feedforward sub-511

layer as an ensemble of h modules.3 Specifi-512

cally, we split the weight matrix W (1) into h parts513

by rows and W (2) into h parts by columns, i.e.,514

we mark W (1) = [W
(1)
1 ; · · · ;W (1)

h ] and W (2) =515

[W
(2)T

1 ; · · · ;W (2)T

h ]T . Then, the feedforward sub-516

layer calculates outputs can be rewrote as:517

fFFN(x) = ϕ(xW (1))W (2) =
h∑

i=1

ϕ(xW
(1)
i )W

(2)
i518

Thus, the Feedforward sub-layer can be viewed as519

an ensemble of h sub-modules. Note that since the520

sum of the h sub-modules would be normalized521

by Layer Norm, their outputs are integrated in an522

averaging manner.523

Average Ensemble. Each Transformer sub-layer524

calculates outputs as fLN(x + f(x)), where f(·)525

could be fFFN(·) and fATT(·). Thus, the sum calcu-526

lated in the computation of fATT and fFFN would527

be normalized by Var[x+ f(x)]. In this way, the528

joint effect of layer norm and the sum would be529

similar to combining these modules in an average530

ensemble manner.531

A.4 Experiment Setup532

In our experiments, we adopt hyper-parameter set-533

tings from previous work (Liu et al., 2020b; Devlin534

et al., 2019), and more experiment details can be535

found in the appendix.536

Transformer Model Configurations. We conduct537

experiments with three Transformer models, i.e.,538

Transformer-base for the WMT’14 EN-DE trans-539

lation task, BERT-base, and BERT-large for the540

language model pre-training. Specifically, the orig-541

inal Transformer-base model is 8H-6L-6L4, and we542

compare it with 1H-48L-48L. The original BERT-543

base and BERT-large models are 12H-12L and 16H-544

24L, and we compare them with 1H-144L and 1H-545

384L. We use the Admin initialization (Liu et al.,546

3Note h here is decided to be consistent with the Multi-
Head Attention sub-layers.

4We use “γH-αL(-βL)" to denote that a model has γ-head
α-layer encoder and γ-head β-layer decoder.

2020b) to stabilize 1H-48L-48L Transformer-base 547

and 1H-384L BERT-large. More detailed configu- 548

rations are included in the appendix. 549

Translation. Here, we conduct experiments on 550

WMT’14 EN-DE and evaluate model performance 551

based on their BLEU score on the test set and per- 552

plexity score on the development set. 553

BERT. Here, we follow the training setting from 554

Devlin et al. (2019) and evaluate pre-trained lan- 555

guage models on the SQuAD 2.0 (Rajpurkar et al., 556

2018) datasets for question answering, and the 557

GLUE benchmark (Wang et al., 2018), which in- 558

cludes 9 subtasks (as in Table 5). 559

A.5 Transformer Model Configurations 560

For machine translation, the original Transformer- 561

base model is 8H-6L-6L Transformer encoder- 562

decoder with 512-dimension word embedding, 64- 563

dimension per-head attention output, and 2048- 564

dimension feedforward network (Vaswani et al., 565

2017). Here, we compare it with 1H-48L-48L 566

Transformer encoder-decoder with 512-dimension 567

word embedding, 64-dimension per-head atten- 568

tion output, and 256-dimension feedforward net- 569

work. For language model pre-training, BERT-base 570

model is 12H-12L Transformer encoder with 768- 571

dimension word embedding, 64-dimension per- 572

head attention output, and 3072-dimension feed- 573

forward network; BERT-large model is 16H-24L 574

Transformer encoder with 1024-dimension word 575

embedding, 64-dimension per-head attention out- 576

put, and 4096-dimension feedforward network (De- 577

vlin et al., 2019). Here, we compare them with deep 578

single-head BERT-base model (1H-144L Trans- 579

former encoder with 768-dimension word embed- 580

ding, single-head 64-dimension per-head atten- 581

tion output, and 256-dimension word embedding) 582

and deep single-head BERT-large model (1H-384L 583

Transformer encoder with 768-dimension word em- 584

bedding, 64-dimension per-head attention output, 585

and 256-dimension word embedding). To stabi- 586

lize 1H-48L-48L Transformer-base and 1H-384L 587

BERT-large, we use the Admin initialization (Liu 588

et al., 2020b). 589

A.6 Implementation Detail 590

Besides the layer number and head number, we 591

adopted all hyper-parameters from previous work. 592

Specifically, we followed (Liu et al., 2020b) for 593

machine translation experiments and (Devlin et al., 594

2019) for language model pre-training experiments. 595
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Corpus |Train| |Label| Task Metric(s) Domain

Single-Sentence Classification

CoLA 8.5k 2 acceptibility Matthews corr. misc.
SST-2 67k 2 sentiment accuracy movie reviews

Sentence Similarity/Paraphrase

MRPC 3.7k 2 paraphrase accuracy/F1 news
STS-B 5.7k - similarity Pearson/Spearman corr. misc.
QQP 364k 2 similarity accuracy/F1 social QA questions

Natural Language Inference (NLI)

MNLI 393k 3 NLI (mis)matched acc. misc.
QNLI 108k 2 QA/NLI accuracy Wikipedia
RTE 2.5k 2 NLI accuracy misc.
WNLI 634 2 coreference/NLI accuracy fiction books

Table 5: GLUE task descriptions and statistics. The second and fourth column denotes the number of training
examples and the number of classes. Note that STS-B is a regression task.

It is worth mentioning that, in (Liu et al., 2020b),596

the default initialization method is the Xavier ini-597

tialization (Glorot and Bengio, 2010), which de-598

pends on the size of the weight matrix. Here, to599

control variables, we fix the initialization scale600

to be the same with original multi-head shallow601

Transformer. Meanwhile, for language model pre-602

training, since (Devlin et al., 2019) fixes the initial-603

ization scale for all models, we directly adopt the604

initialization strategy without modification.605

A.7 Training Detail606

For machine translation experiments, we followed607

(Liu et al., 2020b) to conduct data pre-processing,608

conduct model training on Nvidia GPUs (includ-609

ing Quadro RTX 8000, GeForce RTX 3060, and610

Quadro RTX A6000). As to language model pre-611

training experiments, we followed (Devlin et al.,612

2019) to conduct data pre-processing, conduct613

model training with Google TPU v3.614
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