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Abstract

We present The Impostor Game, a controlled social-deduction benchmark for evalu-1

ating interactive social reasoning in large language models (LLMs) via multi-agent2

play. In each four-player game, three agents share a majority word and one agent3

receives a related impostor word; agents describe their words and then vote to4

identify the impostor. Across 90,720 games (9 models, 5 modes), vote-network5

position best explains realized power: centrality/brokerage track influence, and6

coalition efficiency increases with centrality (r ≈ 0.87). Performance varies sub-7

stantially (impostor win 27.8–69.0%), and recognition (detection accuracy) shows8

a positive cross-model trend with outcomes (r ≈ 0.61, p = 0.17). Speaking order9

is randomized: a pseudo-arm ITT shows middle/late speaking modestly reduces10

impostor odds (−1.11 pp, 95% CI [−1.64, −0.55]); seat-index contrasts are de-11

scriptive. Despite more information, team-aware underperforms team-blind. These12

results indicate that interaction signals, including votes, outcomes, and the topology13

of the voting network, reveal limitations in social reasoning and coordination that14

are not captured by single-agent evaluations.15

1 Introduction16

Current evaluation protocols for large language models are dominated by single-agent benchmarks that17

target declarative knowledge, program synthesis, and mathematical problem solving—exemplified by18

MMLU, HumanEval, and GSM8K [22, 38]—whereas many real-world deployments are inherently19

interactive, requiring agents to model others’ beliefs and objectives, communicate strategically,20

and make decisions under asymmetric information. Recent studies question whether high scores21

on static theory-of-mind (ToM) assessments generalize to such interactive settings [10, 26, 21],22

underscoring the need for benchmarks that prioritize multi-agent social reasoning. Social-deduction23

games instantiate this need in a well-studied hidden-role format: a brief description phase followed24

by a vote under limited communication, with an uninformed majority facing an informed minority25

(Werewolf/Mafia; Among Us) [9, 11, 33, 19]. These settings disentangle deceptive production26

from detection and coordinated voting and expose order- and network-level dynamics in coalition27

formation [6, 13, 20].28

We present The Impostor Game, a controlled four-player social-deduction benchmark for evaluating29

LLMs. In each episode, three agents receive a shared majority word, while a fourth agent (the30

impostor) is assigned a distinct word. Agents first produce concise natural-language descriptions and31

then cast simultaneous votes to identify the impostor. The impostor may alternatively self-declare;32

a declaration is successful only if the impostor correctly infers the majority word. The framework33

supports homogeneous, cross-play, and team-aware/semi-aware configurations, with word pairs34

stratified by semantic proximity to modulate difficulty. An open orchestration and analysis suite35

records complete interaction traces and computes interaction-level metrics from ballots, outcomes,36

telemetry, and the induced vote-network topology.37
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2 Methods38

Task Design. Four agents receive word assignments: three share a majority word wm, one receives a39

semantically related impostor word wi. Agents provide descriptions in randomized speaking order40

(positions 0–3, uniformly shuffled per game) without revealing their words directly, then vote to41

identify the impostor. Majority wins if correctly identifying the impostor; impostor wins if avoiding42

impostor detection or creating a tie. If the impostor self-declares, they must also correctly guess the43

majority word to win.44

Positions vs seats. Speaking position is the randomized within-game order; seat index is a fixed45

player label used only for descriptive summaries. All policy/ITT analyses use speaking position.46

Setup. We use 300 difficulty-stratified word pairs (Easy–Expert), five assignment regimes (homo-47

geneous, cross-play, team-blind/aware/semi-aware), and nine models, evaluated under a unified48

runner across 756 experiments (90,720 games). Prompts, orchestration, and hyperparameters are in49

Appendix A.50

Metrics. We report detection accuracy, impostor win rate, self-declaration/guess success, and51

coalition efficiency. Vote-alignment graphs yield centrality/brokerage and influence reach; these52

network measures are treated as correlational. Definitions/aggregation are in Appendix C.53

Statistics. We report odds ratios (Wald CIs); mode contrasts additionally use experiment-level block54

bootstrap and permutation checks. Speaking-order randomization enables a pseudo-arm ITT for a55

pin-middle policy (Appendix B.3). Cross-model correlations span 9 models and are reported only56

as descriptive (Pearson/Spearman) and suggestive. We foreground within-model × within-difficulty57

analyses that leverage thousands of games (e.g., opponent-baseline logits with cluster-robust SEs by58

experiment_id); multiple comparisons use BH–FDR (Appendix B).59

Balance. b = 1− |2 pimp − 1| summarizes game symmetry (Appendix C).60

3 Results61

Table 1: Headline results with interaction-only metrics. Percentages ± 95% binomial CIs. Denom-
inators differ: Imp Win (%) is computed over games where the model is the impostor; Maj Win
(%) is computed over games where the model is in the majority (columns need not sum to 100%).
Detection accuracy is computed from majority-player votes. Vote-network centrality (rel. index) and
vote-alignment reach (out-degree) are vote-network indices; CoalitionEff is coalition conversion rate
conditional on formation: #{games with a coalition that converts}/#{games with a coalition}.

Model Imp
Win (%)

Maj
Win (%)

Det
Acc (%)

Centrality
(rel.)

Reach
(out-degree)

CoalEff
(%)

GPT-4o 69.0±0.9 58.2±0.7 77.0±0.7 1.313 0.657 71.6
Claude-Sonnet-4 53.9±1.0 42.6±0.7 51.1±0.8 0.843 0.422 48.0
DeepSeek-v3 48.6±1.0 61.1±0.7 68.7±0.7 1.178 0.589 68.5
Llama-4-Maverick 50.6±1.0 56.6±0.7 65.0±0.7 1.123 0.562 62.5
Llama-4-Scout 41.3±1.0 56.8±0.7 60.8±0.8 1.111 0.556 60.7
Llama-3.1-70B 38.0±0.9 61.5±0.7 65.2±0.7 1.175 0.587 63.6
GPT-3.5-Turbo 35.7±0.9 58.2±0.7 55.5±0.8 1.020 0.510 61.6
Llama-3.1-405B 27.8±0.9 62.6±0.7 59.8±0.8 1.050 0.525 63.9
Llama-3.1-8B 30.4±0.9 46.8±0.7 34.3±0.7 0.650 0.325 53.6

We present four sets of results based on votes, outcomes, telemetry, and vote-network topology: (i)62

model heterogeneity and headline numbers; (ii) brokerage and power; (iii) recognition dominates63

production; and (iv) an information/coordination paradox with position effects.64

3.1 Model Heterogeneity65

Across 90,720 games, models exhibit pronounced heterogeneity in interactive success: impostor66

win rates (over games where the model is the impostor) range from 27.8% to 69.0%, and detection67
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Table 2: Key effects (Position = seat index; speaking-order ITT reported in Appendix): odds ratios
(OR) with 95% Wald CIs and Wald p-values. Model size effect per 10× parameters; seat index rows
are descriptive contrasts (Seat 1/2/3 vs Seat 0); modes relative to homogeneous. Speaking-order
(randomized) effects are reported in Appendix B.3. Note: experiment-level block bootstrap CIs
for mode include 1 (Appendix B.2). Note: size partly proxies provider/post-training; provider-FE
attenuates the slope (Appendix J).

Comparison OR CI (2.5%) CI (97.5%) p

Model size (per 10×) 1.71 1.67 1.75 <10−300

Seat 1 vs Seat 0 1.12 1.08 1.16 6.82× 10−9

Seat 2 vs Seat 0 1.26 1.21 1.31 2.40× 10−34

Seat 3 vs Seat 0 1.22 1.18 1.27 1.64× 10−26

cross-play vs homogeneous 0.79 0.74 0.85 7.96× 10−13

team-aware vs homogeneous 0.77 0.72 0.83 3.86× 10−14

team-blind vs homogeneous 0.90 0.84 0.96 1.81× 10−3

team-semi-aware vs homogeneous 0.80 0.75 0.86 6.82× 10−11

accuracy (majority correctly identifying the impostor) spans 34–77% (Table 1). GPT-4o achieves the68

highest impostor win rate (69.0%) and detection accuracy (77.0%).69

3.2 Brokerage & Power: Network Position Tracks Realized Influence70

Realized authority is associated with brokerage. Vote-network centrality/brokerage track influence71

and coalition outcomes: coalition efficiency rises with centrality (r ≈ 0.87). Across nine models, the72

association is robust (Pearson r = 0.87, 95% CI [0.48, 0.97]; Spearman ρ = 0.85, p = 0.0037). A73

10% increase in degree centrality (relative index) corresponds to a ≈3.3 percentage-point increase in74

coalition conversion (OLS slope ≈ 0.33 per 1× centrality; top-half vs. bottom-half: +8.6 percentage75

points). GPT-4o exemplifies this pattern with high centrality (1.313), brokerage index and influence76

reach (both ≈0.657), and strong coalition efficiency (71.6%; fraction of games with a coalition that77

convert among games with a coalition).78

3.3 Recognition Beats Production for Success79

Interactive pressure separates capabilities often conflated in single-agent tests. Vote-level recognition80

(detection accuracy) is directionally associated with outcomes across the observed heterogeneity in81

impostor win rates: across nine models, detection vs. impostor-win shows a positive cross-model82

trend (Pearson r ≈ 0.61; Spearman ρ ≈ 0.50) that is not statistically significant at this sample83

size. Quantitatively, Pearson r = 0.61 (95% CI [−0.09, 0.91]); Spearman ρ = 0.50 (p = 0.17).84

An OLS slope estimate of ≈ 0.65 suggests that +10 percentage points in detection corresponds to85

≈+6.5 percentage points in impostor win across models, suggestive of a shared capability factor that86

may raise both deception and detection. Recognition also shows a positive cross-model trend with87

majority-side success (detection vs. majority win: Pearson r ≈ 0.69; Spearman ρ ≈ 0.57). As a88

finer-grain check, within-model × within-difficulty opponent-baseline regressions show that higher89

majority-side detection reduces impostor odds (median OR per +10pp ≈ 0.65; 31/36 cells significant90

after BH–FDR; Appendix B). Provider-adjusted OR ≈ 1.42; GPT shows strong within-family scaling;91

Llama ≈ 1 (Appendix J). As context for the size slope in Table 2, provider and family partly confound92

“size”: a stratified analysis with provider fixed effects and within-family slopes attenuates the estimate93

(provider-adjusted OR ≈ 1.42 per 10×), with a strong within-family slope for GPT and Llama near 194

(Appendix J).95

3.4 Information/Coordination Paradox and Position Effects96

Unless otherwise noted, “position” refers to seat index (Position = seat index); randomized97

speaking-order ITT estimates are reported in Appendix B.3. For clarity, we separate speaking-order98

(randomized) effects from seat-index (descriptive) contrasts; Table 2 uses the latter. We emphasize99

that mode contrasts are suggestive: under conservative uncertainty, experiment-level block-bootstrap100

confidence intervals for mode ORs include 1 (Appendix B.2). Under randomized speaking order, later101

speakers face information cascades: they reduce impostor odds; pooled pseudo-arm ITT (middle posi-102
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tions 2/3 vs. status-quo random) is −1.11 percentage points (95% CI [−1.64, −0.55]; Appendix B.3),103

and a cluster-robust GLM yields ORs <1 for positions 1/2/3 vs 0. A full mode × difficulty breakdown104

appears in Appendix Table 6. Heterogeneity is notable: middle vs. random (mid−rand) contrasts105

are positive in some easy settings (e.g., cross-play easy +4.82 and team-blind easy +4.97 percentage106

points), while many medium/hard/expert cells are negative; the pooled effect remains negative (Ap-107

pendix Table 6). By contrast, the seat-index contrasts in Table 2 (Seat 1/2/3 vs Seat 0) are descriptive108

and reflect counterbalanced seats rather than randomized speaking order. Despite more information,109

team-aware coordinates worse than team-blind (e.g., odds ratio ≈0.772 vs. homogeneous; balance110

0.602 vs. 0.978 for homogeneous; b = 1 − |2 pimp − 1|; see Methods or Appendix C), consistent111

with execution overhead. The mode effect is significant under Wald tests and permutation, but112

experiment-level block bootstraps yield CIs that include 1; we therefore treat this as suggestive rather113

than definitive.114

4 Discussion115

We first analyze two drivers of interactive performance grounded in observable interaction signals,116

namely network position and recognition, and then examine sensitivities to mode and position117

that reveal trade-offs between strategy and coordination. Recognition, operationalized as detection118

accuracy, exhibits a positive cross-model association with impostor outcomes (Pearson r ≈ 0.61;119

Spearman ρ ≈ 0.50), although these correlations are not statistically significant when assessed across120

nine models. Combined with within-model analyses, this pattern suggests, although it does not121

establish, that recognition may outweigh production in interactive settings.122

4.1 Quiet power via brokerage123

Multi-agent interaction reveals group dynamics impossible to observe in isolation. GPT-4o exhibits124

high coalition efficiency (71.6%; conditional on formation), versus 53.6% for Llama-3.1-8B—a125

capability that does not exist in single-agent settings. Network analysis shows that realized authority126

is associated with vote-network position; we treat these network measures as correlational proxies127

rather than causal attributions (see Appendix C, “Vote Influence Score (Heuristic)”). Brokers with128

higher centrality reach more players and convert coalitions more efficiently. Consistent with this,129

GPT-4o shows high centrality (≈1.313) and brokerage index and influence reach (both ≈0.657),130

mirroring strong coalition conversion, whereas Llama-3.1-8B shows the weakest reach (≈0.325) and131

conversion (53.6%). Winners are quiet brokers.132

4.2 Team coordination and trust dynamics133

Team-aware disclosure introduces coordination overhead: team-blind achieves higher coordination134

and better balance than team-aware across families. GPT-4o achieves the highest vote-coordination135

rate and strong strategy alignment, while lower-performing models coordinate less and exhibit136

higher betrayal rates, indicating less stable cooperation. Trust recovery after failure is highest for137

Claude-Sonnet-4 (≈62.1%), with GPT-4o and Llama-4-Maverick also strong, suggesting that resilient138

teams combine high coordination with the ability to repair breakdowns. These patterns highlight a139

dual risk: high-coordination models can rapidly propagate errors (herding), whereas low-coordination140

models suffer from instability (betrayal and poor recovery). We therefore interpret network “influence”141

as correlational and do not claim identification of persuasion.142

Trust and reliability Betrayal rates strongly anti-correlate with capability across models (r =143

−0.84), and we observe a trust-formation paradox: lower-capability agents form more trust (10.9%144

vs. 5.4–3.9%) yet recover poorly. Trust recovery (post-betrayal repair rate) spans 45.7–62.1% and145

tracks betrayal more than initial trust (r = −0.76), underscoring coordination risk (Appendix M).146

5 Conclusion147

We introduce The Impostor Game, a minimal and controlled benchmark for multi-agent social148

reasoning. Impostor detection and vote-network position reliably track success, and coalition and149

cascade dynamics reveal both potential benefits and risks.150
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A Complete Methods and Implementation254

A.1 Game Rules and Mechanics255

The Impostor Game is a four-player social-deduction task. Three “majority” players receive the same256

majority word (wm), while one “impostor” receives a semantically related but distinct word (wi).257

Role assignments are private. By default, players are unaware of one another’s roles and must infer258

affiliation from the content and style of their descriptions.259

Play proceeds in two stages. During the description stage, players speak in randomized order260

(uniformly shuffled each game) and provide a brief description of their assigned word without naming261

it. Compliance is enforced automatically, including a 750-character limit. Descriptions are expected262

to convey alignment with potential teammates while remaining sufficiently ambiguous to avoid263

revealing impostor status. No dialogue is permitted beyond these statements.264

In the subsequent simultaneous voting stage, each player submits the identifier of the suspected265

impostor. Players may optionally self-declare as the impostor and/or guess the majority word. These266

options induce a risk–reward trade-off: a correct majority-word guess by a self-declared impostor267

yields an impostor win, whereas an incorrect self-declaration yields a loss for the declaring side.268

Win conditions are as follows. The majority wins if at least two non-impostor players correctly269

identify the impostor. The majority also wins when any non-impostor self-declares, or when the true270

impostor self-declares but guesses the majority word incorrectly. The impostor wins by correctly271

guessing the majority word when self-declaring, or when the majority fails to coordinate at least two272

correct votes. In cases of ties or other ambiguous voting patterns, the outcome defaults to an impostor273

win, except when the impostor receives strictly more votes than all other players combined, which is274

treated as successful identification and yields a majority win.275

Unless indicated otherwise, these rules define the default condition. Team-aware and team-semi-aware276

modes disclose teammate information (based on model pairing) as specified in Section 2.277

A.2 Complete Prompt Templates278

We employ a concise two-message structure consisting of a system instruction followed by a user279

prompt. Below, we provide the exact templates produced by the implementation, including conditional280

segments for the team-aware and team-semi-aware modes.281

A.2.1 Description Prompt282

Prompt A.1: Description template

System message:
You are playing a word guessing game. In the DESCRIPTION PHASE, you

must ONLY describe your word in 1-2 sentences without analyzing
others. Save analysis for the VOTING PHASE.

User prompt:
You are participating in a word guessing game. You and 3 other

players each have a word. Three players (the majority) have the
same word, while one player (the impostor) has a different word.
The impostor’s goal is to blend in and avoid detection, while

the majority’s goal is to identify the impostor.

DESCRIPTION PHASE RULES:
- Describe your word in 1-2 sentences
- Do NOT mention your word directly
- Do NOT analyze other players’ descriptions yet

# {If team-aware (full):}
TEAM INFORMATION:

283
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- You and Player {teammate_position} are teammates (paired together
for this game)

- Teams are based on model type, NOT on roles (majority/impostor)
- Your teammate might have the same word as you OR might be the

impostor
- There is only 1 impostor total among all 4 players

# {If team-semi-aware:}
TEAM INFORMATION:
- You have exactly one teammate among the other 3 players (paired

with you for this game)
- You don’t know which player is your teammate
- Your teammate might share your word OR might be the impostor
- There is only 1 impostor total among all 4 players

Your word is: {word}

# {If not first speaker:}
Previous descriptions (for context only - do not analyze them now):
Player 1: {previous_description_1}
Player 2: {previous_description_2}
Player 3: {previous_description_3}

You are Player {player_position}.

# {If first speaker:}
You are Player {player_position} and will go first.

Provide ONLY your 1-2 sentence description of your word. Do not
analyze others or share your thoughts about the game:

284

A.2.2 Voting Prompt285

Prompt A.2: Voting template

System message:
You are playing a word guessing game. You must respond with valid

JSON only.

User prompt:
Based on the descriptions below, identify which player has the

different word.

Your word was: {own_word}

# {If team-aware (full):}
TEAM INFORMATION:
- You and Player {teammate_position} are teammates (paired together

for this game)
- Teams are based on model type, NOT on roles (majority/impostor)
- Your teammate might have the same word as you OR might be the

impostor
- There is only 1 impostor total among all 4 players
- Remember: If your teammate is the impostor, they win by avoiding

detection

# {If team-semi-aware:}
TEAM INFORMATION:
- You have exactly one teammate among the other 3 players (paired

with you for this game)

286
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- You must deduce who your teammate is from the descriptions
- Your teammate might share your word OR might be the impostor
- There is only 1 impostor total among all 4 players

All descriptions:
Player {player_id_1}: {description_1}
Player {player_id_2}: {description_2}
Player {player_id_3}: {description_3}
Player {player_id_4}: {description_4}

You are Player {own_player_id}.

\textbf{Please respond in the following JSON format:}

{
"suspected_impostor_id": "player_id",
"confidence": 0.73,
"reasoning": "brief explanation",
"self_declaration": false,
"word_guess": null

}

# Note: confidence is a float in [0, 1].
If you believe YOU have the different word, set self_declaration to

true.
If you think you know what the majority word is (and you’re the

impostor), include it in word_guess.
Note: the word_guess is considered only if you set self_declaration

to true.

287

A.3 Experimental Protocol and Orchestration288

Each game is instantiated with four model-backed agents managed by the game orchestrator. Majority289

and impostor words are drawn from a WordPair. Roles are assigned by seat; the impostor seat is290

determined by the experimental schedule (§A.3). Within a game, speaking order is sampled uniformly291

at random to mitigate within-game order effects; across games, the impostor seat is deterministically292

counterbalanced as described below.293

Description phase. In this phase, each agent receives a system-level instruction and a user prompt294

(Prompt A.2.1) and generates a brief description consisting of 1–2 sentences. We enforce two295

constraints via GameRules: (i) the assigned word must not appear in the generated text; and (ii)296

the description length must not exceed 750 characters. Valid descriptions are appended to a shared297

transcript in speaking order and exposed as context to subsequent speakers.298

Voting phase. After the description stage, each agent is shown the full set of descriptions299

and submits a vote (Prompt A.2.2). Responses are required to be valid JSON containing the300

keys suspected_impostor_id, confidence, reasoning, self_declaration, and301

word_guess. Voting calls use a reduced sampling temperature (as low as 0.3) to improve JSON302

reliability.303

Winner logic. The implementation follows the specifications in §A.1. The majority (i.e., the set of304

non-impostor players) prevails if any of the following holds: (i) at least two non-impostor players305

correctly identify the impostor; (ii) any non-impostor self-declares; or (iii) the impostor self-declares306

but guesses the majority word incorrectly. Conversely, the impostor prevails if a self-declared307

impostor correctly guesses the majority word, or if the majority fails to coordinate at least two correct308

votes. In cases of ties or other ambiguous voting patterns, the default outcome is an impostor win,309

except when the impostor receives strictly more votes than all other players combined; in that case,310

we treat this as successful identification and award the win to the majority.311
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Models, temperatures, and tokens. We instantiate models from a registry with default hy-312

perparameters T=0.7 (temperature) and max_tokens=150. For the voting subroutine, we re-313

duce stochasticity by annealing the effective temperature for OpenAI/OpenRouter–compatible314

backends to Tvote = max(0.3, T − 0.4). Supported providers include OpenRouter (default315

meta-llama/llama-4-scout unless overridden), OpenAI (default gpt-4o), and Anthropic.316

Model assignment modes. We evaluate five model-assignment regimes: (i) homogeneous (all four317

players instantiated from the same model); (ii) cross_play (one impostor model vs. three majority318

models); (iii) team_blind (two-versus-two, with teammate identities concealed); (iv) team_aware319

(two-versus-two, with teammate identities revealed); and (v) team_semi_aware (two-versus-two, with320

knowledge that a teammate exists but without identity disclosure). When enabled, team-awareness321

information is incorporated into prompts via conditional blocks in Prompts A.2.1–A.2.2.322

Seat counterbalancing and schedules. We employ deterministic scheduling blocks to counterbal-323

ance the impostor’s seat and, for team settings, the hosting team:324

• Cross-play (1v3): Each 4-game block enumerates all four impostor seats exactly once.325

Within a block, game order is randomized using a fixed seed; blocks are then repeated.326

• Team modes (2v2): Each 8-game block comprises four games with the impostor on TeamA327

(covering all four seats) followed by four games with the impostor on TeamB, under a fixed328

team–model mapping. The team_assignment vector specifies the seat-to-team mapping329

for each game.330

• Default rotation: In the absence of a block schedule, the impostor seat cycles deterministi-331

cally from 0 to 3 across successive games.332

Logging, resumption, and outputs. We persist results using mode-specific directory hierarchies333

parameterized by difficulty and model. For each game, the runner records the generated descriptions,334

votes, outcomes, and any errors. Re-executing an experiment with the same output path triggers335

automatic resumption from the next unfinished game. During execution, the runner displays a live336

progress bar, and upon completion it emits an end-of-run summary, including counts by win condition.337

A.4 Dataset Construction338

A.4.1 Source and Format339

We employ a curated collection of 300 word pairs, stratified by difficulty. The resource is provided as a340

JSON dictionary with four top-level keys—"easy", "medium", "hard", and "expert"—each341

mapping to an array of 75 two-element arrays [majority_word, impostor_word].342

Example structure:343

{344

"easy": [["elephant", "democracy"], ["pizza", "gravity"], ...],345

"medium": [["dog", "cat"], ["piano", "guitar"], ...],346

"hard": [["smart", "intelligent"], ["river", "stream"], ...],347

"expert": [["start", "begin"], ["flower", "rose"], ...]348

}349

A.4.2 Difficulty Calibration and Examples350

Difficulty reflects intended semantic overlap (conceptual, not computed during experiments):351

The dataset covers a broad range of semantic domains, including animals, technology, nature,352

emotions, actions, professions, and relations, to support cross-domain generalization. To minimize353

trivial lexical cues, each word pair is selected so that the target concepts can be described using354

multiple properties (appearance, function, typical context) without explicitly naming the word.355
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Difficulty Intended Overlap (approx.) Example pairs

Easy ≈ 0% (unrelated domains) "elephant"/"democracy",
"pizza"/"gravity"

Medium 20–40% (same domain, distinct) "dog"/"cat",
"piano"/"guitar"

Hard 40–60% (subtle distinctions) "smart"/"intelligent",
"river"/"stream"

Expert 60–80%
(near-synonyms/hierarchies)

"start"/"begin",
"flower"/"rose"

Table 3: Chi-squared tests of independence with Cramér’s V . Values rounded to two decimals for χ2

and V .

Test χ2 df p V Magnitude

Model × Outcome 5514.27 8 <10−300 0.247 Small
Mode × Outcome 106.40 4 4.26× 10−22 0.034 Negligible
Difficulty × Outcome 1144.99 3 6.32× 10−248 0.112 Small
Seat index × Outcome 181.56 3 4.07× 10−39 0.045 Negligible
Self-declaration × Model 9909.28 8 <10−300 0.330 Medium

B Statistical Analyses356

Dataset. We analyze N = 90,720 games from 756 experiment files across 9 models, 5 modes357

(including homogeneous) and 4 difficulties. Unless noted, the unit of analysis is a game. All358

results in this appendix are generated by our analysis scripts (released after review).359

B.1 Methods360

We report a complete battery of tests with effect sizes and robustness checks:361

• Categorical associations (χ2): Model×Outcome, Mode×Outcome, Difficulty×Outcome, Seat362

index×Outcome, Self-declaration×Model; Cramér’s V reported.363

• Odds ratios (OR): Seat index (Seat 1/2/3 vs. Seat 0; descriptive) and each mode vs. homogeneous364

with Wald CIs and Wald p-values.365

• Model size effect: Logistic regression logit(Pr[win])∼ log10(params) (statsmodels); OR per366

10× parameters with Wald CIs.367

• Permutation tests (seat index & mode): For seat index, shuffle seat labels within368

experiment_id; for mode, permute labels preserving counts. Speaking-order (randomized)369

inference is reported separately below via Fisher-style tests and a pseudo-arm ITT.370

• Cluster-robust GLM: Fixed-effects logit with robust SEs by experiment_id and by371

word_pair.372

• Block bootstrap: Experiment-level resampling (10,000 reps) for overall win rate and mode ORs.373

• Multiple comparisons: BH-FDR, Bonferroni, and Holm corrections over the hypothesis family.374

• Sensitivity: Trimmed means (5%, 10%), temporal stability (first/second half), and 50% subsample.375

B.2 Results376

Categorical associations.377

Odds ratios.378

Permutation inference (seat index). Permutation-based inference on seat index indicates a sta-379

tistically significant positional difference: relative to Seat 0, the observed differences in win rate380

are +0.027, +0.057, and +0.050 (all p = 10−4). Relative to the homogeneous baseline, mode381

effects are uniformly negative—cross-play −0.0576, team-aware −0.0641, and team-semi-aware382
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Table 4: Odds ratios (OR) with 95% Wald confidence intervals and Wald p-values. Values rounded to
two decimals. Seat-index contrasts (Seat 1/2/3 vs Seat 0) are descriptive; randomized speaking-order
effects are summarized via pseudo-arm ITT and GLM (Appendix B.3). See Table 2 in the main text
for a compact summary.

Comparison OR CI (2.5%) CI (97.5%) p

Model size (per 10×) 1.71 1.67 1.75 <10−300

Seat 1 vs Seat 0 1.12 1.08 1.16 6.82× 10−9

Seat 2 vs Seat 0 1.26 1.21 1.31 2.40× 10−34

Seat 3 vs Seat 0 1.22 1.18 1.27 1.64× 10−26

cross-play vs homogeneous 0.79 0.74 0.85 7.96× 10−13

team-aware vs homogeneous 0.77 0.72 0.83 3.86× 10−14

team-blind vs homogeneous 0.90 0.84 0.96 1.81× 10−3

team-semi-aware vs homogeneous 0.80 0.75 0.86 6.82× 10−11

−0.0554—with p = 10−4. The team-blind configuration likewise shows a negative effect with383

p ≈ 2.0× 10−3.384

Within-cell opponent-baseline regressions. For a non-tautological test of recognition at the game385

level, we construct an opponent detection baseline per game (mean detection accuracy of the three386

majority models at the same difficulty, estimated from other experiments), and fit within-model ×387

within-difficulty logits of impostor win on this baseline with mode fixed effects and cluster-robust388

SEs by experiment_id. Results (Table 5) show that higher opponent detection correlates with389

lower impostor success across models and difficulties (median OR per +10pp ≈ 0.65; 31/36 cells390

significant after BH–FDR).391

Cluster-robust GLM (seat index). We estimate a fixed-effects logistic regression with cluster-392

robust standard errors (CRSEs). Here, “position” is the seat label—impostor_seat_index393

∈ {0, 1, 2, 3}—entered as a single linear term; this is not the randomized speaking order. Under394

this specification, the seat-index coefficient is positive (coefficient β̂ ≈ 0.078; p < 10−27 with395

experiment-level clustering and p < 10−33 with word-pair clustering), consistent with the descriptive396

Seat 1/2/3 vs. Seat 0 contrasts above. Randomized speaking-order effects are analyzed separately397

below using position indicators and yield ORs <1 for later vs. first. In the same model, (ii) model398

fixed effects are strongly differentiated—GPT-4o exhibits a positive effect, whereas several Llama399

variants are negative—consistent with the χ2 tests and odds-ratio (OR) analyses; and (iii) the estimated400

difficulty coefficients increase monotonically from medium to expert.401

Block bootstrap (experiment unit). Using an experiment-level block bootstrap, the overall im-402

postor win rate is 0.439 with a 95% confidence interval [0.425, 0.453]. Mode-specific odds ratios403

(ORs) vs.t̃he homogeneous baseline have point estimates < 1 (e.g., cross-play ≈ 0.80), and the404

corresponding 95% CIs include 1, reflecting conservative uncertainty once between-experiment405

variability is accounted for.406

Per-model bootstrap CIs. Model-specific impostor win rates with 95% bootstrap confi-407

dence intervals (top five by sample size) are: GPT-4o 0.690 [0.681, 0.699]; Claude-Sonnet-4408

0.539 [0.529, 0.548]; Llama-4-Scout 0.413 [0.403, 0.423]; Llama-3.1-405B 0.278 [0.270, 0.287];409

and Llama-3.1-8B 0.304 [0.296, 0.313].410

Multiple comparisons. All χ2 tests and odds-ratio (OR) analyses remain significant after control-411

ling for multiple comparisons using Benjamini–Hochberg FDR, Bonferroni, and Holm–Bonferroni412

procedures at α = 0.05.413

Effect sizes. The difference in description length (impostor vs.m̃ajority) is negligible (Cohen’s414

d = −0.029). Cramér’s V magnitudes are: Model×Outcome—Small; Mode×Outcome—Negligible;415

Difficulty×Outcome—Small; Position×Outcome—Negligible; Self-declaration×Model—Medium.416

Sensitivity. Sensitivity analyses indicate substantial robustness of the win-rate estimates. Trim-417

ming 10% of observations perturbs the grand mean by < 0.004; temporal stability is high, with a418
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first–second half difference of ≈ 0.007; a 50% subsample deviates by ≈ 0.0035; and handling of419

invalid votes shifts mode odds ratios by <0.016 in absolute value.420

B.3 Identification & Sensitivity421

Randomization inference (speaking order). Speaking order is randomized within games (Meth-422

ods). We therefore conduct Fisher-style randomization inference using the game as the randomization423

block and the impostor’s speaking position as the treatment. Test statistics include mean differences424

vs. position 0 (first speaker) and the log-odds from a game-level logit; p-values are obtained from425

the exact/randomization distribution. These results complement the seat-index permutation checks426

above.427

Stratified speaking-order ITT. Table 6 reports the middle-vs-random pseudo-arm ITT by mode428

and difficulty (percentage-point scale) with experiment-level block-bootstrap CIs. Fisher-style tests429

at the pooled level corroborate a negative late-speaker effect (pos2−pos0 ≈ −2.81pp; pos3−pos0430

≈ −7.26pp; both p < 10−4).431

Pseudo-arm ITT from randomized order. Because the impostor’s speaking position is assigned432

uniformly at random, we can emulate a pin-middle policy without new data by re-weighting speaking-433

position cells: define a middle pseudo-arm as {2, 3} and compare against the status-quo random434

mix (uniform over {0, 1, 2, 3}). The ITT contrast can be computed from cell means or a logit with435

position indicators (taking the appropriate linear combination), with uncertainty via experiment-level436

block bootstrap and permutation within blocks. In our sample, the pooled pseudo-arm ITT is −1.11437

percentage points (95% CI [−1.64, −0.55]) in impostor win for middle vs. random; a cluster-robust438

GLM likewise yields ORs <1 for positions 1/2/3 vs 0. We treat mediation via centrality as exploratory439

(IV-style sensitivity below).440

Fixed-effects adjustments (mode, difficulty). For observational contrasts, we estimate a fixed-441

effects logit with robust uncertainty:442

logit Pr(impostor win) = α+βmode+βpos+βsize log10(params)+γdifficulty + FEexperiment+FEword_pair,
(1)

with cluster-robust standard errors by experiment_id (and by word_pair as a robustness443

check). This complements the experiment-level block bootstrap CIs.444

E-values for unmeasured confounding. To quantify robustness of associations, we report E-values445

(VanderWeele & Ding) computed from the odds ratios in Table 2 (treating OR ≈ RR for sensitivity446

only). Larger values indicate a stronger single confounder would be required (on the risk-ratio scale)447

to explain away the association:448

• Model size (per 10× params) OR=1.71 ⇒ E-value = 2.81449

• Seat 2 vs 0 OR=1.26 ⇒ E-value = 1.83; Seat 3 vs 0 OR=1.22 ⇒ E-value = 1.74; Seat 1 vs 0450

OR=1.12 ⇒ E-value = 1.49451

• Modes vs homogeneous: cross-play OR=0.79 ⇒ E-value = 1.85; team-aware OR=0.77 ⇒ E-452

value = 1.92; team-semi-aware OR=0.80 ⇒ E-value = 1.81; team-blind OR=0.90 ⇒ E-value453

= 1.46454

Interpretation example: the team-aware disadvantage would require an unmeasured confounder455

associated with both mode assignment and impostor win by a risk ratio ≥ 1.92 each, after adjusting456

for observed covariates and fixed effects, to fully explain it away.457

IV-style sensitivity (exploratory). We probe directionality using an instrument based on random-458

ized speaking order. First stage: regress vote-network centrality (or influence reach) on indicators459

for later speaking positions (2/3 vs 0/1) with FEexperiment and FEword_pair; report instrument relevance460

(F-statistic). Second stage: regress coalition conversion (or impostor win) on predicted centrality461

with cluster-robust SEs by experiment; use Anderson–Rubin/CLR tests for weak-IV robustness. We462

treat this as suggestive: the exclusion restriction (order affects outcomes only through centrality) may463

fail in practice.464
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Negative/positive controls. As sanity checks within the logs: (i) impostor-seat parity (even/odd)465

and (ii) game index modulo 2 show no effects on outcomes within experiments; (iii) homogeneous466

mode lacks team fields as expected; (iv) majority self-declarations are near-zero and invariant to467

mode/position; (v) semantic distance across difficulty tiers is monotone and aligns with a monotone468

trend in detection accuracy.469

C Metric Definitions470

C.1 Balance471

We quantify game balance as a symmetric function of the impostor win rate. Let pimp denote the472

impostor win probability; define473

b = 1−
∣∣2 pimp − 1

∣∣. (2)
This index attains b = 1 at perfect balance (pimp = 0.5) and decreases linearly toward 0 as games474

become one-sided.475

C.2 Vote Influence Score (Heuristic)476

We quantify per-game voting influence from final ballot outcomes. Let V denote the set of players477

who cast a final vote in a game, and let vq be the target selected by voter q ∈ V . For a focal player478

p ∈ V with vote vp, the influence score is the normalized count of co-voters who chose the same479

target:480

Influencep =

∣∣{ q ∈ V \ {p} : vq = vp }
∣∣

max(|V | − 1, 1)
. (3)

The denominator normalizes by the maximum possible number of co-voters and prevents division by481

zero; by convention, when |V | = 1 the score is 0.482

Model-level summary. Model-level influence is the arithmetic mean of Influencep over all players483

controlled by a given model across all evaluated games (restricted to games with valid final votes).484

Network-based diagnostics. For network analyses, we derive a directed influence graph from485

same-target voting: for a given game, include an edge p → q whenever q ̸= p and vq = vp. We report486

influence reach as the normalized out-degree d+p /(|V | − 1), alongside standard degree centrality487

and betweenness. Implementation details are provided in the supplementary materials; code will be488

released after review.489

Range and interpretation. Influencep ∈ [0, 1], with larger values indicating that more of the other490

voters selected the same target as player p (greater alignment/influence).491

C.3 Network metrics and scaling492

Centrality and brokerage. Centrality is degree centrality on the directed vote-influence graph493

defined above. Brokerage is the mean of (i) degree centrality and (ii) betweenness centrality computed494

on the same directed graph.495

Influence reach. We operationalize influence as vote-alignment reach, i.e., the normalized496

out-degree d+p /(|V | − 1) of the influence graph; see also the heuristic influence score above for a497

per-ballot alignment measure.498

Aggregation. We compute per-player metrics within a game, aggregate to a game-level summary499

as appropriate, and then average per model across games to obtain model-level quantities.500

Scaling. For presentation, model-level means are rescaled to a dimensionless relative index so that501

the across-model mean equals 1. Raw network quantities lie in [0, 1] prior to this rescaling.502

Coalition efficiency (CoalEff). Coalition efficiency is the coalition conversion rate conditional on503

formation: #{games with a coalition that converts}/#{games with a coalition}.504
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Comprehension. We report a simple comprehension proxy as majority-vote accuracy: the rate at505

which majority players correctly identify the impostor from peer descriptions.506

D Performance by Mode, Difficulty, and Model507

Although aggregate performance metrics reported in the main text obscure substantial heterogeneity508

across experimental conditions, our analysis reveals interaction effects that elucidate the mechanisms509

governing model performance in social deduction tasks. Across 90,720 games, we observe nonlinear510

relationships among model architecture, game mode, and task difficulty, challenging oversimplified511

interpretations of scaling laws in interactive settings.512
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Figure 1: Impostor win rates by mode (%). Models ordered by overall impostor win rate.
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Figure 2: Impostor win rates by difficulty (%). Models ordered by overall impostor win rate.

The interaction between game mode and difficulty yields rank-order reversals among models, indi-513

cating distinct cognitive demands across conditions. In homogeneous four-player games (all agents514

share the same model), impostor win rates peak at hard difficulty (52.4%) rather than decreasing515

monotonically, consistent with an interpretation in which moderate semantic overlap creates a fa-516
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vorable environment for deception: more capable models can exploit ambiguity without triggering517

straightforward impostor-detection heuristics. In cross-play, aggregated impostor win rates are lower518

at easier difficulties (hard: 45.3%, expert: 44.4%, medium: 41.5%, easy: 41.3%), suggesting that519

model diversity disrupts the calibrated deception strategies characteristic of homogeneous groups.520

Model-specific differences are substantial. In cross-play, GPT-4o performance ranges from 85.1%521

(easy) to 65.8% (expert). Aggregated across modes and stratified by difficulty, GPT-4o declines from522

82.5% (easy) to 62.8% (expert). Claude-Sonnet-4 exhibits a sharper decline in cross-play, from 83.3%523

(easy) to 52.3% (hard), suggesting distinct sensitivity to semantic ambiguity relative to GPT-4o.524

The Llama family displays high variance across difficulties; for example, when aggregated across525

modes, Llama-3.1-8B attains 9.9% at easy but 44.2% at hard, consistent with sensitivity to particular526

semantic relationships and suggestive of overfitting.527

Team-aware modes introduce additional strategic complexity arising from teammate considerations.528

Aggregated across models, impostor win rates in team-aware settings increase with difficulty (easy:529

26.9%, medium: 37.4%, hard: 52.6%, expert: 53.1%). GPT-4o maintains an advantage, albeit530

attenuated, decreasing from 69.0% overall to 63.3% in team-aware conditions, whereas Claude-531

Sonnet-4 exhibits a sharp decline from 53.9% overall to 34.9% in team-aware play, consistent532

with differential capacity to balance deception with team loyalty. The team-blind condition yields533

intermediate performance; because models must infer alliances solely from behavioral cues, it534

constitutes a natural experiment in implicit coordination that appears to favor models with stronger535

theory-of-mind capabilities.536

D.1 Game Balance537

Game-balance metrics vary substantially across experimental conditions. The main text highlights538

the homogeneous mode as the most balanced (0.978±0.008) and reports a median balance across539

modes of 0.802; the full distribution is: homogeneous (0.978±0.008), team-blind (0.845±0.018),540

cross-play (0.802±0.015), team-semi-aware (0.756±0.019), and team-aware (0.602±0.025). This541

ordering indicates that additional information and strategic complexity systematically reduce balance,542

with the team-aware mode exhibiting a substantial impostor disadvantage. The median balance543

of 0.802 corresponds to cross-play, suggesting that typical multi-model interactions maintain a544

reasonable competitive equilibrium despite performance heterogeneity.545

D.2 Word Pair Difficulty Validation546

We validate the intended progression of semantic similarity across difficulty tiers using an embedding-547

based distance check. Distances decrease systematically from Easy to Expert, confirming that harder548

pairs are more semantically similar.549
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Figure 3: Word pair difficulty validation. Semantic distance distributions across difficulty tiers.
Boxplots with per-pair jittered points; means with 95% CIs overlaid.
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E Rule-induced Class Imbalance: Symmetric Tie-breakers550

Default rule (Appendix A). The implementation awards the win to the majority if at least two551

non-impostor players correctly vote for the impostor (“standard conviction”). The majority also wins552

if any non-impostor self-declares, or if the impostor self-declares but guesses the majority word553

incorrectly. The impostor otherwise wins. In cases of ties or other ambiguous ballots, the default554

outcome is an impostor win, except when the impostor is strictly most-voted (strict argmax), which555

yields a majority win.556

Concern. Because ties default to the impostor, settings with high indecision could show inflated557

impostor success ( “rule-induced class imbalance”). We therefore quantify the frequency/structure of558

ties and recompute expected win rates under symmetric tie-breakers.559

F Symmetric tie-breakers and evaluation procedure560

Symmetric policies. We consider two symmetry-preserving policies that leave standard convictions561

and self-declarations unchanged:562

1. Sym-candidate. If the top votes are tied among k candidates, eliminate one uniformly at random563

among the tied candidates; the majority wins with probability 1/k if the impostor is among the564

tied set, and 0 otherwise.565

2. Sym-side. If the top votes are tied, flip a fair coin between “impostor” and “majority” to determine566

the winner.567

Expected outcomes. For each game, we recompute expected impostor-win probabilities under each568

symmetric policy using the logged ballots (valid target IDs only). Games with (i) self-declarations, or569

(ii) standard conviction (≥ 2 correct majority votes) are unaffected. Only top-of-ballot ties without570

conviction are adjusted. We aggregate expected impostor-win rates by mode and difficulty, and report571

percentage-point (pp) deltas relative to the default rule.572

G Tie structure573

Tie rates by mode/difficulty. Top-of-ballot ties occur in ≈11.7% of games overall (10,593/90,720),574

with rates increasing by difficulty and in team-aware settings (e.g., team-aware hard: 20.9%; homo-575

geneous easy: 2.6%). Full mode× difficulty rates are provided in Table 9 (Ties column).576

Tie sizes and impostor inclusion. Table 7 shows the distribution of tie sizes k among top candidates.577

Two-way ties dominate, but 4-way ties are common in team-aware/semi-aware modes. The impostor578

appears among the tied candidates in ≈70–81% of ties depending on mode, indicating that indecision579

frequently includes the impostor as a plausible target.580

H Effect on win rates under symmetric tie-breakers581

Per-mode aggregates. Table 8 reports expected impostor win rates under the default rule vs.582

symmetric policies, aggregated across difficulties. Relative to default, the impostor win rate declines583

by ≈0.7–1.8 pp (Sym-candidate) and ≈2.2–4.6 pp (Sym-side) across modes. Overall, the declines584

are −1.2 pp (Sym-candidate) and −3.2 pp (Sym-side).585

Mode× difficulty. Table 9 provides a full breakdown. Deltas are largest in high-indecision regimes586

(e.g., team-aware hard/expert: −2.1/− 2.0 pp for Sym-candidate and −6.2/− 5.8 pp for Sym-side),587

and smallest in low-tie settings (e.g., homogeneous easy: −0.1/−0.6 pp). Qualitative mode ordering588

remains unchanged.589
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I Interpretation and implications590

Bounded imbalance. The default rule introduces a measurable but bounded bias in favor of the591

impostor in tie-heavy settings. Symmetric tie-breakers reduce impostor success modestly without592

altering rankings by mode or our headline claims.593

Recommendation. We recommend reporting symmetric-policy deltas alongside default results594

as a standard robustness check. For evaluations that wish to emphasize neutrality to indecision,595

Sym-candidate offers a minimal, candidate-local symmetry; Sym-side provides a stronger, side-level596

symmetry producing larger downward adjustments of impostor rates in high-tie regimes.597

J Scaling Confounds: Provider/Family Stratification598

Motivation. The main text reports an odds ratio (OR) of ≈1.71 per 10× parameters for impostor599

success (Table 2). Because model size co-varies with provider, architecture family, pretraining600

corpora, and post-training stacks (RLHF, safety), size may proxy for these factors. We therefore601

(i) re-estimate the size effect with provider fixed effects (FE) and mode/difficulty FE, and (ii) fit602

within-family slopes where multiple sizes exist.603

K Design and Estimation604

Data and model. Using all games (N = 90,720), we add provider/family metadata to the impostor605

model in each game (OpenAI/GPT, Anthropic/Claude, Meta/Llama, DeepSeek). We then fit logistic606

models with cluster-robust standard errors:607

logit Pr(impostor win) = α+ β log10(params)

+
∑
p

γp ⊮[provider = p]

+
∑
m

δm ⊮[mode = m]

+
∑
d

ηd ⊮[difficulty = d] .

(4)

For within-family slopes, we restrict to a single family (e.g., Llama: 8B/70B/405B; GPT: 3.5 vs 4o)608

and include mode/difficulty FE. Families with a single size (e.g., Claude, DeepSeek) are omitted.609

L Results610

Provider-adjusted size effect. Controlling for provider, mode, and difficulty yields an OR of611

1.417 per 10× parameters (95% CI [1.242, 1.616], p= 2.1 × 10−7), smaller than the unadjusted612

≈1.71 reported in the main text. This indicates that part of the raw scaling signal is explained by613

provider-level differences.614

Within-family slopes. Slopes differ markedly by family: GPT shows a strong internal size effect615

(OR 6.405, 95% CI [4.762, 8.615]), whereas Llama’s within-family slope is near 1 and not significant616

(OR 1.053, 95% CI [0.930, 1.193], p=0.418). Claude and DeepSeek have single size points in this617

benchmark and are excluded.618

Interpretation. Provider FE attenuates the headline slope; within-family results show heterogene-619

ity—strong scaling inside GPT but not within Llama at current sizes/post-training. These patterns620

support the view that “size” partly proxies for provider-specific training stacks (data, RLHF, safety).621

The main text’s cautious language (“suggestive”) remains appropriate; the stratified results clarify622

attribution.623
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M Team Coordination and Trust Dynamics624

An analysis of team dynamics across 90,720 games indicates that artificial cooperation is fragile:625

coordination rates are moderate (26.7-37.8%), collaboration success rates are low (22.8-36.8%), and626

vote coordination exhibits substantial variability (36.4-58.3%). Team-specific failure patterns further627

highlight systematic limitations in current models’ capacity to achieve synchronized behavior, with628

trust breakdowns constituting the dominant failure mode (62-85% of failures) across all models.629

M.1 The Trust Formation Paradox630

Trust-formation rates exhibit an inverse association with model capability. The lowest-capability631

model (Llama-3.1-8B) shows the highest trust-formation rate (10.9%), whereas higher-performing632

models adopt lower rates (GPT-4o: 5.4%; Claude-Sonnet-4: 3.9%). We refer to this pattern as633

strategic caution: more capable models recognize the adversarial nature of the task and withhold634

trust as a defensive strategy, whereas less capable models default to cooperative assumptions that are635

readily exploited.636

The vulnerability index (trust formation / betrayal rate) quantifies this trade-off, ranging from 0.58637

(Llama-3.1-8B) to 0.83 (Claude-Sonnet-4). Values below 0.65 indicate over-exposure: trust is638

extended too readily relative to betrayal risk, producing alliances that fail under pressure. Claude-639

Sonnet-4’s high index (0.83) reflects a high-selectivity strategy that forms trust only 3.9% of the640

time while betraying at 4.7%, the lowest observed rate. This conservatism minimizes exposure but641

constrains cooperative upside, consistent with its lower collaboration success (24.0%).642

Recovery dynamics show a complementary pattern. The resilience factor (trust recovery / betrayal643

rate) is lowest for models with high betrayal rates (Llama-3.1-8B: 2.4) and highest for selective644

trusters (Claude-Sonnet-4: 13.2), a 5.5× difference, suggesting that trust quality matters more645

than quantity. Infrequent but well-calibrated trust relationships are more robust to shocks than646

indiscriminate alliance formation. The most effective regime appears to combine moderate trust647

formation (5–7%), controlled betrayal (8–10%), and strong recovery (50–60%), a bundle attained648

only by GPT-4o and Llama-4-Maverick.649

M.2 Implicit vs Explicit Coordination Mechanisms650

The coordination analysis reveals a substantial disparity between implicit and explicit coordination.651

Implicit coordination, defined as aligned actions in the absence of explicit communication, ranges652

from 13.4 ± 2.1% (Llama-3.1-8B) to 22.0 ± 2.5% (GPT-4o), whereas explicit vote coordination653

ranges from 36.4± 3.9% to 58.3± 3.4%. The resulting coordination gap (explicit minus implicit)654

spans +19.9% (Claude-Sonnet-4) to +36.3% (GPT-4o), implying reliance on explicit signals over655

robust behavioral synchronization.656

The coordination gap is inversely correlated with trust formation (r = −0.72), consistent with a657

trade-off: models exhibiting stronger implicit coordination (GPT-4o: 22.0%) maintain lower trust-658

formation rates (5.4%), whereas high-trust models (Llama-3.1-8B: 10.9%) display weaker implicit659

coordination (13.4%). This pattern suggests that implicit coordination arises primarily from predictive660

modeling and strategic reasoning rather than trust per se; successful models anticipate teammates’661

actions without relying on collaborative rapport.662

Vote-coordination patterns indicate hierarchical influence. GPT-4o attains 58.3% vote alignment663

despite moderate overall coordination (37.8%), consistent with a “coordination anchor” role to which664

others align. Asymmetric coordination, in which one model leads and others follow, appears more665

effective than symmetric peer coordination in mid-tier models. The 2.6× ratio between GPT-4o’s666

vote-coordination rate and that of Llama-3.1-8B (58.3 ± 3.4% vs. 36.4 ± 3.9%) is unlikely to be667

explained solely by individual capability differences, pointing to emergent leadership dynamics in668

mixed-model teams.669

M.3 Mirroring and Convergence Dynamics670

Mirroring, operationalized as alignment in surface linguistic form, is inversely associated with671

performance. The highest mirroring rates are observed in Llama-4 variants (Scout: 75.0%; Maverick:672

73.7%), whereas higher-performing models exhibit lower mirroring (GPT-4o: 66.9%; Claude-Sonnet-673
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4: 67.8%). This 8.1 percentage-point difference suggests that elevated mirroring does not reliably674

reflect effective coordination and may instead indicate compensatory alignment rather than strategic675

cohesion.676

Lexical convergence remains uniformly low. Vocabulary-convergence scores cluster tightly (0.03–677

0.04) irrespective of mirroring rates, implying that adaptation occurs primarily at syntactic or stylistic678

levels rather than at the level of lexical content. The dissociation between high mirroring (66.9–679

75.0%) and limited lexical convergence (0.03–0.04) indicates a decoupling of form and content in680

current systems’ coordination behavior.681

Strategy alignment (27.9–55.5%) exhibits a stronger relationship with collaborative success than682

mirroring, indicating that behavioral convergence is more consequential than stylistic similarity. The683

alignment gap, defined as the difference between strategy alignment and collaboration success, ranges684

from +3.9 percentage points (Claude-Sonnet-4) to +21.9 percentage points (GPT-4o). Larger gaps685

imply translation inefficiencies from aligned intentions to aligned actions (coordination frictions).686

For GPT-4o, despite 55.5% strategy alignment, collaboration succeeds in 33.6% of cases (gap +21.9687

percentage points), consistent with residual coordination overhead.688

Vocabulary-convergence scores (0.029–0.042) remain minimal across all models. Claude-Sonnet-4689

exhibits the highest convergence (0.042) alongside the lowest coordination rate (26.7%), consistent690

with an account in which lexical simplification co-occurs with communication strain, whereas691

effective coordination maintains lexical diversity.692

M.4 Betrayal Patterns and Trust Recovery Mechanisms693

Betrayal rates span from 4.7% (Claude-Sonnet-4) to 18.9% (Llama-3.1-8B), a 4× range that cor-694

relates strongly with model capability (r = -0.84). This suggests that betrayal often results from695

incompetence rather than malice—weaker models betray not through strategic calculation but through696

failure to maintain consistent alliance behavior. The bimodal distribution (clustering at 4-6% for697

selective trusters and 10-19% for promiscuous trusters) indicates distinct trust phenotypes rather than698

continuous variation.699

Trust recovery success (45.7-62.1%) shows weaker correlation with initial trust formation (r = 0.31)700

than with betrayal rates (r = -0.76), indicating that recovery depends more on avoiding betrayal than701

on building initial trust. Claude-Sonnet-4’s exceptional recovery rate (62.1%) despite minimal trust702

formation (3.9%) suggests a "phoenix strategy"—rare trust instances that can rebuild from complete703

collapse. This contrasts with Llama-3.1-8B’s poor recovery (45.7%) despite high initial trust (10.9%),704

indicating that promiscuous trust creates brittle alliances that cannot survive betrayal.705

The recovery mechanisms analysis reveals three distinct patterns. First, "immediate forgiveness" (seen706

in 23% of recoveries) where trust rebuilds in the next interaction, typically occurring when betrayal is707

attributed to error rather than intent. Second, "graduated rehabilitation" (54% of recoveries) involving708

progressive trust rebuilding over 2-3 interactions, characteristic of GPT-4o and Llama-4-Maverick.709

Third, "permanent severance" (23% of cases) where betrayal triggers irreversible alliance breakdown,710

most common in Claude-Sonnet-4 despite its high overall recovery rate—suggesting selective but711

decisive trust repair.712

M.5 Collaboration Success Factors and Strategic Gaps713

Collaboration success rates remain low (23.8–36.0%), even for models with high coordination scores,714

indicating persistent challenges in translating coordination into effective joint outcomes. The top715

collaborators (Llama-3.1-405B and Llama-3.1-70B, both 36.0%) reach comparable outcomes through716

distinct pathways: 405B via high vote coordination (52.7%) and 70B via elevated mirroring (72.6%).717

This pattern suggests multiple viable routes to collaboration.718

The strategy-alignment gap, defined as alignment minus collaboration success, indicates systematic719

overestimation of collaborative capability. Mean strategy alignment is 45.8%, whereas mean col-720

laboration success is 30.5%, yielding an average gap of +15.3 percentage points. The gap ranges721

from +4.1% (Claude-Sonnet-4) to +22.9% (GPT-4o); larger gaps indicate greater strategic friction.722

We observe three primary contributors: temporal misalignment (asynchronous execution of shared723

plans), interpretive divergence (shared labels, distinct implementations), and commitment asymmetry724

(unequal investment in joint strategies).725
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Convergence efficiency, combining mirroring and strategy alignment, ranges from 47.8% (Claude-726

Sonnet-4) to 62.4% (Llama-3.1-70B), yet exhibits only a weak association with collaboration success727

(r = 0.42). Convergence therefore appears necessary but insufficient; successful collaboration also728

requires execution competence, trust maintenance, and recovery from coordination failures. The729

most effective profile combines moderate convergence efficiency (60–62%), controlled betrayal rates730

(8–11%), and strong recovery mechanisms (50–55%), a bundle attained by only two to three models731

in our sample.732

M.6 Team-Specific Failure Patterns733

Across 10,080 games per model (overall), trust breakdown emerges as the dominant team-level failure,734

accounting for 61.9–84.7% of failures. All models except Llama-3.1-8B exhibit trust breakdown as735

the primary failure mode, with Claude-Sonnet-4 highest (84.7%). This pattern indicates that current736

models lack robust mechanisms for maintaining trust under adversarial pressure.737

Four collapse mechanisms recur. Trust breakdown (62–85% of failures) manifests as rapid team738

fragmentation when suspicion cascades through voting dynamics; Claude-Sonnet-4 is most vulnerable739

(84.7%), whereas GPT-4o shows relative resilience (61.9%). These cascades typically begin with740

a single incorrect accusation that triggers retaliatory voting, eroding cohesion within 2–3 rounds.741

Decision paralysis (48–74%) arises when teams fail to reach consensus, with split votes preventing742

elimination; Llama-3.1-8B exhibits the highest paralysis rate (73.8%), consistent with its lower coor-743

dination score (27.7%). Paralysis frequently co-occurs with trust breakdown, producing compound744

failures that are difficult to recover from.745

Misplaced trust (46–79%) occurs when teams maintain trust in impostor teammates despite discon-746

firming behavioral evidence; rates are highest for Llama-3.1-8B (79.5%) and lowest for GPT-4o747

(46.4%). This pattern indicates insufficient updating of trust in response to evidence, with initial748

alliances persisting despite contradictory signals. Groupthink (10–28%), though less frequent, is749

especially costly: teams converge on an incorrect consensus via cascades, often culminating in750

unanimous but incorrect eliminations. Llama-3.1-70B displays the highest groupthink tendency751

(28.3%), whereas Claude-Sonnet-4 is lowest (13.5%).752

Vulnerability scores (0.225–0.327) quantify overall susceptibility to failure. Claude-Sonnet-4 is most753

vulnerable (0.327) despite strong individual performance, whereas GPT-4o is least vulnerable (0.225).754

This paradox: individual strength coupled with team weakness suggests that coordination requires755

capabilities distinct from those underlying solo performance.756

M.7 Team Formation Phenotypes and Multi-Agent Dynamics757

We identify four team phenotypes that transcend individual model capabilities. Fortress teams758

(exemplified by Claude-Sonnet-4) maintain low trust (3.9%) and betrayal (4.7%) with high recovery759

(62.1%), yielding stability via isolation. Market teams (led by GPT-4o) exhibit moderate trust760

(5.4%), controlled betrayal (8.1%), and high coordination (58.3%), reflecting transactional rather761

than relational cooperation. Commune teams (Llama-3.1-8B) display high trust (10.9%) and betrayal762

(18.9%) with poor recovery (45.7%), producing unstable alliances. Alliance teams (Llama-3.1-70B763

and 405B) balance trust (6.9%) and betrayal (10.9%) with moderate recovery (51.6%), achieving the764

highest collaboration success (36.0%).765

These phenotypes persist across game modes and difficulty conditions, suggesting that they consti-766

tute attractors in the coordination dynamics rather than merely strategic choices. We observe no767

convergence toward a single dominant strategy: each phenotype remains viable in distinct contexts768

(fortress in high-suspicion settings; market in mixed-model scenarios; commune in homogeneous769

low-stakes settings; alliance in team-aware modes). This heterogeneity implies that optimizing team770

coordination requires a portfolio approach that matches team phenotype to task requirements rather771

than a single universal policy.772

M.8 The Information Paradox: Why Homogeneous Mode Outperforms Team-Aware773

Additional information systematically degrades performance: team-aware mode yields an odds ratio774

(OR) of 0.772 (95% CI: [0.731, 0.815]) relative to the homogeneous baseline, a 22.8% disadvan-775

tage despite strictly greater information. This information paradox challenges assumptions about776
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cooperative AI and is associated with three mechanisms by which additional knowledge becomes a777

liability.778

Mechanism 1: Cognitive Overload and Decision Paralysis Team-aware models must optimize779

simultaneously over multiple, often conflicting objectives: (1) appearing consistent with unknown780

teammates, (2) differentiating from identified opponents, (3) maintaining plausible deniability as781

a potential impostor, and (4) preserving individual coherence. This multi-constraint optimization782

induces decision overhead and hesitation in team-aware settings.783

This overload manifests differently across model capacities. High-capacity models (GPT-4o, Claude-784

Sonnet-4) exhibit “analysis paralysis”: they produce longer, more hedged descriptions that signal785

uncertainty. GPT-4o’s description length increases from 28.3 words (homogeneous) to 34.6 words786

(team-aware), while semantic clarity declines by 23%. Lower-capacity models (Llama-3.1-8B)787

exhibit “strategy collapse”: they revert to random or contradictory behavior when overwhelmed;788

strategy consistency drops from 67% to 41% between homogeneous and team-aware modes.789

Mechanism 2: Coordination Overhead and Misalignment Cascades Explicit team knowledge790

creates brittle coordination expectations. When models know their teammate’s identity, they attempt791

sophisticated strategies (synchronized voting, complementary descriptions, strategic division of labor)792

that fail more often than they succeed. Coordination attempts in team-aware mode succeed in only793

51.2± 3.1% of cases, versus 59.6± 2.8% implicit coordination in team-blind mode.794

The ensuing failure mode is revealing: models over-coordinate, producing detectable patterns that795

opponents exploit. Team-aware impostor pairs exhibit a 0.73 correlation in description style (vs.796

0.42 in homogeneous mode), making them readily identifiable via pattern matching. One model’s797

coordination attempt often triggers misaligned responses from teammates, generating coordination798

cascades in which each alignment attempt amplifies divergence. We observe 3.7× more mid-game799

strategy revisions in team-aware than in homogeneous mode.800

Most damaging is “coordination theater”: coordination performed for signaling rather than strategic801

value. Team-aware models devote 43% of description content to coordination signals (“as my802

teammate mentioned,” “building on that point”) versus 8% in homogeneous mode. These signals803

provide opponents with targeting information while degrading information transfer.804

Mechanism 3: Strategic Constraint and Reduced Optionality Team knowledge reduces strategic805

flexibility by creating early commitments that limit adaptation. In homogeneous mode, models806

maintain maximum optionality: any player could be an ally or an enemy, requiring strategies robust to807

all possibilities. This enforced generality produces antifragile behavior that benefits from uncertainty.808

Team-aware mode removes this ambiguity. Models commit to team-specific strategies early (by809

round 1.4 on average) and cannot adapt when these prove suboptimal. The commitment problem810

is asymmetric: impostors must maintain team consistency while pursuing opposing goals, creating811

detectable cognitive dissonance. Majority players over-trust identified teammates, reducing vigilance812

by 34% (measured via suspicion-language frequency).813

The constraint effect compounds across rounds. Homogeneous games improve over time (learning814

coefficient +0.023), whereas team-aware games degrade (-0.018), indicating that team knowledge815

induces rigid patterns that opponents learn to exploit. By game 30 within an experimental block,816

team-aware impostor success rates decline by 19% from initial levels, versus a 6% improvement in817

homogeneous mode.818

Hypothesis: Information-Theoretic Explanation We hypothesize an information-theoretic ac-819

count in which performance follows an inverted-U relationship with available information. Homoge-820

neous mode may reside near an optimal balance between information value and complexity costs,821

whereas team-aware mode overshoots into a regime where additional information reduces perfor-822

mance. This remains a conjecture requiring validation via controlled experiments that systematically823

manipulate information availability.824
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N Limitations825

Our evaluation intentionally adopts a stylized setting to enable control and measurement: interactions826

are English-only, group size is fixed, and semantics are induced via curated word pairs. These choices827

make cross-model comparisons tractable but narrow the construct we measure. As a result, the828

benchmark does not capture longer-horizon collaboration, asynchronous coordination, or the richer829

social contexts and signals that shape real multi-agent interaction. Below we detail the most salient830

constraints; for mitigation strategies and extensions, see Appendix O.831

Stylized game mechanics and minimal grounding. The task is a constrained, text-only social832

deduction game with abstract rules and no environment to act within. Agents need not integrate claims833

with grounded actions or external evidence, which limits assessment of consistency between language834

and behavior. Persuasion is therefore measured primarily as short-form linguistic performance under835

fixed rules, not as action–language alignment.836

English-only interactions. Restricting play to English advantages families whose training and837

alignment are English-heavy and can obscure weaknesses in morphologically rich or low-resource838

languages. Pragmatic norms (directness, hedging, honorifics, politeness) vary cross-lingually, so de-839

ception and suspicion cues that work in English may not transfer to other languages or mixed-language840

settings.841

Curated word-pair semantics. We induce uncertainty with hand-selected word pairs that em-842

phasize lexical and relational semantics. This foregrounds fine-grained lexical control and may843

underweight competencies that rely on open-world knowledge, situational grounding, or multimodal844

perception. Performance may therefore reflect lexical calibration more than general social reasoning.845

Short horizon and turn budgets. Utterances are brief (1–2 sentences) and the overall interaction846

is short. Such constraints suppress longer argument chains, trust-building, and reputation effects,847

and they attenuate planning differences that emerge over extended dialogue. The design thus favors848

concise, local inference over multi-step strategy.849

Missing modalities and social cues. Interactions are purely textual and synchronous; there is850

no prosody, timing irregularity, gesture, or other nonverbal signal that humans leverage in social851

deduction. Likewise, there is no asynchronous messaging, tool use, or shared artifacts to coordinate852

around, which narrows the evaluated coordination mechanisms.853

Taken together, these constraints mean the benchmark assesses a specific facet of social reasoning:854

short-form deception and detection via linguistic description under controlled uncertainty. The855

results are informative within this slice, but generalization to grounded, multilingual, larger-group,856

or long-horizon collaboration should be made cautiously and ideally supported by complementary857

evaluations (Appendix O).858

O External Validity and Extensions859

Our benchmark intentionally abstracts away many real-world complexities in favor of control and860

measurement. Here we articulate how these choices can bias cross-model comparisons and outline861

concrete extensions toward grounded, longer-horizon tasks.862

O.1 Threats to Cross-Model Comparability863

Stylistic verbosity and hedging. Models differ in default verbosity, hedging, and rhetorical style864

due to training data and instruction tuning. With short, fixed turn budgets, more verbose models may865

occupy greater talk share, potentially attracting suspicion (or appearing persuasive) independent of866

information content. To mitigate: (i) enforce matched length budgets (e.g., characters or tokens)867

and report length-normalized outcomes; (ii) run a verbosity-matched ablation by truncating or868

summarizing longer outputs to the median length; (iii) include utterance length and hedging markers869

as covariates in outcome models to assess residual effects.870
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English-only evaluation. Restricting to English advantages models whose pretraining and align-871

ment are English-heavy and may mask weaknesses in morphologically rich or low-resource languages.872

Cross-lingual style conventions (directness, honorifics, idioms) also shift how deception and suspicion873

are expressed and perceived. To mitigate: evaluate in multiple languages (including code-switching874

scenarios), use parallel prompts and parallel word-pair semantics, and report per-language results with875

calibration checks (e.g., refusal rates, toxicity filters) that can differentially trigger across families.876

Short turns and limited context. Short utterances constrain argumentation, evidence exchange,877

and reciprocal justification. Some families rely on multi-step explanation or self-checking loops;878

others excel at compact, high-precision messaging. Differences in planning horizons may therefore879

be attenuated. To mitigate: vary turn budgets and provide optional scratchpads or private notes that do880

not directly count toward spoken turns, then test whether longer planning channels change rankings.881

Fixed group size and topology. Performance and strategy mix change with the number of players882

and network structure (e.g., tie frequency, vote cascades, centrality leverage). A fixed group size can883

advantage families that coordinate well in small groups and underrepresent scaling failure modes884

(e.g., information dilution, minority coalition formation) that emerge in larger groups. To mitigate:885

evaluate across multiple group sizes and communication topologies; report performance as a function886

of group size and measure sensitivity of rank orderings.887

Curated lexical semantics. Using controlled word pairs emphasizes lexical and relational semantics888

over open-world knowledge or situational grounding. Families with stronger lexical calibration may889

be favored relative to those with broader world knowledge but weaker fine-grained lexical control. To890

mitigate: interleave grounded clues (maps, images, or simulated tasks) and open-domain evidence891

while retaining controlled conditions for attribution.892

Decode and prompt confounds. Default decoding parameters and prompt templates can amplify893

family-specific tendencies (e.g., over-explaining vs. terseness). To mitigate: (i) standardize prompts894

and decoding across families; (ii) sweep key decode parameters within each family and report stability895

intervals; (iii) sample multiple seeds and aggregate outcomes to reduce single-run variance.896

O.2 Design and Reporting Recommendations897

Balanced designs. Block on group size, language, difficulty, and role assignments; randomize898

player order and position; and pre-register primary endpoints and covariates to limit researcher899

degrees of freedom.900

Style-aware metrics. Report both raw success and length-normalized variants (per-token or per-901

character), along with talk-share, interruption rates, and response latency if available. Provide902

counterfactual reweighting where each family’s length distribution is matched to a common reference.903

Robustness checks. Include verbosity-matched, language-matched, and decode-sweep ablations;904

run regression adjustments controlling for utterance length, hedging, and sentiment; and verify905

whether model rankings persist under these controls.906

O.3 Extending to Grounded, Longer-Horizon Tasks907

Longer dialogues with memory. Allow multi-round play with persistent private notes or tool-908

augmented memory, then measure how explicit planning and recall affect deception and detection.909

Introduce phase-structured interactions (e.g., evidence gathering, debate, voting) to test temporal910

credit assignment.911

Grounded environments. Embed the social deduction task within a simulated world (maps,912

objects, tasks) so that agents must integrate linguistic claims with verifiable actions (task completion,913

movement logs). This shifts evaluation from pure linguistic persuasion to grounded consistency and914

opens analysis of action–language alignment.915
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Dynamic rosters and asynchronous play. Vary group size mid-game, introduce join/leave events,916

and permit asynchronous messaging. Measure robustness of coordination and deception under churn917

and delayed information.918

Multilingual and code-switching scenarios. Mix languages across players or across phases;919

include translation constraints and shared glossaries. Evaluate whether mixed-language play changes920

coalition formation, suspicion, or the efficacy of deception.921

Tool use and external evidence. Permit retrieval, calculators, or environment sensors as con-922

strained tools. Score agents on reconciliation between tool-based evidence and statements, penalizing923

inconsistencies to discourage purely stylistic persuasion.924

Together, these extensions retain the benchmark’s controlled core while reducing style and language925

confounds, enabling more externally valid comparisons across model families and more informative926

stress tests of planning, grounding, and coordination.927

P Related Work928

P.1 Social Deduction Games and Hidden-Role Environments929

Social deduction games combine cooperation within hidden teams and competition across teams,930

yielding rich dynamics of trust, deception, and information asymmetry [3, 2]. Canonical formats931

separate a description/situation phase from a voting phase under limited communication, forcing932

inference from unreliable or adversarial messages [9]. The typical structure places an uninformed933

majority (e.g., villagers/crewmates) against a smaller informed minority (werewolves/impostors)934

who know the full role assignment [19, 6]. Popular instantiations include Werewolf/Mafia and935

Among Us [33, 19]. Annual competitions like AIWolf have sustained computational research in this936

genre [3, 27].937

P.2 Multi-Agent Theory of Mind and Social Reasoning938

ToM enables modeling others’ beliefs, goals, and intentions—capabilities central to cooperation and939

competition. In LLM agents, this manifests as strategic reasoning about partners’ and opponents’940

mental states [35, 32]. Despite strong performance on static ToM tests, interactive evaluations show941

gaps: LLM-Coordination finds that agents struggle when coordination requires explicit modeling942

of others’ beliefs [1]. Recent architectures (e.g., MultiMind) layer ToM reasoning with planning943

and search to track suspicion and optimize communication [37, 33, 14, 12, 28, 36], but performance944

remains brittle and computationally heavy [15, 18].945

P.3 Strategic Communication and Signaling946

Communication in these games is strategic: agents must signal affiliation, share or conceal evidence,947

and occasionally misdirect. Signals can raise win rates but in non-linear ways [3]. Frameworks like948

CoMet explore metaphor as a vehicle for encoding private information while preserving plausible949

deniability [31]. In practice, agents often prioritize convincing statements over literal truth to serve950

team objectives [19, 24]. Dialogue can both foster coordination and amplify biases depending on951

context and language [5, 4].952

P.4 Deception Detection and Mimicry953

Modern evaluations highlight asymmetries: advanced models exhibit strong deceptive production yet954

remain vulnerable to others’ deception [6]. OpenDeception reports high deception intention ratios955

(>80%) and notable success rates (>50%) across mainstream models [29]. Specialized training im-956

proves mimicry and concealment [31, 19], while multimodal ToM systems incorporate paralinguistic957

cues and explicit suspicion tracking [37, 33, 14, 12, 28]. However, these capabilities often require958

substantial compute and degrade when distilled [18].959
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P.5 Coordination, Coalitions, and Voting960

Hidden-role games require inferring alliances and coordinating votes without full team awareness [9].961

RL agents can learn co-voting and partnering even without natural language [9]. LLM agents show962

robustness to unseen partners (zero-shot coordination), but struggle when joint planning hinges on963

modeling partners’ beliefs [1]. Empirically, effective coordination may favor persuasive, strategically964

selected statements over strict truthfulness [19].965

P.6 Interactive Evaluation Frameworks and Benchmarks966

Broad evaluation suites such as DSGBench and SPIN-Bench span real-time strategy, board games, ne-967

gotiation, and planning [25, 34]. Social-deduction–specific frameworks (e.g., The Traitors, WereWolf-968

Plus) focus on deception, trust, and identity recognition [6, 30]. Decrypto targets interactive ToM969

with controlled tasks inspired by cognitive science [15]. Complementary work surveys performance970

across construction, communication (e.g., Avalon), bargaining, and auctions [23, 14, 12].971

P.7 Cross-Model Dynamics972

Heterogeneous teams reveal asymmetries in deception vs. detection across model families [6].973

LLM agents often coordinate better with unfamiliar partners than RL agents trained on specific974

teammates [1]. Still, communication can induce suboptimal, context-sensitive behaviors and language-975

dependent biases [4, 16]. Performance frequently degrades with model size reductions, complicating976

real-time, resource-constrained deployment [18].977

P.8 Communication Metrics and Measurement978

Metrics span deception effectiveness, detection accuracy, trust network stability [6], and temporal/be-979

havioral features (e.g., speaking order, interruption patterns) predictive of outcomes [13]. Multimodal980

datasets capture persuasion strategies at the utterance level (identity claims, interrogation tactics) [11].981

Interpretable value-estimation approaches link communication patterns to win probabilities [20].982

P.9 Emergent Deceptive Capabilities and Alignment Risk983

Evidence suggests deceptive behaviors may emerge instrumentally as models pursue objectives,984

even without explicit training to deceive [6, 17]. Asymmetric scaling—deception improving faster985

than detection—raises safety concerns, particularly when larger models remain susceptible to ma-986

nipulation [29]. Resource demands for robust detection exacerbate risks for smaller, real-time987

systems [18].988

P.10 Alignment Challenges in Multi-Agent Settings989

Multi-agent environments require long-horizon reasoning under partial observability where coopera-990

tion and betrayal are both viable. Strategic deception, cultural/linguistic biases, and heterogeneous991

partner capabilities complicate alignment and can produce ethically problematic dynamics unless992

explicitly measured and mitigated [4, 16, 7, 8].993

Q Ethics & Societal Impact994

This work evaluates deception and detection in multi-agent settings, a domain with clear dual-use risks.995

Benchmarks that reward bluffing could normalize or inadvertently strengthen deceptive behaviors.996

To mitigate this, our headline claims rely only on interaction-level signals (votes, outcomes, and997

influence networks), reducing incentives for persuasive but unaligned language. All data are synthetic998

and model-generated; no personal data or real individuals are involved. We explicitly discourage999

using this benchmark as a training target and recommend gating, logging, and anomaly monitoring for1000

any deployment that adopts similar interaction patterns. The framework aims to surface vulnerabilities1001

(e.g., susceptibility to manipulation) and to prioritize recognition and coordination over production of1002

deception. We will release failure cases and analysis code to enable third-party audits and welcome1003

community feedback on additional safeguards.1004
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Table 5: Within-model × within-difficulty regressions using an opponent detection baseline, split by
difficulty. Each row fits logit(Pr[impostor win]) = α+ β OpponentDet + mode FEs within a model
× difficulty cell, with cluster-robust SEs by experiment_id. We report odds ratios (OR) per +10

percentage points in the opponent baseline (exp(0.1 β̂)), 95% Wald confidence intervals, and
BH–FDR q-values across cells. Values rounded to two decimals. Bold indicates BH–FDR q < 0.05.

(a) Easy

Model OR CI (2.5%) CI (97.5%) q

GPT-3.5-Turbo 0.29 0.18 0.46 1.5e-06
GPT-4o 0.95 0.85 1.05 0.283
Claude-Sonnet-4 0.57 0.27 1.21 0.154
DeepSeek-v3 0.76 0.64 0.91 2.0e-03
Llama-4-Scout 0.70 0.53 0.92 0.013
Llama-4-Maverick 0.82 0.66 1.01 0.074
Llama-3.1-8B 0.27 0.13 0.54 4.3e-04
Llama-3.1-70B 0.92 0.78 1.09 0.348
Llama-3.1-405B 0.38 0.28 0.53 1.2e-07

(b) Medium

Model OR CI (2.5%) CI (97.5%) q

GPT-3.5-Turbo 0.62 0.49 0.77 4.3e-05
GPT-4o 0.75 0.65 0.86 1.2e-04
Claude-Sonnet-4 0.72 0.51 1.04 0.085
DeepSeek-v3 0.70 0.59 0.84 1.6e-04
Llama-4-Scout 0.70 0.59 0.82 3.9e-05
Llama-4-Maverick 0.69 0.56 0.85 6.1e-04
Llama-3.1-8B 0.60 0.44 0.82 2.0e-03
Llama-3.1-70B 0.75 0.66 0.86 9.3e-05
Llama-3.1-405B 0.65 0.53 0.78 2.4e-05

(c) Hard

Model OR CI (2.5%) CI (97.5%) q

GPT-3.5-Turbo 0.65 0.55 0.78 9.9e-06
GPT-4o 0.61 0.49 0.76 1.8e-05
Claude-Sonnet-4 0.61 0.50 0.75 7.5e-06
DeepSeek-v3 0.58 0.47 0.73 7.1e-06
Llama-4-Scout 0.62 0.49 0.80 2.8e-04
Llama-4-Maverick 0.60 0.48 0.75 2.4e-05
Llama-3.1-8B 0.65 0.50 0.84 2.0e-03
Llama-3.1-70B 0.62 0.50 0.77 2.9e-05
Llama-3.1-405B 0.58 0.48 0.70 1.2e-07

(d) Expert

Model OR CI (2.5%) CI (97.5%) q

GPT-3.5-Turbo 0.59 0.48 0.72 7.3e-07
GPT-4o 0.70 0.57 0.85 5.1e-04
Claude-Sonnet-4 0.65 0.57 0.73 9.0e-11
DeepSeek-v3 0.56 0.44 0.72 1.1e-05
Llama-4-Scout 0.65 0.52 0.81 2.8e-04
Llama-4-Maverick 0.68 0.56 0.82 9.3e-05
Llama-3.1-8B 0.68 0.54 0.86 2.0e-03
Llama-3.1-70B 0.60 0.51 0.72 1.2e-07
Llama-3.1-405B 0.58 0.47 0.71 1.2e-06
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Table 6: Speaking-order pseudo-arm ITT (middle positions 2/3 vs. status-quo random), split by
difficulty. Entries report mid−rand differences in impostor win in percentage points (pp) with 95%
experiment-level block-bootstrap CIs and two-sided p-values. Positive values indicate higher impostor
success when speaking in the middle vs. random.

(a) Easy

Mode n nmid Mid−Rand (pp) 95% CI (pp) p

homogeneous 1080 539 +2.22 [ -6.97, 8.88 ] 0.5716
cross-play 8640 4361 +4.82 [ 2.84, 6.79 ] 0.0000
team-blind 4320 2134 +4.97 [ 2.46, 7.26 ] 0.0000
team-aware 4320 2159 -0.03 [ -2.68, 2.61 ] 0.9906
team-semi-aware 4320 2176 -3.36 [ -5.54, -1.21 ] 0.0022

(b) Medium

Mode n nmid Mid−Rand (pp) 95% CI (pp) p

homogeneous 1080 545 -3.35 [ -8.19, 1.49 ] 0.1798
cross-play 8640 4359 +0.35 [ -1.34, 2.00 ] 0.6686
team-blind 4320 2112 +0.59 [ -1.70, 2.95 ] 0.6090
team-aware 4320 2123 -1.30 [ -3.59, 1.06 ] 0.2788
team-semi-aware 4320 2157 -3.96 [ -6.70, -1.24 ] 0.0026

(c) Hard

Mode n nmid Mid−Rand (pp) 95% CI (pp) p

homogeneous 1080 551 -1.95 [ -5.75, 1.85 ] 0.3298
cross-play 8640 4284 -1.67 [ -3.09, -0.29 ] 0.0172
team-blind 4320 2168 -1.82 [ -3.80, 0.16 ] 0.0732
team-aware 4320 2126 -1.98 [ -3.92, 0.04 ] 0.0546
team-semi-aware 4320 2158 -5.40 [ -7.71, -2.82 ] 0.0000

(d) Expert

Mode n nmid Mid−Rand (pp) 95% CI (pp) p

homogeneous 1080 532 -3.27 [ -7.39, 0.74 ] 0.1184
cross-play 8640 4339 -2.50 [ -3.76, -1.27 ] 0.0000
team-blind 4320 2155 -2.43 [ -4.27, -0.50 ] 0.0142
team-aware 4320 2164 -4.53 [ -6.19, -2.89 ] 0.0000
team-semi-aware 4320 2191 -4.51 [ -7.11, -2.09 ] 0.0002

Table 7: Tie-size distribution (top-of-ballot ties) by mode. k denotes the number of top-tied candidates
among four players. Rates show the fraction of top-tie games in which the impostor is among the tied
candidates.

Mode Ties k = 2 k = 3 k = 4 Impostor-in-tie

homogeneous 368 289 15 64 69.6%
cross-play 2786 2147 199 440 70.5%
team-blind 2110 1760 127 223 77.7%
team-aware 2800 1855 19 926 80.4%
team-semi-aware 2529 1655 28 846 80.8%
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Table 8: Rule-induced class imbalance: symmetric tie-breakers. Default rule awards ties to the
impostor unless standard conviction applies (§A.1). We recompute expected impostor win rates
under two symmetric tie-breakers: (i) Sym-candidate: when top votes are tied, eliminate a random
candidate among those tied (majority wins with probability 1/k if the impostor is among k tied); (ii)
Sym-side: when top votes are tied, flip a fair coin between impostor and majority. Self-declarations
and standard convictions (≥ 2 correct majority votes) remain unchanged. Values are percentages; ∆
reports percentage-point change vs. default; Ties counts tie-at-top games.

Mode Default Sym-cand Sym-side ∆(cand) ∆(side) Ties

homogeneous 48.9 48.1 46.5 -0.7 -2.4 368
crossplay 43.1 42.4 40.9 -0.8 -2.2 2786
teamblind 46.2 45.2 43.5 -1.0 -2.8 2110
teamaware 42.5 40.7 37.8 -1.8 -4.6 2800
teamsemiaware 43.4 41.7 39.1 -1.6 -4.2 2529

ALL 43.9 42.8 40.7 -1.2 -3.2 10593
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Table 9: Symmetric tie-breakers, split by difficulty. Expected impostor win rates under the default
rule vs. two symmetric policies: Sym-candidate (randomly eliminate one among top-tied candidates)
and Sym-side (coin flip between impostor and majority). Only top-of-ballot ties without standard
conviction are adjusted; self-declarations and standard convictions (≥ 2 correct majority votes)
remain unchanged. ∆ columns report percentage-point changes vs. default; Ties counts tie-at-top
games.

(a) Easy

Mode Default Sym-cand Sym-side ∆(cand) ∆(side) Ties

cross-play 41.3 41.2 41.0 -0.1 -0.3 213
homogeneous 47.3 47.2 46.8 -0.1 -0.6 28
team-aware 26.9 25.6 24.4 -1.3 -2.5 376
team-blind 42.5 42.3 42.2 -0.1 -0.2 185
team-semi-aware 28.8 27.9 27.0 -0.9 -1.8 333

(b) Medium

Mode Default Sym-cand Sym-side ∆(cand) ∆(side) Ties

cross-play 41.5 40.9 39.6 -0.6 -1.9 611
homogeneous 44.8 44.3 43.5 -0.5 -1.3 70
team-aware 37.4 35.7 33.2 -1.7 -4.2 627
team-blind 42.8 41.9 40.7 -0.9 -2.1 457
team-semi-aware 37.2 35.8 33.6 -1.4 -3.6 542

(c) Hard

Mode Default Sym-cand Sym-side ∆(cand) ∆(side) Ties

cross-play 45.3 44.1 42.0 -1.2 -3.3 970
homogeneous 52.4 51.1 48.3 -1.3 -4.1 132
team-aware 52.6 50.5 46.4 -2.1 -6.2 905
team-blind 49.1 47.5 44.8 -1.6 -4.3 746
team-semi-aware 53.2 51.0 47.4 -2.2 -5.7 813

(d) Expert

Mode Default Sym-cand Sym-side ∆(cand) ∆(side) Ties

cross-play 44.4 43.3 41.0 -1.1 -3.5 992
homogeneous 51.0 49.9 47.4 -1.1 -3.6 138
team-aware 53.1 51.1 47.3 -2.0 -5.8 892
team-blind 50.6 49.1 46.1 -1.4 -4.4 722
team-semi-aware 54.2 52.2 48.4 -2.1 -5.8 841

Table 10: Scaling (size) effects with provider control and within-family stratification. Entries report
odds ratios (OR) per 10× parameters with 95% Wald CIs (cluster-robust by experiment_id); all
models include mode and difficulty fixed effects. The overall provider-FE model adjusts for provider;
within-family fits are restricted to the indicated family. Families with a single available size (e.g.,
Claude, DeepSeek) are omitted.

Model OR per 10× 95% CI p

Overall (provider FE) 1.417 [1.242, 1.616] 2.1× 10−7

Within GPT family 6.405 [4.762, 8.615] 1.2× 10−34

Within Llama family 1.053 [0.930, 1.193] 0.418
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Table 11: Coordination and impostor behavior metrics (interaction-only), presented in four panels.
VoteCoord uses provided CIs; Brokerage is information broker index; SelfDecl and GuessSucc are
impostor-side rates.

(a) Brokerage (information broker index)

Model Brokerage

GPT-3.5-Turbo 0.510
GPT-4o 0.657
Claude-Sonnet-4 0.422
DeepSeek-v3 0.589
Llama-4-Scout 0.556
Llama-4-Maverick 0.562
Llama-3.1-8B 0.325
Llama-3.1-70B 0.587
Llama-3.1-405B 0.525

(b) VoteCoord (%, with 95% CI half-width)

Model VoteCoord (%)

GPT-3.5-Turbo 47.6±0.9
GPT-4o 58.3±0.9
Claude-Sonnet-4 38.9±0.9
DeepSeek-v3 55.3±0.9
Llama-4-Scout 50.5±0.9
Llama-4-Maverick 51.6±0.9
Llama-3.1-8B 36.4±0.9
Llama-3.1-70B 54.9±0.9
Llama-3.1-405B 52.7±0.9

(c) SelfDecl (%)

Model SelfDecl (%)

GPT-3.5-Turbo 1.5
GPT-4o 45.7
Claude-Sonnet-4 29.2
DeepSeek-v3 29.0
Llama-4-Scout 24.9
Llama-4-Maverick 21.2
Llama-3.1-8B 0.1
Llama-3.1-70B 35.5
Llama-3.1-405B 31.5

(d) GuessSucc (%)

Model GuessSucc (%)

GPT-3.5-Turbo 8.2
GPT-4o 90.6
Claude-Sonnet-4 91.2
DeepSeek-v3 71.0
Llama-4-Scout 52.2
Llama-4-Maverick 81.8
Llama-3.1-8B 0.0
Llama-3.1-70B 32.6
Llama-3.1-405B 1.0
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Table 12: Team dynamics across models: coordination, trust, and convergence patterns. Panel (a)
reports coordination and convergence metrics: Coord. Rate (any explicit coordination attempt), Vote
Coord. (pairwise vote-alignment rate ±95% CI), Implicit Coord. (spontaneous, unsignaled
coordination), Collab. Success (planned joint strategy completes), Strategy Align. (share of rounds
with consistent plan), Linguistic Mirror (function-word/style mirroring index), and Vocab Conv.
(Jaccard convergence). Panel (b) reports trust and robustness: Trust Form. (share of games with
explicit trust), Betrayal Rate (fraction of alliances that break), Trust Recovery (post-betrayal recovery
rate), Vulnerability Index (Trust/Betrayal; lower is better), Resilience Factor (Recovery/Betrayal),
Coord. Gap (implicit − explicit vote coordination), and Alignment Gap (implicit − explicit strategy
alignment). Unless noted, higher is better (exceptions: Betrayal and Vulnerability).

(a) Coordination and convergence metrics

Model Coord. Vote Implicit Collab. Strategy Linguistic Vocab
Rate Coord. Coord. Success Align. Mirror Conv.

GPT-3.5-Turbo 33.3% 47.6% 16.9% 31.9% 43.2% 70.5% 0.034
GPT-4o 37.8% 58.3% 22.0% 33.6% 55.5% 66.9% 0.038
Claude-Sonnet-4 26.7% 38.9% 19.0% 24.0% 27.9% 67.8% 0.042
DeepSeek-v3 32.2% 55.3% 19.7% 35.2% 51.7% 62.6% 0.030
Llama-4-Scout 35.4% 50.5% 18.0% 31.4% 46.4% 75.0% 0.029
Llama-4-Maverick 37.8% 51.6% 19.9% 32.6% 48.9% 73.7% 0.037
Llama-3.1-8B 27.7% 36.4% 13.4% 22.8% 35.2% 69.0% 0.029
Llama-3.1-70B 37.4% 54.9% 20.9% 35.1% 52.2% 72.2% 0.031
Llama-3.1-405B 34.4% 52.7% 18.3% 36.8% 51.2% 70.8% 0.031

(b) Trust dynamics and strategic gaps

Model Trust Betrayal Trust Vulnerability Resilience Coord. Alignment
Form. Rate Recovery Index Factor Gap Gap

GPT-3.5-Turbo 8.3% 13.3% 53.1% 0.62 4.0 +30.7% +11.9%
GPT-4o 5.4% 8.1% 54.1% 0.67 6.7 +36.3% +22.9%
Claude-Sonnet-4 3.9% 4.7% 62.1% 0.83 13.2 +19.9% +4.1%
DeepSeek-v3 6.2% 9.7% 52.3% 0.64 5.4 +35.6% +16.5%
Llama-4-Scout 6.6% 10.0% 51.8% 0.66 5.2 +32.5% +15.2%
Llama-4-Maverick 5.7% 8.4% 57.1% 0.68 6.8 +31.7% +17.2%
Llama-3.1-8B 10.9% 18.9% 45.7% 0.58 2.4 +23.0% +11.0%
Llama-3.1-70B 6.9% 10.9% 51.6% 0.63 4.7 +34.0% +16.2%
Llama-3.1-405B 6.8% 11.0% 50.3% 0.62 4.6 +34.4% +15.2%
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