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Abstract

In recent years, there has been growing inter-
est in distribution-on-distribution regression, a re-
gression problem where both covariates and re-
sponses are represented as probability distribu-
tions. Despite various methodologies proposed to
address this challenge, a notable absence has been
a Bayesian approach, which offers benefits by al-
lowing for the integration of prior knowledge and
providing a formal means of quantifying uncer-
tainty. However, a major challenge in employing
a Bayesian approach lies in the complexity of
fully specifying the data generating process. To
overcome this obstacle, we adopt a generalized
Bayesian approach and investigate the contraction
rates of the resulting generalized (Gibbs) posterior
distributions. We propose an MCMC algorithm to
sample from the generalized posterior distribution
and conduct simulation studies to validate the the-
oretical findings. Finally, we apply the model to a
data application involving mortality data.

1 INTRODUCTION

Performing inference on a set of probability distributions
has become increasingly popular in both the statistics and
machine learning communities [Poczos et al., 2013, Hron
et al., 2016, Petersen and Müller, 2019, Pegoraro and
Beraha, 2022, Chen et al., 2023]. However, the inherent
non-linear structure of the space of probability distributions
poses challenges when applying methods designed for
Euclidean or functional data. An approach to address this
challenge involves applying a suitable transformation to
map the probability distributions to a space with a linear
structure [Kneip and Utikal, 2001, Petersen and Müller,
2016]. However, this approach does not consider the
geometry of the space of probability distributions, resulting

in a non-isometric transformation altering distances
between pairs of distributions.

The Wasserstein metric has gained prominence as a
tool for measuring the distance between probability distri-
butions. This metric has been applied in various contexts,
such as principal component analysis (PCA) of probability
distributions, and K-means clustering of probability
distributions [Zhuang et al., 2022]. The Wasserstein metric
has also found applications in distribution-on-distribution
regression, a type of regression modeling where both
predictors and responses are distributions. For example,
Chen et al. [2023] and [Zhang et al., 2022] use the
tangent structure of Wasserstein space to develop linear
regression models between tangent spaces. On the other
hand, Ghodrati and Panaretos [2022] proposed a regression
model using a monotone optimal transport map. Recently,
there has been growing research aimed at addressing the
problem in higher dimensions Okano and Imaizumi [2023],
Ghodrati and Panaretos [2023]. This has proven to be a
challenging task due to the lack of closed-form solution for
computing the Wasserstein distance in general cases and
the curse of dimensionality.

Despite the increasing array of methodologies ad-
dressing distribution-on-distribution regression, a Bayesian
approach for this problem is notably absent. A Bayesian
perspective offers advantages by providing a principled
means to incorporate prior information and a formal
framework for understanding and quantifying uncertainty
associated with the regression operator. In this work, we
address this gap by proposing a (generalized) Bayesian
framework for distribution-on-distribution regression.
Given the potential challenges of fully specifying the data
generation process in a standard Bayesian approach, we
navigate this issue by adopting the generalized Bayesian
framework [Bissiri et al., 2016, Syring and Martin, 2023],
which replaces the (negative) log-likelihood function with a
loss function.
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In this work, our focus is on scenarios where both
the covariate and response distributions are defined on the
real line. Following the approach in Ghodrati and Panaretos
[2022], we directly model the regression operator using a
monotone transport map. We parameterize the monotone
transport map through Bernstein polynomial basis functions.
A natural loss function is introduced, enabling the use of a
generalized Bayesian framework for inferring the monotone
transport map. We investigate the contraction rates of the
(generalized) posterior distribution in two settings: one
where the covariate and response measures are directly
observed, and another where only consistent estimates of
the measures are available, obtained from random samples
of each respective measure.

The rest of the article follows this structure: In Sec-
tion 2, we provide an overview of Wasserstein space, Gibbs
posterior distributions, and Bernstein polynomials. We
then outline our modeling assumptions for distribution-on-
distribution regression, discuss prior specification, examine
the contraction rates of Gibbs posterior distributions, and
elaborate on the MCMC sampling process in Section 3.
Section 4 delves into the details of the simulation studies,
while Section 5 focuses on a data application. In Section 6,
we explore potential extensions of the current work.

2 BACKGROUND

2.1 WASSERSTEIN SPACE

Let Ω ⊂ R be a compact interval, let W2(Ω) be the set of
probability measures on Ω with finite second moment. The
2-Wasserstein distance on W2(Ω) is defined as

d2W(µ, ν) = inf
γ∈Γ(µ,ν)

∫
Ω×Ω

|x− y|2dγ(x, y), (1)

where µ, ν ∈ W2(Ω) and Γ(µ, ν) is the set of couplings of
µ and ν, that is, the set of probability measures on Ω × Ω
with marginals µ and ν. The γ that achieves the infinum
on the RHS of (1) is said to be the optimal transport plan
between µ and ν.

A deterministic map T : Ω → Ω is said to be a
transport map from µ to ν if ν = T#µ, that is, ν is
the pushforward measure of µ under the map T , i.e.
ν(B) = µ(T−1(B)) for all Borel sets B. Suppose for some
T , the joint distribution of (X,T (X)) achieves the infinum
on the RHS of (1), T is said to be an optimal transport map.

When µ is absolutely continuous with respect to the
Lebesgue measure on Ω, the optimal map is given by
T = F−1

ν ◦ Fµ, where Fµ and Fν are the cumulative
distribution functions for µ and ν, respectively [Ambrosio
et al., 2008, Chapter 6]. In this case, the 2-Wasserstein

distance (1) reduces to

d2W(µ, ν) =

∫ 1

0

|F−1
µ (p)− F−1

ν (p)|2dp. (2)

2.2 GIBBS POSTERIOR DISTRIBUTION

The generalized (Gibbs) posterior distribution [Bissiri et al.,
2016, Syring and Martin, 2023] generalizes the standard
posterior distribution in Bayesian inference setting by re-
placing the log-likelihood function with a (negative) loss
function. Consider random elements U1, . . . , Un generated
from some distribution P , and suppose we wish to make
inference on a relevant feature of P defined as some func-
tional θ = θ(P ), taking values in Θ. The Gibbs posterior
framework requires specifying a loss function ℓθ(u) that
measures how closely θ agrees with a data point u. The risk
function corresponding to the loss ℓθ(u) is

R(θ) = Pℓθ(U). (3)

Here, Pf denotes the expectation of f(U) with respect to
U ∼ P .

The risk function is unattainable since it depends on
the unknown distribution P , and thus the inference is
conducted using the empirical risk:

Rn(θ) =
1

n

n∑
i=1

ℓθ(Ui).

Given a prior distribution ΠΘ on Θ, the Gibbs posterior
distribution Π

(n)
Θ is defined as

Π
(n)
Θ (dθ) ∝ e−ωnRn(θ)ΠΘ(dθ), θ ∈ Θ, (4)

where ω > 0 is the so-called learning rate parameter
specified by the data analyst. The right-hand side of (4) is
assumed to be integrable in θ, and thus the proportionality
constant is well defined.

Let θ0 denote the parameter that minimizes the ex-
pected risk (3). Given a semi-metric d on Θ, the Gibbs
posterior distribution is said to asymptotically concentrate
around θ0 at rate (at least) ϵn, with respect to d, if

PnΠn({θ : d(θ, θ0) > Mnϵn}) → 0 (5)

as n → ∞, where Mn → ∞ arbitrarily slowly or Mn = M
for some large constant M . Here Pnf denotes the expecta-
tion of f(U1, . . . , Un) where U1, . . . , Un are an i.i.d. sample
from P . The general conditions for contraction of Gibbs
posterior distribution were studied in Syring and Martin
[2023].



2.3 BERNSTEIN POLYNOMIALS

Bernstein polynomials (BP) basis functions are a popu-
lar choice for monotone and shape-constrained regression
[Chak et al., 2005, Curtis and Ghosh, 2011, Wilson et al.,
2020]. The kth BP basis function of order K is

bK(x, k) =

(
K

k

)
xk(1− x)M−k,

for k = 0, 1, . . . ,K and for x ∈ [0, 1]. An unknown re-
gression function f : [0, 1] → R can then be modelled
as

f(x) =

K∑
k=0

βkbK(x, k). (6)

Requiring f to be monotonically increasing is equivalent
to requiring βk ≤ βk+1, k = 0, . . . ,K − 1. Curtis and
Ghosh [2011] uses the re-parameterization θ0 = β0, and
θk = βk − βk−1 for k = 1, . . . ,K. It can be shown that (6)
can then be written as

f(x) = θ0 +

K∑
k=1

θkGB(k,K−k+1)(x), (7)

where GB(k,K−k+1) is the cumulative distribution function
of the Beta distribution with parameters k and K − k + 1.
This re-parameterization is advantageous when the target
monotone function exhibits relative flatness within certain
sub-intervals (a, b) ⊂ [0, 1] [Curtis and Ghosh, 2011]. For
finite K, the BP basis functions with these constraints do
not span the entire class of continuous monotonic functions.
However, as K → ∞, any continuous monotonic function
f : [0, 1] → ∞ can be increasingly well approximated using
BP basis functions [Chang et al., 2007].

2.4 OTHER RELATED WORKS

There are other regression problems related to the
distribution-on-distribution regression problem, such as real-
valued responses paired with distribution predictors [Law
et al., 2018], distributional responses paired with Eucdliean
predictors [Han et al., 2020], and regression with manifold-
valued data [Shi et al., 2009, Lin et al., 2017]. A distinctive
feature of the distribution-on-distribution regression prob-
lem is that it typically involves working with Wasserstein
space and optimal transport theory.

2.5 ADDITIONAL NOTATIONS

We use a ≲ b to denote that there exists a constant C such
that a ≤ Cb holds, and a ≍ b to denote that a ≲ b and
b ≲ a. Given a measure µ, the Lp norm of a function f is
denoted by ||f ||Lp(µ).

3 DISTRIBUTION-ON-DISTRIBUTION
REGRESSION

3.1 MODEL SPECIFICATION

We consider the setting that we have access to a sample of n
independent and identically distributed covariate-response
pairs of measures {(µi, νi)}ni=1 in W2(Ω) × W2(Ω). We
consider the case where Ω is compact and assume without
loss of generality that Ω = [0, 1]. We let P denote the
joint distribution of the covariate and response measures
(µ, ν), and P (·|µ) denote the conditional distribution of the
response ν given the covariate µ.

As in Ghodrati and Panaretos [2022], we define the
regression operator Γ : W2(Ω) → W2(Ω) as the minimizer
of the conditional Fréchet functional

Γ(µ) := argminb∈W2(Ω)

∫
W2(Ω)

d2W(b, ν)dP (ν|µ), (8)

where the definition above assumes the uniqueness
of Fréchet mean of P (·|µ). In a regression setting
with covariate x ∈ Rd and scalar response y ∈ R,
the regression function f : Rd → R may be defined
as f(x) := argminw∈RE

(
|w − Y |2|X = x

)
where

E(·|X = x) conditional expectation of the response given
covariate x. We note that in the formulation (8), the notion
of expectation is replaced by a Wasserstein-Fréchet mean.

Ghodrati and Panaretos [2022] adopts a non-parametric
approach and only impose a shape constraint on the
regression operator by assuming Γ(µ) = T#µ where
T : Ω → Ω is left unspecified and assumed to be a
monotone increasing map.

In this work, we consider a parametric approach and
model the map T using the BP basis functions as described
in Section 2.3:

Tθ(x) =

K∑
k=0

θkGB(k,K−k+1)(x),

where θ = (θ0, . . . , θK)T are the unknown coefficients.
To ensure that Tθ is monotonically increasing with range
contained in [0, 1], we require θk ≥ 0, k = 0, . . . ,K, and∑K

k=0 θk = 1.

We let Θ := {θ ∈ RK+1 : θk ≥ 0, k =

0, 1, . . . ,K,
∑K

k=0 θk = 1} denote the parameter
space. We then assume that the regression operator Γ
satisfies Γ(µ) = Tθ0

#µ for some θ0 ∈ Θ. That is, we
assume that the model is well-specified where the parameter
space contains the “true” parameter θ0. The optimal
transport map Tθ0 acts to move the probability mass
assigned by the covariate measure µ from a subinterval



(a, b) ⊂ Ω to the corresponding transformed subinterval
(Tθ0(a), Tθ0(b)).

While assuming that the parameter space Θ encom-
passes the true parameter θ0 may seem somewhat limiting,
our proof approach hinges on this assumption. This
assumption is crucial to demonstrate the existence and
uniqueness of the risk minimizer of (3) and enables us to
establish the contraction rates of the generalized posterior
distributions. Investigating the theoretical properties of the
proposed framework when the proposed model does not
contain the true optimal transport map is deferred to future
research endeavors.

Given covariate-response pairs (µi, νi), we assume
the regression model takes the form

νi = Tϵi#(Tθ0
#µi), i = 1, . . . , n, (9)

where Tϵi are independent and identically distributed
random transport maps. Tϵi can be interpreted as noise in
the model. As in Ghodrati and Panaretos [2022], the specific
distribution of Tϵi is left unspecified, and is only required
to be monotonically increasing and satisfy E(Tϵi(x)) = x
for almost every x ∈ Ω.

Hence, our model structure can be understood as a
semi-parametric approach, comprising a parametric compo-
nent for the optimal transport map Tθ and a nonparametric
component for the random error maps Tϵi . In contrast
to a conventional Bayesian framework that necessitates
fully specifying the random error maps, in the generalized
Bayesian setting, they can remain unspecified. This offers
several advantages. Firstly, fully parameterizing the random
error maps might prove challenging and increase the
likelihood of model mis-specification. Secondly, by leaving
the random error maps unspecified, we can concentrate our
modeling efforts on the optimal transport map Tθ , resulting
in more efficient posterior sampling.

With the modeling assumptions described above,
the distribution-on-distribution regression problem
now becomes inferring the unknown parameter
θ0 = (θ0,0, . . . , θ0,K)T from a sample of covariate-
response measures {µi, νi}ni=1. Choosing the 2-Wasserstein
distance (1) as the loss function

ℓθ(µ, ν) =
1

2
d2W(Tθ#µ, ν),

the expected risk is given by

R(θ) =
1

2

∫
W2(Ω)×W2(Ω)

d2W(Tθ#µ, ν)dP (µ, ν). (10)

We first state two assumptions to ensure that the true
parameter θ0 is the unique parameter which minimizes the
expected risk (10). These assumptions are analogous to

those in Ghodrati and Panaretos [2022].

Let PM be the marginal distribution of the covariate
measure µ.

Assumption 1. Let µ be in the support of PM , then µ is
absolutely continuous with respect to the Lebesgue measure
on Ω.

Assumption 2. The true regression model has the form ν =
Tϵ#(Tθ0#µ) for some θ0 ∈ Θ, and the random optimal
transport map Tϵ satisfies E(Tϵ(x)) = x Ω-a.e.

Proposition 1. Suppose that the joint distribution P in-
duced by the model (9) satisfies Assumptions 1 and 2. Then
θ0 is the unique minimizer of the expected risk in (10).

Proof. This result is a direct consequence of Theorem 3.3
of Ghodrati and Panaretos [2022].

3.2 PRIOR SPECIFICATION

We now specify the prior on the unknown coefficients θ.
Our prior structure is similar to the one adopted by Curtis
and Ghosh [2011]. We first sample K + 1 binary latent
indicator random variables with parameter pγ :

γ0, . . . , γK ∼ Ber(pγ).

In particular, pγ determines the sparsity of the binary vari-
ables γk, k = 0, 1, . . . ,K We assign a beta prior on pγ :

pγ ∼ Be(ap, bp), ap > 0, bp > 0.

Conditional on γ0, . . . , γK , we sample uk as

uk ∼ γkUnif(0, 1) + (1− γk)δ{0}, k = 0, . . . ,K, (11)

where Unif(0, 1) is the uniform distribution on (0, 1) and
δ{0} is the Dirac measure on 0. Finally, if

∑K
k=0 γk > 0,

we set
θk =

uk∑K
j=0 uj

, k = 0, . . . ,K.

Otherwise, if
∑K

k=0 γk = 0, we set θk = 0, k =
0, . . . ,K. In particular, the case θk = 0 for all k corre-
sponds to the transport map T (x) = 0 for all x ∈ [0, 1].
This is a degenerate case where the covariate measure µ is
transformed to the Dirac measure ν = δ(0).

Alternative Prior Specification
If prior information about the shape of the transport map is
available, one may incorporate this information in the prior
specification. Instead of sampling the random variables uk

as a mixture of uniform distribution and Dirac measure δ(0)
as in (11), we instead sample uk as

uk ∼ γkBeta(ak, bk) + (1− γk)δ(0),

for appropriately chosen values ak, bk > 0, k = 0, . . . ,K.
We note that (11) is recovered by setting ak = 1, bk = 1.



3.3 CONCENTRATION OF POSTERIOR
DISTRIBUTION

Building upon the model assumptions detailed in Section
3.1 and the prior specification presented in Section 3.2, we
study the contraction rates of the Gibbs posterior distribu-
tion in two scenarios. The first scenario involves perfect
observation of both covariate and response measures, while
the second scenario entails solely observing samples from
the respective covariate and response measures.

3.3.1 Perfect Observations

We first consider the case where the measures {(µi, νi)}ni=1

are perfectly observed. The empirical risk corresponding to
the expected risk in (10) is given by

Rn(θ) :=
1

n

n∑
i=1

ℓθ(µi, νi)

=
1

2n

n∑
i=1

d2W(Tθ#µi, νi). (12)

Before stating our first theoretical result, we have to in-
troduce a distance on the space of optimal transport maps
{Tθ : θ ∈ Θ}. As in Ghodrati and Panaretos [2022], we
measure the distance between two optimal transport maps
using the L2(Q) distance where Q is the measure defined
as the linear average of PM :

Q(A) =

∫
W2(Ω)

µ(A)dPM (µ), A ⊂ Ω.

We show that the Gibbs posterior resulting from the empiri-
cal risk in (12) and the prior distribution specified in Section
3.2 contracts around the true optimal map Tθ0 with respect
to || · ||L2(Q) at rate (at least) ϵn = n−1/2(log n)1/2.

Theorem 1. Suppose Assumption 1 and 2 hold. The Gibbs
posterior distribution (4) with empirical risk in (12) asymp-
totically concentrates around the true optimal transport
map Tθ0 where θ0 is the unique minimizer of R(θ) de-
fined in (10) with respect to || · ||L2(Q) at rate (at least)
ϵn = n−1/2(log n)1/2. That is,

PnΠn({θ : ||Tθ − Tθ0 ||L2(Q) > Mϵn}) → 0

as n → ∞.

It’s worth noting that the contraction result is expressed
in terms of the optimal transport map Tθ, while the prior
distribution is assigned to the parameter θ. The Gibbs pos-
terior will concentrate around Tθ0

as long as it concentrates
around θ0 since

||Tθ − Tθ0
||L2(Q) ≲ ||θ − θ0||2,

where || · ||2 is the L2 norm on RK+1.

The proof of Theorem 1 is provided in the supple-
mentary material. In particular, the proof applies Theorem
3.2 of Syring and Martin [2023]. This amounts to verifying
a sub-exponential condition on the loss function and that
the prior probability measure puts sufficient amount of mass
around certain “neighborhood” of the true parameter θ0.

As our loss function ℓθ(µ, ν) is bounded with re-
spect to both the parameter θ and the measures (µ, ν),
we can employ the approach outlined in Section 3.4.1 of
Syring and Martin [2023] to verify the condition concerning
the loss function. Since the parameter space is finite
dimensional, the prior mass condition can be easily verified.

The presence of the logarithm factor in the contrac-
tion rate is due to the fact that in the finite dimensional case,
it is impossible for a fixed prior to assign mass bounded
away from 0 to a shrinking neighborhood of θ0.

We note that the proof of the contraction result in
Theorem 1 does not rely on the properties of Bernstein
basis functions. Therefore, this result can be adapted to
alternative choices of basis functions, such as monotone
B-spline bases [Leitenstorfer and Tutz, 2006].

3.3.2 Imperfect Observations

We now consider the case where we do not observe
{(µi, νi)}ni=1 but rather samples {xij}mj=1 and {yij}mj=1

from µi, νi, respectively, for i = 1, . . . , n. We let µ̂m
i

denote the estimated covariate measure µi based on the
sample {xij}mj=1 and ν̂mi denote the estimated response
measure νi based on the sample {yij}mj=1. For simplicity
we consider the setting where the sample size m is the same
for all covariate and response measures.

To study the rate of convergence of the Gibbs poste-
rior distribution, we assume that for any (µ, ν) ∼ P , we
have a sequence of (deterministic) absolutely continuous
measures µ̂m and a sequence of (deterministic) measures
ν̂m such that

dW(µ̂m, µ) ≲ r−1
m

dW(ν̂m, ν) ≲ r−1
m ,

where r−1
m is the convergence rate with respect to the

2-Wasserstein distance.

The empirical risk in this setting is given by

R̃m
n (θ) :=

1

n
ℓθ(µ̂

m, ν̂m)

=
1

2n

n∑
i=1

d2W(Tθ#µ̂m
i , ν̂mi ). (13)



In order for the Gibbs posterior distribution to contract
around the true optimal map Tθ0 , we assume that m(n) is a
deterministic function of n and that m → ∞ as n → ∞ and
r−1
m → 0 as m → ∞, and require that r−

1
2

m < 1
2n

− 1
2 log n

for all n.

Theorem 2. Suppose Assumption 1 and 2 hold. Suppose
r
− 1

2
m < 1

2n
− 1

2 log n for all n. The Gibbs posterior distribu-
tion (4) with empirical risk in (13) asymptotically concen-
trates around the true optimal transport map Tθ0

where θ0

is the unique minimizer of R(θ) defined in (10) with respect
to || · ||L2(Q) at rate (at least) ϵn ≍ n−1/2(log n)1/2. That
is,

PnΠn({θ : ||Tθ − Tθ0
||L2(Q) > Mϵn}) → 0

as n → ∞.

The proof of Theorem 2 is presented in the supplementary
material. Directly applying the general contraction theorems
presented in Syring and Martin [2023] is not feasible in
the current context. Nonetheless, we can modify the proof
methodology in Theorem 3.2 of Syring and Martin [2023]
to suit our current scenario.

3.4 BAYESIAN COMPUTATION

With prior specification described above, we sample from
the Gibbs posterior distribution of u0, . . . , uK , γ0, . . . , γK
and pγ . The posterior of θ and hence the optimal transport
map Tθ are then induced from the posterior of u0, . . . , uK .
We describe the sampling procedure for the scenario of
perfect observation of measures, highlighting that the
process for imperfect observation is entirely analogous.

We first initialize all parameters (γ(0)
0 , γ

(0)
1 , . . . , γ

(0)
K ), p(0)γ ,

and (u
(0)
0 , u

(0)
1 , . . . , u

(0)
K ). For each iteration t+ 1, and for

each k = 0, 1, . . . ,K, we jointly sample (γ
(t+1)
k , u

(t+1)
k )

as follows:

γ̃
(t+1)
k =

{
1− γ

(t)
k with probability = qγ

γ
(t)
k with probability = 1− qγ ,

where qγ ∈ (0, 1).

Conditional on γ̃
(t+1)
k = 0, we set ũ

(t+1)
k = 0. Oth-

erwise, we draw ũ
(t+1)
k from Unif(0, 1).

We then compute θ̃
(t+1)

using

u
(t+1)
0 , u

(t+1)
1 , . . . , u

(t+1)
k−1 , ũ

(t+1)
k , u

(t)
k+1, . . . , u

(t)
K ,

and set (γ(t+1)
k , u

(t+1)
k ) = (γ̃

(t+1)
k , ũ

(t+1)
k ) with probability

equal to

min

{
1,

e−ωnRn(θ̃
(t+1)

)πγ(γ̃
(t+1)
k )

e−ωnRn(θ(t))πγ(γ
(t)
k )

}
, (14)

and (γ
(t+1)
k , u

(t+1)
k ) = (γ

(t)
k , u

(t)
k ) otherwise, and

πγ(γk) = pγk
γ (1− pγ)

1−γk .

The full conditional posterior distribution of pγ is of
closed form and can be sampled directly:

p(t+1)
γ ∼ Ber

(
ap+

K∑
k=0

γ
(t+1)
k , bp+K+1−

K∑
k=0

γ
(t+1)
k

)
.

We need to specify the polynomial order K for BP. Un-
like monotone regression, where various strategies exist for
determining K, such as setting it to the order of unique
predictor values in the data, our context is more intricate.
Therefore, we opt for a larger value of K and rely on the
fitting procedure to eliminate unnecessary basis functions.
In our simulation studies and data application, we opt for
K = 50 while also examining alternative values for K.

4 SIMULATION STUDIES

We conduct simulation studies to investigate the concen-
tration of the generalized posterior distributions around
the true optimal transport maps. In order to carry out
these simulation studies, we need to simulate the covariate
probability measures {µi}ni=1, the optimal transport map
Tθ0

, and the random error maps {Tϵi}ni=1.

Each of the covariate measures is assumed to be
Beta distribution Be(a, b), with the parameters a and
b generated randomly from beta distributions, where
a ∼ Be(a1, b1) and b ∼ Be(a2, b2).

The parameters θ0 governing the true optimal trans-
port map Tθ0 are sampled from the prior distribution
outlined in Section 3.2. In all simulations, we fix K = 50,
while the sparsity parameter pγ varies across different
simulation scenarios.

To generate the random error maps {Tϵi}ni=1, we
consider the class of random error optimal maps introduced
in Panaretos and Zemel [2016]. The maps are defined as

Ψ0(x) = x,

Ψz(x) = x− sin(πzx)

|z|π
, z ∈ Z− {0}.

These are strictly increasing smooth functions satisfying
Ψz(0) = 0 and Ψz(1) = 1 for all z ∈ Z. Random maps
can be constructed by replacing the integer z with a random
variable Z that has a distribution symmetric around 0, it is
straightforward to see that E(ΨZ(x)) = x for all x ∈ [0, 1].

As in Panaretos and Zemel [2016], we use the following
distribution for Z parameterized by λ > 0:

P(Z = 0) = e−λ,



P(Z = +z) = P(Z = −z) =
e−λλz

2(z!)
, z ∈ Z− {0}.

The random error map can be constructed as follows: for
J > 1, we simulate i.i.d. integer-valued symmetric random
variables zj , j = 1, . . . , J . We then simulate J − 1 uni-
form random variables v1, . . . , vJ−1 ∼ Unif(0, 1). We let
v(1), . . . , v(J−1) denote the order statistics of v1, . . . , vJ−1.
The random error map is then given by

Tϵ(x) = v(1)Ψ(x) +

J−1∑
j=2

(v(j) − v(j−1))Ψzj (x)

+(1− v(J−1))ΨzJ (x).

In all of our simulation scenarios, we set J = 20 and λ = 5.
The response measures {νi}ni=1 are then generated based
on the generated covariate measures {µi}ni=1, the optimal
transport map Tθ0 , and the random error maps {Tϵi}ni=1.

We carry out three simulation studies, producing
n = 100 pairs of covariate-response measures for each
study using the method outlined previously. Then, we
perform posterior sampling on the simulated data, following
the procedure outlined in Section 3.4. In each simulation
study, we apply the algorithm described in Section 3.4 to
subsets of the data containing n = 5, n = 20, n = 50, and
n = 100 pairs of covariate-response measures to explore
how the behavior of the posterior distribution varies with
sample size.

The determination of the learning rate ω for the gen-
eralized posterior distribution is crucial. Several strategies
for selecting ω have been proposed [Grünwald and van
Ommen, 2017, Holmes and Walker, 2017, Lyddon et al.,
2019, Syring and Martin, 2018], with a comparative analysis
presented in Wu and Martin [2023]. In our current scenario,
we adopt the strategies of Syring and Martin [2018]
and Syring and Martin [2023] to let ω be a decreasing
function of the sample size n and also tune ω to ensure the
resulting Gibbs posterior has sufficient coverage probability.

The outcomes of the simulation studies are depicted
in Figures 1, 2, and 3. These figures showcase the
estimated posterior means and posterior credible intervals
of the optimal transport map, juxtaposed with the true
optimal transport map. Notably, the posterior mean of
the optimal transport map adeptly captures the true
counterpart across all scenarios, with the true map being
well-contained within the posterior credible intervals. These
observations hold true across all three simulation scenarios
and various sample sizes. Hence, even with a smaller
sample size of n = 5, the recovery of the true optimal
transport map appears successful. This observation is not
entirely unexpected, as one can interpret each covariate-
response pair as containing an infinite amount of data points.

In the supplementary material, we will further inves-
tigate the behavior of the model when it is misspecified
for the true optimal transport maps. The first scenario
involves the specified models having fewer basis functions
K than the true optimal transport maps. The second, more
challenging scenario occurs when the true optimal transport
maps do not belong to the model class, meaning they cannot
be expressed as linear combinations of BP basis functions.

Figure 1: Simulation 1. Top left: n=5 (ω = 500). Top right:
n=20 (ω = 200). Bottom left: n=50 (ω = 100). Bottom
right: n=100 (ω = 50). Black curve: True optimal transport
map. Blue dashed curves: estimated posterior mean and 95%
posterior credible intervals of optimal transport map.

5 DATA APPLICATION - ANALYSIS OF
MORTALITY DATA

We examine the age-at-death distributions for N = 37
countries in the years 1983 and 2013, sourced from the
Human Mortality Database accessible via UC Berkeley
and the Max Planck Institute for Demographic Research,
openly available on www.mortality.org. The provided death
rates span single years of age up to 109, with an open
age interval for individuals aged 110 and above. Utilizing
the binsmooth R package (version 0.2.2), we fit smooth
cubic splines to the binned data to estimate the cumulative
distribution functions (CDFs) for each country for both year
1983 and 2013. Specifically, we designate the age-at-death
distribution for the ith country in the year 1983 as the
covariate distribution, and the corresponding distribution
for the same country in the year 2013 as the response
distribution. This allows for comparisons with the studies
by Pegoraro and Beraha [2022] and Chen et al. [2023].

Figure 4 displays the posterior mean of the optimal



Figure 2: Simulation 2. Top left: n=5 (ω = 500). Top right:
n=20 (ω = 200). Bottom left: n=50 (ω = 100). Bottom
right: n=100 (ω = 50). Black curve: True optimal transport
map. Blue dashed curves: estimated posterior mean and 95%
posterior credible intervals of optimal transport map.

Figure 3: Simulation 3. Top left: n=5 (ω = 500). Top right:
n=20 (ω = 200). Bottom left: n=50 (ω = 100). Bottom
right: n=100 (ω = 50). Black curve: True optimal transport
map. Blue dashed curves: estimated posterior mean and 95%
posterior credible intervals of optimal transport map.

transport map, accompanied by 95% credible intervals.
These results are derived through the MCMC sampling ap-
proach outlined in Section 3.4, utilizing covariate-response
pairs for the n = 37 countries. Here, we set K = 50
and pγ = 0.2. Notably, the estimated posterior mean
optimal transport map surpasses the identity transport map
pointwise, suggesting an overall enhancement in mortality

rates across all age groups, with the most significant
improvements observed in younger age groups. These
findings align with those of Pegoraro and Beraha [2022].
To evaluate the model’s goodness of fit, we compare the
cumulative distribution functions (CDFs) at year 2013
obtained from the MCMC samples with the observed CDFs
at year 2013. Figure 5 illustrates this comparison, indicating
a favorable fit of the model to the data.

Figure 4: Mortality dataset. Blue: posterior mean and 95%
credible intervals of the optimal transport map. Red: identity
transport map.

6 DISCUSSION

In this study, we introduced a generalized Bayesian frame-
work for distribution-on-distribution regression. We studied
the contraction rates of the Gibbs posterior distribution un-
der two scenarios: one where both covariate and response
measures are fully observed, and another where we only
have access to samples from these measures. Experimen-
tal studies were conducted to investigate the contraction
properties of the posterior distribution.

In our theoretical analysis, we made the assumption that
the true optimal transport map can be represented as con-
vex combinations of basis functions from BP. However, it
is desirable to examine the contraction rates of the poste-
rior distribution in cases where the true optimal transport
map does not conform to this assumed form. This may ne-
cessitate a different proof strategy, as our current approach
heavily relies on this assumption. Additionally, an intriguing
extension would involve extending the framework to higher
dimensional settings. Nonetheless, in higher dimensions,
there’s often a trade-off between the flexibility of optimal
transport maps and computational efficiency. One potential
avenue to explore is adapting the additive monotone regres-
sion approach proposed by Engebretsen and Glad [2019] to
our present context.



Figure 5: Black: True CDFs of age-at-death distribution in
year 2013 for each country. Red: Estimated posterior means
and posterior credible intervals of CDFs in year 2013 for
each country.
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A PROOFS

A.1 PROOF OF THEOREM 1

We first state a lemma which is a direct implication of Lemma 3.6 of Ghodrati and Panaretos [2022]. For η ∈ RK+1, we
define

Tη(x) :=

M∑
k=0

ηkGB(k,K−1+k)(x).

Note that we have extended the definition of the map Tη from Θ to RK+1.

Lemma 1. For ϵ > 0, we have the following expansion of the expected risk around θ1:

R(θ1 + ϵη) = R(θ1) + ϵDηR(θ1) +
ϵ2

2
||Tη||2L2(Q)

where

DηR(θ1) =

∫
W2(Ω)×W2(Ω)

∫ 1

0

(Tθ(F
−1
µ (p))− F−1

ν (p))Tη(F
−1
µ (p))dpdP (µ, ν)

is the directional derivative of R(θ1) in the direction of η.

Proof of Theorem 1. We apply Theorem 3.2 of Syring and Martin [2023] to derive the stated contraction rate.

We need to show that the loss function ℓθ satisfies the sub-exponential condition:

There exists an interval (0, ω̄) and constant K > 0 such that for all ω ∈ (0, ω̄) and for all sufficiently small
δ > 0, for θ ∈ Θ,

||Tθ − Tθ0
||L2(Q) > δ =⇒ Pe−ω(ℓθ−lθ0

) < e−Kωδ2 . (15)

We also need to show that the prior Π puts sufficient amount of mass on “neighborhood” Gn of the true parameter θ0:

log Π(Gn) ≳ −nϵ2n, (16)

where Gn is defined as
Gn := {θ ∈ Θ : u(θ,θ0) ≤ ϵ2n, v(θ,θ0) ≤ ϵ2n}, n = 1, 2, . . . ,

and u(θ,θ0) and v(θ,θ0) are the mean and variance of excess risk:

u(θ,θ0) :=
1

2
P (d2W(Tθ#µ, ν)− d2W(Tθ0

#µ, ν)) = R(θ)−R(θ0),
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and

v(θ,θ0) := P

((
1

2
d2W(Tθ#µ, ν)− 1

2
d2W(Tθ0#µ, ν)

)2)
− u(θ,θ0)

2.

We first show that the sub-exponential condition (15) is satisfied. By compactness of Ω, we have that for all θ ∈ Θ and all
(µ, ν) in the support of P ,

ℓθ(µ, ν)− ℓθ0
(µ, ν) < C,

for some constant C > 0. Thus, by Section 3.4.1 of Syring and Martin [2023],

Pe−ω(ℓθ−lθ0
) ≤ exp

(
− ωu(θ,θ0) + Cω3v(θ,θ0)

)
,

for ω small enough.

Now, consider θ1,θ2 ∈ Θ, and let η = θ2 − θ1. By Lemma 1, we have

R(θ1 + ϵη) = R(θ1) + ϵDηR(θ1) +
ϵ2

2
||Tη||2L2(Q)

where DηR(θ1) is the directional derivative of R(θ1) in the direction of η.

For any θ ∈ Θ, let η = θ − θ0, applying the expansion above with ϵ = 1, we have

R(θ)−R(θ0) = DηR(θ0) +
1

2
||Tη||2L2(Q).

Since θ0 is the minimizer of R, we have DηR(θ0) = 0, and thus

u(θ,θ0) = R(θ)−R(θ0) =
1

2
||Tη||2L2(Q) =

1

2
||Tθ − Tθ0

||2L2(Q). (17)

We also have that

|d2W(Tθ1
#µ, ν)− d2W(Tθ2

#µ, ν)| ≲ |dW(Tθ1
#µ, ν)− dW(Tθ2

#µ, ν)|
≤ dW(Tθ1

#µ, Tθ2
#µ)

= ||Tθ1
− Tθ2

||L2(µ)

≲ ||Tθ1
− Tθ2

||L2(Q).

where the second inequality follows from triangle inequality, and the equality follows from that W2(Ω) is flat. Therefore, it
follows that

v(θ,θ0) ≲ ||Tθ − Tθ0
||2L2(Q) ≲ u(θ,θ0). (18)

Combining (17) and (18), We obtain

Pe−ω(ℓθ−lθ0
) ≤ exp

(
− C1ωu(θ,θ0)

)
= exp

(
− 1

2
C1ω||Tθ − Tθ0 ||2L2(Q)

)
for some constant C1 > 0. It follows that ||Tθ − Tθ0

||L2(Q) > δ implies that

Pe−ω(ℓθ−lθ0
) ≤ exp

(
− 1

2
C1ωδ

2

)
,

and Condition (15) is verified.

We now verify the prior mass condition (16). We note that our prior specification satisfies

Π({||θ − θ0||2 ≤ δ) ≳ δK+1,



where || · ||2 is the 2-norm on RK+1. Since ||θ − θ0||2 ≤ δ implies ||Tθ − Tθ0 ||L2(Q) ≲ δ, it follows that

Π({||Tθ − Tθ0 ||L2(Q) ≤ δ) ≳ δK+1.

Since ||Tθ − Tθ0
||L2(Q) ≤ δ implies {u(θ,θ0) ≲ δ2, v(θ,θ0) ≲ δ2}, we have

Π(Gn) ≳ Π({θ : ||Tθ − Tθ0
||L2(Q) ≤ ϵn}) ≳ ϵK+1

n .

Therefore, with ϵn = n−1/2(log n)1/2, we have

log Π(Gn) ≳ − log n ≳ −nϵ2n.

Thus, the prior mass condition is satisfied, and the proof is completed.

A.2 PROOF OF THEOREM 2

For each m = 1, 2, . . . , we define

R̃m(θ) :=
1

2

∫
W2(Ω)×W2(Ω)

d2W(Tθ#µ̂m, ν̂m)dP (µ, ν). (19)

Also define the mean and variance of excess risk as

um(θ,θ0) :=
1

2
P (d2W(Tθ#µ̂m, ν̂m)− d2W(Tθ0#µ̂m, ν̂m)) = R̃m(θ)− R̃m(θ0),

and

vm(θ,θ0) := P

((
1

2
d2W(Tθ#µ̂m, ν̂m)− 1

2
d2W(Tθ0#µ̂m, ν̂m)

)2)
− um(θ,θ0)

2.

We first prove the following lemma bounding um(θ,θ0) and vm(θ,θ0) in terms of ||Tθ − Tθ0 ||2L2(Q) and r−1
m .

Lemma 2.
||Tθ − Tθ0 ||2L2(Q) − r−1

m ≲ um(θ,θ0) ≲ ||Tθ − Tθ0 ||2L2(Q) + r−1
m ,

vm(θ,θ0) ≲ ||Tθ − Tθ0
||2L2(Q) + r−2

m .

Proof. We first have the following decomposition of um(θ,θ0):

R̃m(θ)− R̃m(θ0) = R̃m(θ)−R(θ)︸ ︷︷ ︸+R(θ)−R(θ0)︸ ︷︷ ︸+R(θ0)− R̃m(θ0)︸ ︷︷ ︸ . (20)

We bound each of the three terms on the RHS of (20).

R̃m(θ)−R(θ) = P

(
d2W(Tθ#µ̂m, ν̂m)− d2W(Tθ#µ, ν)

)
= P

(
d2W(Tθ#µ̂m, ν̂m)− d2W(Tθ#µ̂m, ν) + d2W(Tθ#µ̂m, ν)− d2W(Tθ#µ, ν)

)
.

We have that

P

(
d2W(Tθ#µ̂m, ν̂m)− d2W(Tθ#µ̂m, ν)

)
= P

((
dW(Tθ#µ̂m, ν̂m)− dW(Tθ#µ̂m, ν)

)(
dW(Tθ#µ̂m, ν̂m) + dW(Tθ#µ̂m, ν)

))
≥ P

(
− dW(ν̂m, ν)

(
dW(Tθ#µ̂m, ν̂m) + dW(Tθ#µ̂m, ν)

))
≳ P (−dW(ν̂m, ν))

≳ −r−1
m ,



where the first inequality follows from the reverse triangle inequality, and the last inequality follows from our assumption.
We also have that

P

(
d2W(Tθ#µ̂m, ν̂m)− d2W(Tθ#µ̂m, ν)

)
= P

((
dW(Tθ#µ̂m, ν̂m)− dW(Tθ#µ̂m, ν)

)(
dW(Tθ#µ̂m, ν̂m) + dW(Tθ#µ̂m, ν)

))
≤ P

(
dW(ν̂m, ν)

(
dW(Tθ#µ̂m, ν̂m) + dW(Tθ#µ̂m, ν)

))
≲ r−1

m

by an application of the triangle inequality.

Similarly, we can show that

−r−1
m ≲ P

(
d2W(Tθ#µ̂m, ν)− d2W(Tθ#µ, ν)

)
≲ r−1

m .

It follows that the first term on the RHS of (20) can be bounded as

−r−1
m ≲ R̃m(θ)−R(θ) ≲ r−1

m .

Using the same calculation, we also have the bound for the third term on the RHS of (20):

−r−1
m ≲ R(θ0)− R̃m(θ0) ≲ r−1

m .

For the second term on the RHS of (20), we recall from the proof of Theorem 1 that

R(θ)−R(θ0) =
1

2
||Tθ − Tθ0 ||2L2(Q).

Thus, we obtain the following bound for um(θ,θ0):

||Tθ − Tθ0
||2L2(Q) − r−1

m ≲ um(θ,θ0) ≲ ||Tθ − Tθ0
||2L2(Q) + r−1

m .

Now we try to obtain the upper bound for vm(θ,θ0). By triangle inequality,

|dW(Tθ#µ̂m, ν̂m)− dW(Tθ0#µ̂m, ν̂m)|
≤ |dW(Tθ#µ̂m, ν̂m)− dW(Tθ#µ, ν)|+ |dW(Tθ#µ, ν)− dW(Tθ0#µ, ν)|

+|dW(Tθ0#µ, ν)− dW(Tθ0#µ̂m, ν̂m)|

Similar calculations as above lead to

|dW(Tθ#µ̂m, ν̂m)− dW(Tθ#µ, ν)| ≲ r−1
m

and
|dW(Tθ0

#µ, ν)− dW(Tθ0
#µ̂m, ν̂m)| ≲ r−1

m .

We also have that

|dW(Tθ#µ, ν)− dW(Tθ0
#µ, ν)| ≤ dW(Tθ#µ, Tθ0

#µ)

= ||Tθ − Tθ0
||L2(µ)

≲ ||Tθ − Tθ0
||L2(Q).

Since
vm(θ,θ0) ≲ P (|dW(Tθ#µ̂m, ν̂m)− dW(Tθ0

#µ̂m, ν̂m)|2),

it follows that
vm(θ,θ0) ≲ ||Tθ − Tθ0

||2L2(Q) + r−2
m .



We are now in a position to prove Theorem 2.

Proof of Theorem 2. Let An := {θ ∈ Θ : ||Tθ − Tθ0 ||L2(Q) > Mϵn}. The Gibbs posterior probability of An is given by

Πn(An) =
Nm

n (An)

Dm
n

=

∫
An

exp
(
− ωn

(
R̃m

n (θ)− R̃m
n (θ0)

))
Π(dθ)∫

Θ
exp

(
− ωn

(
R̃m

n (θ)− R̃m
n (θ0)

))
Π(dθ)

.

Note that m(n) is assumed to be a deterministic function of n. We aim to show that PnΠn(An) → 0 as n → ∞. We define
the set

Gm
n := {θ ∈ Θ : um(θ,θ0) ≤ ϵ2n, vm(θ,θ0) ≤ ϵ2n}.

By Lemma 2 and the assumption ϵ2n > r−1
m , Gm

n is implied by the event

Hm
n := {θ ∈ Θ : ||Tθ − Tθ0

||2L2(Q) ≤ c(ϵ2n − r−1
m )},

for some constant c > 0. We thus have
Π(Gm

n ) ≥ Π(Hm
n ) ≳ ϵK+1

n ,

from which it follows that
log Π(Gm

n ) ≳ −nϵ2n.

Since the excess loss
ℓθ(µ̂

m, ν̂m)− ℓθ0(µ̂
m, ν̂m)

is bounded for all θ and (µ̂m, ν̂m), when
||Tθ − Tθ0

||2L2(Q) > ϵn,

we apply Section 3.4.1 of Syring and Martin [2023] to obtain

Pe−nω(R̃m
n (θ)−R̃m

n (θ0)) ≤ exp
(
− nc0ω

(
||Tθ − Tθ0 ||2L2(Q) − r−1

m(n) − r−2
m(n)

))
≤ exp

(
− nc1ω(ϵ

2
n − r−1

m )
)

≤ exp
(
− nc2ωϵ

2
n

)
for some constants c0, c1, c2 > 0. By Fubini’s Theorem, we have

PnNn(An) =

∫
An

Pe−ωn(R̃m
n (θ)−R̃m

n (θ0))Π(dθ) ≤ exp
(
− nc2ωM

2ϵ2n

)
.

Following essentially the same lines as the proof of Lemma 1 of Syring and Martin [2023], we obtain

Pn

(
Dm

n >
1

2
Π(Gm

n )e−2ωnϵ2n

)
→ 1,

as n → ∞.

Let bmn = 1
2Π(G

m
n )e−2ωnϵ2n , we have

Pn(Dm
n ≤ bmn ) → 0

as n → ∞. Since

Πn(An) ≤ Nm
n (An)

Dm
n

1(Dm
n > bmn ) + 1(Dm

n ≤ bmn )

≤ b−1
n Nm

n (An) + 1(Dm
n ≤ bmn )

It follows that
PnΠn(An) → 0

as n → ∞. The proof is completed.



B ADDITIONAL SIMULATION STUDIES

In order to evaluate the robustness of our proposed model and posterior sampling strategy, we conduct additional simulation
studies aimed at investigating its behavior under mis-specification. We conduct simulation studies to investigate the behavior
of the model under two scenarios of mis-specification. The first scenario involves the specified models having fewer basis
functions than the true optimal transport maps. The second, more challenging scenario occurs when the true optimal
transport maps do not belong to the model class.

In the first scenario, we replicate the simulation settings described in the main article, wherein the true optimal
transport map is generated using BP basis functions with a polynomial order of K = 50. However, in the model fitting
process, we set the polynomial order to K = 20. The outcomes of these experiments are illustrated in Figures 6, 7, and 8.
Upon examination of the results, we observe that despite the mis-specification in the model fitting, the true optimal transport
maps are successfully recovered in all scenarios. This suggests that our proposed model and posterior sampling strategy
exhibit robustness to mis-specification, demonstrating their effectiveness in capturing underlying patterns even when the
model assumptions are not entirely met.

In the second scenario, the true optimal transport maps cannot be expressed as linear combinations of BP basis
functions. We conduct two simulations, and the results are shown in Figures 9 and 10. In the first case, the true optimal map
can still be well approximated by BP basis functions, allowing the true optimal map to be well estimated. In the second
scenario, the true optimal map is a step function with discontinuities and cannot be well approximated using BP basis
functions. Consequently and not surprisingly, the estimated maps do not capture the shape of the true map.

Figure 6: Simulation 1. Top left: n=5 (ω = 500). Top right: n=20 (ω = 200). Bottom left: n=50 (ω = 100). Bottom right:
n=100 (ω = 50). Black curve: True optimal transport map. Blue dashed curves: estimated posterior mean and posterior
credible intervals of optimal transport map.



Figure 7: Simulation 2. Top left: n=5 (ω = 500). Top right: n=20 (ω = 200). Bottom left: n=50 (ω = 100). Bottom right:
n=100 (ω = 50). Black curve: True optimal transport map. Blue dashed curves: estimated posterior mean and posterior
credible intervals of optimal transport map.



Figure 8: Simulation 3. Top left: n=5 (ω = 500). Top right: n=20 (ω = 200). Bottom left: n=50 (ω = 100). Bottom right:
n=100 (ω = 50). Black curve: True optimal transport map. Blue dashed curves: estimated posterior mean and posterior
credible intervals of optimal transport map.



Figure 9: Simulation 4. Top left: n=5 (ω = 500). Top right: n=20 (ω = 200). Bottom left: n=50 (ω = 100). Bottom right:
n=100 (ω = 50). Black curve: True optimal transport map. Blue dashed curves: estimated posterior mean and posterior
credible intervals of optimal transport map.



Figure 10: Simulation 5. Top left: n=5 (ω = 500). Top right: n=20 (ω = 200). Bottom left: n=50 (ω = 100). Bottom right:
n=100 (ω = 50). Black curve: True optimal transport map. Blue dashed curves: estimated posterior mean and posterior
credible intervals of optimal transport map.
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