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Abstract
Automated Essay Scoring (AES) systems now001
attain near–human agreement on public bench-002
marks, yet real-world adoption—especially in003
high-stakes examinations—remains limited. A004
principal obstacle is that most models output005
a single score without any accompanying mea-006
sure of confidence or explanation. We ad-007
dress this gap with conformal prediction, a008
distribution-free wrapper that equips any clas-009
sifier with set-valued outputs enjoying formal010
coverage guarantees. Two open-weight large011
language models—Llama-3 8B and Qwen-2.5012
3B—are fine-tuned on three diverse corpora013
(ASAP, TOEFL11, Cambridge-FCE) and cal-014
ibrated at a 90% risk level. Reliability is as-015
sessed with UAcc, an uncertainty-aware accu-016
racy that rewards models for being both correct017
and concise. To our knowledge, this is the018
first work to combine conformal prediction and019
UAcc for essay scoring. The calibrated mod-020
els consistently meet the coverage target while021
keeping prediction sets compact, demonstrat-022
ing that trustworthy, uncertainty-aware AES is023
already feasible with mid-sized, open source024
LLMs and paving the way for safer human-in-025
the-loop marking.026

1 Introduction027

Automated Essay Scoring (AES) has evolved028

rapidly—from linear regressors built on hand-029

crafted features (Phandi et al., 2015), through030

CNN–LSTM hybrids that capture local and031

long-range coherence (Taghipour and Ng, 2016),032

to transformer encoders such as R2BERT that033

pair BERT representations with joint regres-034

sion–ranking objectives and reach state-of-the-art035

agreement on ASAP essays (Yang et al., 2020).036

The latest step is the move to open-weight large037

language models (LLMs): lightly tuned Llama vari-038

ants now approach human-human agreement on039

several AES benchmarks (Xiao et al., 2025).040

Headline accuracy, however, is not enough for high-041

stakes settings such as TOEFL or the Cambridge 042

First Certificate, where a single mis-scored script 043

can determine admission or visa status. Exam 044

boards need calibrated confidence. Common ap- 045

proaches to measuring uncertainty include Monte- 046

Carlo dropout (Gal and Ghahramani, 2016), deep 047

ensembles (Lakshminarayanan et al., 2017) and 048

Bayesian neural networks(Goan and Fookes, 2020). 049

These methods are effective but either multiply in- 050

ference cost or offer no finite-sample guarantees. 051

Conformal prediction (CP) (Angelopoulos and 052

Bates, 2021) provides such guarantees by wrap- 053

ping any classifier with a set-valued output that 054

contains the true label with user-chosen probability. 055

CP has improved reliability in tasks from surrogate 056

models (Gopakumar et al., 2024) to question an- 057

swering, yet it has not been applied to AES, and 058

no study has linked calibration quality to scoring 059

usefulness. We bridge that gap with UAcc—an 060

uncertainty-aware accuracy that rewards models 061

that are correct and selective (Ye et al., 2024). 062

In this paper, we fine-tune two state-of-the-art 063

LLMs—Llama-3 8B and Qwen-2.5 3B—on three 064

public essay corpora (ASAP (Kaggle, 2012), 065

TOEFL11 (Daniel Blanchard, 2014), Cambridge- 066

FCE (Yannakoudakis et al., 2011)). Each scorer is 067

then calibrated with conformal prediction so that 068

its prediction set is guaranteed, by construction, to 069

contain the true score in at least 90 % of future es- 070

says. We evaluated these calibrated models with the 071

uncertainty-aware accuracy UAcc, alongside stan- 072

dard accuracy and quadratic-weighted κ. Across all 073

corpora, the models meet the 90% coverage guaran- 074

tee while keeping prediction sets tight, showing that 075

uncertainty-aware AES is already practical with 076

mid-sized, openly licensed LLMs. By uniting mod- 077

ern language models, distribution-free calibration, 078

and an uncertainty-sensitive metric, we provide the 079

first comprehensive picture of trustworthy essay 080

scoring across multiple proficiency tests. 081
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2 Background082

This work combines a standard essay-scoring083

model with conformal prediction so that every pre-084

diction comes with a statistically valid notion of085

confidence.086

2.1 Essay-scoring task087

An essay x must receive one label y from a fixed088

set of K possible scores (e.g. the integers 2–12089

for ASAP, or the three bands low/med/high for090

TOEFL). A neural scorer f takes the essay text091

and outputs a probability for each label; we denote092

that distribution by p̂(y | x).093

2.2 Conformal prediction (CP)094

Conformal prediction turns those probabilities into095

a prediction set Cα(x) ⊆ {1, . . . ,K} that is guar-096

anteed to contain the true score with high proba-097

bility. Formally, for a user-chosen risk level α (we098

use α = 0.1), CP ensures099

Pr[y ∈ Cα(x)] ≥ 1− α (1)100

so the true score falls outside the set in at most 10%101

of future essays.102

How conformal sets are constructed. To build103

a prediction set using conformal prediction, the104

data is first split into three parts: a training set for105

fitting the model, a calibration set for estimating106

uncertainty, and a test set for evaluation.107

For a given model f and input essay x, the score108

assigned to each possible label y is defined as109

s(x, y) = 1− p̂(y | x) (2)110

where p̂(y | x) is the model’s predicted probabil-111

ity. This is known as the least-ambiguous classifier112

(LAC) score—lower scores indicate higher confi-113

dence.114

Using the calibration set, the conformal algorithm115

computes a threshold qα such that at most an α116

fraction of calibration scores exceed it. Then, for117

any new essay x, the prediction set is formed by in-118

cluding all labels with scores below this threshold:119

Cα(x) = {y ∈ Y | s(x, y) ≤ qα} (3)120

This guarantees that the prediction set contains the121

true label with probability at least 1− α.122

2.3 Metrics 123

We evaluate models using both standard and 124

uncertainty-aware criteria. In addition to accu- 125

racy and quadratic-weighted kappa (QWK), we 126

report three key metrics specific to conformal pre- 127

diction: (i) Coverage, the proportion of test essays 128

for which the true label is contained in the predic- 129

tion set Cα(x); (ii) Average set size, measuring 130

how many labels are typically included—smaller is 131

better; and (iii) UAcc which balances correctness 132

and conciseness via 133

UAcc = Accuracy ×
√

K

avg. |Cα(x)|
(4) 134

where K is the number of classes. UAcc penalises 135

large or overly cautious prediction sets, rewarding 136

models that are both accurate and selective. 137

3 Experimental Setup 138

3.1 Models and tokenisation 139

We experiment with two openly licensed gener- 140

ative LLMs: Llama-3 8B (Dubey et al., 2024) 141

and Qwen-2.5 3B (Yang et al., 2024). Both are 142

loaded via HuggingFace Transformers with 4-bit 143

quantisation; special tokens and maximum context 144

length follow the model cards. For each corpus 145

we prepend a short instruction—“Read the essay 146

and output a single score:”—and rely on the tok- 147

enizer to convert either the integer label (ASAP) or 148

the band token low/medium/high (TOEFL11, FCE) 149

into a single ID, so that the final token distribution 150

can be treated as a 3- or 11-way classifier without 151

adding new parameters. 152

3.2 Fine-tuning 153

Training is performed on a single Nvidia A100- 154

40GB GPU for eight epochs with AdamW (learn- 155

ing rate 1× 10−5) We use a global batch size of 8 156

and truncate inputs at 256 tokens. A fixed random 157

seed (42) is used ensure reproducibility. 158

3.3 Calibration and test split 159

After fine-tuning, the original validation + test por- 160

tion of each corpus is split once into equal-sized 161

calibration and test sets (15 % / 15 % of the full 162

data; exact counts in Table 1). Calibration essays 163

never influence model weights. 164

3.4 Conformal prediction 165

For every essay–label pair we compute the least- 166

ambiguous classifier score s(x, y) = 1− p̂(y | x), 167
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where p̂ is the model’s softmax probability. The168

(1−α) quantile of these scores on the calibration set169

with α = 0.1 yields the threshold qα. At inference170

time we return all labels whose scores fall below171

qα, guaranteeing that the prediction set contains the172

true label in at least 90 % of future essays.173

3.5 Evaluation metrics174

We report conventional accuracy and quadratic-175

weighted κ (QWK) together with three uncertainty-176

aware measures introduced in Section 2: Coverage,177

the empirical proportion of essays whose true label178

lies in the prediction set; Average set size, a proxy179

for informativeness; and UAcc, which trades off180

accuracy against set size.181

3.6 Datasets182

Table 1 lists the three corpora and the statistics183

derived from our 70 / 15 / 15 train–calibration–test184

split.185

ASAP Prompt 1 Essays written by secondary-186

school students and graded on an eleven-point scale187

(2–12). We keep the full scale for as retaining an188

intermediate label space allows us to study how189

uncertainty behaves when the number of possible190

scores increases—something neither TOEFL11 (3191

classes) nor FCE (3 bands) can reveal.192

TOEFL11 Internet-based TOEFL essays pre-193

labelled low, medium or high.194

Cambridge-FCE Scripts scored holistically195

1–40. To align with TOEFL11 and keep predic-196

tion sets interpretable, we divide the range into197

equal-width thirds—1–18 (low), 19–30 (medium)198

and 31–40 (high). This heuristic balances the three199

classes and prevents prediction sets from balloon-200

ing to forty labels; exploring finer buckets is left201

for future work.202

4 Results and Discussion203

Across all three corpora, the calibrated Llama mod-204

els achieve the highest quadratic-weighted κ, con-205

firming that stronger back-bones still translate into206

better agreement with human graders even after207

quantisation and LoRA fine-tuning. Crucially, they208

do so while returning the tightest prediction sets:209

roughly 2.7 labels on the 11-way ASAP rubric and210

fewer than two labels on the three-class TOEFL11211

and FCE tasks. Those concise sets lift UAcc above212

competing systems that share the same point ac-213

curacy. In other words, the Llama scorers are not214

merely correct; they are confident enough to com- 215

mit to a smaller subset of possible scores, which 216

reduces the burden on any downstream human re- 217

viewer. 218

Because UAcc rescales accuracy by
√
K/|C|, a 219

system can gain either by raising raw accuracy or 220

by shrinking its prediction sets. On ASAP, Llama-2 221

and Qwen differ by only four accuracy points (0.54 222

vs 0.50), yet Llama’s sets are 0.8 labels tighter, 223

boosting UAcc from 0.88 to 1.08. In practice that 224

means nearly 20 % fewer essays would be flagged 225

for manual review at the same error rate—an oper- 226

ationally significant saving. 227

Accuracy can be misleading whenever the label dis- 228

tribution is skewed. F1 gives equal weight to each 229

class, revealing whether a model simply exploits 230

the majority label or performs consistently across 231

bands. In our results the gap between accuracy and 232

F1 is small, confirming that the calibrated LLMs 233

do not over-predict a single band; nonetheless, re- 234

porting F1 guards against potential imbalance and 235

strengthens the claim that the models generalise 236

across proficiency levels. 237

Empirical coverage lies within one percentage 238

point of the 90% target on every dataset, demon- 239

strating that a single conformal wrapper gener- 240

alises from an 11-point rubric (ASAP) to 3-labeled 241

(TOEFL11, FCE) despite the shift in prompt style, 242

score range and proficiency level. The larger pre- 243

diction sets observed on ASAP reflect the richer 244

label space: with eleven possible scores the model 245

must sometimes hedge between adjacent grades, a 246

phenomenon less common in the three-band cor- 247

pora. 248

The absolute QWK numbers on FCE are markedly 249

lower than on TOEFL11, even though both datasets 250

use the same low/medium/high mapping. Two fac- 251

tors help to explain the gap. First, the FCE essays 252

are mapped post-hoc from a 40-point holistic scale, 253

and quadratic penalises any band disagreement 254

proportionally to the original distance on that un- 255

derlying scale; a one-band slip therefore receives 256

a much heavier penalty than in TOEFL11, whose 257

native rubric already has three discrete labels. Sec- 258

ond, the FCE corpus is almost one order of mag- 259

nitude smaller than TOEFL11, magnifying the im- 260

pact of label noise and leaving less data for both 261

fine-tuning and calibration. Taken together, these 262

artefacts depress QWK even when coverage and 263
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Corpus Train Cal Test Labels
ASAP P1 1 248 268 267 11-way (2–12)
TOEFL11 8 470 1 815 1 815 low / med / high
Cambridge-FCE 1 742 373 373 low / med / high

Table 1: Dataset sizes after a 70 / 15 / 15 train–calibration–test split. These are the number of essays in each split

Dataset Model QWK Acc. F1 Coverage Avg. |C| UAcc
ASAP P1 Qwen-2.5 3B 0.69 0.50 0.45 0.91 3.51 0.88

Llama-2 7B 0.82 0.54 0.52 0.91 2.74 1.08
Llama-3 8B 0.80 0.54 0.51 0.91 2.81 1.07

TOEFL11 Qwen-2.5 3B 0.69 0.77 0.76 0.89 1.32 1.16
Llama-3 8B 0.70 0.77 0.77 0.89 1.29 1.17

Cambridge-FCE Qwen-2.5 3B 0.16 0.65 0.62 0.95 2.30 0.74
Llama-3 8B 0.28 0.66 0.64 0.88 1.74 0.87

Model (paper) Training epochs / runs QWK (ASAP Prompt 1)
EASE (SVR) (Taghipour and Ng, 2016) — 0.781
LSTM (10×) (Taghipour and Ng, 2016) 10 runs 0.808
Ensemble CNN+LSTM (Taghipour and Ng, 2016) 10 runs 0.821
R2BERT (Yang et al., 2020) 30 epochs 0.817
Fine-tuned GPT-3.5 (Xiao et al., 2025) 10 epochs 0.740
Fine-tuned LLaMA-3 (2-pt) (Xiao et al., 2025) 10 epochs 0.714
Our LLaMA-3 8B (8 ep) 8 epochs 0.800
Our LLaMA-2 7B (8 ep) 8 epochs 0.823

Table 2: Top: calibrated performance on three corpora. Bottom: published ASAP Prompt 1 baselines vs. our
systems.

UAcc remain competitive.264

Overall, these findings show that mid-sized, openly265

licensed LLMs already deliver high scoring accu-266

racy together with calibrated, interpretable uncer-267

tainty which are key prerequisites for deployment268

in high-stakes assessment. The consistent edge of269

Llama-3 over its smaller Qwen counterpart con-270

firms that parameter count and pre-training data271

still matter, yet the margin is small enough to keep272

lower-footprint models in serious contention wher-273

ever hardware or licensing constraints apply.274

5 Conclusion275

We set out to answer whether modern large lan-276

guage models can score essays and express cal-277

ibrated uncertainty in a way that is practical278

for high-stakes assessment. By wrapping two279

LLMs—Llama-3 8B and Qwen-2.5 3B—with280

conformal prediction and judging them with the281

uncertainty-aware metric UAcc, we showed that282

a single, distribution-free calibration step deliv-283

ers near-perfect coverage (90 %) across three very284

different corpora. The stronger Llama backbone285

achieves the best trade-off between agreement with286

human graders (QWK) and prediction-set tightness,287

yet the gap to the smaller Qwen model is mod- 288

est—evidence that trustworthy AES does not re- 289

quire flagship-scale models. Taken together, these 290

results provide the first end-to-end demonstration 291

that mid-sized, openly licensed LLMs can power 292

calibrated, human-in-the-loop essay scoring sys- 293

tems today, while laying the groundwork for fu- 294

ture studies on model size, finer FCE banding, and 295

rubric-aware prompting. 296

Future work will probe the trade-off of model size 297

and performance more systematically: we plan to 298

train a spectrum of model sizes (1B to 13B) from 299

several families to quantify when accuracy and 300

UAcc begin to show diminishing returns. On the 301

data side, we will experiment with finer-grained 302

buckets for the FCE corpus and, more generally, 303

with ordinal-aware conformal scores that respect 304

the underlying scale. Finally, we intend to con- 305

dition prompts on essay characteristics—length, 306

discourse structure to see whether rubric-aware 307

prompting can tighten prediction sets still further 308

without sacrificing coverage. 309
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Limitations310

This study is confined to English and to three pub-311

lic essay corpora, two of which we deliberately312

reduce to a three-band rubric for comparability. Al-313

though conformal prediction delivers the promised314

90 % coverage under these conditions, the guar-315

antee relies on calibration and test data being ex-316

changeable; topic drift, candidate demographics317

or language transfer effects in a real exam ses-318

sion could weaken reliability. Our choice of equal-319

width bands for the 1–40 Cambridge-FCE scale is320

a heuristic that balances class counts but may mask321

finer proficiency distinctions. Likewise, we retain322

ASAP’s full 11-point rubric to explore class-rich323

uncertainty, yet that decision limits direct compari-324

son across datasets.325

From a practical standpoint, even 4-bit LoRA fine-326

tuning of an 8B-parameter model requires a high-327

end GPU; institutions with modest hardware may328

still prefer smaller models. Finally, while cali-329

brated prediction sets indicate how sure the model330

is, they do not explain why a script is low, medium331

or high; integrating rubric-aligned rationales is an332

important next step toward truly interpretable AES.333
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