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ABSTRACT

Machine unlearning aims to revoke some training data after learning in response to
requests from users, model developers, and administrators. Most previous methods
are based on direct fine tuning, which may neither remove data completely nor
retain full performances on the remain data. In this work, we find that, by first mask-
ing some important parameters before fine tuning, the performances of unlearning
could be significantly improved. We propose a new masking strategy tailored
to unlearning based on Fisher information. Experiments on various datasets and
network structures show the effectiveness of the method: without any fine tuning,
the proposed Fisher masking could unlearn almost completely while maintaining
most of the performance on the remain data. It also exhibits stronger stability

comparing with other unlearning baselines.

1 INTRODUCTION

Machine learning algorithms need data for building
models. As a large amount of data-driven models rush-
ing into people’s daily life, operations on regularizing
data usage become crucial. One such operation is re-
moving data from deployed models (also called ma-
chine unlearning (Cao & Yang, 2015)). For instance,
legal laws (e.g., General Data Protection Regulation
(GDPR), California Consumer Privacy Act (CCPA) and
Personal Information Protection and Electronic Docu-
ments Act (PIPEDA)) declare that users have the right
to ask business companies to revoke their personal data.
At the same time, models can benefit from removing
wrongly annotated data (Rajmadhan et al., 2017; Ren
et al., 2021; Pang et al., 2021), systematic biases (Zhao
& Chang, 2020; Kim et al., 2019; Serna et al., 2020),
and backdoor poisoned data (Chen & Dai, 2021; Yan
et al., 2021; Qi et al., 2021).

Given the training set and a subset to remove, the
straightforward (and the optimal) way of unlearning
is re-learning the model. It guarantees a clean removal,
but the computation cost is high. More computationally
efficient approaches are based on fine tuning: starting
a new learning process on the current model with only
remain data. It is known that as the fine tuning process
proceeds, the model gradually forgets those unseen
data points (catastrophic forgetting (Kirkpatrick et al.,
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Figure 1: Example unlearning perfor-
mances. We train ResNet50 with CIFAR-
100, and then ask algorithms to remove all
pictures from a class. y-axis is the testing
performance on that removed class during
unlearning. The results indicate that both
direct fine tuning and influence function can
not effectively unlearn data points. Fisher-
Mask is our proposed method.

2017)). However, fine-tuning-based unlearing could be slow and incomplete in practice. For example,
in Figure 1, we ask ResNet50 to remove all pictures belong to one class of CIFAR-100, and after
fine tuning on remain samples, it still has about 40% accuracy on the removed class (a clean removal
should be 0). Another widely studied fine tuning strategy is based on second-order optimization. Koh
& Liang (2017); Guo et al. (2020) show that with one-step Newton update (also called influence
function), the new model’s prediction behaviour correlates well with the re-learned model, but the
strong correlation there doesn’t imply a successful unlearning: in Figure 1, the one-step Newton
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update almost remove no information (80% accuracy). Hence, given the special initial state (parame-
ters), unlearning with fine tuning is still a challenge: it is hard to escape the local optimum of the old
model.

In this work, we study methods for accelerate unlearning by adding proper perturbations on its
initial state. Instead of adding them randomly (as suggested by most Hitchhiker’s guides to escape
local optimum), we would like the perturbations are biased towards the task of removing data. To
accomplish this, we first identify parameters which are important for modeling the excluded data, and
mask them before fine tuning the model. Our main finding is that Fisher information plays a key role
in masking parameters: it characterizes how parameters contribute to the distance between models
before and after unlearning. We develop a new masking strategy based on Fisher information which
shows strong unlearning performances across different datasets and deep neural network structures.
We conduct extensive empirical evaluations on fine-tuning-based unlearning methods with fair and
reproducible configurations The main empirical findings are,

* comparing with direct fine tuning, the masking strategy significantly improve unlearning perfor-
mances. In fact, even with random masking, the unlearning process could be accelerated.

» comparing with other parameter saliency scores (e.g., neuron activation scores and gradient-based
scores Sundararajan et al. (2017)), masking with Fisher information is effective on balancing
removing and reserving. Without any fine tuning, Fisher masking could unlearn almost completely
while maintaining most of the performance on the remain data.

* unlearning algorithms could be unstable with respect to different network structures, datasets, and
learning rate settings. The Fisher masking exhibits the best stability among current fine-tuning-
based methods.

2 BACKGROUND

Given a dataset D = {(z;, yz)}ﬂ yi; € Y is the label of input z; € X. A learning algorithm tries to

minimize the loss function £(w, D) = vazl £(x;,y;, w) on the training set D, where w is the model

parameter, and £ is the log-loss ¢(x, y, w) = — log p(y|z, w). We denote w* = arg min,, L(w, D).

Let Dy be the subset that we want to remove from the model (forget set), and D,. = D \ Dy contains
remain data samples (remain set). D could be any subset of D, but for evaluation purpose, we mainly
focus on cases that Dy contains all samples belong to the same class (Shibata et al., 2021; Wang
et al., 2022). In this case, the target of unlearning is to obtain w, which 1) has similar performances
on D, as w} = arg min,, £(w, D,), and 2) contains no information about D (i.e., zero accuracy on
samples in D like wy). !

Instead of fully re-training from scratch, one could solve the objective arg min,, £(w, D,.) from w*
(i.e., fine tuning). While any optimization procedure could be applied (e.g., SGD), Koh & Liang
(2017); Koh et al. (2019); Golatkar et al. (2020a) show that for the special setting of the initial state
(wo = w*), one-step Newton update could be an effective move towards the unlearning target w;:.
Specifically, the influence function used in (Koh & Liang, 2017; Koh et al., 2019) approximates the
difference between w* and w;: with,

1
w:j AWy = w* + inﬁ(W*aD)_lvw‘c(W*an)'
!

The approximation is obtained by Taylor expansion of £(w, D) at the stationary w*, which assumes
a small forget set D . Golatkar et al. (2020a) add a noise term to the one-step Newton update which
aims to approximately minimize KL-divergence between 0, and wy,

Wk~ = w* — V2 L(w*, D) 'V L(w*, D,) + (Ao iV L(w*, D,) 7e, (1)
where \, o are hyperparameters, and € ~ N (0, I) is a Gaussian noise.

Although fine tuning with Newton-updates only needs one step, it is expensive to compute Hessian
matrices for deep neural networks. Koh & Liang (2017) apply the iterative LiSSA algorithm (Agarwal

"For arbitrary D f, zero accuracy is not sufficient for validating unlearning. For example, if we have
Dy = D, (duplicate datasets), the unlearned model should have identical behaviours on Dy and D,.. We will
evaluate the performance of arbitrary Dy in the task of denoise (Table 2).
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et al., 2017) to approximate the Hessian. Golatkar et al. (2020a) simply drop the second term of
Equation 1, and approximate Hessian with diagonals of Fisher matrix in the noise term,

Wy = w* + (A\o?)Th7H, )

where vector  contains diagonal entries of the Fisher matrix computed on w* for dataset D,..

3 UNLEARNING APPROACHES

In this section, we first show that Fisher information is important for identifying key parameters for
unlearning, and based on this observation, we propose a new masking strategy (FisherMask). We
then describe two alternative masking methods (Act ivationMask and GradMask) in Section
3.2 and 3.3. We also introduce a setting of learning rates for the following fine tuning process which
makes unlearning stable in practice.

3.1 MASKING WITH FISHER INFORMATION

For a distribution p(y|x, w), Fisher matrix (and its empirical estimation) is defined by

|D|

F2£E,, [Vulogp(yle,w)Viogp(ylz,w)"] = == > Vi log p(yi|a:, w)V log p(y;|zi, w)" .
i=1

D]

For large-scale neural networks, it is usually expensive to use full F', thus we will further approximate
F with its diagonal diag(F’) following (Kirkpatrick et al., 2017; Golatkar et al., 2020a). It is known
that F" equals to negative expectation of log p(y|x, w)’s Hessian,

F = —E,, V2 logp(y|z,w).

We now take linear regression as an example to show the role of Fisher information in unlearning.
Let p(y|z,w) = £ exp{—1(wTz — y)?}, and X = [z1, 22, ...,2|p|]. The empirical Fisher now is
F=|D|7'XXT. Let Fj; = Y., . «3;, be the diagonals of the Fisher matrix (to simplify notations
the factor | D| is dropped), where x;; is the j-th dimension of z;. Let F,.;; = Y . *7; and
Frij=ac D; a7; be the remain set and forget set’s contribution to the j-th diagonal of the Fisher
matrix.

Let M be the set of parameters to be masked, and w, be the parameter obtained by masking w* with
- P T 1374

M, whose j-th entry is ¥, ; = 0 em:

Proposition 1. For linear regression, if we approximate Fisher matrix F with its diagonals diag(F')

and assume all diagonals are restrict positive, the KL-divergence between the optimal model w}: and

the masked model W, has the following upper bound,

KL(w?, ;) < A ct2e ) 1 (Frg\ (3)
= 9ID)| 2o F2 \ F.,; ’
jgM I ’

where \ is the largest eigenvalue of XX, and c, ¢, are constants depend on the remain set D,..

The upper bound implies that to make the masked parameter w0, close to the unlearning target w;,
the unmasked set M should contain those parameters with small Fisher information contribution on
the forget set F’y ;; and large Fisher information contribution on the remain set F,. ;;, which means
the masking strategy should do the opposite. Therefore, we develop FisherMask strategy to select
top R parameters according to Fy j; — F}. j; as M.

Proposition 1 could be extended to generalized linear models: the proof depends the close form
solution of linear regression, while similar estimation of solutions could be established for generalized
linear models (Yang et al., 2015). We also remark that, though F i sherMask performs quite well for
deep models (e.g., models with parameterized representation layers), we now don’t obtain a similar
upper bound for them.
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3.2 MASKING WITH ACTIVATION VALUES

In neural networks, an alternative way to measure importance of parameters is inspecting activation
states of their corresponding neurons. As Erhan et al. (2009) suggested, maximizing a neuron’s
activation value with respect to input could be a good first-order representation of what the neuron is
doing. Here, we could find neurons which maximizes the activation on the forget set D and mask
corresponding parameters to get perturbations on the old model.

Suppose we have a trained L layer CNN model. First, for each training sample i, we average
activation scores of an output channel j (obtained by Conv-BatchNorm-ReLu operations on an
intermediate input channel), and record the score to A;; of a table A. Then, for each channel, we
can compute its averaged activation values Ap, ; = ﬁ Zie D. A;; over the remain set D,., and

similarly, Ap, ; on the forget set Dy. The ActivationMask strategy identifies top R of channels
with large Ap, ; — Ap, ;, and mask CNN kernel parameters connecting with those channels.

Wang et al. (2022) propose an improved version of Act ivat ionMask which not only looks at how
a channel activates, but also how it contributes to the whole activation pattern of the entire class (their
method can only remove all samples of a class). Specifically, their TF—~IDF method masks neurons
with term-frequency inverse-document-frequency scores, which analogize channels to words and
classes to documents in information retrieval. It is worth a mention that, the activation value there is
calculated before going through BatchNorm layer, which means information stored in BatchNorm
layers can not be removed.

3.3 MASKING WITH GRADIENT INFORMATION

Besides forward information used in Act ivationMask, we can also consider backward (gradient)
information for finding important unlearning parameters. Here, we use Integrate Gradient (Sun-
dararajan et al., 2017) which are widely applied (Dai et al., 2022; Hao et al., 2021). Given a CNN
model, like Act ivationMask, we obtain table A containing activation value of the i-th sample
at the j-th (hidden) output channel. The importance of j-th channel is evaluated by how a small

perturbation on j affects the final loss, which can be approximated by B;; = A;; x ;—0 %da
- py

2. We can also compute Bp, ; = ﬁ ZiEDT Bijand Bp, j = ﬁ szeDf B;; to characterize

contribution of D, and Dy to j. However, since it is more expensive to compute A;; comparing

with Act ivat ionMask. The masking with gradient information GradMask only selects neurons

according to Bp, ; (|D,| > |Dy| in most cases).

3.4 FINE TUNING

After masking, we fine tune parameters on the D, to recover the performance on remain data. We
find that the final unlearning performances could be sensitive to different settings of learning rate,
which are usually ignored in current unlearning configurations. For example, Wang et al. (2022)
chooses a fixed learning rate 0.1 in fine tuning process (and in training), but constant learning rate is
not the standard setting of modern optimization algorithms.

In experiments, we deploy a learning rate scheduler for unlearning to mimics the original learning
process in a shorter period (denoted by .S, and we set S = 5). For example, if the original learning
process triggers a decay of rate at 1/2 of learning epochs, then the unlearning process also performs
the same decay at the S/2. We find that the replay of learning rate scheduling makes unlearning more
stable.

4 EXPERIMENT

Remove Full Category To evaluate unlearning strategies, we mainly focus on removing a full
category of samples. We remove the first category on all datasets. The target unlearned model should
have zero accuracy on the unlearn class during testing.

’The integration is approximated by Riemman approximation following (Sundararajan et al., 2017).
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Remove Outliers Different with removing a full class of samples, evaluating removing a group of
random data points is challenge since w* and w: could be quite close. To compare the effectiveness
of unlearning methods on random group, we construct synthetic datasets by shuffling labels within the
random group, which we refer as outliers or noise. We test performances of models after unlearning
those outliers.

Experimental Setups We evaluate our unlearning methods with various combinations of networks
and datasets. We experiment on 4 datasets and 4 networks which results in 16 models. Datasets we
choose include CIFAR10/100 (Krizhevsky et al., 2009), MNIST and Tiny-ImageNet (Le & Yang,
2015). And networks include ResNet (He et al., 2016), VGG (Simonyan & Zisserman, 2015),
GoogLeNet (Szegedy et al., 2015) and DenseNet (Huang et al., 2017). As previous studies (Ma et al.
2021; Le & Hua 2021) point out, different learning settings, especially the small learning rate and
insufficient training epochs, could lead to different results in network pruning. On CIFAR10/100 and
Tiny-ImageNet, we train 160 epochs and the learning rate decrease by a factor of 0.1 after 80 and 120
epochs with initial learning rate 0.1, following Ma et al. (2021). On MNIST, we train model at fixed
learning rate 0.01 for 30 epochs. Detailed dataset statistics and experiment setups are in Appendix
4. We set the parameter mask ratio R=0.04 for dataset MNIST and Tiny-ImageNet, and R=0.02 for
dataset CIFAR10/100 for all mask methods.

We compare different unlearning masking strategies (FisherMask in Section 3.1,
ActivationMask in Section 3.2, and GradMask in Section 3.3) with following baselines 3.

* Finetune, directly fine tuning model w* on the remain data D, with same optimizer of the
learning process.

* RandomMask, randomly masking parameters with same ratio and then fine tuning on D,..

* FisherNoise, unlearning method proposed in (Golatkar et al., 2020a) which adds fisher noise
to destroy the weights that may have been informative about D, (Equation 2). 4

* TF-IDF, unlearning method proposed in (Wang et al., 2022). which uses TF-IDF score to select
parameters and then fine tunes on the dataset D,..

For unlearning a full category, we compare these methods on two parts of the test set: test samples
belong to the unlearn category and other samples (forget set and remain set, shortly). To distinguish
from the data in the training set, we will indicate them as the remain training data and forget training
data. We also show the results of different readout functions in Appendix C.

4.1 MAIN RESULTS

Figure 2 shows the performances of different removing mechanisms on test set. We list the results
of ResNet20 on CIFAR10, GooglLeNet on CIFAR100, VGG16 on MNIST and DenseNet on Tiny-
ImageNet, and the results of the remain settings can be found in Appendix D. Accuracies on forget
and remain sets of different methods are pictured in the fist and second row, respectively. From the
results, we can find that,

* First, the retrained model takes a long time to learn, which indicates the necessity of unlearning
methods. Comparing with the retrained models (red dashed curves), all unlearning strategies could
accelerate the learning process and achieve a comparable performance to the final performance of
retrained model (red horizontal dashed lines).

* Second, unlearning only with fine tuning (Finetune and FisherNoise) could be not enough.
The Finetune method could not unlearn completely on most settings, while FisherNoise
method unlearns too much even including the critical information for remain data. For example, on
the dataset CIFAR10/100 and Tiny-ImageNet, Finetune method still remains high accuracy on
forget set, and FisherNoise method has a poor remain accuracy on all datasets, especially on
CIFAR100 and MNIST datasets. Moreover, even masking random parameters (RandomMask)
helps unlearning: it has better forget results compared to F inetune method. It may because that
randomly mask parameters helps optimizing on the new loss of the fine tuning process, and makes
it easier to find a better local optimum.

3 All experiments are conducted on a single 2.5GHz core and a single NVIDIA GTX 3090 GPU.
*Hyper-parameters are set as in (Golatkar et al., 2020a).
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Figure 2: Results of unlearning on test sets. We show the change of accuracy during the fine tuning
process. All results are averaged over 3 runs. (A) performances on forget set are listed in the first
raw, the lower is the better. (B) performances on remain set are listed in the second raw, the closer
to the model w} is the better. The red horizontal dashed line indicates the final performance of model
wy, and the black horizontal dashed line indicates the FisherNoise method.

Table 1: Performance av-

Average remain forget

& Acc Volatility Acc Volatility ~eraged on all model set-

1 %

Finetune 7418+19.39 182 852842047 027 t‘?gs (16 in‘?dels 3 runs)
RandomMask  65.75+24.36 0.02 83.80£16.93  -63.84  after applying removing
TF-IDF 42.23+38.95 33.6 38.83442.44 0.71 mechanisms. We use the
FisherNoise 36.62+28.24 - 0.26£0.94 - volatility metric to mea-
ActivationMask  63.104+30.31 12.7 4.4410.54 0.17 sure the degree of change
QradMask 57.084+24.72 18.68 7.56+19.14 0.2 in the model performance
FisherMask 65.05+36.29  10.91 1.4246.06 0.01

curve during fine tuning.

* Third, FisherMask method performs best when unlearning with only masking without fine
tuning. We list the average performances of different removing mechanisms on all experiment
settings without fine tuning process in Table 1. The results of Finetune method indicate the
performance of original trained model w*. As we can see from the results, F i sherMask method
can unlearn efficiently and still retain a high performance on remain data compared to other
unlearn methods. It maintains 87% of its original performance while almost forgot completely.
Although FisherNoise can almost perfectly remove information, it also removes too much
useful information and has the lowest remain accuracy among all methods.

* Finally, when unlearning with both masking and fine tuning, it is not sufficient to only see perfor-
mances on remain sets (even if the unlearning target is to approximate w;’). It is because there may
be many local optima that are good in the performance of remain set but cannot unlearn completely.
Considering both performances on remain and forget set, ActivationMask, GradMask and
FisherMask obtain appreciable increase in performances. Among these methods, FisherMask
method not only unlearn completely on all experiment settings, but also exhibits the best stabil-
ity among other methods, which shows the effectiveness of Fisher information in finding the
key parameters. ActivationMask performs comparably in most settings except DenseNet on
Tiny-ImageNet. Considering a faster running time, Act ivat ionMask can be good choice of
unlearning method in most settings. GradMa sk performances relatively poor, probably because
we only mask parameters in in convolution layer and information in the BatchNorm layer can not
be touched.
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Criterion 10% 30% 50%

Test Acc Noise Acc Test Acc Noise Acc Test Acc Noise Acc
Finetune 83.04+0.36  81.42+1.55 80.05£1.03 79.954+1.17 7691+£0.08 77.44+0.14
RandomMask 83.22+0.47 81.93 +£1.29 80.16+0.68 80.194+1.01 77.234+0.49 77.26+0.18
ActivationMask  83.06+0.31 81.49 +£1.72 80.16+£0.71 79.964+0.81 77.18+0.17 77.26 +0.10
GradMask 82.62+0.29 82.00+1.51 80.33+0.76 80.26+1.11 77.144+0.02 77.23+0.08
FisherMask 83.25+0.22 82.13+1.12 80.36+0.71 80.22+1.01 77.454+0.40 77.59+0.02

Table 2: Outlier deletion experiment on CIFAR10 dataset with ResNet20. We present the accuracy
on test set and noisy training data points with corrected labels. The test and noise acc of the model
without noisy training data are 84.43 + 0.20 and 84.67 £ 0.35.

cifar10 resnet20 cifar100 resnet50
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Figure 3: Performances of ActivationMask
and F i sherMask with limited fine-tuning data.
We use % and V¥ to indicate the performances
of only forget data on the remain and forget set,
respectively. And the curves shows the perfor-
mances with limited remain data (0.1%).

Epoch

Figure 4: Performances on remain data for
FisherMask method with different removing
ratios. FisherMask could unlearn completely
under all removing ratios, but as the remove ra-
tios become larger, the performance on remain
data degrades.

We notice that some performance curves in the Figure 2 fluctuate severly, such as the forget accuracy
of TF—-IDF method on Tiny-ImageNet with DenseNet: forgetting performances becomes 0 after
removing, but they grows rapidly after few fine tuning epochs. We calculate a volatility score
for curves to measure stability of the different methods. The volatility scores are calculated as

S ol (Acc; — Accy—q) and ‘T‘%l ‘tﬂ; 1(Acct — Accy1) for remain data and forget data

TI—1 2ot=1
(lAlcct is the testing accuracy of the model at ¢-th epoch). The results show that all masking method
have smaller volatility score on forget set than baseline methods, and F i sherMask has the smallest
score which means its performance does not change rapidly. On the remain set, only the Finetune
and RandomMask have a low volatility score. Except the two, FisherMask still have a smallest

score which also demonstrates a good stability in the fine tuning process.

4.2 OUTLIER DELETION

We conduct outlier deletion experiment on CIFAR10 with ResNet20. We randomly shuffle labels
the training points to create outliers (with different noisy ratios), and then remove them with various
removing mechanisms. The FisherNoise and TF-IDF method are not included for they are
designed to remove categories. We fine-tune model for 7" epochs, then list the best accuracy.

Results are shown in Table 2. We report testing accuracy both on the test set and on the removed data
points with corrected labels (i.e., their original labels), which characterize performances on unseen
data and ability to correct wrong predictions. The results show that all three methods performs better
than baseline methods in most settings, and FisherMask method performs best both on test set
and corrected noisy data. With the increase of noise ratio, Fi sherMask performs better than other
methods more obviously.
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4.3  WITH LIMITED REMAIN DATA

Here, we first consider the situation that the whole dataset could not be fetched and only the
forget training set is available. In the previous experiments, we use the whole dataset for
ActivationMask and FisherMask to find parameters to be masked. Here, we only have
forget data for scoring parameters, and don’t run fine tuning. We test the two models with different
experiment settings (full results are in Appendix E), the results on CIFAR10 dataset with ResNet20
model are shown in Figure 3 (marked as % and V).

Next, we consider an easier scenario where we can get a small portion of the remain data instead of
the whole set. We randomly sample 50 samples (full remain dataset contains 45000 samples, 0.1%)
from remain training data. We use these data both in parameter masking and fine tuning process. The
performances of unlearning are depicted in Figure 3 (presented in curves).

From the results, we can see that: first, when no remain training data provided, both
ActivationMask and FisherMask method can unlearn efficiently, but ActivationMask
has a lower remain accuracy compared to FisherMask; second, with only 0.1% of the remain
training data provided, (i) Finetune still remains a high forget accuracy which shows the difficulty
to complete unlearning; (ii) Act ivat ionMask has an unstable forget accuracy during the fine
tuning process. Its forgetting curve of gradually increase, while in Figure 2, the forget accuracy are
always 0 with full remain training set provided. It indicates that limited remain training data could
affect the calculation on the importance score of the parameters for Act ivat ionMask. Regarding
remain accuracy, it also fails to recover the fully performances; (iii) F i sherMask can keep a stable
forget performance while fully recover the remain accuracy. The remain accuracy could be boosted
from 53% (45.16 / 85.02) to almost identical (86.26 / 85.02) with only 0.1% of the remain data. It
may suggest that importance scores derived from Fisher information helps to improve data efficiency
of unlearning.

4.4 DIFFERENT REMOVAL RATIOS

Here we show the performance for Fi sherMask method with different remove ratios on remain
dataset in Figure 4. Accuracy on forget dataset remains 0 as remove ratio ranges from 0 to 0.12,
but accuracy on the remain set changes a lot. Performances degrade significantly as the percentage
of masking increases. Besides that, oscillation of curves also becomes progressively larger as the
increase of remove ratio. When the remove ratio is relatively small, the performance change curve is
relatively flat. It will have a small drop of performances (because the learning rate is a bit large at the
start) and quickly pick up. However, the performance drops a lot when the remove ratio is higher.
Therefore, when we scrub too many information, it is hard for fine tuning to find them back even
with the full remain training set.

4.5 LEARNING RATE SCHEDULING

Considering that usually the learning rate starts from a large value and decays slowly during epochs,
how to choose a appropriate learning rate in our fine tuning process could be a problem. A large
learning rate could be helped for accelerating learning process, while a small learning rate helps to
approach local minima and get better performance. As we want to recover the performance of remain
data as quickly as possible (as few fine tuning epochs as possible), we compress the scheduler of the
original learning rate to the first S epochs (Section 3.4). We show the results of different learning rate
on CIFAR10 with ResNet20 model in Figure 5.

It can be seen that compared to using a constant learning rate °: (i) for Finetune, a large learning
rate is helpful for forgetting, but may lead to a worse and less stable remain performance. A smaller
learning rate helps keeping high remain accuracy but is harmful to the forgetting performance. Our
scheduler could find a balance between stable high remain accuracy and low forget accuracy. (ii) for
ActivationMask, the results are similar. our scheduler could recover the performance of the
remain data as quickly as possible (as small learning rate) while maintaining stability and accelerating
unlearning (as large learning rate). (iii) for FisherMask, it is less influenced by the learning rate.

30.1, 0.01 and 0.001 are the learning rates at the initial time, after the first decay and after the second decay,
respectively.
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Figure 5: Experiment results of different learning rate schedule used in fine tuning process on
CIFAR10 dataset with ResNet20. The solid and dashed lines indicate the performance on the remain
and forget datasets, respectively.

5 RELATED WORK

Machine unlearning, first proposed by Cao & Yang (2015) in the context of statistical query learning,
aims to forget training samples for data protection and model security. Most of the previous works
in machine unlearning focus on linear models, need to calculate the reverse of hessian matrix, and
perform a single SGD update towards the minimizer of the approximation (Koh & Liang 2017; Guo
et al. 2020; Izzo et al. 2021). Besides linear models, Ginart et al. (2019) investigate an effective data
deletion algorithm for the specific setting of k-means clustering. Brophy & Lowd (2021) apply a
variant of random forests that enables the removal of training data with minimal retraining. For deep
neural networks, Golatkar et al. (2020a) try to add a fisher noise to hide the information about unlearn
data. The work closest to ours is (Wang et al., 2022) (which is a concurrent work). They try to scrub
memories for each category in federated learning. but unlike our method, they calculate activation
maps on the dataset in each layer and use TF-IDF to choose neurons after grouping and averaging
activation maps by category. After pruning, there also utilize a fine-tuning process to recover the
performance.

Contrary to machine unlearning, life-long learning or continual learning, is often viewed as the
concept to learn many tasks sequentially without forgetting the knowledge obtained from preceding
tasks. The term “forgetting” mentioned here is Catastrophic Forgetting (French, 1993), which results
in model overfitting on the currently available data and suffering from performance deterioration
on the previously trained data. However, Golatkar et al. (2020a) show that finetune on the remain
dataset from the original trained model could not suffer catastrophic forgetting, while our experiments
present different results which we attribute to the different learning settings. A lot of works have done
to constraint forgetting, such as, regularization-based methods (Kirkpatrick et al. 2017; Aljundi et al.
2018) propose to selectively slow down the learning rate of task important parameters; rehearsal-based
methods (Chaudhry et al. 2019; Hayes et al. 2019) save a data buffer to recover performance of old
data when new task comes; and architecture-based methods (Li et al. 2019; Loo et al. 2021) have
separate components for each task. Our work based on the previous found (Bau et al., 2020) that one
subset of neurons can be highly activated by specific training images, which motivates us to separate
the parameters for unlearn data and remain data.

6 CONCLUSION

In this paper, we study different masking strategies to accelerate unlearning. We find our masking
strategies significantly improve unlearning performances and exhibits a better stability among other
methods. Experiments on various architectures and datasets show that all our methods performs
better than baselines and Fi sherMask method performs best while ActivationMask method
could achieve a good performance with a fast running speed. Future work will explore reducing the
fine-tune time for our methods.
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7 REPRODUCIBILITY STATEMENT

To ensure that our experimental results are reproducible, we run three random seeds for all experiments
and inscribe the mean and variance on the performance curves, for example Figure 2 and 3. What’s
more, to ensure we get the generic conclusions among datasets and structures, we run our unlearning
strategies comparing with baseline methods on 4 common datasets and 4 common architectures. The
details of the dataset statistics and model training setups can be found in Appendix B. Our code is
provided in the supplementary.
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