

A MULTI-FIDELITY MIXTURE-OF-EXPERT FRAMEWORK INTEGRATING PDE SOLVERS AND NEURAL OPERATORS FOR COMPUTATIONAL FLUID DYNAMICS

006 **Anonymous authors**

007 Paper under double-blind review

ABSTRACT

013 Solving Navier-Stokes equations is essential for computational fluid dynamics.
 014 While recent advancements in neural operators provide significant speed-ups, they
 015 often struggle to generalize to out-of-distribution scenarios. On the other hand,
 016 hybrid models that integrate neural networks with conventional numerical solvers
 017 offer improved generalization ability but incur high computational costs. To ad-
 018 dress this trade-off between computational efficiency and generalization ability,
 019 we propose the Multi-Fidelity Mixture-of-Experts (MF-MoE) framework. This
 020 framework combines a pure neural operator with multiple solver-based hybrid
 021 models of varying fidelity, leveraging them as expert models. A physics-aware
 022 gating network dynamically selects the most appropriate expert based on input
 023 characteristics, optimizing both computational cost and predictive accuracy. This
 024 innovative design enables faster inference for in-distribution inputs while ensuring
 025 better generalization for out-of-distribution cases. Extensive experiments on fluid
 026 flow prediction governed by the incompressible Navier-Stokes equations demon-
 027 strate that MF-MoE consistently outperforms baseline approaches, offering an
 028 efficient solution for PDE surrogate modeling.

1 INTRODUCTION

031 Computational fluid dynamics governed by nonlinear partial differential equations (PDEs) are
 032 ubiquitous in scientific and engineering applications, including the earth system modeling (Palmer &
 033 Stevens, 2019; Gelbrecht et al., 2023), fluid flow prediction (Belbute-Peres et al., 2020; Ma et al.,
 034 2024), gas leak detection (Lee et al., 2024), urban water clarification (Li & Shatarah, 2024; Putra
 035 et al., 2024), and blood flow modeling (Schwarz et al., 2023; Csala et al., 2024). Accurately resolving
 036 these PDEs at high spatial and temporal resolutions often remains computationally prohibitive, as
 037 conventional numerical methods demand immense computational resources and long runtimes.

038 Recently, neural operator methods have emerged as a promising alternative, offering data-driven PDE
 039 approximations that can exploit GPU acceleration for much faster training and inference (Li et al.,
 040 2020c; Wen et al., 2022; Janny et al., 2023; Azizzadenesheli et al., 2024; Navaneeth et al., 2024;
 041 Xiong et al., 2024; Raonic et al., 2024; Liang et al., 2024; Wu et al., 2024; Li et al., 2024). Despite
 042 these advantages, a pure neural network commonly struggles when confronted with out-of-distribution
 043 inputs, as demonstrated by Belbute-Peres et al. (2020) and Sun et al. (2023). This limitation hampers
 044 their robustness and restricts their applicability in real-world scenarios.

045 To address these shortcomings, hybrid approaches that integrate classical PDE solvers into neural
 046 architectures have been proposed (Mishra, 2018; Um et al., 2020; Belbute-Peres et al., 2020; Zhuang
 047 et al., 2021; Dresdner et al., 2022; Sun et al., 2023; Wang et al., 2024; Cao et al., 2024; Liu et al.,
 048 2024). Instead of directly learning a full-resolution PDE solution, these solver-embedded strategies
 049 employ a neural network to refine an inaccurate solution produced by a lower-resolution solver. For
 050 instance, Belbute-Peres et al. (2020) introduced a graph-based model that corrects the up-scaled
 051 coarse-mesh outputs from computational fluid dynamics simulations, reducing the out-of-distribution
 052 prediction error of a pure graph neural network model in the airfoil air flow prediction task.

053 However, while hybrid approaches improve the generalization ability compared to pure neural
 054 network models, they inevitably slow down training and inference due to the integration of numerical

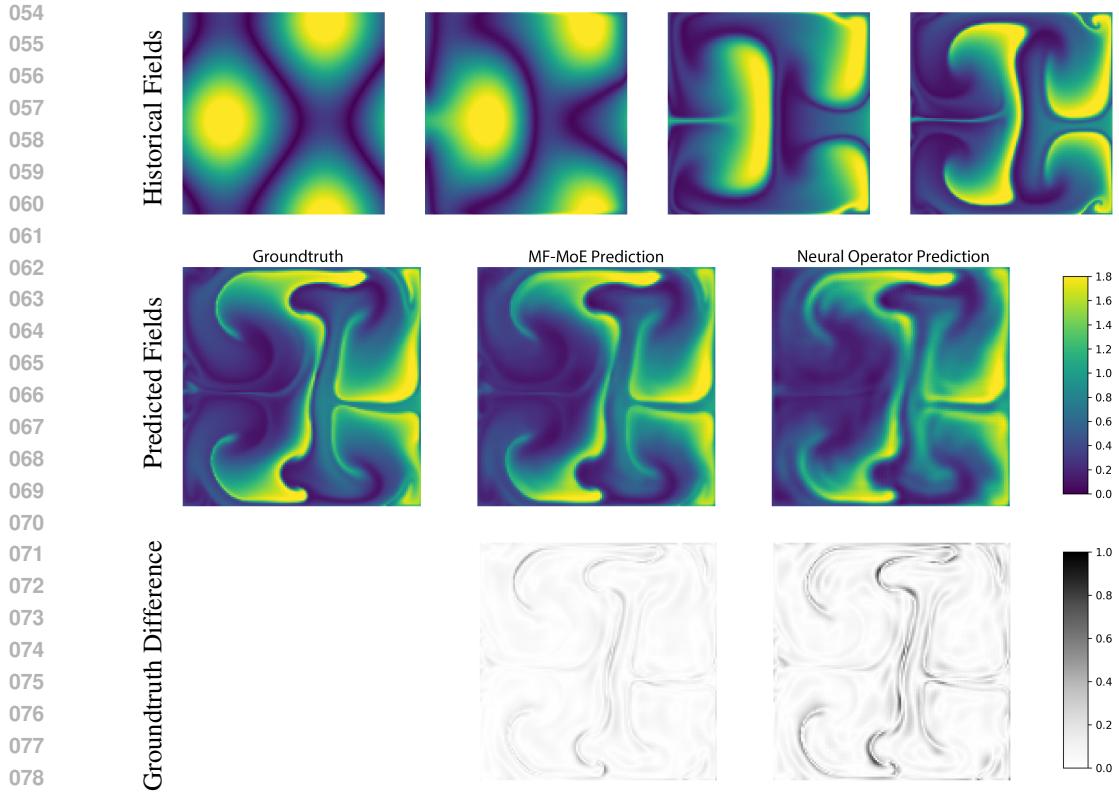


Figure 1: Comparison and visualization of fluid flow predictions from our proposed MF-MoE framework (with the base model: UNO-64) and the neural operator (UNO-64). The top row shows four frames of historical fields used as input for the models with the viscosity $\mu = 0.002$. The middle row compares ground-truth fields with the prediction from MF-MoE framework and the neural operator prediction. In the bottom row, each panel visualizes the absolute difference between the predictions and ground-truth fields (with darker regions indicating larger errors).

PDE solver¹. As the result, one can rely on solver-based refinement for improved accuracy on out-of-distribution data, but must then accept the associated computational overhead. This conflict motivates the following natural question:

Q: Can we design a model architecture that enjoys fast inference time for in-distribution samples while maintaining high generalization ability for out-of-distribution samples?

We present an affirmative answer to this question by introducing the **Multi-Fidelity Mixture of Experts (MF-MoE)**, a mixture-of-experts framework that seamlessly integrates multiple solver-based hybrid models of varying fidelity with a pure neural operator. As shown in Figure 1, the simulation result indicates that the MF-MoE predictions show markedly smaller error regions, highlighting the improved accuracy achieved by our proposed framework. This architecture dynamically balances computational efficiency and generalization ability by utilizing a physics-aware gating network to select the most suitable expert for each input.

Furthermore, we propose a constrained optimization framework for training MF-MoE, employing a Lagrangian relaxation strategy. Unlike traditional approaches that treat regularization terms as fixed

¹In some specific architectures (e.g., the Frozen Mesh Mode of the CFD-GCN model by [Belbute-Peres et al. \(2020\)](#)), the PDE solution over the training sample can be separately cached. In such cases, training time is not significantly affected, but the inference cost remains unavoidable, which is also our main focus.

108 hyperparameters, this formulation explicitly incorporates time cost as a constraint. Extensive experiments on fluid flow prediction governed by the incompressible Navier-Stokes equations demonstrate
 109 that MF-MoE consistently achieves superior performance while maintaining acceptable inference
 110 time, validating the effectiveness and efficiency of the proposed MF-MoE framework.
 111

113 2 RELATED WORK

115 **Physics-Informed Neural Network (PINN) and Neural Operator Learning** Physics-Informed
 116 Neural Networks (PINNs) provide a direct approach to solving PDEs by parameterizing the solution
 117 as a neural network, which is trained to satisfy the governing equations and boundary conditions
 118 (E & Yu, 2018; Raissi et al., 2019; Bar & Sochen, 2019; Smith et al., 2020; Wang et al., 2022).
 119 However, as noted by Sun et al. (2023), PINNs require re-optimization for every new setup, limiting
 120 their scalability, particularly for dynamic problems. An alternative neural network-based method
 121 for solving PDEs is neural operator learning (Lu et al., 2019; Bhattacharya et al., 2020; Patel et al.,
 122 2021; Li et al., 2020c; Tran et al., 2021b; Gupta et al., 2021b; Nelsen & Stuart, 2021; Cao et al.,
 123 2021; Li et al., 2020b;a; Liang et al., 2024; Wu et al., 2024; Li et al., 2024). Unlike PINNs which
 124 parameterize the solution directly, neural operator methods learn a parameterized representation of
 125 a mapping from a field over the spatial-temporal domain (e.g., initial or boundary conditions) to
 126 another field over the same domain. These methods extend PDE solutions to functional mappings,
 127 allowing resolution-agnostic predictions through techniques such as Fourier transforms (Li et al.,
 128 2020c; Tran et al., 2021a) and wavelet transforms (Gupta et al., 2021a). However, as highlighted
 129 by Sun et al. (2023) and Belbute-Peres et al. (2020), purely neural network-based structures often
 130 struggle with out-of-distribution data due to the tendency of over-parameterized neural networks to
 131 overfit (Lawrence et al., 1997).

132 **Solver-Based Hybrid Models** Recent advancements have introduced various neural network
 133 designs that integrate with classical numerical simulators (Holl & Thurey, 2024; Thurey et al.,
 134 2021; Economou et al., 2016; Anderson et al., 2021; mfen), broadly categorized into two approaches.
 135 The first approach employs neural networks to learn the stencils of advection-diffusion problems
 136 within the Finite Volume Method (FVM) framework (Bar-Sinai et al., 2019; Kochkov et al., 2021;
 137 Sun et al., 2023). The second approach leverages neural networks to correct numerical errors arising
 138 from low-resolution simulator outputs (Mishra, 2018; Um et al., 2020; Belbute-Peres et al., 2020;
 139 Pestourie et al., 2021; Dresdner et al., 2022; List et al., 2022; Frezat et al., 2022; Bruno et al., 2022;
 140 Ma et al., 2024). Our proposed MF-MoE framework falls into the latter category and aims to enhance
 141 time-efficiency by dynamically controlling the numerical solver’s involvement.

142 3 BACKGROUNDS

144 In this section, we introduce the basic problem setting and highlight the observation that increasing
 145 spatial resolution will slow down the numerical PDE solver.
 146

147 **Problem Setting** In this work, we focus on the computational fluid dynamic problems characterized
 148 by the following form of *incompressible Navier-Stokes equations* (Temam, 1977):
 149

$$150 \quad \rho \left(\frac{\partial \mathbf{u}}{\partial t} + (\mathbf{u} \cdot \nabla) \mathbf{u} \right) = -\nabla \mathbf{p} + \mu \Delta \mathbf{u} + \mathbf{f}, \quad \text{with} \quad \nabla \cdot \mathbf{u} = 0, \quad (1)$$

152 where ∇ is the vector differential operator, $\Delta := \nabla \cdot \nabla$ is the Laplace operator, \mathbf{u} is the velocity
 153 field with the no-slip Dirichlet condition, \mathbf{p} is the pressure, ρ is the fluid density, μ is the constant
 154 viscosity, and \mathbf{f} is an external force field. The incompressibility constraint is given by $\nabla \cdot \mathbf{u} = 0$.
 155 We consider a one-step flow prediction problem: given the physical fields from the previous K time
 156 steps, $[\mathbf{u}_1, \dots, \mathbf{u}_K]$, the objective is to predict the physical fields \mathbf{u}_{K+1} at the next time step. This
 157 problem is widely studied in closed-box fluid dynamics, and many works adopt this setting (Gupta &
 158 Brandstetter, 2022; Ruhe et al., 2023; Lippe et al., 2023; Brandstetter et al., 2022).
 159

160 **Numerical Solvers** Solver-based hybrid models typically depend on external PDE solvers. In our
 161 work, we employ the PhiFlow framework (Holl & Thurey, 2024), which has also been widely used
 in existing work (Um et al., 2020; Gupta & Brandstetter, 2022; Brandstetter et al., 2022; Schnell

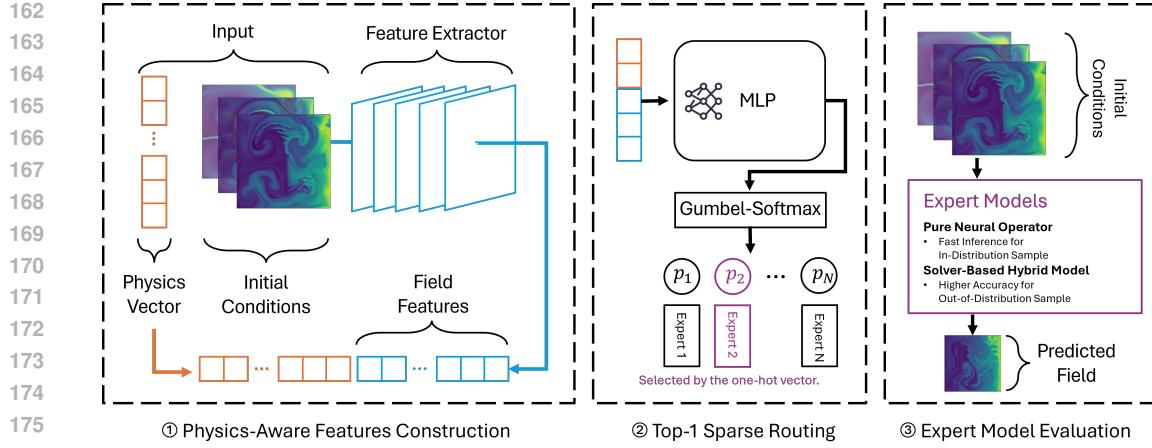


Figure 2: Overview of the forward pass of the MF-MoE framework: (1) Both the initial physical fields and the key physical parameters, such as the viscosity μ in Equation (1), are processed by the feature extractor to construct the Physics-Aware Feature. (2) The gating network produce the features from the previous step to a routing distribution. The Gumbel-Softmax ensures the Top-1 sparsely routing. (3) The selected expert (it can be a lightweight neural operator or a more expensive solver-based hybrid model) will further process the input fields to obtain the predicted field.

This numerical solver employs the explicit forward Euler method to approximate the time evolution of the Navier-Stokes equations by discretizing the time derivative with a finite difference scheme. In general, if \mathbf{u}^n denotes the velocity field at time t_n , then the forward Euler update from t_n to $t_{n+1} = t_n + \Delta t$ is given by

$$\mathbf{u}^{n+1} = \mathbf{u}^n + \Delta t F(\mathbf{u}^n),$$

where $F(\mathbf{u}^n)$ represents the spatially discretized terms of the Navier-Stokes equations, including advection, diffusion, and external forcing. To enforce the incompressibility condition ($\nabla \cdot \mathbf{u}^{n+1} = 0$), a pressure projection step is performed. The method's accuracy is influenced by the time step size Δt and the spatial resolution (n_x, n_y). Larger Δt can introduce larger numerical errors or even instability due to the Courant-Friedrichs-Lowy (CFL) condition (Courant et al., 1967), while coarser grids reduce spatial accuracy. We will see in Figure 4, finer grids improve accuracy but significantly increase computational costs due to the higher number of degrees of freedom.

4 THE MOE FRAMEWORK WITH MULTI-FIDELITY PDE SOLVERS

In this section, we present the structure of our proposed MF-MoE framework; its inference step is illustrated in Figure 2. The MF-MoE consists of two primary components:

- **Physics-Aware Gating Network:** This network learns to determine whether using a physical solver is necessary for a given input. If a solver is required, the gating network also selects the appropriate fidelity level for the hybrid models.
- **Multi-Fidelity Experts:** In candidate expert models, we consider one pure neural operator such as Fourier Neural Operators (FNOs) (Li et al., 2020c), or UNO (Ma et al., 2021; Chen & Thurey, 2021; Rahman et al., 2022), and multiple solver-based hybrid models with varying fidelity levels. The pure neural operator offers significantly faster inference speeds but may have limited generalization capabilities. In contrast, the hybrid models enhance generalization by incorporating solver-based refinements but incur higher time costs.

4.1 PHYSICS-AWARE GATING NETWORK

The gating network helps for deciding which expert is most appropriate for a given input field. Unlike conventional mixture-of-experts models (in physics), of which routing processes focus solely on

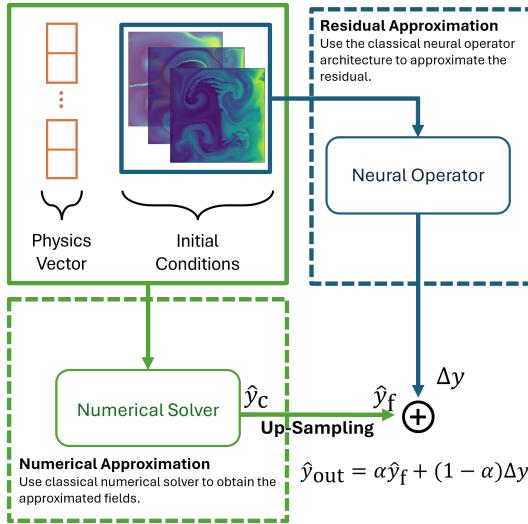


Figure 3: The illustration of the *solver-based hybrid model* used in this paper. The input sample is processed by the numerical solver and the pure neural network. The output of the numerical solver is the coarse prediction \hat{y}_c ; it will be up-sampled to the fine prediction \hat{y}_f with the desired dimension using the k -nearest neighbor methods. The output of the pure neural network is used to approximate the residual term Δy . The prediction \hat{y}_{out} is a convex combination of two terms: $\hat{y}_{\text{out}} := \alpha \hat{y}_f + (1 - \alpha) \Delta y$, where $\alpha \in [0, 1]$ is a hyper-parameter for tuning.

initial physical fields (Sharma & Shankar, 2024; Liang et al., 2024; Hao et al., 2023), our gating network also considers the inherent physical parameters relevant to the PDE problem, such as the dynamic viscosity. To pass these information to the gating network, we apply the **physics-aware features construction**. As illustrated in Step 1 of Figure 2, the input sample $x_{\text{input}} = (v_{\text{phys.}}, \mathbf{u}_{\text{fields}})$ is separately spitted into the physical information (denoted by Physics Vector $v_{\text{phys.}}$) and the initial fields (denoted by Initial Conditions $\mathbf{u}_{\text{fields}}$). The initial fields are processed using a simple multilayer perceptron (MLP), denoted by NN_{MLP} , to extract the field feature and concatenate it with the physical information.

$$v_{\text{field feat.}} = \text{NN}_{\text{MLP}}(\mathbf{u}_{\text{fields}}), \quad \text{and} \quad v_{\text{phys. feat.}} = \begin{bmatrix} v_{\text{field feat.}} \\ v_{\text{phys.}} \end{bmatrix}.$$

The vector $v_{\text{phys. feat.}}$ will be used in the gating network to decide the routing strategy. This concatenation trick has been widely used in other fields, e.g. Guo et al. (2022); Xie et al. (2021) for image segmentation, to merge extracted features from multiple sources.

4.2 MULTI-FIDELITY EXPERT MODELS

Our MF-MoE system integrates two distinct types of experts: (1) *Pure Neural Operator*. This expert performs inference with no calls to a PDE solver. In our paper, we mainly use FNOs (Li et al., 2020c), UNO (Ronneberger et al., 2015), and ResNet (Stachenfeld et al., 2021) as the base model; they are commonly used as the baselines in existing literature and excel in fast inference and high accuracy over in-distribution samples. (2) *Multi-Fidelity Solver-Based Hybrid Models*. This type of experts fuses a numerical PDE solver with a refinement neural network. In our paper, we use the hybrid model illustrated by Figure 3. Specifically, a numerical solver generates a low-resolution approximation \hat{y}_c , which is then processed by an up-sampling step to recover fine-scale details. The neural operators are used to learn the correction Δy . A convex combination of \hat{y}_c and Δy is used as the final prediction.

Depending on resource availability, multiple solver-based models of varying fidelity (e.g., extremely coarse vs. moderately coarse mesh) can be included in the MoE to offer finer control over the accuracy-speed trade-off. The gating network thus selects lower or higher fidelity solver-based experts as needed.

270 **Up-Sampling** After obtaining the coarse output $\hat{y}_c \in \mathbb{R}^{n_{w,c} \times n_{h,c}}$, we generate the high-resolution
 271 prediction $\hat{y}_f \in \mathbb{R}^{n_{w,f} \times n_{h,f}}$ by applying the k -nearest neighbor (k -NN) interpolation for each time
 272 channel (Dasarathy, 1991; Shakhnarovich et al., 2008; Belbute-Peres et al., 2020). For each scaled
 273 pixel location (i_f, j_f) in \hat{y}_f , we identify the k nearest neighbors $\{(i_c^{(n)}, j_c^{(n)})\}_{n=1}^k$ of (i_f, j_f) in \hat{y}_c
 274 based on the given metric d . Then the high-resolution pixel value is computed as a weighted average
 275 of these neighbors:

$$276 \quad 277 \quad 278 \quad \hat{y}_f(i_f, j_f) = \frac{1}{W} \sum_{n=1}^k w_n \cdot \hat{y}_c(i_c^{(n)}, j_c^{(n)}),$$

279 where $w_n = \frac{1}{d((i_f, j_f), (i_c^{(n)}, j_c^{(n)}))}$ and $W = \sum_{n=1}^k w_n$. In this paper, we always set $k = 4$. [Appendix G](#)
 280 further visualizes the performance of this up-sampling procedure on an example field.
 281

283 4.3 TRAINING THE MF-MOE FRAMEWORK

284 In this section, we describe how to train our proposed MF-MoE framework. Unlike most existing
 285 MoE approaches that focus on improving the prediction accuracy of neural operators or other hybrid
 286 models, our primary goal is to control the time cost introduced by incorporating an external numerical
 287 solver during inference while maintaining the prediction accuracy. This goal is obviously more
 288 challenging than existing well-studied tasks as it requires balancing two competing goals—preserving
 289 the generalization ability of hybrid models while ensuring computational tractability. To achieve this,
 290 we formulate the problem as a constrained optimization task:

$$291 \quad \min_{\theta} \mathbb{E}_{(x,y) \sim \mathcal{D}} \mathbb{E}_{\xi \sim G_{\theta_{\text{gate}}}(x)} \|\mathbf{E}_{\theta_{\text{expert},\xi}}(x) - y\|^2 \quad (2)$$

$$292 \quad \text{subject to } \mathbb{E}_{(x,y) \sim \mathcal{D}} \mathbb{E}_{\xi \sim G_{\theta_{\text{gate}}}(x)} \mathcal{T}(\mathbf{E}_{\theta_{\text{expert},\xi}}) \leq c,$$

293 where $\theta = (\theta_{\text{gate}}, \theta_{\text{expert},1}, \dots, \theta_{\text{expert},N})$ denote all trainable parameters of the MF-MoE framework
 294 with N experts, (x, y) is a data pair sampled from the data distribution \mathcal{D} , the mapping $G_{\theta_{\text{gate}}} : x \mapsto$
 295 $[0, 1]^N$ is the gating network parameterized by the parameter θ_{gate} that produces a distribution over
 296 N experts for each input x , the operator $\mathbf{E}_{\theta_{\text{expert},\xi}}$ is the ξ -th expert parameterized by $\theta_{\text{expert},\xi}$, \mathcal{T} is
 297 the time-cost operator mapping a (hybrid) neural operator model to its inference time, and c is the
 298 permissible time-cost threshold.

299 To solve this constrained optimization problem, we adopt a Lagrangian relaxation strategy (Beavis &
 300 Dobbs, 1990) that converts the constraint into a penalty term in the objective function. Concretely,
 301 let $\lambda \geq 0$ be a Lagrange multiplier associated with the time-cost constraint. We form the following
 302 Lagrangian:

$$303 \quad \mathcal{L}(\theta, \lambda) = \mathbb{E}_{(x,y) \sim \mathcal{D}} \mathbb{E}_{\xi \sim G_{\theta_{\text{gate}}}(x)} \|\mathbf{E}_{\theta_{\text{expert},\xi}}(x) - y\|^2 + \lambda \mathbb{E}_{(x,y) \sim \mathcal{D}} (\mathbb{E}_{\xi \sim G_{\theta_{\text{gate}}}(x)} \mathcal{T}(\mathbf{E}_{\theta_{\text{expert},\xi}}) - c), \quad (3)$$

304 where the second term serves as a soft penalty on the expected time cost.

305 **Time Cost Operator \mathcal{T}** Instead of measuring the time cost for each forward pass on the fly, we
 306 pre-calculate the solver’s runtime at different resolutions in advance and maintain it as a look-up
 307 table. The table used in this paper are reported in [Table 1](#). Since the up-sampling step and the neural
 308 network’s inference time are negligible (less than 0.2 seconds), we only record the solver’s time cost.
 309 As the result, the soft penalty in [Equation \(3\)](#) can be rewritten as

$$310 \quad \lambda (\mathbb{E}_{\xi \sim G_{\theta_{\text{gate}}}(x)} \mathcal{T}(\mathbf{E}_{\theta_{\text{expert},\xi}}) - c) = \lambda (G_{\theta_{\text{gate}}}(x)^\top \mathcal{T} - c),$$

311 where $\mathcal{T} \in \mathbb{R}^N$ is the look-up table; the ξ -th entry of this vector represents the time cost of ξ -th
 312 expert model.

313 **Training Hard Gating Network** We use the Gumbel-Softmax reparameterization trick (Jang et al.,
 314 2016; Maddison et al., 2016) in the gating network to produce a nearly discrete selection of experts
 315 while preserving differentiability during backpropagation. Concretely, the gate neural network $G_{\theta_{\text{gate}}}$
 316 receives the input data x and outputs the logits of each expert. These logits are then passed through

324
325
326
327
328
329
330
331
332
333
334
335
336

Table 1: Configuration details for different resolution levels. Each configuration specifies the number of timesteps (nt), spatial resolution (nx, ny), time cost per frame, and MSE of the numerical solution compared to the ground truth (GT). The ground truth configuration achieves the highest accuracy with the highest computational cost, while coarser resolutions progressively reduce time cost at the expense of higher error. The visualization of an example data pair is provided in [Appendix G](#) to better illustrate the difference among different resolution levels.

Resolution Level	nt	(nx, ny)	Time Cost (s)	MSE Error
Groundtruth (GT)	512	(256, 256)	1.58×10^2	< 0.001
Fine	64	(128, 128)	0.38×10^2	0.065
Medium	32	(64, 64)	0.20×10^2	0.104
Coarse	16	(32, 32)	0.12×10^2	0.135
XCoarse	8	(16, 16)	0.08×10^2	0.151

342
343

a Gumbel Softmax layer with a fixed temperature $\tau = 0.1$ and the hard routing. Following the implementation of [Paszke et al. \(2019\)](#), we use the “Straight-Through” gradient estimator ([Yin et al., 2019](#)) so that, at inference, the routing is one-hot and selects exactly one expert, whereas during backpropagation the gradients flow through the soft routing probabilities. This design allows us to obtain a “hard” one-hot sample in the forward pass while still enabling gradients to update the gating probabilities $G_{\theta_{\text{gate}}}(x)$ and thus the parameters θ_{gate} end-to-end alongside the expert parameters $\theta_{\text{expert}, \xi}$. To further regularize the gating distribution and discourage trivial allocations (e.g., always selecting the same expert), we impose a KL divergence penalty on $G_{\theta_{\text{gate}}}(x)$ toward a uniform prior U_N with weight $\beta_{\text{reg}} = 0.2$. We also decay β_{reg} linearly over the course of training.

352
353
354

Training Algorithm Building on the time cost look-up table and the KL regularization, our objective reduces to minimizing the following Lagrangian function:

$$\widehat{\mathcal{L}}(\theta, \lambda) := \mathbb{E}_{(x, y) \sim \mathcal{D}} \mathbb{E}_{\xi \sim G_{\theta_{\text{gate}}}(x)} + \beta_{\text{reg}} d_{\text{KL}}(G_{\theta_{\text{gate}}}, U_N) + \lambda \mathbb{E}_{(x, y) \sim \mathcal{D}} (G_{\theta_{\text{gate}}}(x)^\top \mathcal{T} - c).$$

355
356
357
358
359
360

We solve this via the standard stochastic gradient descent-ascent procedure ([Yan et al., 2020; Chen et al., 2022; Beznosikov et al., 2023](#)). Specifically, we update θ with a stochastic gradient descent step; then update λ with a one-step stochastic gradient ascent to ensure the feasibility of the time constraint.

361
362
363
364
365
366
367

$$\theta \leftarrow \theta - \eta_\theta \nabla_\theta \widehat{\mathcal{L}}(\theta, \lambda), \quad \text{and} \quad \lambda \leftarrow \max \left\{ 0, \lambda + \eta_\lambda (G_{\theta_{\text{gate}}}(x)^\top \mathcal{T} - c) \right\},$$

where η_θ and η_λ are the corresponding learning rates. In this paper, we replace the SGD optimizer used in the gradient descent step with the AdamW optimizer ([Loshchilov et al., 2017; Loshchilov & Hutter, 2019](#)) with setting the learning rate $\eta_\theta = 0.002$ for faster convergence while we maintain the SGD update for the λ parameter with the learning rate $\eta_\lambda = 0.01$ with exponentially decaying at the rate $r = 0.999$.

368

5 EXPERIMENTS

369
370
371
372

5.1 FLUID FLOW DYNAMIC PREDICTION

373
374
375
376
377

In this section, we consider solving the fluid flow dynamic prediction problem given by the incompressible Navier-Stokes equation as defined in [Equation \(1\)](#). Given the input fields $[\mathbf{u}_t, \mathbf{u}_{t+1}, \mathbf{u}_{t+2}, \mathbf{u}_{t+3}]$, the objective is to predict the next time-step field \mathbf{u}_{t+4} . For this task, we adopt three foundational neural operator architectures: FNOs ([Li et al., 2020c](#)), UNOs ([Ma et al., 2021; Chen & Thurey, 2021; Rahman et al., 2022](#)), and ResNet ([Stachenfeld et al., 2021](#)). These models are classical in the field of neural operators and are widely used as baselines in existing literature ([Gupta & Brandstetter,](#)

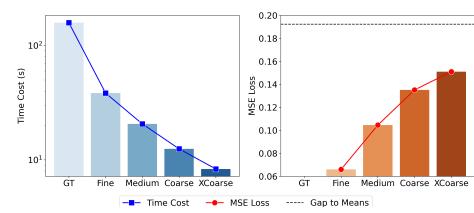


Figure 4: Computational cost (in seconds) versus spatial resolution in the numerical solver. Finer grids increase accuracy but require significantly more computational time. Details on the resolution configuration are provided in [Appendix B.1](#). In the right panel, the black line labeled as “Gaps to Means”, indicates the minimum MSE loss of using a constant field as the prediction.

378
379
380
381
382
383
384 Table 2: Performance comparison on the fluid-flow prediction task described in [Equation \(1\)](#) across
385 various neural operator architectures (including the FNO and UNO) and our proposed MF-MoE
386 framework. The table reports the number of activated parameters, MSE metrics, and time constraint
387 violation. The MF-MoE approach consistently achieves superior accuracy compared to the baseline
388 models while significantly reducing solver-inference time compared to the numerical solvers.

Ref.	Model ¹	Act. # Params	Train MSE	Valid MSE	Test MSE	< 10 secs? ²
FNO (Li et al., 2020c)	FNO128-8 _{modes16}	134 M	2.71×10^{-2}	16.9×10^{-2}	17.0×10^{-2}	
	FNO128-4 _{modes16}	67.2 M	5.43×10^{-2}	14.6×10^{-2}	15.1×10^{-2}	✓
	FNO96-4 _{modes32}	151 M	6.22×10^{-2}	15.4×10^{-2}	15.7×10^{-2}	
	FNO64-4 _{modes32}	67.1 M	9.33×10^{-2}	18.6×10^{-2}	17.5×10^{-2}	
	MF-MoE (FNO64-4 _{modes32})	67.1 M	7.99×10^{-2}	13.4×10^{-2}	13.6×10^{-2}	✓
UNO ³ (Ma et al., 2021) (Chen & Thurey, 2021) (Rahman et al., 2022)	UNO-128	440 M	0.13×10^{-2}	16.4×10^{-2}	16.4×10^{-2}	
	UNO-64	110 M	0.21×10^{-2}	17.7×10^{-2}	17.4×10^{-2}	
	U-F3Net _{modes16,8,4}	187 M	0.02×10^{-2}	11.7×10^{-2}	14.7×10^{-2}	✓
	U-F2Net _{modes16,8}	175 M	0.02×10^{-2}	11.5×10^{-2}	15.5×10^{-2}	
	U-F1Net _{modes16}	160 M	0.02×10^{-2}	13.2×10^{-2}	15.4×10^{-2}	
ResNet ⁴ (Stachenfeld et al., 2021)	MF-MoE (UNO-64)	110 M	5.41×10^{-2}	10.8×10^{-2}	11.3×10^{-2}	✓
	ResNet-128	1.2 M	0.20×10^{-2}	6.96×10^{-2}	6.37×10^{-2}	✓
	DilResNet-128	4.2 M	0.80×10^{-2}	5.66×10^{-2}	5.40×10^{-2}	✓
Numerical Solver (PhiFlow)	MF-MoE (DilResNet-128)	4.2 M	0.36×10^{-2}	3.61×10^{-2}	5.14×10^{-2}	✓
	XCoarse (16 × 16)	-	-	-	15.1×10^{-2}	✓
	Coarse (32 × 32)	-	-	-	13.5×10^{-2}	✗
	Medium (64 × 64)	-	-	-	10.4×10^{-2}	✗
	Fine (128 × 128)	-	-	-	6.50×10^{-2}	✗
	Groundtruth (256 × 256)	-	-	-	< 0.001	✗

¹ In both the FNO and UNO model, the first number indicate the number of hidden layers, which is used to control the size of the model. In the FNO model, the subscript 4_{modes32} indicates that it retains 8 modes and uses 16 channels in its hidden layers. In the MF-MoE model, the bracket name indicates the choice of the base model, which is used as the pure neural operator expert in the MoE structure and the residual approximation model used in the hybrid structure (illustrated in [Figure 3](#)).

² We consider the averaged time cost over the test set and report if this averaged time violates the time constraint 10.0 seconds.

³ We also consider the U-Nets with Fourier blocks belongs to a general category of U-shaped Neural Operator (UNO). Here the subscript represents the modes of Fourier blocks included in the architecture.

⁴ ResNet (He et al., 2016) and Dilated (Atrous) Convolution (Chen et al., 2014; Yu & Koltun, 2016; Yu et al., 2017) were first used in computational vision tasks; Stachenfeld et al. (2021) applies these techniques in the fluid flow simulation. Here we use the same structure as (Stachenfeld et al., 2021). The number 128 indicates the depth of the network.

2022; Brandstetter et al., 2022; Ruhe et al., 2023). While numerous state-of-the-art models have been developed in recent years, most of them are based on these three models. Therefore, we focus on these three for their broad representativeness. Additional discussions of other advancing models are included in [Appendix A](#).

Datasets We create a customized dataset by splitting the train set, validation set, and test set via the conditional parameters of viscosity μ . The split is described in [Equation \(4\)](#). The detailed dataset configuration and a sample trajectory visualization of each resolution setting are put in [Appendix B.1](#) and [Appendix G](#).

$$\begin{aligned}
 \text{(Train)} \quad \mu &\in \{3.2, 1.6, 0.8\} \times 10^{-2}, \\
 \text{(Valid)} \quad \mu &\in \{1.6, 0.8, 0.4, 0.2\} \times 10^{-2}, \\
 \text{(Test)} \quad \mu &\in \{0.8, 0.4, 0.2, 0.1\} \times 10^{-2}.
 \end{aligned} \tag{4}$$

Training We use the Mean Squared Error (MSE) loss on the predicted velocities as the evaluation metric. For the MF-MoE model, the number of experts $N = 4$, where one expert is a pure neural-operator model and the other three are solver-based hybrid models of varying fidelity (Fine, Medium, and Coarse); the time-cost constraint to $c = 10.0$, ensuring that a single solver-based hybrid model alone (though accurate) is excluded, as it exceeds this cost threshold. An additional discussion on the impact of the parameter c is included in [Section 5.2](#). All models are trained using the AdamW optimizer (Loshchilov et al., 2017; Loshchilov & Hutter, 2019) with a learning rate $\eta = 2 \times 10^{-4}$ for 8,000 training steps, a weight decay of 1×10^{-5} , and a batch size of 32. No further hyperparameter tuning is applied across different models. During the training of the MF-MoE framework, we update the parameter λ with a naive stochastic gradient descent (SGD) step using an initial learning rate $\eta_\lambda = 0.01$. This learning rate is decayed exponentially with a factor $r = 0.999$. For the MF-MoE model, we introduce several additional hyperparameters: the number of experts $N = 4$, where

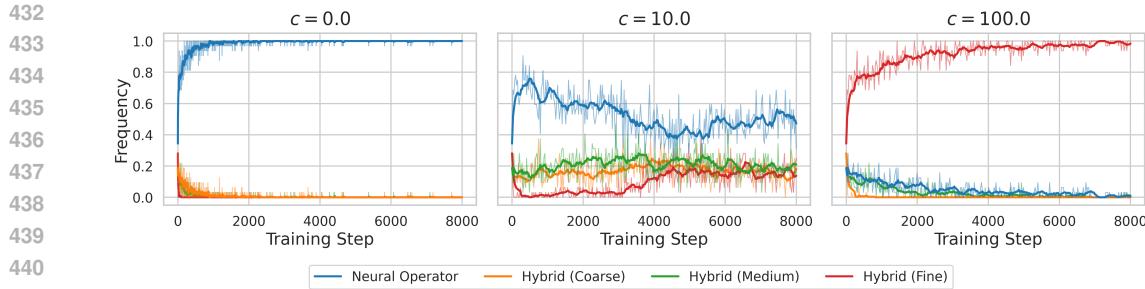


Figure 5: Illustration of the impact of the time constraint c on the gating mechanism. As c increasing, the gate network tends to choose the solver-based hybrid model with the highest fidelity.

one expert is a pure neural-operator model and the other three are solver-based hybrid models of varying fidelity (Fine, Medium, and Coarse). We set the time-cost constraint to $c = 10.0$, ensuring that a single solver-based hybrid model alone (though accurate) is excluded, as it exceeds this cost threshold.

Experimental Results In Table 2, we summarize the performance of our MF-MoE framework compared to baseline models. Here we present two primary observations: (1) **Improved Accuracy over Neural Operators.** The MF-MoE framework consistently outperforms neural operator baselines (FNO, UNO, and ResNet) across all evaluated scenarios. When using the same base architecture, MF-MoE achieves significant accuracy improvements over standalone neural operators. For instance, as visualized in Figure 1, MF-MoE with the UNO-64 base model exhibits markedly lower prediction error compared to the standalone UNO-64 neural operator, underscoring its enhanced modeling capability. (2) **Efficient Solver Integration.** In contrast to numerical solvers, which fail to meet the time constraint at every fidelity level except the XCoarse resolution level, the MF-MoE model satisfies the required time constraint $c = 10.0$. This indicates that MF-MoE greatly enhances the efficiency of solver-based hybrid models. In traditional designs, the inference time cost of such hybrid models is dominated by the numerical solver; however, MF-MoE circumvents this bottleneck by dynamically choosing the engagement of the numerical solver.

5.2 GATING MECHANISM

In this section, we examine the impact of the hyperparameter c on the MF-MoE model. This parameter is crucial for balancing computational efficiency and prediction accuracy. In extreme cases, if c is set to $+\infty$, the time constraint becomes inactive; consequently, the gating network will always select the most accurate expert, regardless of computational cost. To investigate this behavior systematically, we evaluate the model with c values of 0.0, 10.0, and 100.0. As illustrated in Figure 5, when the time constraint is always active (i.e., $c = 0$), the gate selection degenerates to constantly choosing the pure neural operator, as the solver-based hybrid model incurs substantially higher penalties. Conversely, when the time constraint is consistently inactive (i.e., $c = 100$), the gate selection defaults to the solver-based model that yields the highest accuracy.

5.3 EXTENDED EXPERIMENTS: OTHER OUT-OF-DISTRIBUTION PARAMETERS

To further evaluate the generalization capabilities of the MF-MoE framework, we extend our assessment beyond the viscosity parameter μ . As highlighted in Equation (1), the external force field \mathbf{f} is a governing term driving the fluid dynamics, which is partially controlled by the buoyancy. Therefore, we modified the data generation configuration to introduce a varying buoyancy.

We constructed a dataset split based on the buoyancy along the y -axis to create a distinct out-of-distribution scenario with each parameter 100 independent sampled data pairs:

$$(\text{Train \& Valid}) \quad \mathbf{f} \in \{0.3, 0.4, 0.5\}, \quad (\text{Test}) \quad \mathbf{f} \in \{0.7\}.$$

This setup tests the model’s ability to extrapolate to highly perturbed flows that exhibit more chaotic turbulence than the training set. We compared the MF-MoE (using UNO-64 as the base) against a

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Table 3: Performance comparison on out-of-distribution buoyancy force ($f \in \{0.7\}$). The MF-MoE maintains lower error compared to the pure UNO model.

Model	Test MSE	Valid Constraint
UNO-64	19.4×10^{-2}	✓
MF-MoE (UNO-64)	12.5×10^{-2}	✓
Numerical Solver (Fine)	6.44×10^{-2}	✗

Table 4: Comparison of multi-step prediction performance. We report the time-averaged MSE at different rollout horizons (T).

Model	Time-Averaged MSE ($\times 10^{-2}$)		
	$T = 5$	$T = 10$	$T = 20$
FNO-128	21.5	24.8	28.1
UNO-64	16.2	20.5	23.4
ResNet-128	19.1	22.8	25.6
MF-MoE (ResNet-128)	9.45	12.3	15.1

standalone UNO-64 model. The results are summarized in Table 3. As hypothesized, the pure neural operator struggles to generalize, resulting in a high MSE of 19.4×10^{-1} . The operator tends to under-predict the velocity magnitudes, while the MF-MoE can be corrected by the numerical solver.

5.4 EXTENDED EXPERIMENTS: MULTI-STEP PREDICTIONS

In our main experimental results, we restricted our analysis to one-step predictions. In this subsection, we extend our evaluation to multi-step, long-horizon forecasting using an autoregressive rollout strategy, where predicted fields \hat{u}_{t+1} serve as inputs for predicting \hat{u}_{t+2} . We compare the time-averaged MSE over a trajectory of T time steps against baseline neural operators. As summarized in Table 4, the MF-MoE framework significantly mitigates the drift typically observed in pure neural operators, confirming its advances in the multi-step long-horizon setting.

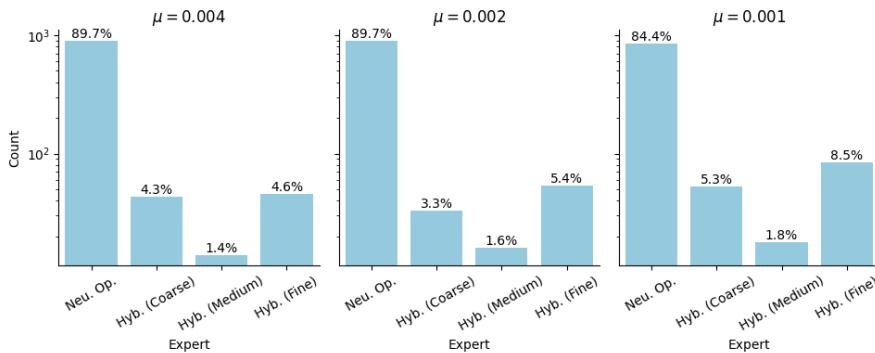


Figure 6: The histograms illustrate the frequency with which the gating network selects each expert on the selected test set. As the fluid viscosity decreases (indicating more out-of-distribution), the model increasingly routes to the high-fidelity expert (rising from 4.6% to 8.5%) while reducing routing to the pure neural network (dropping from 89.7% to 84.4%), demonstrating the framework’s adaptive trade-off between efficiency and accuracy.

5.5 EXTENDED VISUALIZATION: DISTRIBUTION OF EXPERT SELECTIONS

In this subsection, we examine the distribution of expert selections made by the gating network during the inference phase, specifically investigating how the routing strategy correlates with the physical complexity of the input fluid dynamics. To validate this, we visualize the frequency of expert selection across test samples with varying viscosities $\mu \in \{0.004, 0.002, 0.001\}$. As illustrated in Figure 6, we observe a distinct shift in the routing distribution, confirming that the MF-MoE framework successfully learns to balance the trade-off between computational efficiency and generalization ability, autonomously identifying when the higher cost of a numerical solver is justified by the need for error correction in out-of-distribution scenarios.

540 REFERENCES
541

542 R. Anderson, J. Andrej, A. Barker, J. Bramwell, J.-S. Camier, J. Cerveny, V. Dobrev, Y. Dudouit,
543 A. Fisher, Tz. Kolev, W. Pazner, M. Stowell, V. Tomov, I. Akkerman, J. Dahm, D. Medina, and
544 S. Zampini. MFEM: A modular finite element methods library. *Computers & Mathematics with
545 Applications*, 81:42–74, 2021. doi: 10.1016/j.camwa.2020.06.009.

546 Kamyar Azizzadenesheli, Nikola Kovachki, Zongyi Li, Miguel Liu-Schiavini, Jean Kossaifi, and
547 Anima Anandkumar. Neural operators for accelerating scientific simulations and design. *Nature
548 Reviews Physics*, pp. 1–9, 2024.

549 Leah Bar and Nir Sochen. Unsupervised deep learning algorithm for pde-based forward and inverse
550 problems. *arXiv preprint arXiv:1904.05417*, 2019.

551 Yohai Bar-Sinai, Stephan Hoyer, Jason Hickey, and Michael P Brenner. Learning data-driven
552 discretizations for partial differential equations. *Proceedings of the National Academy of Sciences*,
553 116(31):15344–15349, 2019.

554 Brian Beavis and Ian M. Dobbs. *Static Optimization*. Cambridge University Press, New York, 1990.
555 ISBN 0-521-33605-8.

556 Filipe De Avila Belbute-Peres, Thomas Economou, and Zico Kolter. Combining differentiable pde
557 solvers and graph neural networks for fluid flow prediction. In *international conference on machine
558 learning*, pp. 2402–2411. PMLR, 2020.

559 Roberto Bentivoglio, Elvin Isufi, Sebastiaan Nicolas Jonkman, and Riccardo Taormina. Multi-
560 scale hydraulic graph neural networks for flood modelling. *Natural Hazards and Earth System
561 Sciences*, 25:335–358, 2025. URL <https://nhess.copernicus.org/articles/25/335/2025/>.

562 Aleksandr Beznosikov, Eduard Gorbunov, Hugo Berard, and Nicolas Loizou. Stochastic gradient
563 descent-ascent: Unified theory and new efficient methods. In *International conference on artificial
564 intelligence and statistics*, pp. 172–235. PMLR, 2023.

565 Kaushik Bhattacharya, Bamdad Hosseini, Nikola B Kovachki, and Andrew M Stuart. Model reduction
566 and neural networks for parametric pdes. *arXiv preprint arXiv:2005.03180*, 2020.

567 Johannes Brandstetter, Rianne van den Berg, Max Welling, and Jayesh K Gupta. Clifford neural
568 layers for pde modeling. *arXiv preprint arXiv:2209.04934*, 2022.

569 Oscar P Bruno, Jan S Hesthaven, and Daniel V Leibovici. Fc-based shock-dynamics solver with
570 neural-network localized artificial-viscosity assignment. *Journal of Computational Physics: X*, 15:
571 100110, 2022.

572 Lianghao Cao, Thomas O’Leary-Roseberry, Prashant K Jha, J Tinsley Oden, and Omar Ghattas.
573 Residual-based error correction for neural operator accelerated infinite-dimensional bayesian
574 inverse problems. *Journal of Computational Physics*, 486:112104, 2023.

575 Shuhao Cao, Francesco Brarda, Ruipeng Li, and Yuanzhe Xi. Spectral-refiner: Fine-tuning of
576 accurate spatiotemporal neural operator for turbulent flows. *arXiv preprint arXiv:2405.17211*,
577 2024.

578 Yingbo Cao, Nikola Kovachki, Zongyi Li, Anima Anandkumar, Andrew Stuart, and Richard Baraniuk.
579 Choose a transformer: Fourier or galerkin. *arXiv preprint arXiv:2105.14995*, 2021.

580 Li-Wei Chen and Nils Thuerey. Towards high-accuracy deep learning inference of compressible
581 turbulent flows over aerofoils. *arXiv preprint arXiv:2109.02183*, 2021.

582 Liang-Chieh Chen, George Papandreou, Iasonas Kokkinos, Kevin Murphy, and Alan L Yuille.
583 Semantic image segmentation with deep convolutional nets and fully connected crfs. *arXiv
584 preprint arXiv:1412.7062*, 2014.

585 Xu Chen, Shuo Liu, and Xuan Di. Physics-informed graph neural operator for mean field games on
586 graph: A scalable learning approach. *Games*, 15(2):12, 2024.

594 Ziyi Chen, Shaocong Ma, and Yi Zhou. Accelerated proximal alternating gradient-descent-ascent for
 595 nonconvex minimax machine learning. In *2022 IEEE International Symposium on Information
 596 Theory (ISIT)*, pp. 672–677. IEEE, 2022.

597

598 James W Cooley and John W Tukey. An algorithm for the machine calculation of complex fourier
 599 series. *Mathematics of computation*, 19(90):297–301, 1965.

600 R. Courant, K. Friedrichs, and H. Lewy. On the Partial Difference Equations of Mathematical Physics.
 601 *IBM Journal of Research and Development*, 11(2):215–234, March 1967. doi: 10.1147/rd.112.0215.
 602 URL <https://ieeexplore.ieee.org/document/5391985>.

603

604 Hunor Csala, Arvind Mohan, Daniel Livescu, and Amirhossein Arzani. Physics-constrained cou-
 605 pled neural differential equations for one dimensional blood flow modeling. *arXiv preprint
 606 arXiv:2411.05631*, 2024.

607 Belur V Dasarathy. Nearest neighbor (nn) norms: Nn pattern classification techniques. *IEEE
 608 Computer Society Tutorial*, 1991.

609

610 Gideon Dresdner, Dmitrii Kochkov, Peter Norgaard, Leonardo Zepeda-Núñez, Jamie A Smith,
 611 Michael P Brenner, and Stephan Hoyer. Learning to correct spectral methods for simulating
 612 turbulent flows. *arXiv preprint arXiv:2207.00556*, 2022.

613 Weinan E and Bing Yu. The deep ritz method: A deep learning-based numerical algorithm for solving
 614 variational problems. *Communications in Mathematics and Statistics*, 6:1–12, 2018.

615

616 Thomas D Economon, Francisco Palacios, Sean R Copeland, Trent W Lukaczyk, and Juan J Alonso.
 617 Su2: An open-source suite for multiphysics simulation and design. *Aiaa Journal*, 54(3):828–846,
 618 2016.

619 Hugo Frezat, Julien Le Sommer, Ronan Fablet, Guillaume Balarac, and Redouane Lguensat. A
 620 posteriori learning for quasi-geostrophic turbulence parametrization. *Journal of Advances in
 621 Modeling Earth Systems*, 14(11):e2022MS003124, 2022.

622

623 Maximilian Gelbrecht, Alistair White, Sebastian Bathiany, and Niklas Boers. Differentiable pro-
 624 gramming for earth system modeling. *Geoscientific Model Development*, 16(11):3123–3135,
 625 2023.

626 Meng-Hao Guo, Cheng-Ze Lu, Qibin Hou, Zhengning Liu, Ming-Ming Cheng, and Shi-Min Hu.
 627 Segnext: Rethinking convolutional attention design for semantic segmentation. *Advances in Neural
 628 Information Processing Systems*, 35:1140–1156, 2022.

629

630 Gaurav Gupta, Xiongye Xiao, and Paul Bogdan. Multiwavelet-based operator learning for differential
 631 equations. *Advances in neural information processing systems*, 34:24048–24062, 2021a.

632 Hitesh Gupta, Zongyi Li, Nikola Kovachki, and Anima Anandkumar. Wavelet neural operator for
 633 learning parametric partial differential equations. *arXiv preprint arXiv:2110.13711*, 2021b.

634

635 Jayesh K Gupta and Johannes Brandstetter. Towards multi-spatiotemporal-scale generalized pde
 636 modeling. *arXiv preprint arXiv:2209.15616*, 2022.

637

638 Zhongkai Hao, Zhengyi Wang, Hang Su, Chengyang Ying, Yinpeng Dong, Songming Liu, Ze Cheng,
 639 Jian Song, and Jun Zhu. Gnot: A general neural operator transformer for operator learning. In
 640 *International Conference on Machine Learning*, pp. 12556–12569. PMLR, 2023.

641

642 Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
 643 recognition. In *Proceedings of the IEEE conference on computer vision and pattern recognition*,
 pp. 770–778, 2016.

644

645 Philipp Holl and Nils Thuerey. Φ_{flow} (PhiFlow): Differentiable simulations for pytorch, tensorflow
 646 and jax. In *International Conference on Machine Learning*. PMLR, 2024.

647

648 Philipp Holl, Vladlen Koltun, and Nils Thuerey. Scale-invariant learning by physics inversion.
 649 *Advances in Neural Information Processing Systems*, 35:5390–5403, 2022.

648 Daniel Zhengyu Huang et al. Point cloud neural operator for parametric pdes on complex and variable
 649 geometries. *arXiv preprint arXiv:2501.14475*, 2025. URL <https://arxiv.org/abs/2501.14475>.

650

651

652 Eric Jang, Shixiang Gu, and Ben Poole. Categorical reparameterization with gumbel-softmax. *arXiv
 653 preprint arXiv:1611.01144*, 2016.

654

655 Steeven Janny, Aurélien Beneteau, Madiha Nadri, Julie Digne, Nicolas Thome, and Christian Wolf.
 656 Eagle: Large-scale learning of turbulent fluid dynamics with mesh transformers. *arXiv preprint
 657 arXiv:2302.10803*, 2023.

658

659 Yuchi Jiang, Zhijie Li, Yunpeng Wang, Huiyu Yang, and Jianchun Wang. An implicit adaptive
 660 fourier neural operator for long-term predictions of three-dimensional turbulence. *arXiv preprint
 661 arXiv:2501.12740*, 2025.

662

663 Sharmila Karumuri et al. Physics-informed latent neural operator for real-time predictions of complex
 664 physical systems. *arXiv preprint arXiv:2501.08428*, 2025. URL <https://arxiv.org/abs/2501.08428>.

665

666 Dmitrii Kochkov, Jamie A Smith, Ayya Alieva, Qing Wang, Michael P Brenner, and Stephan Hoyer.
 667 Machine learning–accelerated computational fluid dynamics. *Proceedings of the National Academy
 668 of Sciences*, 118(21):e2101784118, 2021.

669

670 Steve Lawrence, C Lee Giles, and Ah Chung Tsoi. Lessons in neural network training: Overfitting
 671 may be harder than expected. In *Aaaai/iaai*, pp. 540–545, 1997.

672

673 Hunggi Lee, Donghyeon Lee, Jaewook Lee, and Dongil Shin. Efficient gas leak simulation surrogate
 674 modeling and super resolution for gas detector placement optimization. *Computers & Chemical
 675 Engineering*, 181:108508, 2024.

676

677 Haochen Li and Mohamed Shatarah. Operator learning for urban water clarification hydrodynamics
 678 and particulate matter transport with physics-informed neural networks. *Water Research*, 251:
 679 121123, 2024.

680

681 Xiang Li et al. Nomto: Neural operator-based symbolic model approximation and discovery. *arXiv
 682 preprint arXiv:2501.08086*, 2025. URL <https://arxiv.org/abs/2501.08086>.

683

684 Zijie Li, Dule Shu, and Amir Barati Farimani. Scalable transformer for pde surrogate modeling.
 685 *Advances in Neural Information Processing Systems*, 36, 2024.

686

687 Zongyi Li, Nikola Kovachki, Kamyar Azizzadenesheli, Kaushik Bhattacharya, Andrew Stuart, and
 688 Anima Anandkumar. Multipole graph neural operator for parametric partial differential equations.
 689 *arXiv preprint arXiv:2006.09535*, 2020a.

690

691 Zongyi Li, Nikola Kovachki, Kamyar Azizzadenesheli, Kaushik Bhattacharya, Andrew Stuart, and
 692 Anima Anandkumar. Neural operator: Graph kernel network for partial differential equations.
 693 *arXiv preprint arXiv:2003.03485*, 2020b.

694

695 Zongyi Li, Nikola Kovachki, Kamyar Azizzadenesheli, Burigede Liu, Kaushik Bhattacharya, Andrew
 696 Stuart, and Anima Anandkumar. Fourier neural operator for parametric partial differential equations.
 697 *arXiv preprint arXiv:2010.08895*, 2020c.

698

699 Aoming Liang, Zhaoyang Mu, Pengxiao Lin, Cong Wang, Mingming Ge, Ling Shao, Dixia Fan, and
 700 Hao Tang. M2m: Learning controllable multi of experts and multi-scale operators are the partial
 701 differential equations need. *arXiv preprint arXiv:2410.11617*, 2024.

702

703 Phillip Lippe, Bas Veeling, Paris Perdikaris, Richard Turner, and Johannes Brandstetter. Pde-
 704 refiner: Achieving accurate long rollouts with neural pde solvers. *Advances in Neural Information
 705 Processing Systems*, 36:67398–67433, 2023.

706

707 Björn List, Li-Wei Chen, and Nils Thuerey. Learned turbulence modelling with differentiable fluid
 708 solvers: physics-based loss functions and optimisation horizons. *Journal of Fluid Mechanics*, 949:
 709 A25, 2022.

702 Xin-Yang Liu, Min Zhu, Lu Lu, Hao Sun, and Jian-Xun Wang. Multi-resolution partial differential
 703 equations preserved learning framework for spatiotemporal dynamics. *Communications Physics*, 7
 704 (1):31, 2024.

705 Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. In *International Conference on Learning Representations*, 2019. URL <https://openreview.net/forum?id=Bkg6RiCqY7>.

706 Ilya Loshchilov, Frank Hutter, et al. Fixing weight decay regularization in adam. *arXiv preprint arXiv:1711.05101*, 5, 2017.

707 Lu Lu, Pengzhan Jin, and George Em Karniadakis. Deepenet: Learning nonlinear operators for
 708 identifying differential equations based on the universal approximation theorem of operators. *arXiv preprint arXiv:1910.03193*, 2019.

709 Hao Ma, Yuxuan Zhang, Nils Thuerey, Xiangyu Hu, and Oskar J Haidn. Physics-driven learning
 710 of the steady navier-stokes equations using deep convolutional neural networks. *arXiv preprint arXiv:2106.09301*, 2021.

711 Shaocong Ma, James Diffenderfer, Bhavya Kailkhura, and Yi Zhou. End-to-end mesh optimization
 712 of a hybrid deep learning black-box pde solver. *arXiv preprint arXiv:2404.11766*, 2024.

713 Chris J Maddison, Andriy Mnih, and Yee Whye Teh. The concrete distribution: A continuous
 714 relaxation of discrete random variables. *arXiv preprint arXiv:1611.00712*, 2016.

715 mfem. MFEM: Modular finite element methods [Software]. mfem.org.

716 Siddhartha Mishra. A machine learning framework for data driven acceleration of computations of
 717 differential equations. *arXiv preprint arXiv:1807.09519*, 2018.

718 N Navaneeth, Tapas Tripura, and Souvik Chakraborty. Physics informed wno. *Computer Methods in
 719 Applied Mechanics and Engineering*, 418:116546, 2024.

720 Nicholas Nelsen and Andrew M Stuart. The random feature model for input-output maps between
 721 banach spaces. *arXiv preprint arXiv:2107.02791*, 2021.

722 Sheel Nidhan, Haoliang Jiang, Lalit Ghule, Clancy Umphrey, Rishikesh Ranade, and Jay Pathak.
 723 A domain decomposition-based autoregressive deep learning model for unsteady and nonlinear
 724 partial differential equations. *arXiv preprint arXiv:2408.14461*, 2024.

725 Tim Palmer and Bjorn Stevens. The scientific challenge of understanding and estimating climate
 726 change. *Proceedings of the National Academy of Sciences*, 116(49):24390–24395, 2019.

727 Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
 728 Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An imperative style,
 729 high-performance deep learning library. *Advances in neural information processing systems*, 32,
 730 2019.

731 Rajiv Patel, Pankaj Goyal, and Karthik Duraisamy. A physics-informed operator regression framework
 732 for extracting data-driven continuum models. *arXiv preprint arXiv:2102.06187*, 2021.

733 Raphaël Pestourie, Youssef Mroueh, Chris Rackauckas, Payel Das, and Steven G Johnson. Physics-
 734 enhanced deep surrogates for pdes. *arXiv preprint arXiv:2111.05841*, 2021.

735 Refaldı ID Putra, Tatsuya Ishikawa, Naomi Simumba, and Michiaki Tatsubori. Sandwiched lo-res
 736 simulation for scalable flood modeling. In *ICASSP 2024-2024 IEEE International Conference on
 737 Acoustics, Speech and Signal Processing (ICASSP)*, pp. 2420–2424. IEEE, 2024.

738 Md Ashiqur Rahman, Zachary E Ross, and Kamyar Azizzadenesheli. U-no: U-shaped neural
 739 operators. *arXiv preprint arXiv:2204.11127*, 2022.

740 Maziar Raissi, Paris Perdikaris, and George Em Karniadakis. Physics-informed neural networks:
 741 A deep learning framework for solving forward and inverse problems involving nonlinear partial
 742 differential equations. *Journal of Computational Physics*, 378:686–707, 2019.

756 Chenghui Rao et al. Solving turbulent rayleigh-bénard convection using fourier neural operators.
 757 *arXiv preprint arXiv:2501.16209*, 2025. URL <https://arxiv.org/abs/2501.16209>.
 758

759 Bogdan Raonic, Roberto Molinaro, Tim De Ryck, Tobias Rohner, Francesca Bartolucci, Rima
 760 Alaifari, Siddhartha Mishra, and Emmanuel de Bézenac. Convolutional neural operators for robust
 761 and accurate learning of pdes. *Advances in Neural Information Processing Systems*, 36, 2024.

762 Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional networks for biomedical
 763 image segmentation. In *Medical image computing and computer-assisted intervention–MICCAI*
 764 *2015: 18th international conference, Munich, Germany, October 5–9, 2015, proceedings, part III*
 765 18, pp. 234–241. Springer, 2015.

766

767 David Ruhe, Jayesh K Gupta, Steven De Keninck, Max Welling, and Johannes Brandstetter. Geometric
 768 clifford algebra networks. In *International Conference on Machine Learning*, pp. 29306–29337.
 769 PMLR, 2023.

770 Subhankar Sarkar and Souvik Chakraborty. Spatio-spectral graph neural operator for solving
 771 computational mechanics problems on irregular domain and unstructured grid. *arXiv preprint*
 772 *arXiv:2409.00604*, 2024.

773

774 Patrick Schnell, Philipp Holl, and Nils Thuerey. Half-inverse gradients for physical deep learning.
 775 *arXiv preprint arXiv:2203.10131*, 2022.

776

777 Erica L Schwarz, Luca Pegolotti, Martin R Pfaller, and Alison L Marsden. Beyond cfd: Emerging
 778 methodologies for predictive simulation in cardiovascular health and disease. *Biophysics Reviews*,
 779 4(1), 2023.

780

781 Gregory Shakhnarovich, Trevor Darrell, and Piotr Indyk. Nearest-neighbor methods in learning and
 782 vision. *IEEE Trans. Neural Networks*, 19(2):377, 2008.

783

784 Ramansh Sharma and Varun Shankar. Ensemble and mixture-of-experts deepnets for operator
 785 learning. *arXiv preprint arXiv:2405.11907*, 2024.

786

787 Jonathan D. Smith, Kamyar Azizzadenesheli, and Zachary E. Ross. Eikonet: Solving the eikonal
 788 equation with deep neural networks. *IEEE Transactions on Geoscience and Remote Sensing*, 58
 789 (12):8923–8935, 2020.

790

791 Kimberly Stachenfeld, Drummond B Fielding, Dmitrii Kochkov, Miles Cranmer, Tobias Pfaff,
 792 Jonathan Godwin, Can Cui, Shirley Ho, Peter Battaglia, and Alvaro Sanchez-Gonzalez. Learned
 793 coarse models for efficient turbulence simulation. *arXiv preprint arXiv:2112.15275*, 2021.

794

795 Zhiqing Sun, Yiming Yang, and Shinjae Yoo. A neural pde solver with temporal stencil modeling. In
 796 *International Conference on Machine Learning*, pp. 33135–33155. PMLR, 2023.

797

798 Roger Temam. Navier-stokes equations: Theory and numerical analysis(book). *Amsterdam, North-Holland Publishing Co.(Studies in Mathematics and Its Applications*, 2:510, 1977.

799

800 Nils Thuerey, Philipp Holl, Maximilian Mueller, Patrick Schnell, Felix Trost, and Kiwon Um. *Physics-based Deep Learning*. WWW, 2021. URL <https://physicsbaseddeeplearning.org>.

801

802 Alasdair Tran, Alexander Mathews, Lexing Xie, and Cheng Soon Ong. Factorized fourier neural
 803 operators. *arXiv preprint arXiv:2111.13802*, 2021a.

804

805 Hoang Tran, Dat Nguyen, Hieu Vo, and Minh Le. Fno: A novel fourier neural operator-based model
 806 for solving partial differential equations. *arXiv preprint arXiv:2104.05507*, 2021b.

807

808 Kiwon Um, Robert Brand, Yun Raymond Fei, Philipp Holl, and Nils Thuerey. Solver-in-the-loop:
 809 Learning from differentiable physics to interact with iterative pde-solvers. *Advances in Neural
 810 Information Processing Systems*, 33:6111–6122, 2020.

811

Charles Van Loan. *Computational frameworks for the fast Fourier transform*. SIAM, 1992.

812

A Vaswani. Attention is all you need. *Advances in Neural Information Processing Systems*, 2017.

810 Chuwei Wang, Shanda Li, Di He, and Liwei Wang. Is l2 physics-informed loss always suitable
 811 for training physics-informed neural networks? In *Advances in Neural Information Processing*
 812 *Systems*, volume 35, pp. 8278–8290, 2022.

813

814 Qi Wang, Pu Ren, Hao Zhou, Xin-Yang Liu, Zhiwen Deng, Yi Zhang, Ruizhi Chengze, Hongsheng
 815 Liu, Zidong Wang, Jian-Xun Wang, et al. P2c2 net: Pde-preserved coarse correction network for
 816 efficient prediction of spatiotemporal dynamics. *arXiv preprint arXiv:2411.00040*, 2024.

817

818 Gege Wen, Zongyi Li, Kamyar Azizzadenesheli, Anima Anandkumar, and Sally M Benson. U-
 819 fno—an enhanced fourier neural operator-based deep-learning model for multiphase flow. *Advances*
 820 *in Water Resources*, 163:104180, 2022.

821

822 Haixu Wu, Huakun Luo, Haowen Wang, Jianmin Wang, and Mingsheng Long. Transolver: A fast
 823 transformer solver for pdes on general geometries. *arXiv preprint arXiv:2402.02366*, 2024.

824

825 Enze Xie, Wenhui Wang, Zhiding Yu, Anima Anandkumar, Jose M Alvarez, and Ping Luo. Segformer:
 826 Simple and efficient design for semantic segmentation with transformers. *Advances in neural*
 827 *information processing systems*, 34:12077–12090, 2021.

828

829 Wei Xiong, Xiaomeng Huang, Ziyang Zhang, Ruixuan Deng, Pei Sun, and Yang Tian. Koopman
 830 neural operator as a mesh-free solver of non-linear partial differential equations. *Journal of*
 831 *Computational Physics*, pp. 113194, 2024.

832

833 Yan Yan, Yi Xu, Qihang Lin, Wei Liu, and Tianbao Yang. Optimal epoch stochastic gradient descent
 834 ascent methods for min-max optimization. *Advances in Neural Information Processing Systems*,
 835 33:5789–5800, 2020.

836

837 Penghang Yin, Jiancheng Lyu, Shuai Zhang, Stanley Osher, Yingyong Qi, and Jack Xin. Under-
 838 standing straight-through estimator in training activation quantized neural nets. *arXiv preprint*
 839 *arXiv:1903.05662*, 2019.

840

841 Huaiqian You, Quinn Zhang, Colton J Ross, Chung-Hao Lee, and Yue Yu. Learning deep implicit
 842 fourier neural operators (ifnos) with applications to heterogeneous material modeling. *Computer*
 843 *Methods in Applied Mechanics and Engineering*, 398:115296, 2022.

844

845 Fisher Yu and Vladlen Koltun. Multi-scale context aggregation by dilated convolutions. In *International*
 846 *Conference on Learning Representations (ICLR)*, 2016.

847

848 Fisher Yu, Vladlen Koltun, and Thomas Funkhouser. Dilated residual networks. In *Computer Vision*
 849 *and Pattern Recognition (CVPR)*, 2017.

850

851 Sergey Zagoruyko. Wide residual networks. *arXiv preprint arXiv:1605.07146*, 2016.

852

853 Hao Zhang, Yuting Weng, Zhiwei Zhao, and Dezhi Zhou. Learning transient evolution of multidimensional
 854 reacting flows by multiscale fourier neural operators. *Proceedings of the Combustion*
 855 *Institute*, 40(1-4):105714, 2024.

856

857 Jiawei Zhuang, Dmitrii Kochkov, Yohai Bar-Sinai, Michael P Brenner, and Stephan Hoyer. Learned
 858 discretizations for passive scalar advection in a two-dimensional turbulent flow. *Physical Review*
 859 *Fluids*, 6(6):064605, 2021.

860

861

862

863

864

A NEURAL OPERATORS

865
 866 Recent advancements in neural operators have expanded beyond foundational architectures like FNOs
 867 (Li et al., 2020c) and U-Nets (Ronneberger et al., 2015; Ma et al., 2021; Chen & Thurey, 2021;
 868 Rahman et al., 2022). Below, we summarize key developments in the field.
 869

870

A.1 FOURIER NEURAL OPERATORS (FNOs)

871
 872 The FNO architecture utilizes Fast Fourier Transforms (FFTs) to decompose inputs into low and high
 873 Fourier modes, capturing global and local information essential for modeling physical fields. Beyond
 874 classical 2D/3D applications, recent efforts focus on improving scalability, stability, and accuracy for
 875 highly non-linear PDEs. For instance, domain-decomposition-based FNOs (Nidhan et al., 2024) and
 876 M2M (Liang et al., 2024) split large computational domains into subdomains to handle extreme-scale
 877 problems in fluid and solid mechanics. Multi-resolution variants, such as MFNO (Zhang et al., 2024),
 878 combine FNO blocks at different frequency levels to capture multi-scale phenomena, especially in
 879 turbulent flows. Notable extensions include U-FNOs (Wen et al., 2022) and IFNOs (You et al., 2022),
 880 which enhance the classical FNOs by extending their application from 2D to 3D predictions. Recent
 881 work by Rao et al. (2025) demonstrates FNO’s effectiveness in solving turbulent Rayleigh-Bénard
 882 convection, outperforming traditional surrogates like Dynamic Mode Decomposition while achieving
 883 zero-shot super-resolution capabilities.
 884

885

A.2 U-SHAPED NEURAL OPERATORS (UNOs)

886 U-Net-based neural operators for PDE surrogates have seen continuous innovations aimed at capturing
 887 complex, multi-scale structures in physical fields. When replacing the convolution blocks in both
 888 sampling paths with the Fourier blocks, the U-Net becomes the U-shaped Neural Operator (UNO).
 889 Alongside wide Residual Networks (Zagoruyko, 2016) and spatial attention mechanisms (Vaswani,
 890 2017), the Point Cloud Neural Operator (PCNO) (Huang et al., 2025) extends U-Net principles to
 891 handle parametric PDEs on complex geometries using adaptive meshing and rotation-invariant inputs.
 892 Recent innovations also include physics-informed latent architectures like PI-Latent-NO (Karumuri
 893 et al., 2025), which combines reduced-order modeling with operator learning for efficient training
 894 on high-dimensional PDEs. These developments underscore U-Nets’ flexible design, enabling more
 895 accurate and efficient solution operators for a range of partial differential equations.
 896

897

A.3 GRAPH NEURAL OPERATORS

898 Graph Neural Operators (GNOs) extend the neural operator framework to irregular and graph-
 899 structured domains, enabling function space mappings on unstructured grids and complex geometries.
 900 By leveraging graph neural networks (GNNs), these architectures effectively model physical systems
 901 with non-Euclidean structures. The Spatio-Spectral Graph Neural Operator (Sp2GNO) (Sarkar &
 902 Chakraborty, 2024) integrates spatial and spectral GNNs to learn solution operators across arbitrary
 903 geometries. By combining local and global feature extraction, Sp2GNO can handle both time-
 904 dependent and time-independent PDEs on irregular computational domains. The Multipole Graph
 905 Neural Operator (MGNO) (Li et al., 2020a) addresses scalability challenges in PDE modeling
 906 by employing multipole expansions to capture long-range dependencies efficiently. The Physics-
 907 Informed Graph Neural Operator (PIGNO) (Chen et al., 2024) incorporates physical constraints into
 908 the operator learning process, ensuring solutions adhere to underlying laws governing the modeled
 909 system. Recent developments in GNOs highlight their versatility in handling PDEs on irregular
 910 domains, from computational mechanics to networked dynamical systems, further expanding the
 911 applicability of neural operators beyond structured grids.
 912

913

A.4 OTHER ADVANCING NEURAL OPERATOR ARCHITECTURES

914 Beyond FNO and U-Net variants, several novel frameworks have emerged. The Neural Operator-
 915 based symbolic Model approximaTion and discOvery (NOMTO) (Li et al., 2025) enables discovery
 916 of differential equations with singularities and special functions, significantly expanding symbolic
 917 regression capabilities. Hydraulic-based graph neural networks like mSWE-GNN (Bentivoglio
 918 et al., 2025) introduce multi-resolution modeling with ghost cells for flood prediction, achieving
 919

700x speedups while handling time-varying boundary conditions. Additional architectures include Residual Networks for function space mapping (Cao et al., 2023), Wavelet Neural Operators (WNO) (Navaneeth et al., 2024), Koopman Neural Operators (Xiong et al., 2024), the U-shaped Neural Operator (Azizzadenesheli et al., 2024), and Implicit Adaptive Fourier Neural Operators (IAFNO) (Jiang et al., 2025), demonstrating neural operators’ growing versatility in handling diverse physical systems, from turbulent flows to symbolic equation discovery.

B GENERAL EXPERIMENTAL SETTINGS

In this appendix, we provide a detailed description of the experimental setup, including hardware and software specifications, data generation configurations, and other training details. Since the solver-based hybrid model (and the MF-MoE models that include these hybrid models as experts) can require days for training and testing, we pre-generate the solver simulation results of the provided dataset for faster processing. The full codes and other omitted experimental settings are included in the supplementary material.

Hardware Specifications All experiments were run on a single compute node with: Dual AMD EPYC 9124 CPUs (32 total CPU cores), 768 GB of DDR5 4800 MHz memory, and 8 NVIDIA RTX 6000 Ada Generation GPUs.

Software Requirements Throughout all experiments, we use Python 3.11.2, CUDA 12.4.1, and OpenSSL 1.1.1k FIPS (25 Mar 2021). All other required Python packages match those specified by the original repository, PDEArena (Gupta & Brandstetter, 2022; Brandstetter et al., 2022; Ruhe et al., 2023).

B.1 CONFIGURATION FOR DATA GENERATION

We adapt the existing data generation configuration from PDEArena’s Github Repository, which has been widely used by Gupta & Brandstetter (2022); Brandstetter et al. (2022); Ruhe et al. (2023). More explicitly, we made the following modifications on the original configuration `navierstokes2dsmoke.yaml` to improve the accuracy of the PhiFlow’s numerical solution: We reduced `skip_nt`, the initial timesteps to ignore, from 8 to 0, and reduced the `tmax`, the maximum time period, from 108.0 to 60.0; as the result, we are investigating the fluid dynamic over the time period [18.0, 60.0]. We control the overall numerical accuracy by adjusting the number of timesteps and the spatial resolution. More explicitly, these configurations are summarized in Table 5. The time cost and the MSE error is evaluated per frame. For example, if a trajectory with setting `nt = 64` and `sampling_rate = 8`, it outputs $\frac{nt}{sampling_rate} = \frac{64}{8} = 8$ frames; then its time cost is the total time cost t_{total} divided by 8. Similarly, we take the slice of the same time step t , and evaluate the MSE loss between the up-sampled low-resolution field and the groundtruth field.

Table 5: Configuration details for data generation at different resolution levels. Each configuration specifies the number of timesteps (nt), spatial resolution (nx, ny), time cost per frame, and MSE of the numerical solution compared to the ground truth (GT). The ground truth configuration achieves the highest accuracy with the highest computational cost, while coarser resolutions progressively reduce time cost at the expense of higher error. The visual illustration has been presented in Figure 4.

Resolution Level	Configuration File	nt	(nx, ny)	Time Cost (s)	MSE Error
Groundtruth (GT)	<code>navierstokes2dsmoke_high_res.yaml</code>	512	(256, 256)	1.58×10^2	< 0.001
Fine	<code>navierstokes2dsmoke_fine.yaml</code>	64	(128, 128)	0.38×10^2	0.065
Medium	<code>navierstokes2dsmoke_medium.yaml</code>	32	(64, 64)	0.20×10^2	0.104
Coarse	<code>navierstokes2dsmoke_coarse.yaml</code>	16	(32, 32)	0.12×10^2	0.135
XCoarse	<code>navierstokes2dsmoke_xcoarse.yaml</code>	8	(16, 16)	0.08×10^2	0.151

For each viscosity μ (as shown in Equation (4) or the following dataset split), we generate 50 independent trajectories with the length 8 (they contain 250 pairs of data for each μ in total). As the result, the train, validation, and test set contain 750, 1000, and 1000 pairs of data, respectively. (for the case nt larger than 8, we set the `sampling_rate` parameter to omit the intermediate data). In Appendix G, we visualize a single trajectory for better illustrating the accuracy of the numerical

972 solution over different fidelity.
 973

$$\begin{aligned} \text{(Train)} \quad \mu &\in \{3.2, 1.6, 0.8\} \times 10^{-2}, \\ \text{(Valid)} \quad \mu &\in \{1.6, 0.8, 0.4, 0.2\} \times 10^{-2}, \\ \text{(Test)} \quad \mu &\in \{0.8, 0.4, 0.2, 0.1\} \times 10^{-2}. \end{aligned}$$

978 Other parameters are included in the supplementary material. We omit the full discussions on these
 979 parameters and the details of introduction can be found in the PDEArena (Gupta & Brandstetter,
 980 2022).

981 B.2 CONFIGURATION FOR TRAINING

983 In this section, we present the details on the training configuration. We use the AdamW optimizer
 984 (Loshchilov et al., 2017; Loshchilov & Hutter, 2019) with learning rate $\eta = 2 \times 10^{-4}$ for 8,000
 985 training steps, a weight decay of 1×10^{-5} , and a batch size of 32. No further hyperparameter
 986 tuning is applied across different models. During the training of the MF-MoE framework, we
 987 update the parameter λ with a naive stochastic gradient descent (SGD) step using an initial learning
 988 rate $\eta_\lambda = 0.01$. This learning rate is decayed exponentially with a factor $r = 0.999$, leading to
 989 a final effective rate of around 0.001. For the MF-MoE model, we introduce several additional
 990 hyperparameters: the number of experts $N = 4$, where one expert is a pure neural-operator model
 991 and the other three are solver-based hybrid models of varying fidelity (Fine, Medium, and Coarse).
 992 Their relative accuracy and time costs appear in Table 5. We set the time-cost constraint to $c = 10.0$,
 993 ensuring that a single solver-based hybrid model alone (though accurate) is excluded, as it exceeds
 994 this cost threshold. A concise summary of all the important hyperparameters is provided in Table 6.

995 Table 6: Hyperparameter overview for the training process in the fluid flow dynamic prediction
 996 experiment

998	Hyperparameter	Value
999	Optimizer	AdamW
1000	Learning rate (η_θ)	2×10^{-4}
1001	Number of training steps	8,000
1002	Weight decay	1×10^{-5}
1003	Batch size	32
1004	λ update	Naive SGD
1005	λ learning rate (η_λ)	0.01
1006	Exponential decay rate (r)	0.999
1007	Number of experts (N)	4
1008	Time-cost constraint (c)	10.0

1010 B.3 CONFIGURATION OF BASELINES

1012 We list here a brief overview of the three types of model we have considered in this work. Their
 1013 implementations are directly taken from the PDEArena (Gupta & Brandstetter, 2022) and we follow
 1014 the same name used in their codes. These models are also compatible with our MF-MoE framework
 1015 and can be served as the pure neural operator expert or the residual approximation network used in
 1016 the solver-based hybrid expert.

- 1018 • **Fourier Neural Operators (FNOs)** (Li et al., 2020c): FNOs are among the most widely used
 1019 neural PDE surrogates, leveraging the Fast Fourier Transform (FFT) (Van Loan, 1992; Cooley
 1020 & Tukey, 1965). In this framework, low-frequency Fourier modes capture global features, while
 1021 high-frequency modes capture local details. The first set of parameters (e.g., 128, 96, 64) specifies
 1022 the number of hidden channels, which determines the model size. The second parameter indicates
 1023 the number of modes and the hidden channels of each mode.
- 1024 • **ResNet** (He et al., 2016): The implementation of ResNet from (Gupta & Brandstetter, 2022) is
 1025 different from the original implementation; we refer the reader for more details in the PDEArena
 1026 (Gupta & Brandstetter, 2022). The number (256 and 128) is the number of hidden channels, which

1026 is used to control the model size and the prefix “Dil” indicates if the Dilated ResNets (Stachenfeld
 1027 et al., 2021) are used or not.

1028

- 1029 • **U-Net** (Ma et al., 2021; Chen & Thuerey, 2021; Rahman et al., 2022): The U-Net architecture,
 1030 originally developed by Ronneberger et al. (2015) for biomedical image segmentation, has since
 1031 been adapted for PDE surrogates (Ma et al., 2021; Chen & Thuerey, 2021). A special U-Net
 1032 architecture with replacing all blocks with the Fourier blocks is called UNO, which is developed by
 1033 Rahman et al. (2022). We adjust the number of hidden layers from 64 to 128 to control the size
 1034 of UNO. If we only replace the blocks in downsampling paths, the model is called U-Nets with
 1035 Fourier blocks. We consider different variants with including different modes in the Fourier blocks
 1036 in our experiment.

1037 **C IMPACT STATEMENT**

1038 This paper presents a framework for accelerating the solver-based hybrid PDE surrogate model via the
 1039 mixture-of-expert structure. Potential positive applications include more efficient climate simulations,
 1040 fluid modeling, and biomedical analyses. We do not see any immediate negative societal impacts or
 1041 ethical concerns specific to this approach.

1042 **D LIMITATIONS & FUTURE WORK**

1043 Despite the promising results demonstrated by the MF-MoE framework, several limitations remain,
 1044 highlighting opportunities for future research: (1) This study primarily focuses on single-step
 1045 predictions, which limits its applicability to scenarios requiring multi-step or long-horizon forecasts.
 1046 Future work could explore incorporating unrolled training techniques and developing time-evolving
 1047 gating strategies to enhance performance in these more complex settings. (2) While the MF-MoE
 1048 framework is designed to be flexible and compatible with advanced models, its empirical performance
 1049 with such models has not yet been thoroughly evaluated. Investigating its integration with state-of-
 1050 the-art neural operators and hybrid models is a promising direction for future studies.

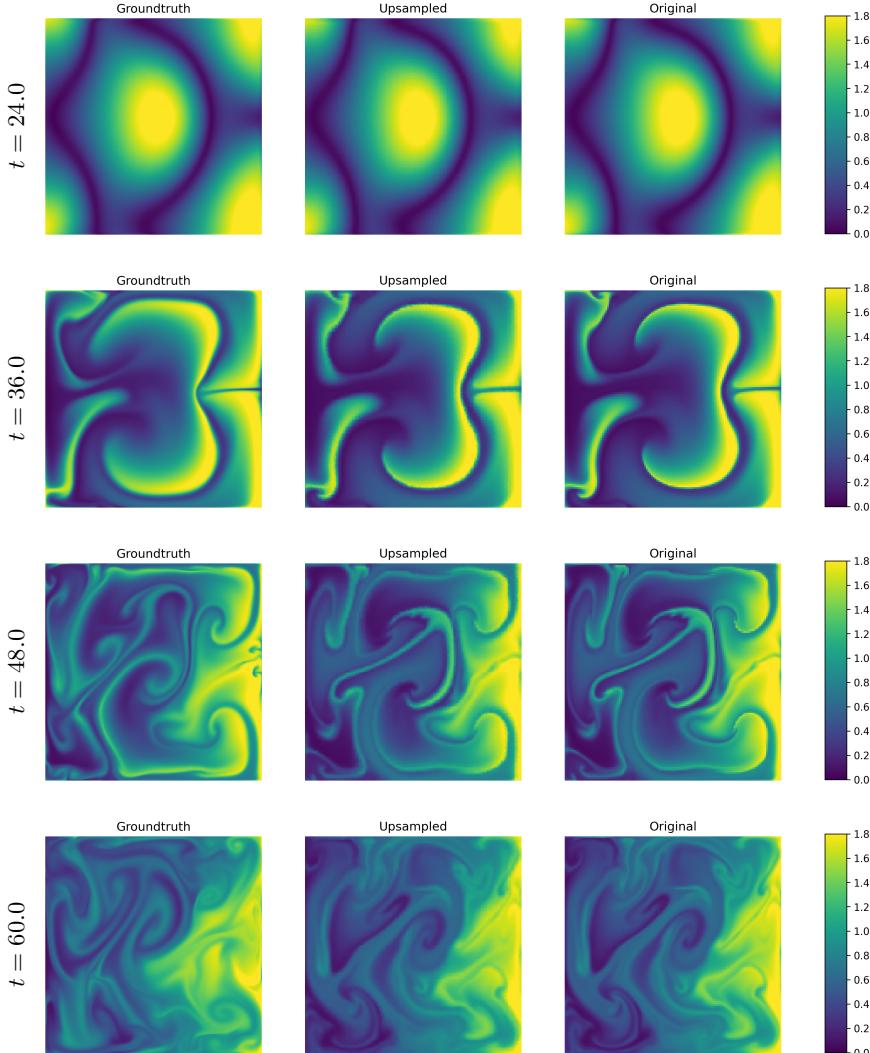
1051 **E THE USE OF LARGE LANGUAGE MODELS (LLMs)**

1052 We use LLMs to assist the writing refinement, the main article drafting, and the experimental codes
 1053 generation. All generated details are carefully checked by experienced human.

1054 **F CONCLUSION**

1055 In this work, we introduced the **Multi-Fidelity Mixture-of-Experts (MF-MoE)** framework, a novel
 1056 approach to operator learning that seamlessly integrates pure neural operators with the numerical
 1057 solver. Leveraging a physics-aware gating network to dynamically route inputs to the most suitable
 1058 expert, the framework achieves an optimal balance between computational efficiency and generaliza-
 1059 tion ability by adopting the time cost as a constraint. It enables fast inference for in-distribution data
 1060 while ensuring generalization ability on out-of-distribution data. This was validated through the fluid
 1061 flow prediction experiment, where the MF-MoE framework consistently outperformed its base model
 1062 counterparts while maintaining the time cost constraint. We believe this work provides an efficient
 1063 approach for combining numerical solver and pure neural operator hence opens a new avenue for the
 1064 development of solver-based hybrid models.

1080
1081 **G VISUALIZATION OF NUMERICAL SOLUTION OVER DIFFERENT**
1082 **RESOLUTIONS**

1083 In this section, we present the visualization of numerical solution over different resolution levels
1084 (including Fine, Medium, Coarse, and XCoarse). Their detailed resolution is provided in [Table 5](#).

1121 Figure 7: Illustration of the scalar field solved over the fine-level resolution at four time steps:
1122 $t = 24.0, 36.0, 48.0, 60.0$.

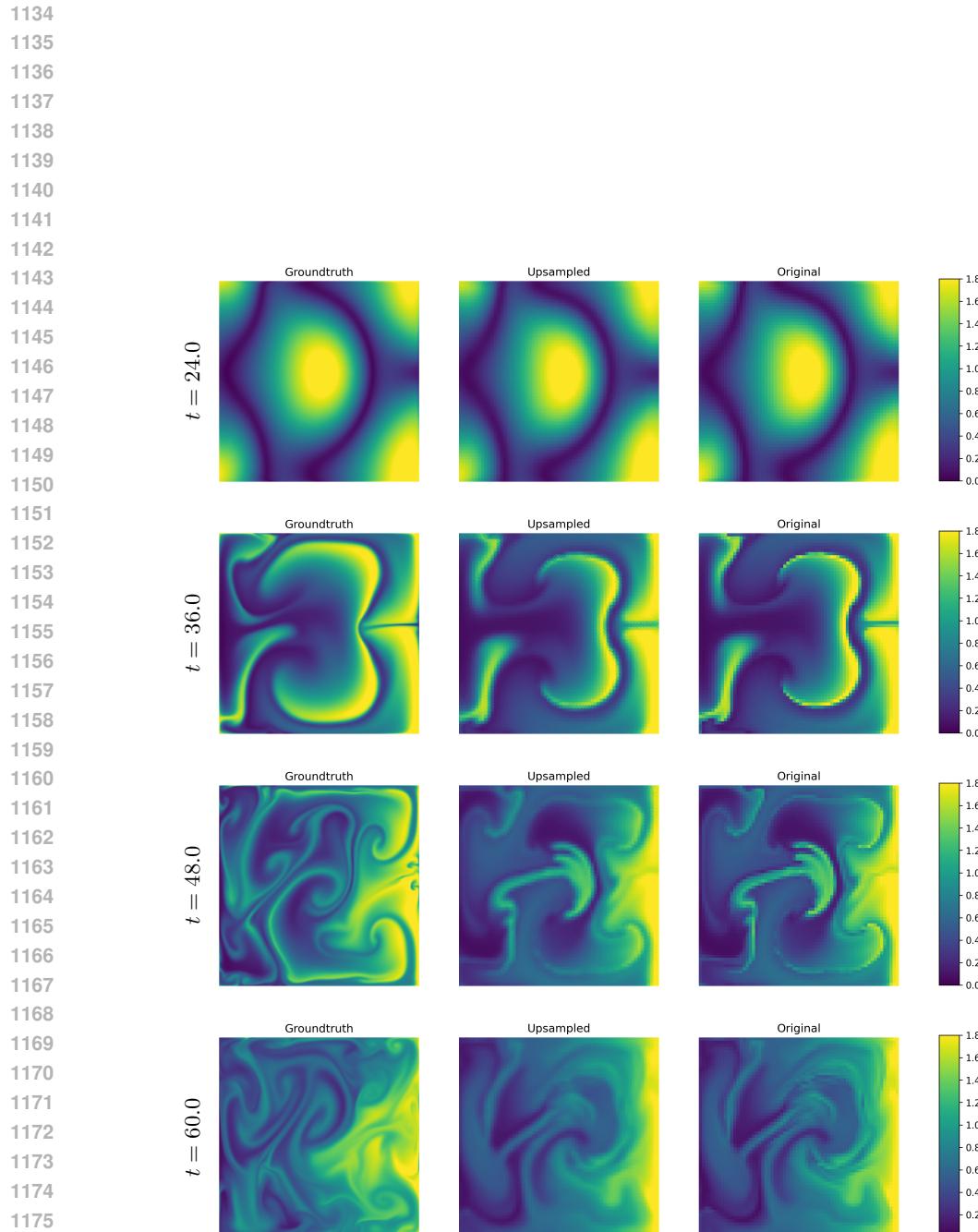


Figure 8: Illustration of the scalar field solved over the medium-level resolution at four time steps: $t = 24.0, 36.0, 48.0, 60.0$.

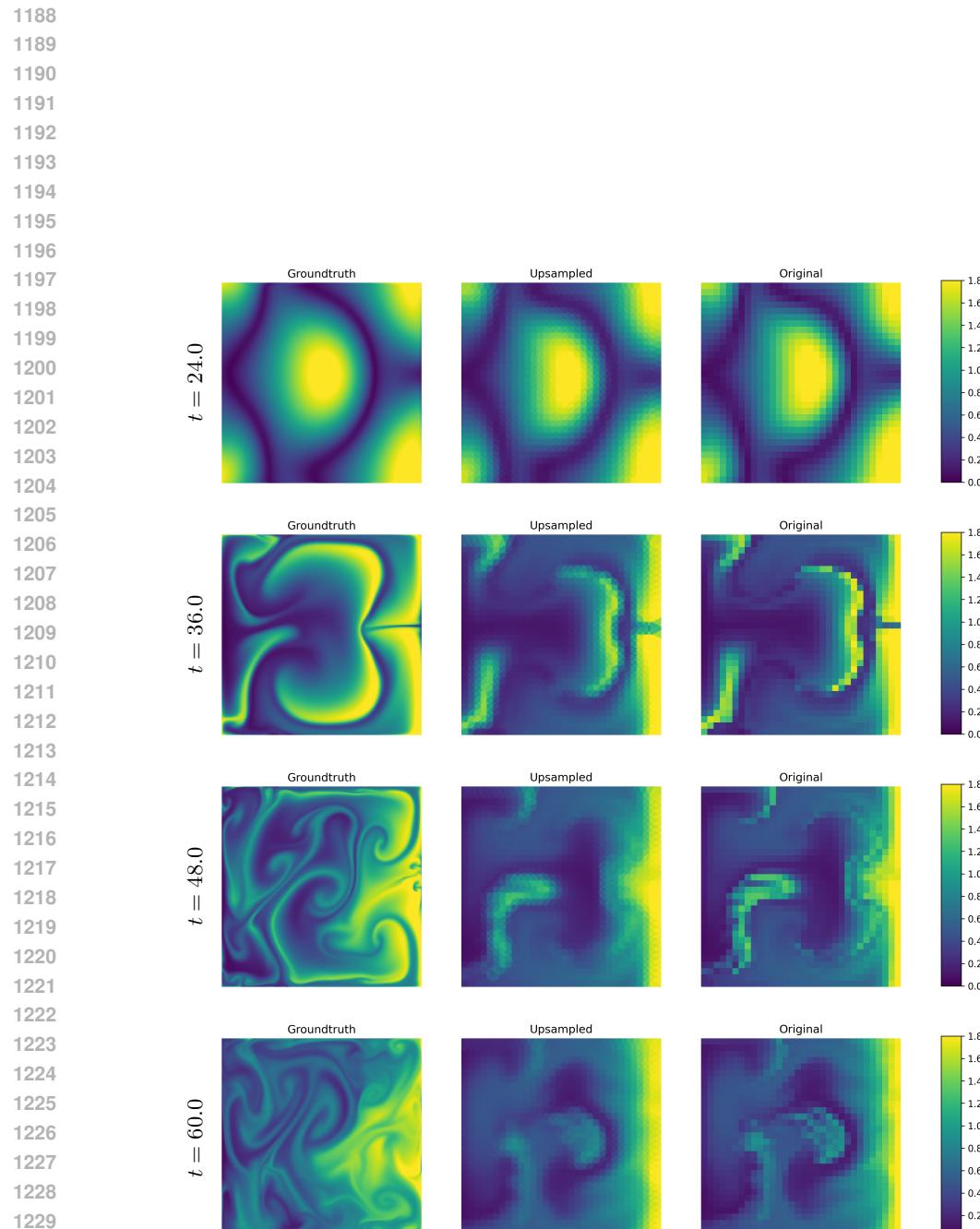


Figure 9: Illustration of the scalar field solved over the coarse-level resolution at four time steps: $t = 24.0, 36.0, 48.0, 60.0$.

