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Abstract

Heterogeneous hypergraph is a kind of structural data that contains multiple types of
nodes and multiple types of hyperedges. Each hyperedge type corresponds to a spe-
cific multi-ary relation (called hyper-relation) among subsets of nodes, which goes
beyond traditional pair-wise relations in simple graphs. Existing representation
learning methods for heterogeneous hypergraphs typically learn embeddings for
nodes and hyperedges based on graph neural networks. Although achieving promis-
ing performance, they are still limited in capturing more complex structural features
and richer semantics conveyed by the composition of various hyper-relations. To
fill this research gap, in this work, we propose the concept of hyper-meta-path for
heterogeneous hypergraphs, which is defined as the composition of a sequence of
hyper-relations. Besides, we design an attention-based heterogeneous hypergraph
neural network (HHNN) to automatically learn the importance of hyper-meta-paths.
By exploiting useful ones, HHNN is able to capture more complex structural
features to boost the model’s performance, as well as leverage their conveyed
semantics to improve the model’s interpretability. Extensive experiments show that
HHNN can achieve significantly better performance than state-of-the-art baselines,
and the discovered hyper-meta-paths bring good interpretability for the model
predictions. To facilitate the reproducibility of this work, we provide our dataset as
well as source code at: https://github.com/zhengziyu77/HHNN.

1 Introduction

Graph data is a common type of non-independent identically (non-i.i.d.) distributed data in our real-
world life, which can be used to describe various complex relations between objects. Representation
learning and knowledge mining on graph data are beneficial for many real-world scenarios, such as
social networks [29], bioinformatics [42], e-commerce platform [43], and relational databases [13],
etc. In this paper, we categorize the existing graph data into four categories based on their complexity,
as shown in Figure 1.

❶ Homogeneous Simple Graphs consist of one type of nodes and one type of edges, and each edge
represents a binary (pair-wise) relation between two nodes. Figure 1(a) shows a toy homogeneous
simple graph, which describes five users and their pairwise friendship relations.

❷ Heterogeneous Simple Graphs consist of multiple types of nodes and multiple types of edges,
with edges representing various types of binary relations between node pairs. Figure 1(b) shows a toy
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(a) Homogeneous Simple Graph (b) Heterogeneous Simple Graph

(c) Homogeneous Hypergraph (d) Heterogeneous Hypergraph

Figure 1: The toy examples of four categories of graph data.

heterogeneous simple graph, which includes four types of nodes: users, movies, tags, and ratings,
denoted by different shapes, and four types of binary relations, denoted by different colors of lines.

❸ Homogeneous Hypergraphs generalize the binary relations between node pairs to multi-ary
(tuple-wise) relations among a set of nodes. The multi-ary relation among a set of nodes is called
a hyperedge. In this work, we also refer to the hyperedge type (i.e., the multi-ary relation) as the
hyper-relation. Similar to homogeneous simple graphs, homogeneous hypergraphs consist of one
type of nodes and one type of hyperedges. Figure 1(c) shows a toy homogeneous hypergraph, which
describes a social group (i.e., a hyperedge) among users u1, u2, and u4, and another social group
among users u2, u3, and u4.

❹ Heterogeneous Hypergraphs consist of multiple types of nodes and multiple types of hyperedges
(hyper-relations), which can describe multiple types of hyper-relations among multiple types of
nodes. Figure 1(d) shows a toy heterogeneous hypergraph, which contains four types of nodes
(indicated by different shapes) and two types of hyperedges (indicated by different shapes with
different colors). The two hyperedges {u2,m2, t2} and {u1,m1, t1} belong to the first type of hyper-
relation, indicating the semantics that "a user associates a movie with a tag". The two hyperedges
{u2,m2, r1} and {u1,m1, r1} belong to the second type of hyper-relation, indicating the semantics
that "a user associates a movie with a rating".

We can observe that for heterogeneous hypergraphs, when the cardinality of their hyperedges is two,
or the types of their nodes and hyperedges are one, they can be reduced to the other three categories of
graphs, i.e., the latter are three special cases of the former. In this work, we focus on the representation
learning of heterogeneous hypergraphs (more than two types of nodes and more than two types of
hyperedges) as they are not only the most general but also the most challenging types of graph data.

At present, several heterogeneous hypergraph representation learning methods [4, 22, 26, 30, 10, 19,
25, 14] have been proposed. They are all graph neural network (GNN)-based methods, and follow
the typical framework of GNNs by first aggregating information from nodes to hyperedges and then
aggregating information from hyperedges back to nodes. They have achieved promising performance
and have been successfully applied to practical scenarios such as social recommendation [22, 26],
spatiotemporal activity prediction [25], and complex system analysis [11]. However, these methods
fail to capture more complex structural features and richer semantics conveyed by various types of
hyperedges. For the example shown in Figure 1(d), the two hyperedge types convey two different
semantics as we have explained in Paragraph ❹. In addition, the two hyperedge types interact with
each other through the shared node types (users and movies, i.e., the overlapping area of blue circles
and brown circles), resulting in more complex semantics.
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In this work, we aim to capture the rich semantics contained in heterogeneous hypergraphs. To this
end, let us first review an important concept in heterogeneous simple graphs, i.e., meta-path, which is
defined as a sequence of binary relations between nodes [31]. Referring to the example shown in
Figure 1(b), let us use "R1" to denote the binary relation of "users watch movies", and use "R2" to
denote the binary relation of "movies have tags". Then, we can compose the metapath "R1 ⋄ R2",
where "⋄" denotes the composition operator. This meta-path describes the new composite binary
relation between users and tags: "users watch movies that have specific tags". Meta-paths are often
represented by node types as well. Here, the meta-path can also be denoted as U R1−−→ M

R2−−→ T ,
where U , M , and T denote the node types of users, movies, and tags, respectively. It is noteworthy
that this meta-path is very different from the hyper-relation {U,M, T}, since from the meta-path, we
cannot know who assigned these tags to the movie, while the hyper-relation conveys a more precise
semantics of "users associate movies with specific tags". Meta-path has been proven to be very useful
in capturing heterogeneous structural features from heterogeneous simple graphs [31, 8, 35, 40].
Unfortunately, it can only handle heterogeneous simple graphs and cannot be directly applied to
heterogeneous hypergraphs due to the challenge of the multi-arity of hyper-relations.

To fill this research gap, we innovatively propose a novel concept called hyper-meta-path, which
is formally defined as a sequence of hyper-relations, in which each pair of adjacent hyper-relations
shares some common node types. It describes the composite relation of these hyper-relations. In this
view, hyper-meta-path is defined in the spirit of the meta-path, with the former being a generalization
of the latter. Hence, hyper-meta-path can capture more complex structural features and richer semantic
information in heterogeneous hypergraphs.

Further, we develop a GNN-based representation learning model called Heterogeneous Hypergraph
Neural Network (HHNN), which is able to automatically learn the importance of hyper-meta-paths.
Each model layer goes through three levels of attention aggregation blocks to refine the representations
of nodes and hyperedges. Finally, useful hyper-meta-paths can be discovered based on the optimized
attention distributions. The merits are twofold. On the one hand, these hyper-meta-paths help the
model capture more complex and subtle high-order structural features, boosting the performance of
downstream analysis tasks. On the other hand, the rich semantics conveyed by these hyper-meta-paths
endow the model with self-interpretability. That is, these semantics can bring some interesting
interpretations to the model’s predictions.

The main contributions of this work are summarized as follows:

• We are the first to define the concept of hyper-meta-path for heterogeneous hypergraphs. It
describes the composite relation among a sequence of hyper-relations, capturing more complex
structural features and richer semantics.

• We design a novel network architecture called Heterogeneous Hypergraph Neural Network
(HHNN), which can automatically learn the importance of hyper-meta-paths. By discovering and
exploiting useful hyper-meta-paths, HHNN is able to achieve higher performance as well as better
self-interpretability.

• We conduct extensive experiments to study the effectiveness of the proposed concept of hyper-
meta-paths and the proposed HHNN model. It turns out that HHNN can achieve significantly
better performance than state-of-the-art baselines, and the discovered hyper-meta-paths bring good
interpretability for the model predictions.

2 Related Work

Homogeneous Hypergraph Neural Networks. Inspired by the graph convolutional network
(GCN) [24] for homogeneous simple graphs, HGNN [12] is the first work to define the spectral
convolution on hypergraphs based on the hypergraph Laplacian, effectively extending GCN to ho-
mogeneous hypergraphs. HyperGCN [38] approximates each hyperedge by a set of pairwise edges
that connect the nodes in the hyperedge. Inspired by the graph attention network (GAT) [33] for
homogeneous simple graphs, Hyper-SAGNN [41] develops a self-attention based on the hypergraph
neural network to deal with hypergraphs with variable hyperedge size. Inspired by the GraphSAGE
model [17] for homogeneous simple graphs, HyperSAGE [2] proposes an inductive hypergraph
learning framework that can capture the intra-relations (within a hyperedge) as well as inter-relations
(across hyperedges). HNHN [7] introduces a generalized normalization aggregation scheme of GNN,
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which weights the contributions of nodes/hyperedges by a power of their degrees, depending on a
real-valued parameter. UniGNN [21] is proposed as a unified hypergraph learning framework, which
generalizes several classic GNNs, such as GCN [24], GAT [33], GIN [37], and GraphSAGE [17]
to hypergraphs. AllSet [6] implements hypergraph neural network layers as compositions of two
multiset functions. ED-HNN [34] is a hypergraph neural network that can approximate any continu-
ous equivariant hypergraph diffusion operators, and thus it can model a wide range of higher-order
relations. These methods can effectively address the high-order structural features of hypergraphs,
but they have limitations in capturing the heterogeneity of heterogeneous hypergraphs, since there
may be multiple types of nodes as well as multiple types of hyperedges.

Heterogeneous Hypergraph Neural Networks. At present, there exists a series of heterogeneous
hypergraph neural network methods [4, 30, 14, 25, 26, 10, 22, 19, 5, 18, 36], and the representative
ones are introduced as follows. HHNE [4] is a GCN-based hypergraph neural network that can
consider the heterogeneity of nodes by projecting different types of node features into a common
feature space. HWNN [30] transforms heterogeneous simple graphs into a series of hypergraph
snapshots based on a set of user-specified meta-paths. Then it conducts hypergraph convolution
based on the Wavelet basis. HGNN+ [14] extends HGNN [12] to heterogeneous hypergraphs by
introducing four ways to generate different types of hyperedges. DisenHCN [25] disentangles the user
representations into different aspects (location-aware, time-aware, and activity-aware) and aggregates
corresponding aspects’ features on the constructed hypergraph. These methods not only can capture
high-order structural features of hypergraphs but also can address the heterogeneity of nodes and
hyperedges by various strategies. However, as we analyzed previously, they fail to capture the
complex structural features and rich semantics conveyed by hyper-meta-paths.

3 Preliminaries

In this section, we first define some basic notations and concepts about heterogeneous hypergraphs.
Then, we give the formal definition of our proposed concept of hyper-network-schema and hyper-
meta-path, as illustrated by Figure 2.

{U, M, T}M Movies T Tags

U Users R Ratings

Two types of hyperedgesFour types of nodes

"users associate movies with tags"

{U, M, R}
"users associate movies with ratings"

(a) Hyper-network-schema

M

U
T R

(b) Hyper-meta-path

Figure 2: The illustration of hyper-network-schema and hyper-meta-path of the toy heterogeneous
hypergraph shown in Figure 1(d). Note that we use "R" to denote node type "Ratings", and use "Rx"
to denote hyperedge type x, i.e., hyper-relation x.

Heterogeneous Hypergraphs. A hypergraph is defined as G = (V, E ,H,W, ϕ, ψ), where V is a
set of nodes, E is a set of hyperedges, and H ∈ {0, 1}|V|×|E| is an incidence matrix that describes
the belonging relations between node and hyperedges, with the entry Hi,j = 1 indicating that node
i is in the hyperedge j. The diagonal matrix W ∈ R|E|×|E| stores the weights of hyperedges. ϕ:
V → A is a node type mapping function, and ψ: E → R is a hyperedge type mapping function,
with |A| + |R| > 2. Let vi and ej denote the representation vectors of node i and hyperedge j,
respectively. Each hyperedge type Rk ∈ R conveys a specific multi-ary relation among all the
associated, and thus we also call it hyper-relation Rk.

Hyper-network-schema. We define the concept of hyper-network-schema as a tuple < A,R >,
describing the types of the nodes and the types of the hyperedges in a hypergraph, respectively.

A hypergraph G is homogeneous when |A| = 1 as well as |R| = 1. In this work, we particularly
focus on a more challenging setting by considering heterogeneous hypergraphs with |A| > 1 as well
as |R| > 1, i.e., both the nodes and the hyperedges are heterogeneous.
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In Figure 2(a), we show the hyper-network-schema of the toy heterogeneous hypergraph that is
previously shown in Figure 1(d). We can clearly see that there are four types of nodes, and two types
of hyperedges, i.e., two hyper-relations in the heterogeneous hypergraph.

Hyper-meta-path. For each hyper-relation Rk (the hyperedge type is k), we can denote it as its
associated node types, i.e., Rk = {ϕ(i)|Hi,j = 1, ψ(j) = k, ∀i ∈ V,∀j ∈ E , k ∈ R} to denote all
the associated node types. Then, a hyper-meta-path with length l is defined as a sequence of hyper-
relations: P = R1 ⋄R2 ⋄ · · · ⋄Rl, where ⋄ denotes the composition operator between hyper-relations,
and two hyper-relations Rx and Ry can be composed if and only if: Rx ∩Ry ̸= ∅.
In Figure 2(b), we intuitively show a hyper-meta-pathR1⋄R2 according to the hyper-network-schema
shown in Figure 2(a). As we can see, the hyper-meta-path describes a more complex hyper-relation
by compositing the two hyper-relations R1 and R2, since they share the same node types, i.e.,
R1 ∩R2 = {M,U}. Besides, according to the semantics of R1 and R2, the hyper-meta-path conveys
a richer semantics of "users associate specific movies with specific tags and specific ratings".

4 Methodology

The aggregation scheme of HHNN is shown in Figure 3. Firstly, it projects node features into a
hyperedge-specific feature space, and leverages the α-Attention to aggregate features from nodes to
hyperedges. Then, it projects hyperedge features back to node-specific feature space, and leverages
the β-Attention and γ-Attention to respectively perform intra-hyperedge-type aggregation and inter-
hyperedge-type aggregation, resulting in the updated node features.

-Attention

-Attention

-Attention

Node2Edge
Projections

Edge2Node
Projections

Figure 3: The aggregation scheme of HHNN.

4.1 Aggregation from Nodes to Hyperedges

Each hyperedge contains multiple nodes, and we define a set to describe all the nodes contained in
hyperedge j:

NVj = {i|Hi,j = 1, i ∈ V, j ∈ E} (1)

In a heterogeneous hypergraph, the nodes in NVj may have various types. To aggregate the features
of these nodes, we need to first project them into a common feature space through parameter matrices,
and these projection parameter matrices are specific to both the involved node type ϕ(i) and hyperedge
type ψ(j). Then, we leverage the attention mechanism to aggregate the projected node features
together, resulting in the updated feature of hyperedge j, which is formally described as follows:

ej =
∑
i∈NV

j

αj,i ·Wψ(j)←ϕ(i) · vi (2)

where Wψ(j)←ϕ(i) is a learnable parameter matrix and its superscript "ψ(j)← ϕ(i)" denotes pro-
jecting features from nodes of type ϕ(i) to hyperedges of type ψ(j), αj,i is the attention aggregation
weight from node i to hyperedge j, which is described as follows:

αj,: = Attentionθψ(j)

({
Wψ(j)←ϕ(i) · vi

}
i∈NV

j

)
(3)

where θψ(j) contains the learnable parameters of the attention function, which are specific to hyper-
edge type ψ(j) and serve as the attention query. The projected node representations can be mapped
into the attention keys and attention values based on different projection parameter matrices.
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4.2 Aggregation from Hyperedges to Nodes

In a heterogeneous hypergraph, a node may belong to multiple hyperedges of various types. For the
toy example in Figure 1(d), node m2 belongs to one hyperedge with "blue" type, and one hyperedge
with "brown" type. Node r1 belongs to two hyperedges with "brown" type. To this end, in the
hyperedge-to-node aggregation phase, different from most previous approaches, we decompose the
aggregation process into two levels, i.e., intra-type aggregation and inter-type aggregation. In the
following, we describe the procedures by taking node i as an example.

4.2.1 Intra-type Aggregation

For node i, assuming that it participates in multiple hyperedges of type k, we define a set to describe
these hyperedges:

N Eki = {j|Hi,j = 1, i ∈ V, j ∈ E , ψ(j) = k} (4)

Then, we leverage the feature projection and the attention mechanism again to aggregate the features
of the hyperedges in N Eki , resulting in a temporary representation for node i:

ṽki =
∑

j∈NEk
i

βi,j ·Wϕ(i)←ψ(j) · ej (5)

where Wϕ(i)←ψ(j) is a projection parameter matrix, and the superscript "ϕ(i)← ψ(j)" denotes pro-
jecting features from hyperedges of type ψ(j) to nodes of type ϕ(i). βi,j is the attention aggregation
weight from hyperedge j to node i, which is calculated as follows:

βi,: = Attentionθϕ(i)
({

Wϕ(i)←ψ(j) · ej
}
j∈NEk

i

)
(6)

where θϕ(i) are the attention parameters specific to node type ϕ(i). Like the previous attention
function, the attention parameters θϕ(i) serve as the attention query, and the inputs of the function,
i.e., the projected hyperedge features, are mapped into attention keys and values.

Similar aggregation processes are conducted for all the possible hyperedge types that node i par-
ticipates in. Finally, we can obtain a set of temporary representations for node i, denoted as{
ṽki |N

Ek
i ̸= ∅,∀k ∈ R

}
, and abbreviated as

{
ṽki

}
. Its element vki reflects the property of node i

from the aspect of hyper-relation Rk.

4.2.2 Inter-type Aggregation

To obtain a more comprehensive representation for node i, we use the attention mechanism once
more to fuse the temporary representations of node i from all the involved hyper-relations:

v′i =
∑
k

γi,k · ṽki (7)

where γi,k,∀k are the attention coefficients that are computed by an attention function as follows:

γi,: = Attentionωϕ(i)
({

ṽki
})

(8)

M

T

U

R

M

T

U

R

M

T

U

R

Figure 4: The architecture of HHNN.

where ωϕ(i) are the attention parameters specific
to node type ϕ(i), and serve as the attention
query. The inputs of the attention function, i.e.,
the obtained temporary node representations, are
mapped into the attention keys and values.

In this way, we conduct this three-level attention
aggregation in each model layer to update the
node representations and the hyperedge represen-
tations. Figure 4 shows the overall architecture
of HHNN. We can obtain the final node embed-
dings {vi|∀i ∈ V}, and the final hyperedge em-
beddings {ej |∀j ∈ E} from the last layer.
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4.3 Training Loss

By obtaining the embeddings of nodes and hyperedges, we can implement the loss function according
to the task at hand. For example, for the semi-supervised node classification task, we utilize the
cross-entropy loss as follows:

L = −
∑
i∈Y

yi · ln(C · vi) (9)

where vi and yi denote the extracted embedding and the ground-truth label of node i, respectively, Y
denotes the set of node indices that have labels, and C denotes the parameter matrix of the classifier.

In Appendix D, we show the overall algorithm of HHNN. In Appendix E, we theoretically show that
HHNN can automatically discover the most important hyper-meta-path for each node, which helps
interpret the model’s prediction. In Section 5.3, we verify this ability of HHNN through case studies.

4.4 Time Complexity Analysis

The time complexity of HHNN is analyzed as follows. For each layer, the main cost comes from
the three-level attention aggregation operations. The α-attention aggregation involves projecting and
attending to nodes within each hyperedge, costing O(|E| · dα · fα · r), where |E| is the number of
hyperedges, dα and fα are the dimensionalities of the input and output features, respectively, and r
denotes the average number of nodes per hyperedge. In the β-attention aggregation phase, each node
aggregates its connected hyperedges of each type, costingO(|V | · dβ · fβ · t) where |V | is the number
of nodes, dβ and fβ are the feature dimensionalities, and t denotes the average number of hyperedges
of each type that a node participates in. In the γ-attention aggregation phase, each node fuses its
representations across different hyperedge types, costingO(|V | · dγ · fγ · k), where dγ and fγ are the
feature dimensionalities, and k is the average number of hyperedge types. Assuming the model has n
layers, the total time complexity becomes: O(|E| ·dα ·fα ·r ·n+ |V | ·dβ ·fβ ·t ·n+ |V | ·dγ ·fγ ·k ·n).
In practical scenarios, dα, fα, dβ , fβ , dγ , fγ , r, t, k, n are usually much smaller constants compared
to |V| and |E|. Therefore, the total time complexity of HHNN is equal to: O(|V| + |E|), which is
linear to the size of the hypergraph.

5 Experiment

In this section, we conduct comprehensive experiments on two real-world datasets. Please see
Appendix A for dataset details, see Appendix B for the details of the used baseline methods, and see
Appendix C for the detailed experimental settings.

5.1 Performance Comparison

Following most previous related studies [12, 14, 38, 7, 6, 21, 34], we compare the performance
of all the methods by conducting node classification for the target nodes that are associated with
ground-truth labels. The final experimental results are reported in Table 1 and Table 2.

As we can see, our proposed HHNN shows the best performance in all cases. This is due to the fact
that HHNN is able to capture more complex and higher-order structural features that are conveyed
by the discovered useful hyper-meta-paths. For all the methods, the performance is significantly
better when the training ratio is higher, indicating that they can effectively exploit the supervision
information. HGNN+ significantly outperforms HGNN in all cases because the former addresses
hyperedge heterogeneity in a more nuanced manner. AllSetTsfm performs slightly better than
AllDeepSets in most cases, which is also consistent with the similar finding reported in their original
paper [6]. For most baselines as well as our HHNN, the experimental results on the Olist dataset are
better than those on the Movielens dataset, which is because the target (Product) nodes in Olist are
easier to distinguish, and the structural features conveyed by the three types of hyperedges are more
informative.

5.2 Ablation Study

As described by Section 4, the key process of HHNN lies in three levels of attention aggregation
blocks. As illustrated in the left part of Figure 2(a)), the α-Attention block performs node-level
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Table 1: Performance comparison on Movielens.

Metrics Micro Macro AUC

Training Ratio 20% 40% 20% 40% 20% 40%

CE-GCN 55.46±0.96 57.31±0.97 21.99±4.32 26.53±1.66 67.86±2.38 71.26±1.68
HNHN 52.53±0.79 54.42±1.33 15.67±1.92 17.36±3.00 64.61±3.14 67.99±2.72

HyperGCN 48.53±1.97 49.83±1.45 16.55±1.48 18.05±2.27 57.89±1.06 59.87±1.96
AllDeepSets 52.39±1.13 55.46±1.67 15.72±2.13 23.13±1.69 65.47±1.71 70.94±1.68
AllSetTsfm 53.39±1.84 57.40±1.60 18.01±5.52 30.32±3.13 66.21±2.97 73.63±2.03

UniGNN 52.35±1.08 54.18±1.58 16.41±2.42 24.11±3.43 65.78±2.16 71.77±1.39
EDHNN 53.41±0.60 56.72±1.08 18.74±2.60 32.56±3.22 70.07±1.31 77.06±1.15
HGNN 52.54±1.79 55.30±1.69 20.48±3.31 25.98±4.17 65.25±2.50 70.06±2.21

HGNN+ 53.13±2.21 55.44±1.76 21.62±3.21 26.13±2.70 69.62±2.60 73.77±1.62
HHNN 56.80±1.65 60.65±1.88 26.24±3.90 33.33±3.19 73.21±2.13 78.72±1.60

Table 2: Performance comparison on Olist.

Metrics Micro Macro AUC

Training Ratio 20% 40% 20% 40% 20% 40%

CE-GCN 32.31±0.70 42.97±0.62 31.29±0.74 42.12±0.63 70.20±0.30 77.76±0.21
HNHN 53.96±0.88 60.39±0.89 53.40±1.30 59.90±1.02 84.71±0.48 88.05±0.49

HyperGCN 21.96±0.52 27.96±0.79 20.21±0.64 25.71±1.33 62.08±0.62 67.66±1.05
AllDeepSets 66.96±0.49 75.89±0.79 66.95±0.46 75.89±0.80 90.29±0.30 94.44±0.24
AllSetTsfm 64.57±1.15 75.97±0.68 64.82±1.18 76.11±0.76 88.79±0.53 94.31±0.25

UniGNN 57.47±0.46 68.11±0.65 57.13±0.47 67.89±0.62 87.20±0.28 92.36±0.28
EDHNN 61.62±0.70 70.88±1.04 61.35±0.68 70.71±0.99 89.36±0.36 93.47±0.35
HGNN 40.66±0.61 48.62±0.58 40.11±0.60 48.38±0.62 76.19±0.51 80.93±0.31

HGNN+ 59.03±0.80 64.16±0.74 59.43±0.74 64.63±0.75 86.84±0.33 89.86±0.24
HHNN 72.54±0.54 77.74±0.83 72.89±0.56 77.90±0.80 93.20±0.32 95.39±0.25

aggregation to update hyperedge representations. The β-Attention block and γ-Attention block
correspond to intra-type hyperedge aggregation and inter-type hyperedge aggregation, respectively.
Here, we conduct comprehensive ablation studies to investigate the effectiveness of these three
attention blocks. The experimental results are shown in Table 3. We use the binary bit "0" or "1"
to indicate whether the corresponding attention blocks are activated. When an attention block is
deactivated, we replace the attention aggregation with the mean aggregation. By considering all
possible combinations of the three blocks, we obtain eight variants of HHNN. In the first column of
Table 3, we also use three-bit binary numbers to denote different variants.

As we can see, in all the cases, the variant "111" achieves the best performance, which corresponds
to the full version of our HHNN. This indicates that the power of HHNN can only be fully unleashed
when all three attention blocks are assembled together, which implies that these three attention blocks
can enhance each other. Besides, variant "010" performs better than variants "001" and "100", and
variant "101" performs worse than variants "011" and "110", indicating that the β-Attention block
is very effective. This indicates that the different hyperedges a node belongs to have significantly
different levels of importance for it.

5.3 Hyper-meta-path Discovery and Interpretability Study

One of the merits of our HHNN is that it can discover useful hyper-meta-paths for the concerned
task (see Appendix E). Here, we show this ability of HHNN by analyzing the learned attention
coefficients after finishing the model training. In Figure 5(a) and Figure 5(b), we show the learned
attention weights that are associated with the movie node m2934 on Movielens, and the product node
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Table 3: The performance of different variants of our HHNN.
Variants Movielens Olist
Modes Micro Macro AUC Micro Macro AUC

000 55.37±1.81 27.87±4.63 74.09±1.78 71.79±0.87 71.79±0.81 93.33±0.25
001 56.81±1.70 30.63±5.41 75.60±1.61 68.44±0.69 68.72±0.67 92.17±0.34
010 58.97±1.73 34.21±4.60 78.44±1.74 76.96±0.66 77.03±0.66 95.38±0.18
011 60.29±1.42 35.45±4.78 79.28±1.58 74.74±0.63 74.89±0.62 94.87±0.22
100 57.34±2.66 30.55±5.14 75.32±1.75 63.60±0.90 64.02±0.79 90.58±0.36
101 59.26±2.40 35.45±3.04 77.87±1.88 71.19±0.96 71.38±0.91 93.24±0.42
110 61.42±1.63 36.22±4.79 80.12±2.24 77.28±0.61 77.41±0.66 95.73±0.18
111 62.95±1.94 39.03±2.32 81.87±1.85 79.82±0.71 79.91±0.78 96.32±0.21

p4593 on Olist, respectively. In the figures, the magnitude of the attention weights is reflected by
the thickness of the corresponding arrows, and the notations in the figures are described in Table 4.
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Figure 5: Discovered hyper-meta-paths by HHNN.

In Figure 5(a), for the target movie node,
the most important path can be denoted
as "T R1←−− U R2←−− M". Referring to
the definition in Section 3, in the path,
the hyper-relation R1 (i.e., hyperedge
type {UMT}) and the hyper-relation R2

(i.e., hyperedge type {UMR}) are com-
posited based on the movie node shared
between them, forming the hyper-meta-
path "R1⋄R2". Observing the path again,
hyper-meta-path "R1 ⋄R2" connects the
leftmost tag node to the rightmost movie
(i.e., target) node. The full semantics con-
veyed by "R1 ⋄R2" can be described as:
"the leftmost tag node participates in a
{UMT} hyperedge" and "the rightmost
movie node participates in a {UMR} hy-
peredge" and "the two hyperedges share
the same user node", which can serve as
the interpretation for the prediction result
of the target movie node.

Similarly, in Figure 5(b), the discovered
most important hyper-meta-path can be
denoted as "S R1←−− C R2←−− P". In the path,
the hyper-relation R1 (i.e., hyperedge type {CPS}) and the hyper-relation R2 (i.e., hyperedge type
{CPR}) are composited based on the customer node shared between them, forming the hyper-meta-
path "R1 ⋄ R2". The semantics of the hyper-meta-path can be described as: "the leftmost seller
node participates in a {CPS} hyperedge" and "the rightmost product node participates in a {CPR}
hyperedge" and "the two hyperedges share the same customer node". This semantics can help
interpret the prediction result of the target product node.

5.4 Analysis of Different Hyperedges

We investigate the impact of the number of hyperedge types on HHNN performance. In Figure 6(a)
and Figure 6(d), we show the performance of HHNN by exploiting each single type of hyperedges,
as well as the performance by exploiting all types of hyperedges (marked by "ALL" in the legend).
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As we can see, on both datasets, HHNN achieves the best performance when exploiting all types of
hyperedges, which is due to the fact that HHNN can well handle the heterogeneity of hyperedges in an
adaptive way, and it can compose more complex structural features by combining these hyperedges.
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Figure 6: Hyper-parameter study on Movielens and Olist.

5.5 Hyper-parameter Study

Our proposed HHNN does not have special hyper-parameters. Here, we study the sensitivity of the
hidden dimensionality and the number of model layers on the two datasets, and the results are shown
in Figure 6.

Referring to Figure 6(b) and Figure 6(e), the model performance is poor when the hidden dimension-
ality is too small, which indicates that the model suffers from underfitting. HHNN shows the best
results when the dimensionalities are equal to 64 on Movielens and 128 on Olist, respectively. After
that, the model’s performance gradually decreases as the dimensionality increases, which is caused
by the overfitting issue.

Referring to Figure 6(c) and Figure 6(f), HHNN achieves its best performance when it has two
model layers, and the model maintains strong performance even at 3 layers, with no significant
performance drop, indicating robustness against over-smoothing. After that, the model’s performance
decreases significantly when the model goes deeper, which is caused by the overfitting issue of the
hypergraph neural network. Notably, each HHNN layer includes two projection and aggregation steps
(node-to-hyperedge and back), which actually correspond to two layers in standard GNN models.
Therefore, a 3-layer HHNN is equivalent to a 6-layer standard GNN, making it sufficiently deep to
capture complex structural patterns without degradation.

6 Conclusion

In this work, we first define a novel concept called hyper-meta-path for heterogeneous hypergraphs.
It not only describes more complex structural features but also conveys richer semantic information.
Then, we design a three-level attention-based heterogeneous hypergraph neural network called HHNN
to automatically learn the importance of hyper-meta-paths. By discovering and exploiting useful
ones, HHNN can achieve higher performance, and the semantics conveyed by these hyper-meta-paths
can enhance the model interpretability of HHNN.
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• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or NA
answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how much
the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes] .
Justification: See Appendix K.
Guidelines:
• The answer NA means that the paper has no limitation while the answer No means that

the paper has limitations, but those are not discussed in the paper.
• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings, model
well-specification, asymptotic approximations only holding locally). The authors should
reflect on how these assumptions might be violated in practice and what the implications
would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was only
tested on a few datasets or with a few runs. In general, empirical results often depend on
implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be used
reliably to provide closed captions for online lectures because it fails to handle technical
jargon.

• The authors should discuss the computational efficiency of the proposed algorithms and
how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to address
problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
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role in developing norms that preserve the integrity of the community. Reviewers will be
specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes] .
Justification: See Appendix E.
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• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if they

appear in the supplemental material, the authors are encouraged to provide a short proof
sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.
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• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes] .
Justification: See Appendix C, and see our source code at: https://github.com/
zhengziyu77/HHNN.
Guidelines:
• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived well

by the reviewers: Making the paper reproducible is important, regardless of whether the
code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct the
dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case authors
are welcome to describe the particular way they provide for reproducibility. In the
case of closed-source models, it may be that access to the model is limited in some
way (e.g., to registered users), but it should be possible for other researchers to have
some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes] .
Justification: See Appendix A, and see our source code at: https://github.com/
zhengziyu77/HHNN.
Guidelines:
• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).
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• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how to
access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes] .
Justification: See Appendix C, and see our source code at: https://github.com/
zhengziyu77/HHNN.
Guidelines:
• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes] .
Justification: See the experimental results in Table 1, Table 2, and Table 3.
Guidelines:
• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confidence

intervals, or statistical significance tests, at least for the experiments that support the main
claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall run
with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula, call
to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error of

the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or figures
symmetric error bars that would yield results that are out of range (e.g. negative error
rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
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16

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://github.com/zhengziyu77/HHNN
https://github.com/zhengziyu77/HHNN


Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes] .

Justification: See Appendix C.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster, or

cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute than

the experiments reported in the paper (e.g., preliminary or failed experiments that didn’t
make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes] .

Justification: All the experiments of this work conform, in every respect, with the NeurIPS
Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special considera-

tion due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes] .

Justification: See Appendix L.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations (e.g.,
deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied to
particular applications, let alone deployments. However, if there is a direct path to any
negative applications, the authors should point it out. For example, it is legitimate to point
out that an improvement in the quality of generative models could be used to generate
deepfakes for disinformation. On the other hand, it is not needed to point out that a
generic algorithm for optimizing neural networks could enable people to train models
that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is being
used as intended and functioning correctly, harms that could arise when the technology is
being used as intended but gives incorrect results, and harms following from (intentional
or unintentional) misuse of the technology.
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• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks, mecha-
nisms for monitoring misuse, mechanisms to monitor how a system learns from feedback
over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA] .
Justification: The paper poses no such risks.
Guidelines:
• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do not
require this, but we encourage authors to take this into account and make a best faith
effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes] .
Justification: We have properly cited existing assets in our paper.
Guidelines:
• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the package

should be provided. For popular datasets, paperswithcode.com/datasets has curated
licenses for some datasets. Their licensing guide can help determine the license of a
dataset.

• For existing datasets that are re-packaged, both the original license and the license of the
derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to the
asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes] .
Justification: We have provided our well-documented source code at: https://github.
com/zhengziyu77/HHNN.
Guidelines:
• The answer NA means that the paper does not release new assets.
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• Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA] .
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
• The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.
• Including this information in the supplemental material is fine, but if the main contribution

of the paper involves human subjects, then as much detail as possible should be included
in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA] .
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
• The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.
• Depending on the country in which research is conducted, IRB approval (or equivalent)

may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA] .
Justification: The core method development in this research does not involve LLMs.
Guidelines:
• The answer NA means that the core method development in this research does not involve

LLMs as any important, original, or non-standard components.
• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM) for

what should or should not be described.
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A Datasets

Most previous studies [12, 7, 2, 6, 18, 21, 14, 38, 30, 3] construct their hypergraphs based on
Cora, PubMed, and Citeseer, which originally belong to homogeneous simple graphs (as shown in
Figure 1(a)). Several methods [5, 10, 22] also construct their hypergraphs based on DBLP, ACM,
MAG, and IMDB, which originally belong to heterogeneous simple graphs (as shown in Figure 1(b)).
In other words, these hypergraphs are transformed from simple graphs, and they essentially describe
binary relations rather than multi-ary relations.

In this work, to fully reflect the effectiveness of our proposed HHNN in capturing complex structural
features conveyed by hyper-meta-paths, we have tried our best to construct two genuine heterogeneous
hypergraphs, where there are not only multiple types of nodes but also multiple types of real hyper-
relations, as illustrated by Figure 1(d). To this end, we have tried our best to construct two new
heterogeneous hypergraph benchmark datasets, and their key statistics are listed in Table 4.

Table 4: Dataset statistics.

Datasets Node Type Number Hyperedge Type Hyperedge Semantics Number

Movielens

Movies (M) 3439 UMT (R1) “a user tags a movie with
a specific tag” 9681User (U) 2106

Tag (T) 3108 UMR (R2) “a user rates a movie” 158897Rating (R) 10

Olist

Customer (C) 54321 CPS (R1) “a customer purchases a
product from a seller” 55630Product (P) 18454

Seller (S) 2090 CPR (R2) “a customer provides a rat-
ing for a product” 55556Rating (R) 5

Origin (O) 489
OPDF (R3)

“an order is shipped from
an origin to a destination
with a freight value”

55630Destination (D) 3477
Freight (F) 14

•MovieLens is a real-world movie dataset, which was originally released by GroupLens2, a research
laboratory at University of Minnesota. Based on the raw dataset, we construct a heterogeneous
hypergraph that contains four types of nodes and two types of hyperedges. As we can see, the
two hyperedge types (hyper-relations R1 and R2) are natural ternary relations. Movie nodes are
associated with ground-truth labels, describing their genres, such as comedy, action, animation, etc.

•Olist is a real-world e-commercial dataset. It contains the orders of Olist Store, a Brazilian e-
commerce platform. The raw dataset was originally released at Kaggle3, a data science competition
platform. Based on the raw dataset, we construct a heterogeneous hypergraph that contains six types
of nodes and three types of hyperedges. As shown in the table, the hyper-relations R1 and R1 are
ternary relations, and the hyper-relation R1 is a quaternary relation. The product nodes are associated
with ground-truth labels that describe their categories, such as perfumery, telephone, automotive, etc.

B Baselines

We select ten representative hypergraph neural network methods as our comparative baselines,
including: (1) CE-GCN; (2) HNHN [7]; (3) HyperGCN [38]; (4) AllSetTsfm [6]; (5) AllDeepSets [6];
(6) UniGNN [21]; (7) ED-HNN [34]; (8) HGNN [12]; (9) HGNN+ [14].

Here, CE-GCN is a naive baseline, which first transforms a hypergraph into a simple graph through
clique expansion [1], where two nodes form an edge if and only if they are in the same hyperedge.
Then, the GCN [24] model is utilized to encode the resulting simple graph. For baseline UniGNN,
we adopt its most powerful variant, i.e., UniGCNII. Baselines AllSetTsfm (AllSetTransformer) and
AllDeepSets are two variants of the AllSet method [6].

2https://files.grouplens.org/datasets/hetrec2011/hetrec2011-movielens-2k-v2.zip
3https://www.kaggle.com/datasets/olistbr/brazilian-ecommerce
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C Experimental Settings

We use the Pytorch framework to implement our proposed HHNN. The number of model layers is
searched in {1, 2, 3, 4, 5}, the dimensionality of hidden node/hyperedge representations is searched
in {8, 16, 32, 64, 128}, the number of attention heads is searched in {1, 2, 4, 8}. We use the Adam
optimizer to optimize all the trainable model parameters, which are randomly initialized by the Xavier
uniform distribution [16]. For ease of tuning, the optimizer settings are the same for both datasets.
Specifically, the learning rate is set to 0.001, the weight decay is set to 0.0, and the attention dropout
rate is set to 0.5. For more details about hyper-parameter settings, please see our source code at:
https://github.com/zhengziyu77/HHNN.

Regarding baselines, we reproduce the experimental results on the two benchmark datasets, based on
their official source codes. For fairness, we also try our best to search for the optimal hyper-parameters
for them, starting from the default settings of their code or the settings reported in their papers.

For fairness, some of the settings are shared among all the methods. Firstly, they use the same input
features. Secondly, they use the same evaluation metrics of Micro F1 (Micro) score, Macro F1 (Macro)
score, and Area Under the Curve (AUC) score. Finally, they use the same training/validation/test
sets. Specifically, on each dataset, we randomly select τ% ground-truth labels as the training set,
and the rest (1− τ)% are divided equally as the validation set and the test set, where τ ∈ {20, 40}.
We randomly repeat all the evaluation tasks ten times and report the mean results with the standard
deviation. All the experiments are conducted on Intel(R) Core(TM) i9-10980XE CPU and NVIDIA
TITAN RTX GPU with 24GB GPU memory.

D Algorithm

The overall training process of our proposed HHNN is shown in Algorithm 1.

Algorithm 1: The training process of HHNN.
Input : The heterogeneous hypergraph G = (V, E ,H,W, ϕ, ψ),

The number of model layers N .
Output : The embeddings of all the nodes and hyperedges.

1 Randomly initialize all the trainable model parameters;
2 for n = 1, ..., N do
3 # from nodes to hyperedges;
4 Perform α-Attention aggregation according to Eqs. (1-3);
5 # from hyperedges to nodes;
6 Perform β-Attention (intra-type) aggregation according to Eqs. (4-6);
7 Perform γ-Attention (inter-type) aggregation according to Eqs. (7-8);
8 end
9 Compute loss according to Eq. (9);

10 Update model parameters by gradient descent;

E Theoretical Analysis of Hyper-meta-paths

The HHNN model introduces a hierarchical attention mechanism at three levels, i.e., node-to-
hyperedge, intra-type hyperedge-to-node, and inter-type hyperedge-to-node, which correspond to the
α-Attention, the β-Attention, and the γ-Attention, respectively. Here, we can theoretically show that
this attention structure enables the model to automatically discover important hyper-meta-paths by
back-tracing the learned attention coefficients.

E.1 Hyper-meta-path Importance Calculation

Consider a target node i ∈ V , its final embedding is output by the last layer N , which reflects the
information that flows through a sequence of interconnected nodes and hyperedges across the N
layers. Theoretically, the importance is the product of the involved attention weights along this
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sequence. Thus, regarding the hyper-meta-path P = R1 ⋄R2 ⋄ · · · ⋄RN involved in this sequence,
its importance can be computed as follows:

I(P) =
N∏
l=1

α[l] · β[l] · γ[l] (10)

A higher value of I(P) indicates that the information that propagates along the hyper-meta-path P
contributes more significantly to the target nodes i’s final embedding v[N ]

i .

E.2 Important Hyper-meta-path Discovering

By calculating the importance I(P) for all relevant paths that lead to the target node i, we can identify
the most important hyper-meta-path P∗ for node i as follows:

P∗ = argmax
P

I(P) (11)

P∗ represents the most significant hyper-meta-path for the target node i, as learned by the model.

E.3 Interpretability of Discoverd Hyper-meta-path

The automatically discovered hyper-meta-path P∗ carries specific semantic meaning derived from
the composition of the involved individual hyper-relations. This semantic interpretation can be used
to explain the model’s prediction for the target node i. For instance, if the task is node classification,
the semantics of P∗ can provide insight into why the model assigned a particular class label to the
target node i.

E.4 Discussion and Outlook of Attention-based Hyper-meta-path Discovery

HHNN discovers hypermeta-paths based on the attention distribution, and this attention-based
heuristic reveals correlations rather than causal relationships. In the future work, formalization of
causal interpretability is an important direction, and we plan to explore techniques like counterfactual
reasoning in our future work. Here, we also conduct a preliminary experiment of masking information
along high-weight paths and observing the change in the model’s prediction, and the results are
shown in the Table 5. As we can observe, by masking information along high-weight paths, the
model’s performance drops sharply, which clearly indicates that the high-weight paths identified by
the HHNN model are crucial.

Table 5: Comparison between HHNN performance with high-weight paths masked (right) and the
original performance (left) under the 20% training ratio.

Movielen Olist

Micro 56.80±1.65 → 28.63±5.32 72.54±0.54 → 13.24±0.81
Macro 26.24±3.90 → 11.83±2.80 72.89±0.56 → 6.38±0.73
AUC 73.21±2.13 → 54.04±1.31 93.20±0.32 → 50.13±0.51

F Comparison between HAN and HHNN

We compare our HHNN to HAN, which is based on a two-level attention aggregation mechanism.
The results are shown in Table 6. As we can see, our HHNN can achieve higher performance against
HAN on both ACM and DBLP, which demonstrates the superiority of our HHNN.

G Experiments on More Datasets

Most existing heterogeneous hypergraph datasets are transformed from simple graphs with binary
relations, which lack natural multi-way interactions and cannot fully showcase the advantages of
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Table 6: Dataset statistics.

ACM DBLP

HAN 85.09±2.48 90.02±0.87
HHNN 87.28±0.88 91.29±0.92

hypergraph neural networks. In contrast, in our work, we have tried our best to construct two new
real-world datasets from the movie domain and e-commerce domain, both containing multiple types
of naturally occurring heterogeneous hyperedges based on genuine multi-ary relations. The two
datasets are more challenging to fully showcase the power of our HHNN. Here, we also conduct a
performance comparison on three widely-used hypergraph datasets, i.e., Cora, PuMmed, and DBLP,
and the results are shown in Table 7. We can observe that since these three datasets do not contain
complex and heterogeneous structural features, the three hypergraph methods achieve comparable
performance, with our HHNN performing slightly better.

Table 7: The performance comparison between three hypergraph methods on three new hypergraph
datasets, under the 20% training ratio.

Cora PubMed DBLP

UniGNN 76.93±1.73 84.05±0.63 90.49±0.18
ED-HNN 77.07±1.22 84.12±0.68 90.50±0.21
HHNN 77.42±1.67 84.14±0.74 90.50±0.27

Table 8: The performance comparison on Movielens, under the 20% training ratio.

Micro Macro AUC

SheafHyperGNN [9] 46.59±1.24 18.85±1.74 61.68±1.48
UniG-Encoder [44] 41.79±1.17 16.15±0.96 58.66±1.32

HHNN 56.80±1.65 26.24±3.90 73.21±2.13

Table 9: The performance comparison on Olist, under the 20% training ratio.

Micro Macro AUC

SheafHyperGNN [9] 51.71±1.54 51.56±1.38 85.60±1.02
UniG-Encoder [44] 24.40±0.39 23.68±0.49 64.96±0.28

HHNN 72.54±0.54 72.89±0.56 93.20±0.32

Table 10: The running time (seconds of 10 epochs) of HHNN on heterogeneous hypergraphs of
different sizes using varying ratios of nodes.

Movielens Olist

20% 0.730 2.361
40% 0.763 2.449
60% 1.114 2.839
80% 1.205 2.883

100% 1.231 3.194

H Experiments with More Baselines

We compare our HHNN against two recent hypergraph models, i.e., SheafHyperGNN [9] and UniG-
Encoder [44], as the new baselines, and their experimental results are shown in Table 8 and Table 9.
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Table 11: The running time (seconds of 10 epochs) of HHNN on heterogeneous hypergraphs of
different sizes using varying ratios of hyperedges.

Movielens Olist

20% 0.653 2.413
40% 0.805 2.528
60% 0.927 2.809
80% 1.111 2.978

100% 1.231 3.194

Table 12: The running time (seconds of 1 epoch) of HHNN in comparison with baselines UniGNN
and EDHNN.

HyperGCN UniGNN ED-HNN HHNN

Movielens 81.57 0.13 0.18 0.15
Olist 90.22 0.17 0.63 0.19

We can see that our HHNN significantly outperforms the two hypergraph baseline methods on both
datasets.

I Efficiency Study

To further verify the efficiency of HHNN, we have added the scalability experiment as well as the
running time comparison experiment. The results are shown in Table 10, Table 11, and Table 12. As
we can see, the running time of HHNN increases approximately linearly with the size of the graph.
Besides, the running time of HHNN is on par with two baselines, UniGNN and EDHNN, and is much
less than the running time of the baseline HyperGCN.

J More Related Work

In the past decade, the representation learning methods on hypergraphs have become a research surge.
In the recent two years, several surveys [1, 15, 32, 23, 28] have been published to comprehensively
review existing hypergraph representation learning methods from different perspectives.

Regarding the heterogeneity of nodes and hyperedges, some of the existing methods, e.g., [4], only
consider node heterogeneity, and some methods generally consider the hyperedge heterogeneity based
on operations like concatenation [30] and adaptive fusion [14]. RelBench [13] leverages graph neural
networks to learn directly from relational databases, which can also be viewed as a heterogeneous
hypergraph neural network. In contrast, HHNN focuses on hyper-meta-paths to capture more complex
structural features.

There are also some other path-related methods. Pathsim [31] is the first work to define the concept
of meta-path as a sequence of binary relations among two nodes, which has shown extraordinary
effectiveness in capturing heterogeneous structural features and rich semantics contained in hetero-
geneous simple graphs. The subsequent study, metapath2vec [8], leverages a set of user-specified
meta-paths to guide the random walk on heterogeneous simple graphs, transforming heterogeneous
structural features into sequences. Then, it develops a word2vec [27]-like encoder to obtain the node
representations. Considering that existing methods need users to specify useful meta-paths, which is
not practical, ie-HGCN [40] is proposed to automatically discover and exploit useful meta-paths in
heterogeneous simple graphs. HAN [35] is a well-known GNN method for heterogeneous simple
graphs, which is based on a set of user-specified meta-paths. While our model and HAN both
adopt hierarchical attention, they are fundamentally different in scope and purpose. Firstly, HAN
operates on heterogeneous simple graphs, where all relations are binary between node pairs, whereas
HHNN is designed for heterogeneous hypergraphs that naturally encode multi-ary relations of various
types. Moreover, HAN’s two-level attention relies on manually specified meta-paths, while HHNN
introduces a three-level attention mechanism that automatically discovers hyper-meta-paths without
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manual intervention. HMG-CR [39] proposes the concept of hyper meta-path, which is a composition
of multiple meta-paths between two specified end nodes in a heterogeneous simple graph. HPHG [20]
defines the concept of hyper-path, which is utilized to preserve the complex information about the
indecomposability of hypergraphs.

Different from these existing methods above, in this work, we define a novel concept called hyper-
meta-path, which describes a complex hyper-relation by compositing a sequence of hyper-relations.

K Limitations

While the proposed HHNN demonstrates strong performance in modeling heterogeneous hypergraphs
and good ability to automatically discover semantically meaningful hyper-meta-paths, several limita-
tions should be acknowledged: (1) Although the attention-based aggregation enhances interpretability,
it reveals correlations rather than causal relationships; (2) Although the model can learn to ignore
some meaningless combinations by the attention optimization, the current definition of hyper-meta-
path may be two broad in real-world scenarios, particularly when the shared node type is generic
or high-frequency; (3) HHNN is particularly designed for complex heterogeneous hypergraphs, and
it is most pronounced on hypergraphs with natural multi-ary relations, and its advantages may not
be fully realized when such structures are not prominent. In future work, we would like to further
explore alternative definitions and discovery mechanisms for hyper-meta-paths, and the direction of
utilizing causality is very promising.

L Broader Impacts

The proposed HHNN model contributes to the broader field of graph representation learning by
enabling improved performance and understanding for heterogeneous hypergraphs. This advancement
can benefit many applications, such as recommendation systems, bioinformatics, and social network
analysis, by simultaneously improving task performance and enhancing model interpretability through
the modeling of more complex and higher-order relational patterns.
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