
An Optimal Composite Service Selection Model based on Edge-Cloud Collaboration

Yan Wang, Na Zhou, Haixia Lang, Yunying Li

Inner Mongolia Engineering Lab of Cloud Computing and Service Software,

College of Computer Science, Inner Mongolia University

Hohhot, China

cswy@imu.edu.cn, 865091420,2497565532,1783930353@qq.com

Abstract—In the age of the Internet of everything, the Edge-

Cloud collaborative service support has become a very

promising development direction in the application field of the

Internet of things. However, when various service components

are deployed both on the cloud and the edge, the subsidence and

decentralization of computing resources also have a great

impact on the performance of composite services. This paper

proposes an optimal composite service selection model based on

Petri nets. In order to compare the composite service paths, this

paper adopts a dynamic evaluation model of composite service

quality based on Petri nets. Firstly, all kinds of Petri net models

for the implementation structure of composite services are

constructed. And then the QoS computing rules corresponding

to these structures are given based on the QoS of each service

component on the edge of the cloud. Finally, the dynamic

execution process of each composite service with a feasible path

is simulated through Petri net, and the overall performance of

the service is evaluated based on the dynamic simulation of its

Petri net model, finally, the optimal service path is selected

among the combined services that meet the user's

requirements.. Through case analysis and comparison, the

feasibility and effectiveness of the method are verified by an

example analysis.

Keywords:Edge-Cloud collaboration; Composite service; Petri

net; Quality evaluation model; Optimal service path

I. INTRODUCTION

With the popularity and development of the Internet of
Things technology, the number of mobile devices at the edge
of the network is rapidly increasing, and these devices may
make various service requests. For high computing power,
these services can be deployed on cloud platforms to meet the
needs of mobile users. But at present, more and more services
involve delay-sensitive tasks which are used to process and
analyze large amounts of local data. The centralized service
model with the cloud computing model as the core has been
unable to meet the needs of these services for efficient edge-
side data processing. In this case, an edge computing model
for large amounts of data processing at the edge of the
network has emerged.

Edge computing sinks computing resources and efficient
services to the edge of the network, resulting in lower latency,
lower bandwidth consumption, higher energy efficiency, and
higher privacy protection [1]. It is essentially a new solution
of cloud computing extending to the user end [2]. Therefore,
edge computing and cloud computing are complementary. In
recent years, the service support of Edge-Cloud collaboration

has become a very promising development direction in the
field of Internet of Things applications.

However, when we deploy the components of service
both on the cloud and the edge, the subsidence and
decentralization of computing resources also have a greater
impact on the performance of the composite service [3]. First,
data exchange is necessary for the execution of service
composition between edge servers or between the edge server
and the cloud. The performance of a composite service is
different when its service components are split with different
proportions on the side and the cloud. In addition, the load of
the edge server also has a certain impact on the performance
of the composite service. In summary, the deployment
locations of service components of a composite service have
a decisive impact on its performance.

From the user's perspective, different users have different
needs for services. Users' different service needs can be
quantified using the concept of QoS. This determines that
different user QoS requirements should choose different
Edge-Cloud collaboration solutions for the composite service.
Especially on the edge side, different edge servers are highly
heterogeneous and may be provided by different service
providers. These servers have large differences in reliability,
security, and cost when executing a service. Therefore,
according to different deployment locations of service
components, it is an urgent problem to design a dynamic
evaluation method of composite service quality to choose the
optimal service path for users in the service environment of
Edge-Cloud collaboration. To this end, this paper proposes a
dynamic quality evaluation model of composition service
based on Petri nets. Based on the different QoS of each
service component of a composite service executed on a
single edge server or the cloud, the composite service is
modeled in Petri net system with its various feasible
execution paths. And then, we use a Petri net's dynamic
simulation method to evaluate the overall performance of
composite services, recommending to the user a composite
service with the optimal collaborative execution plan in the
Edge-Cloud service environment that best meets their
requirements.

II. RELATED BACKGROUND RESEARCH

Service, as a convenient cloud online application, has become
a widely popular way of providing software. In many cases, a
single service instance has been unable to satisfy the
complicated and complex requirements requested by users
[4]. Composite services can meet the needs of users by
combining existing simple services with different logical

1170

2021 IEEE 45th Annual Computers, Software, and Applications Conference (COMPSAC)

978-1-6654-2463-9/21/$31.00 ©2021 IEEE
DOI 10.1109/COMPSAC51774.2021.00161

20
21

 IE
EE

 4
5t

h
A

nn
ua

l C
om

pu
te

rs
, S

of
tw

ar
e,

 a
nd

 A
pp

lic
at

io
ns

 C
on

fe
re

nc
e

(C
O

M
PS

A
C

) |
 9

78
-1

-6
65

4-
24

63
-9

/2
1/

$3
1.

00
 ©

20
21

 IE
EE

 |
D

O
I:

10
.1

10
9/

C
O

M
PS

A
C

51
77

4.
20

21
.0

01
61

Authorized licensed use limited to: Inner Mongolia University. Downloaded on May 12,2023 at 09:44:10 UTC from IEEE Xplore. Restrictions apply.

structures, which is an effective means to respond to users'
personalized service needs. In the process of service
composition, two points need to be considered. First, whether
the composite service can achieve the functions required by
the user or not is need to concerned. Second, whether the
performance of the combined service can meet the user's QoS
requirements or not is also need to be considered. The
execution performance of a composite service is an important
criterion for a user to choose the service. By quantifying the
quality of different composite services and comparing them
with the user's QoS requirements, it is possible to recommend
the optimal service to the user and improve the user's
satisfaction with the service.

In order to recommend the most suitable composite
service to users, common methods include QoS ontology-
based model, QoS-based ranking, QoS-based prediction, and
heuristic-based QoS optimization. In [5] method, the QoS
characteristics are comprehensively considered and a reliable
QoS ontology model is constructed. In [6] method, the QoS
ontology model to support the semantic description and
measurement of heterogeneous QoS parameters is
constructed, and then the semantics and values of QoS in this
model are used to select services for users to meet their
personalized needs. In [7] method, a framework for overall
service selection and ranking is proposed. The candidate
services are classified into different levels using the
associative classification algorithm based on users’ QoS
requirements and preferences. In [8] method, a personalized
QoS prediction method is presented, which considers the
influence of network, server environment, and user input on
QoS. Through pattern mining, the invocation pattern of the
composite service is extracted from its historical QoS data,
and its QoS is further predicted based on the invocation
pattern and user input. In [9] method, a three-level QoS
evaluation and matching algorithm is proposed by combining
QoS ontology with QoS ranking. However, considering the
massive scale of services in the cloud, in order to effectively
reduce the search space for composite service, a local
heuristic optimization method is proposed to filter candidate
services by assigning quality constraints to each task, and then
all possible service composition plans from the filtered
candidate services are evaluated in [10]. The above algorithm
has achieved good results in a centralized management
service platform. However, the new service requirements and
new service environment in the era of the Internet of
Everything have brought new challenges to optimal
composite service selection based on QoS evaluation.

Unlike centralized cloud data centers, edge servers that
provide services for the Internet of Things have some
characteristics such as geographic dispersion, limited
computing and storage capabilities and unstable network
communications [11]. The dynamics, heterogeneity and
instability of edge computing resources directly affect the
quality of composite services that are executed on them,
which leads to the poor user service experience. For this, in
[12] the authors analyzed the nature of edge computing and
the nature of things and then gave some detection standards
for how to maintain service quality in the edge computing.
Based on these standards, the execution of composite service

can be more accurate and efficient. In [13], on the premise of
collaboration of edge computing resources and optimization
of scheduling QoE, an improved beast particle swarm
algorithm is proposed for two-phase edge service
composition and scheduling. Inspired by these methods, our
target is to explore an optimal composite service selection
method based on the Petri net model. It can perform dynamic
performance simulations of different service deployment
schemes in a cloud-based collaboration service environment
to find a composite service closest to the user's QoS
requirements.

III. MODEL AND METHOD

A. Basic definitions

To facilitate problem modeling and description, the basic
concepts are presented. QoS is the key index for evaluating a
composite service. For different types of applications, QoS
description methods are also different. Our paper focuses on
four common QoS indicators, including response time, cost,
reliability and availability.

Definition 1 (QoS): QoS is represented as a four-tuple,

QoS={t, c, r, a}, (1)

where t is for the response time of a service to process the user

request, its unit is ms; c is for the fee required to invoke a

service, it’s in dollars; r is for the reliability of a service, which

represents the ability or possibility of performing the function

of the service without failure, r∈ [0,1]; a is for the availability

of a service, which represents the probability that the service

will function normally, a∈[0,1].

Definition 2 (Service): A service is represented as a five-

tuple,

S={Id, SFlag, AcceptedMessage, OutputMessage, QoS},

(2)

where Id is for the unique identifier of the service; SFlag is

for the place where the service is executed. There are two

types: cloud server and edge server. If SFlag=0, it means that

the service is executed on the cloud platform; if SFlag>0, it

means that the service is executed on an edge server and the

value of SFlag corresponds to the number of the edge server.

AcceptedMessage and OutputMessage are the inputs and

outputs of the service. QoS are non-functional parameters of

the service, see definition 1 for details.

Definition 3 (QoSFilter): QoSFilter is the minimum QoS

requirement for a service to the user,

QoSFilter={Ft, Fc, Fr, Fa}. (3)

The QoSFilter is used for preliminary filtering conditions for

the services, and its value is user-defined. Among them, Ft and

Fc represent the maximum response time and cost that the user

can accept, respectively; Fr and Fa represent the minimum

value of reliability and availability that the user can accept,

respectively. Only when all QoS indicators of the basic

services meet the value of QoSFileter, the service can be

selected as a candidate service. In this way, the complexity of

subsequent composite service evaluation and recommendation

1171

Authorized licensed use limited to: Inner Mongolia University. Downloaded on May 12,2023 at 09:44:10 UTC from IEEE Xplore. Restrictions apply.

will be greatly reduced. Assume that QoS(s)={ts, cs, rs, as},

then when ts<Ft, cs<Fc, rs>Fr, as>Fa, s is a candidate service.

Definition 4 (QW): QW represents the subjective

preferences of the user for each sub-attribute in QoS,

QW={Wt, Wc, Wa}, (4)

where Wt is for time wight, Wc is for cost weight, Ws is for

availability weight, and Wt+Wc+Wa=1. The reliability

preference is not be set because if the reliability of a composite

service is lower than the user's requirements, the service will

not be recommended to the user, no matter how high the other

values are.

Definition 5 (Request): QoS is represented as a five-tuple,

describing the functional and non-functional requirements of

user requests, as well as service constraints and expectations.

R={ID, InputMessage, ExpectedMessage, QoSFilter,

QW}(5)

where ID is for the unique identifier of the request,

InputMessage and ExpectedMessage are responsible for the

user's definition of the overall function of the request.

InputMessage represents the parameters that the user needs to

input, which can be empty, and ExpectedMessage represents

the output form expected by the user. QoSFilter and QW are

defined as above.

B. Model description

1) Petri net model of composite services
For convenience, the names, types, and meanings of each
element in the Petri net model of composite services are first
given, as shown in Table I. In this paper, we abstract the
services, user requests, and intermediate results into different
places, and take the processes of service matching and
composition as transitions.

TABLE I. ELEMENTS IN THE MODEL AND THEIR MEANINGS

Name Element type Meaning

Service Place a service

Request Place a user request

ValueMerge Transition parameters aggregation

ValueTrans Place parameters passing

Condition Transition defense conditions

midRequest Place intermediate results

STEP Place service selection

Combine Place path aggregation

Result Place final output

First, the model of a single service in a Petri net is given,
as shown in Fig.1. Request place R1 and service place S1 can
jointly trigger transition valueMerge, and the transition
aggregates the parameters of R1 and S1 into the intermediate
place valueTrans, which can further fire the transition
Condition. The defense expression in Condition compares the
I/O parameters in R1 and S1. If S1 meets the requirements of
R1, the service is executed and its result OutputMessage is
passed to place Result.

For composite services that contain multiple service
components, the execution flow of service components can be
categorized and simplified into three categories: sequential
structure, branch structure, and federated structure. The
sequential structure represents the sequential execution of the
service components. The branch structure means that the
output of a service component is the input of multiple service
components. The federated structure means that a service
needs to receive the output of two or more services
simultaneously as its input. The Petri net models for these
three structures are given as follows.

Value
Merge

Condition
Value
Trans

S1

R1

Result

Service

Request

[Inputmessage=Acceptedmessage
Exceptedmessage=Outputmessage]

Output
message

Fig. 1 Petri net model of a single service

The Petri net model of the sequential structure for the
feasible service path S33+S34 is shown in Fig.2. S33 is the first
service that needs to be called by this sequential model. After
S33 is completed, its output OutputMessage replaces the
parameter InputMessage in Request. The parameter is
combined with other parameters in Request to generate an
intermediate result into place midRequest, whose type is
Request. Next, the second service place S34 in the sequential
model is introduced, and the following steps are similar to the
above steps until the service whose output is
ExpectedMessage is completed.

The Petri net model of the branch structure for the feasible
service path is shown in Fig.3. S20 is the first service invoked
by this model. When the execution result of S20 enters the first
intermediate place midRequest, S32 and S41 can be triggered
simultaneously. And then two independent execution
processes are continued separately according to their
respective service paths. As is shown in the figure, S32 fires
S30, and S41 fires S35 until the last transition of each path is
completed. Finally, the final output of each path is sent to
place Result.

The Petri net model of the federated structure for the
feasible service path is shown in Fig.4. Since S37 can fire its
execution condition only when the two branch service paths
are completed, Request is divided into two branch places
Request1 and Request2 by two-way arc and transition.
Request1 is the starting place for the service path S20+S32, and
Request2 is the starting place for the service path S33. The final
output places of the two paths, midRequest2 and midRequest3,
will trigger transition ValueMerge3.
2) Qos quantization of composite services

A composite service is composed of several basic services,
so its value of QoS can be obtained through QoS aggregation
functions. For some QoS attributes, the aggregation functions
of the same QoS attributes are also different in the face of
different execution flows [14]. The aggregation function of
cost is accumulation, the aggregate function of reliability is
multiplication, and the aggregate function of availability is
the minimum value. The aggregation function of time is
related to the executive structure of composite service.

1172

Authorized licensed use limited to: Inner Mongolia University. Downloaded on May 12,2023 at 09:44:10 UTC from IEEE Xplore. Restrictions apply.

Value
Merge0

Condition0
Value
Trans0

S33

Request
mid

Request

Value
Merge1

S34

Condition1
Value
Trans1

Result

Request

Service

[Inputmessage=Acceptedmessage
Exceptedmessage<>Outputmessage]

[Inputmessage=Acceptedmessage
Exceptedmessage=Outputmessage]

Service

Request

Output
message

Fig.2 Petri net model of sequential structure

For parallel service execution paths, the aggregation
function of time is the maximum value; while for sequence
service execution paths, the aggregation time is accumulation
[15]. Here are the aggregate functions used for each of the
attributes in this paper, as shown in Table II. Composite
services have multiple QoS attributes, and their ranges and
units are different. From the perspective of QoS global
optimal analysis, it is not conducive to the overall evaluation
of QoS attributes of composite services. In order to facilitate
the comparison of composite services and to select the best
composite service, it is necessary to standardize the QoS
attributes and then convert it to a composite global QoS. That
is, the QoS vector of each feasible composite service is
mapped to a real number.

Firstly, QoS attributes can be divided into positive attributes
and negative attributes. The higher the value of positive
attributes, the better the quality of service, such as availability;
the smaller the negative attribute value, the better the quality
of service, such as time. For positive attributes, standardize
with formula (6); for negative attributes, standardize with
formula (7).

��,� = (ℎ� −
�)/
� (6)

��,� = 1 − (ℎ� −
�)/
� (7)

The i-th comprehensive QoS attribute of a composite service
is defined by ��,�, where ℎ�,
� and
� represents the highest

value, the mean value and the standard deviation.
Definition 6 (Comprehensive QoS) The comprehensive

QoS of a composite service is calculated based on user
preferences and its overall QoS,

���������� = ∑ ��� ∗ ��,����� . (8)

TABLE II. ELEMENTS IN THE MODEL AND THEIR MEANINGS

Because of the large number of servers in the edge service

environment, there is a significant cost involved in traversing
and evaluating all feasible composite service deployments on
these servers [16]. In fact, it is completely unnecessary. Some
servers are overloaded or are too far away from the mobile
user, so it is impossible to meet the user’s performance needs
when the service components are executed on them. In order
to reduce the space for service evaluation, we will first filter
out some candidate servers by basic QoS constraints, that is

QoSFilter, which can improve the recommendation
efficiency of composite services.

In the focused four QoS properties of a service, considering
the relationship between the reliability and availability of the
service, the initial availability value of all services is set to 0.
When the reliability of service is less than Fr, the availability
of the service does not need to be compared. Because if the
service is not reliable, even if the service is available, we will

QoS
Attribute

Execution
Structure

Aggregation Function

Time

Sequence � � (!�)
�

���

Parallel
"#$���� � (%�)

(%� = !�� + !�'+. . . +!�))

Cost Any � �*(!�)
�

���

Reliability Any + �,(!�)
�

���

Availability Any "-.���� �/(!�)

Value
Merge0

Condition0

Value
Trans0

mid
Request

mid
Request1

STEP1
Value
Trans2

STEP2

Value
Trans1

Condition1

Value
Merge1

Value
Merge2

Condition2 ResultRequest

S20

S32,S41 S35,S30

Service

Request Request Request

Service Service

[Inputmessage=Acceptedmessage
Exceptedmessage<>Outputmessage]

[Inputmessage=Acceptedmessage
Exceptedmessage<>Outputmessage]

[Inputmessage=Acceptedmessage
Exceptedmessage=Outputmessage]

output
message

Value
Merge0

S33

Value
Trans0

Value
Trans3

Result
S32

mid
Request3

mid
Request0

Condition0

Condition2

Value
Merge1

Value
Merge3

S37

Request1

Request

Request2

S20

Value
Trans1

Value
Trans2

mid
Request2

Combine
Value
Merge2

Condition1

Value
Merge4

Condition3

Service

Request

Service

Request

Request

Request

Request

Service

Request

Service
[Inputmessage=Acceptedmessage
Exceptedmessage<>Outputmessage]

[Inputmessage=Acceptedmessage
Exceptedmessage<>Outputmessage]

[Inputmessage=Acceptedmessage
Exceptedmessage<>Outputmessage]

[Inputmessage=Acceptedmessage
Exceptedmessage=Outputmessage]

Output
message

Fig.3 Petri net model of branch structure

Fig.4 Petri net model of federated structure

1173

Authorized licensed use limited to: Inner Mongolia University. Downloaded on May 12,2023 at 09:44:10 UTC from IEEE Xplore. Restrictions apply.

not recommend it. The availability of service can be
calculated according to the formula (9), that is,

! = 00, � ≤ 4,
(� − 4,) 4,⁄ , � > 4,

 (9)

C. Algorithms

algorithm:

1: Set !� of S ;

2: for(all !�)
3: Filter(!�, QoSFilter)

4: for(all !�)
5: if 4, >=r s = 0;

6: else s =(r-4,)/ 4,;

7: end

8: matchService(S);

9: for(j=0；j++)

10: if InputMessage=AcceptedMessage

11: if ExpectedMessage=OutputMessage

12: insert �7 and set next “MAX”;

13: else

14: OutputMessage=o;

15: o=InputMessage;

16: p=p+!�;
17: matchService(p);

18: end

19: Output(CS)

20: for (j=0;j++)

21: if s<=4/ s = 0; else s=s/4/ ;
22: Get(QoS)

23: for 8�� in CS

24: 9�=: (8��): 8�=:* (8��): ;�=:, (8��): Ai=:/ (8��)
25: Standardized(9�, 8�, ;�,Ai)

26: ���������!� = ∑ <�� ∗ �������� ;

The explanation of the algorithm: Steps 2-3 are used to
filter the basic services. Steps 4-8 are used to filter services in
the edge according to their reliability, its purpose is to
emphasize the importance of reliability through combining
reliability and availability. It can filter out invalid services
deployed on edge servers to improve the recommendation
efficiency of composite services, leaving valid services
deployed on edge servers that can execute a component of the
composite service. Steps 11-19 match all feasible paths for
the composite service. Through a recursive algorithm, all-
composite services that meet the user’s functional
requirements are found. Steps 20-26 evaluate the QoS
attributes of each candidate composite service and calculate
their comprehensive QoS values, and compare the
comprehensive QoS value to select the optimal composite
service that most meets the needs of the user.

IV. EXPERIMENTAL VERIFICATION

In this section, we will verify the proposed algorithm with an

example. Assume that the user request is described by R={R1,

shy, happy, {100,50,0.6,0.57}, {0.57,0.2,0.23}}. To describe

the user’s requested I/O interface, we abstract it with a state

variable. Different values represent different data input and

output. Some basic services and their corresponding

deployment in the service environment of edge-cloud

collaboration are given in Table III.

TABLE III. SOME SERVICES AND THE CORRESPONDING PARAMETERS

Through filtering by the QoSFilter in R, 26 services that
meet the basic requirements are retained. By matching the I/O
interfaces of the basic services, all feasible execution paths of
the composite service are found, as shown in Table IV.

Taking the service path �' + �= + �>? as an example, t and c

of the three services are all less than Ft and Fc, and r and a are

all greater than Fr and Fa in the request R. In addition the

AcceptedMessage of �' is equal to the InputMessage requested

by the user, and the OutputMessage of �>? is the same as the

ExcepMessage in the request R. Therefore, �' + �= + �>? can

become a service path to meet user’s request.

TABLE IV. ALL POSSIBLE COMPOSITE SERVICES

In Table IV, ten feasible service paths that satisfy the

user’s request are found. These composite services can

perform the function of request R and meet its performance

requirements. Then the QoS values of these composite

services are quantified by aggregate functions, calculate the

composite QoS value of the composite service. The quantified

results are shown in Table V.As for the above feasible

composite services that can satisfy R, the quality of service

varies greatly.

ID SFlag I O t(ms) c(＄) r a

�� 12 shy happy 200 40 90% 70%

�' 6 shy bored 70 28 73% 77%

�> 0 shy happy 33 35 80% 60%

�@ 0 shy proud 90 87 71% 80%

�? 0 shy glad 51 72 80% 20%

�= 7 bored proud 89 44 80% 70%

...

ABC

...

...

8

...

...

proud

...

...

happy

...

...

64

...

...

12

...

...

87%

...

...

79%

...

Service

structure
service path

Single �>，�D，�@>

Sequential

structure

S'+S=+S>?

�F+��'+��G+�'D

S>>+S>@

32 30

20

41 35

S +S
S +

S +S





Branch

structure

31 8 35

23

41 35 8

S +S +S
S +

S +S +S





8 35

44

27

S +S
S +

S





Federated

structure

33

37

20 32

S
+S

S +S





1174

Authorized licensed use limited to: Inner Mongolia University. Downloaded on May 12,2023 at 09:44:10 UTC from IEEE Xplore. Restrictions apply.

TABLE V. QOS OF FEASIBLE SERVICE PATHS

V. CONCLUSION

With the popularization of Internet of things technology
and application, the centralized service model of cloud
computing has not met new services for big data processing
and delay-sensitive applications. Edge-cloud collaborative
computing can effectively support Internet of things
applications and become a new environment for the
deployment and execution of new complex services. This
paper proposes an optimal composite service selection model
based on Petri net under the dynamic heterogeneous Edge-
Cloud collaborative service environment. The main
contribution is to establish the Petri Net models of composite
services with different structures, give the aggregation
functions of different QoS attributes of composite services,
then calculate the important index to evaluate the composite
service, that is the comprehensive QoS value and use the Petri
Net simulation tool to realize the dynamic discovery and
quality evaluation of feasible execution paths, so as to select
the best composite service. Considering massive servers in
the service environment of Edge-Cloud collaboration, we also
propose a method to filter out invalid service deployment
schemes through QoS constraints in user requests.

ACKNOWLEDGEMENT

This work was supported in part by Natural Science
Foundation of China under Grants 61662054, 61262082,
Natural Science Foundation of Inner Mongolia under Grants
2019ZD15, 2019MS06029, Inner Mongolia Application
Technology Research and Development Funding Project
under Grant 201702168, Inner Mongolia Science and
Technology Plan Project under Grant 2019GG372, Inner
Mongolia Colleges and Universities Support Program for
Young Scientific and Technological Talents under Grand
NJYT-19-A02, Inner Mongolia Engineering Lab of Cloud
Computing and Service Software, Inner Mongolia Key
Laboratory of Data Processing and Social Computing, Inner
Mongolia Engineering Lab of Big Data Analysis Technology,
the Ecological Big Data Engineering Research Center of the
Ministry of Education, National and Local Joint Engineering

Research Center of Mongolian Intelligent Information
Processing.

REFERENCES

[1] W. Shi, J. Cao, Q. Zhang, Y. Li and L. Xu, "Edge Computing: Vision
and Challenges," in IEEE Internet of Things Journal, vol. 3, no. 5, pp
. 637-646, Oct. 2016, doi: 10.1109/JIOT.2016.2579198.

[2] Peter, et al. "Mobile Edge Computing and the Internet of Things
for Consumers: Extending cloud computing and services to the edge
of the network." IEEE Consumer Electronics Magazine 5.4(2016):73
-74.

[3] A. M. Khan and F. Freitag, "On Edge Cloud Service Provision with
Distributed Home Servers," 2017 IEEE International Conference on
Cloud Computing Technology and Science (CloudCom), 2017, pp. 22
3-226, doi: 10.1109/CloudCom.2017.50.

[4] K.C.Huang , and B. J. Shen . "Service deployment strategies for effi
cient execution of composite SaaS applications on cloud platform." J
ournal of Systems & Software 107.sep.(2015):127-141.

[5] J. Xiao, F. Cai . Research of three level match method about semantic
web service based on ontology. 2011.

[6] L. Chang-Ming, L. U. Jian-Yun. "Semantic Web Service Selection
Algorithm Based on QoS Ontology". Journal of Southwest China
Normal University(Natural Science Edition), 2011, 36(4):163-167.

[7] M. Makhlughian,S. Mohsen Hashemi, Y. Rastegari, et al. "Web
service selection based on ranking of qos using associative
classification. " International Journal on Web Service Computing,
2012.

[8] L. Zhang , B. Zhang, C. Pahl, et al. "Personalized Quality Prediction
for Dynamic Service Management Based on Invocation Patterns"
Eleventh International Conference on Service Oriented Computing
ICSOC 2013. Springer-Verlag New York, Inc. 2013.

[9] H. K. Zhu, X. L. Yu ,G. P. Zhuo, et al. Research on Services Matching
and Ranking Based on Fuzzy QoS Ontology" International
Conference on Computational Aspects of Social Networks. IEEE
Computer Society, 2010.

[10] L. Qi, T. Ying, W. Dou, et al. "Combining Local Optimization and
Enumeration for QoS-aware Web Service Composition" IEEE
International Conference on Web Services. IEEE, 2010.

[11] A. Elmas. " Edge position detection and depth estimation from gravity
data with application to mineral exploration". Carbonates and
Evaporites, 2019.

[12] K. Sasaki, N. Suzuki, S. Makido and A. Nakao, "Vehicle control
system coordinated between cloud and mobile edge computing," 2016
55th Annual Conference of the Society of Instrument and Control
Engineers of Japan (SICE), 2016, pp. 1122-1127, doi:
10.1109/SICE.2016.7749210.

[13] C.F.Jian, K.Y.Qiu, M.Y.Zhang,"Two-stage Edge Service
Composition and Scheduling Method for Edge Computing QoE".
Journal of Chinese Computer Systems, 2019.

[14] Hayyolalam, Vahideh, Kazem, et al. "A systematic literature review
on QoS-aware service composition and selection in cloud
environment". Journal of Network & Computer Applications, 2018.

[15] Y.Y.Fan, X.Y.Mei. "QoS Evaluation Model for Web Services
Composition". Key Engineering Materials, 2012, 500:311-316.

[16] Truong Khoa phan, Miguel Rocha, David Griffin, et.al. " Utilitarian
Placement of Composite Services". IEEE Transactions on Network &
Service Management, 2018, PP(99):1-1

Service

structure

Feasible service

path

ServiceQoS Standard

Single

�>

�D

�@>

0.667

0.742

0.632

Sequential

structure

S'+S=+S>? 0.793

SF+S�'+S�G+S'D 0.627

S>>+S>@ 0.865

Branch

structure

32 30

20

41 35

S +S
S +

S +S





0.911

optimal

31 8 35

23

41 35 8

S +S +S
S +

S +S +S





0.814

8 35

44

27

S +S
S +

S





0.879

Federated

structure

33

37

20 32

S
+S

S +S





0.768

1175

Authorized licensed use limited to: Inner Mongolia University. Downloaded on May 12,2023 at 09:44:10 UTC from IEEE Xplore. Restrictions apply.

		2022-08-24T22:07:42-0400
	Preflight Ticket Signature

