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Abstract

Multi-modal domain generalization (MMDG) requires that models trained on multi-
modal source domains can generalize to unseen target distributions with the same
modality set. Sharpness-aware minimization (SAM) is an effective technique for
traditional uni-modal domain generalization (DG), however, with limited improve-
ment in MMDG. In this paper, we identify that modality competition and discrepant
uni-modal flatness are two main factors that restrict multi-modal generalization.
To overcome these challenges, we propose to construct consistent flat loss regions
and enhance knowledge exploitation for each modality via cross-modal knowledge
transfer. Firstly, we turn to the optimization on representation-space loss land-
scapes instead of traditional parameter space, which allows us to build connections
between modalities directly. Then, we introduce a novel method to flatten the
high-loss region between minima from different modalities by interpolating mixed
multi-modal representations. We implement this method by distilling and optimiz-
ing generalizable interpolated representations and assigning distinct weights for
each modality considering their divergent generalization capabilities. Extensive
experiments are performed on two benchmark datasets, EPIC-Kitchens and Human-
Animal-Cartoon (HAC), with various modality combinations, demonstrating the
effectiveness of our method under multi-source and single-source settings. Our
code is open-sourced 1.

1 Introduction

Domain generalization (DG) aims to equip models with the ability to perform robustly across unseen
domains when trained only on several source domains, thereby enhancing their adaptability and
utility in real-world scenarios, such as autonomous driving [1, 2], medical health [3, 4], person
re-identification [5, 6] and brain-computer interface [7, 8]. Methods on how to deal with domain
shift have been extensively proposed in the literature, including domain alignment [9], meta-learning
[10, 11], data augmentation [12, 13] and ensemble learning [14]. Despite the remarkable achievements
of DG in recent years, most of research still focuses on uni-modal data. The emergence of various
multi-modal datasets and the requirement to complete a variety of multi-modal tasks highlight the
need to address multi-modal domain generalization (MMDG) problems.

Due to the complementary information that exists between modalities, MMDG aims to exploit
generalization capabilities from each modality simultaneously. According to [15], the generalization
capability of deep neural networks (DNNs) is closely related to their flatness of minima on loss
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1https://github.com/fanyunfeng-bit/Cross-modal-Representation-Flattening-for-MMDG
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Figure 1: (a) Flat minima on loss landscape generalize better than sharp minima with domain shift.
(b) Multi-modal joint training leads to larger loss for each modality compared with independent
uni-modal training. (c) The flat minima between modalities are usually inconsistent, making it hard
to obtain flat minima for each modality simultaneously in a multi-modal network. (d) We optimize
the cross-modal interpolations on representation-space loss landscape to get consistent flat region.

landscape (as shown in Fig. 1 (a)), which motivates penalizing sharpness [16] and rewarding flatness
[17]. Sharpness-aware minimization (SAM) [18] and its variants [14, 19] have been proposed to
seek flatter minima and achieve better generalization across domains. Despite their success on
uni-modal scenarios, in this paper, we argue that they are not compatible well in MMDG since the
distinct properties between modalities pose two challenges (more details can be found in Sec.3.2).
(1) Modality competition: according to [20], multiple modalities will compete with each other
during joint training, leading to inadequate knowledge exploitation for each modality [21, 22], i.e,
larger minima of loss as shown in Fig. 1 (b), and consequently worse generalization. (2) Discrepant
uni-modal flatness: the generalization gap between modalities makes it hard to find their flat minima
simultaneously, resulting in multi-modal networks incapable of utilizing generalization capabilities
from all modalities, as illustrated in Fig. 1 (c). Hence, existing methods can not fully exploit the
generalization potential of each modality, which inevitably leads to sub-optimal solutions for MMDG.

To overcome these challenges, we propose to construct consistent flat loss regions and enhance
knowledge exploitation for each modality via cross-modal knowledge transfer. Traditional SAM-
based methods are analyzed on parameter space. However, due to the heterogeneity between
modalities, their parameter spaces could be extremely different (e.g., different model structures
and parameter numbers), making it challenging to represent their correlation. Instead, we turn to
optimization on representation-space loss landscape [23] as representations of different modalities
can be mapped into a shared space, so that we can build their connections directly. Based on this,
we propose a novel Cross-Modal Representation Flattening (CMRF) method to achieve consistent
representation flat minima. As shown in Fig. 1 (d), we construct the interpolations by mixing
paired multi-modal representations and then optimize them to flatten the high-loss regions between
minima from different modalities. Specifically, we obtain more stable and generalizable cross-modal
interpolations from moving averaged teacher model and then employ feature distillation to regularize
the learning of each modality. The interpolations between modalities bring their flat regions closer,
alleviating their flatness discrepancy. Moreover, the cross-modal knowledge transfer also helps to
promote each modality and alleviate their competition. Our contributions can be summarized as:

• To the best of our knowledge, we are the first to extend the uni-modal flatness analysis
to MMDG, and empirically attribute the reasons for limited MMDG performance to two
problems: modality competition and discrepant uni-modal flatness.

• We construct shared representation space instead of parameter space to build connections
between modalities directly and propose to flatten high-loss representation regions between
modalities by interpolating mixed multi-modal representations and performing knowledge
distillation to regularize the learning of each modality.

• Extensive experiments verify the effectiveness and superiority of our framework on two
benchmark datasets of EPIC-Kitchens and Human-Animal-Cartoon (HAC) under various
modalities combinations on both multi- and single-source MMDG.
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2 Related Work

Flat Minimum of Loss Landscape for DG. Domain generalization refers to the ability of models
to perform well on new, unseen domains that are dissimilar with domains they were trained on.
Numerous methods have been proposed to tackle the domain shift, while one type among them is to
search for flat minima in loss landscapes [18, 24, 19]. Jiang et al. [15] conducted comprehensive
measures and found that a sharpness-based measure has highest correlation with generalization. Based
on that, Foret et al. [18] proposed sharpness-aware minimization (SAM) to seek parameters that lie
in neighborhoods with uniformly low loss via perturbed gradients, while Wang et al. [25] further
proposed to align the gradient directions between the empirical risk and the perturbed loss. Moreover,
average weights during training has also shown to yield flatter minima [17], which motivates more
elegant average methods such as SWAD [14] and EoA [26]. In this paper, we try to optimize
consistent flat minima for different modalities in representation-space loss landscapes instead of
traditional parameter space.

Multi-modal DG. Although uni-modal DG has been extensively studied in recent years, the research
on MMDG is severely insufficient, while only few works have been done. Planamente et al. [27]
proposed RNA-Net to balance audio and video feature norms via a relative norm alignment loss. Dong
et al. [28] proposed a unified framework to achieve domain generalization in various multi-modal
scenarios including multi-source, uni-source, and modality missing DG. In this paper, we extend the
uni-modal flatness analysis to MMDG and address two particular problems in multi-modal scenarios.

Mixup. Mixup [29] is a data augmentation technique introduced to improve the generalization
performance of models. Traditional mixup and its variant CutMix [30] are performed on input data,
while Verma et al. [31] further introduced Manifold Mixup that mixes the representations in each
layer to produce smoother decision boundaries. However, Manifold Mixup and its variants [32, 33]
are designed for uni-modal data, and only few works are on multi-modal scenarios [34, 35]. STEMM
[34] aims to align speech and text features by mixing them, but is limited with its architecture-specific
design. Oh et al. [35] introduced m2-Mix aiming at generating hard negative samples by mixing
image and text embeddings to fine-tuning CLIP. Compared with them, our mixed multi-modal
representations has no architecture restrictions and are used as teacher signals to guide various
modalities to learn consistent flat minima.

3 Method

3.1 Preliminaries

We follow the definition of multi-modal domain generalization problem as in [28]. In MMDG, we are
given D source domains for training Dtrain =

{
Di|i = 1, · · · , D

}
, where Di =

{(
xi
j , y

i
j

)}ni

j=1
∼

P i
XY denotes the i-th domain with ni data instances sampled from a joint distribution of input

samples and output labels P i
XY . X and Y represent the corresponding random variables. Each input

instance xi
j =

{(
xi
j

)
k
|k = 1, · · · ,M

}
∈ X consists of M different modalities and yij ∈ Y ⊂ R

denotes corresponding label, where X and Y represent input and output space. The joint distributions
in Dtrain are different from each other: P i

XY ̸= P j
XY , 1 ≤ i ̸= j ≤ D. Now, with an unseen

test domain Dtest with M modalities that cannot be accessed during training and P test
XY ̸= P i

XY
for i ∈ {1, · · · , D}, the goal of MMDG is to learn a robust and generalizable predictive function
f : X → Y based on D training domains to achieve a minimum prediction error on Dtest:

min
f

E(x,y)∈Dtest
[ℓ (f (x) , y)] (1)

where E is the expectation and ℓ (·, ·) is the loss function, e.g., cross-entropy loss for multi-modal
classification tasks. In this paper, we use θ = {θ1, · · · , θM} to denote the parameters of the neural
network f , where θi indicates the parameters for i-th modality. Therefore, the training loss over all
training domains Dtrain is defined as follows:

L (θ;Dtrain) =
1∑D

i=1 ni

D∑
i=1

ni∑
j=1

ℓ
(
f
(
xi
j ; θ

)
, yij

)
(2)
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Table 1: MMDG analysis on EPIC-Kitchens and HAC with video and audio data. ‘Base’ denotes
the naive multi-modal joint training without any domain generalization strategies. ‘Uni-video’ and
‘Uni-audio’ means training only with uni-modal data. ‘Video’, ‘Audio’ and ‘Video-Audio’ denote
testing with uni-modal and multi-modal data. Results are averaged by using each domain as target.

EPIC-Kitchens HAC

Video Audio Video-Audio Video Audio Video-Audio
Uni-video 58.73 - - 68.07 - -
Uni-audio - 40.04 - - 32.81 -
Uni-video-SAM 61.68 - - 69.58 - -
Uni-audio-SAM - 42.65 - - 35.84 -
Base 56.65 38.62 59.63 67.60 31.24 63.11
SAM 58.80 37.77 61.19 68.46 31.56 64.72
CMRF (ours) 60.66 43.13 63.91 70.54 34.86 71.91

The empirical risk minimization (ERM) of Eq. 2 tends to converge to sharp minima and SAM [18] is
proposed to seek flatter minima on loss landscape with the following optimization:

min
θ

L (θ + ϵ̂;Dtrain) , where ϵ̂ ≜ ρ
∇L (θ;Dtrain)

∥L (θ;Dtrain)∥
. (3)

where ρ is a predefined constant controlling the radius of the neighborhood.

3.2 MMDG Analysis

MMDG aims to comprehensively exploit the generalization capabilities from each modality to learn
more robust and generalized models. However, the generalization behavior of each modality in
multi-modal networks has not been well explored. Here, we analyze the behavior of each modality
and find the challenges for generalizable multi-modal networks.

Modality competition leads to larger minima. As demonstrated in Tab. 1, we compare naive
joint training and SAM about their uni- and multi-modal performance. SAM can clearly improve
generalization on both uni-modal and multi-modal training. However, the uni-modal generalization
from multi-modal trained network is worse than uni-modal trained network, whether or not SAM is
applied (e.g, 56.65% vs. 58.73% without SAM and 58.80% vs. 61.68% with SAM on EPIC-Kitchens
video). This phenomenon can be explained by modality competition [20, 36] that modalities in joint
training compete with each other, making each modality under-explored. Our empirical results show
that it not only degrades in-domain performance for each modality as discussed in [37, 38], but also
weakens their out-of-domain generalization, resulting in larger minima of loss as shown in Fig. 1 (b).

Generalization gap results in discrepant uni-modal flatness. We observe that applying SAM can
only improve generalization of better modality in multi-modal network but has marginal benefit or
even harm on weak modality (e.g., video generalization is improved from 56.65% to 58.80% on
EPIC-Kitchens while the number of audio drops from 38.62% to 37.77%). According to [38], the
better modality will dominate multi-modal gradients. Hence, in Eq. 3, the gradient perturbation ϵ̂ in
SAM could also be dominated by the better modality, which means this optimization on multi-modal
network tends to search for flatter regions for modality with better generalization but ignores other
weak modalities. This suggests that conventional uni-modal SAM-based methods cannot find the
coexisting flat minima for each modality due to their generalization gap, leading to discrepant flatness
and consequently under-utilization of generalization from all modalities, as shown in Fig. 1 (c). More
results with other modality combinations can be found in Sec. 4.2 and Appendix. B.

3.3 Cross-Modal Representation Flattening

Based on the analyses above, in this paper, we aim to 1) accomplish consistent flat minima for all
modalities in multi-modal network and 2) alleviate the competition between modalities to utilize
their generalization comprehensively. Considering the correlation and complementary information
between modalities, we propose to leverage cross-modal knowledge transfer to enhance MMDG.

Representation-space loss landscape. Previous analysis of loss landscapes usually happens on
parameter space [19, 39]. However, the network structures and sizes for different modalities are
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Figure 2: The overall framework of our method. The projectors map features with different dimen-
sions to the same representation space. The teacher model is moving averaged from online model and
generates cross-modal mixed representations as interpolations to distill the student representations.
Uni-modal classifier is used to lower the loss of distilled features for each modality and a contrastive
loss aims to alleviate gap between modalities. Only the online student model back propagates
gradients. The teacher model is used for evaluation finally.

commonly different, leading to disparate parameter spaces. This makes it difficult to catch correlations
between modalities and produce consistent flat loss regions in parameter space. Inspired by [23]
that introduces representation-space loss landscape, we turn to analyze loss landscapes of different
modalities in representation space. Specifically, given a data point xi

j =
{(

xi
j

)
k
|k = 1, · · · ,M

}
,

feature extractors are usually applied to transform input data into features with different dimensions:(
hi
j

)
k
= gk

((
xi
j

)
k

)
⊂ Rdk (4)

where gk is feature extractor for k-th modality, dk is feature dimension size and ∃k ̸= l, dk ̸= dl.
In this paper, we use a projector Projk (·) for k-th modality that maps its features into a shared
representation space for all modalities with the same dimension d (omit superscript and subscript of
domain and instance index for simplicity):

zk = Projk (hk) ⊂ Rd, k ∈ {1, · · · ,M} (5)

Given that each point in the representation space corresponds to a specific loss value, it is feasible to
construct a landscape that maps each representation point to its associated loss value (e.g., horizontal
axis indicates representation and vertical axis indicates loss in Fig. 1 (d)). After training, each
representation extracted from each training sample can be viewed as a minimum. And we can judge
whether a representation minimum is flat or sharp according to its neighboring loss distribution. In the
shared representation loss landscape, we can build connections between different modalities directly.

Cross-modal representation interpolation. As discussed in Sec. 3.2, the discrepant uni-modal
flatness severely impedes the utilization of generalization capability from each modality. The
conclusion also applies to representation-space loss landscape since better modality still dominates
gradients of representations, which optimizes weak modalities at sharp regions. Therefore, to obtain
flat minima for various modalities simultaneously, we aim to flatten the high-loss regions between
minima from different modalities. Given the paired multi-modal representations zk and zl, k ̸= l,
we construct interpolated representations between them by cross-modal representation mixup:

zk,l = δzk + (1− δ) zl (6)

where δ is mixing ratio. If the loss of mixed representations can be optimized to lower values, we
would get a flatter region between modalities, as demonstrated in Fig. 1 (d). However, according
to [31], directly optimization on mixed representations requires mixup at multiple eligible layers
to be effective. It is impractical in multi-modal scenarios because representations of each layer
for different modalities are generally at different scales, converting all them into a shared space is
costly. In this paper, we propose a simple yet effective method that distills the knowledge from mixed
representations to each modality and then optimize the learned representations. Firstly, we perform
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simple moving average (SMA) [26] for the online updated network θk of each modality to establish
the teacher network θ̂tk, which can produce more stable and generalizable representations:

θ̂tk =

{
θtk, if t ≤ t0

t−t0
t−t0+1 · θ̂t−1

k + 1
t−t0+1θ

t
k, otherwise

(7)

where θtk is the online model’s state at iteration t of k-th modality. t0 is the start iteration for SMA.
Hence, the representation from teacher network is denoted as ẑk and the mixed representation of Eq.
6 should be rewritten as:

ẑk,l = δẑk + (1− δ) ẑl, δ ∼ Beta (α, α) (8)

where α is a hyperparameter in Beta distribution. Considering the semantic gap between modalities,
we let interpolation closer to k-th modality act as its teacher signal, so distillation loss should be:{

Lk
dis =

1
M−1

∑M
l=1,l ̸=k ∥zk − ẑk,l∥22, δ > 0.5

Ll
dis =

1
M−1

∑M
k=1,k ̸=l ∥zl − ẑk,l∥22, δ < 0.5

(9)

Then, we assign specific classifier for each modality before Projk (·) to online models and optimize
the features by classification loss Lk

cls. The combination Lk
dis + Lk

cls flattens the neighboring
representation-space loss landscape of k-th modality to other modalities. Further, we employ a
multi-modal supervised contrastive loss on shared representation space, which can help to narrow
the gap between modalities and make it conducive to flatten the region between them. For a random
batch B with M ×B uni-modal samples, we let i as the index of a uni-modal instance in the batch,
and define P (i) as the set of uni-modal samples that have the same label with i (except itself). The
supervised contrastive loss can be written as (notably, subscript here does not denote modality index
but the index of each sample):

Lcon =
∑
i∈B

− 1

|P (i)|
∑

p∈P (i)

log
exp (zi · zp/τ)∑

a∈B\{i} exp (zi · za/τ)
(10)

where τ ∈ R+ is the temperature parameter.

Adaptive weight. As demonstrated in Tab. 1, the generalization capabilities between modalities may
have significant gaps, so we propose to assign stronger flattening weights to better modalities. We
compare the uni-modal validation accuracy from teacher model (calculated by the moving averaged
uni-modal classifier) as a rough estimate of the difference in generalization ability between modalities
(the performance of different modalities on in-domain validation set can generally reflect their strength
in generalization capability, as shown in Appendix. B). The distillation loss can be modified as:

Lk
dis =

1

M − 1

M∑
l=1,l ̸=k

ηk,l ∥zk − ẑk,l∥22, ηk,l =

{
1 Âk/Âl > µ

0.5 Âk/Âl ≤ µ
(11)

where Âk denotes the validation accuracy of k-th modality by teacher model, µ is a hyperparameter
(default 1.2 in this paper). In this way, the teacher signal with stronger generalization ability is applied
with a larger distillation weight. Finally, we can get our final loss as follows:

L = Lcls +

M∑
k=1

λ1Lk
cls +

M∑
k=1

λ2Lk
dis + λ3Lcon (12)

where Lcls is the multi-modal classification loss, and λ1, λ2 and λ3 are hyperparameters to control the
strength of each loss. Finally, we use teacher model for evaluation as it averages learned knowledge
from student for better generalization.

4 Experiments

4.1 Experimental Setting

Dataset and implementation details. We utilize two benchmark datasets, EPIC-Kitchens [40] and
Human-Animal-Cartoon (HAC) [28], both of them have video, optical flow, and audio data. Three
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Table 2: Multi-modal multi-source DG with different modalities on EPIC-Kitchens and HAC datasets.
The best is in bold, and the second best is underlined.

Modality EPIC-Kitchens HAC

Method Video Audio Flow D2, D3 → D1 D1, D3 → D2 D1, D2 → D3 Avg A, C → H H, C → A H, A → C Avg
Base ✓ ✓ 54.94 62.26 61.70 59.63 69.92 69.32 50.09 63.11
SAM [18] ✓ ✓ 55.86 63.33 64.37 61.19 64.49 76.70 52.96 64.72
SAGM [25] ✓ ✓ 56.81 65.10 65.33 62.08 71.17 72.05 55.38 66.20
SWAD [14] ✓ ✓ 55.63 63.74 63.55 60.97 70.72 72.94 53.45 65.70
EoA [26] ✓ ✓ 55.63 64.93 64.68 61.75 69.20 77.27 58.71 68.39
RNA-Net [27] ✓ ✓ 55.37 64.20 62.25 60.61 67.45 68.32 54.78 63.52
SimMMDG [28] ✓ ✓ 57.24 65.07 63.55 61.95 72.75 76.14 54.59 67.83
CMRF (ours) ✓ ✓ 56.55 68.13 67.04 63.91 76.45 82.39 56.88 71.91
Base ✓ ✓ 55.86 67.47 59.34 60.89 72.83 77.84 43.58 64.75
SAM [18] ✓ ✓ 58.85 67.33 63.96 63.38 74.27 78.98 46.79 66.68
SAGM [25] ✓ ✓ 57.64 66.70 64.67 63.00 76.78 75.10 45.80 65.89
SWAD [14] ✓ ✓ 59.79 67.33 62.47 63.20 75.82 78.33 51.90 68.68
EoA [26] ✓ ✓ 62.99 68.89 63.76 65.21 74.45 80.68 53.13 69.42
RNA-Net [27] ✓ ✓ 54.21 64.80 59.31 59.44 74.56 75.39 44.90 64.95
SimMMDG [28] ✓ ✓ 57.03 66.67 63.86 62.82 77.90 78.98 57.80 71.56
CMRF (ours) ✓ ✓ 65.28 67.87 64.89 66.01 81.16 81.25 55.50 72.64
Base ✓ ✓ 49.42 55.60 54.41 53.14 52.89 55.11 40.92 49.64
SAM [18] ✓ ✓ 54.48 59.87 57.90 57.42 54.71 59.66 47.21 53.86
SAGM [25] ✓ ✓ 55.76 61.32 60.28 59.11 55.90 61.03 47.48 54.80
SWAD [14] ✓ ✓ 51.32 61.74 61.05 58.04 54.71 59.76 52.00 55.49
EoA [26] ✓ ✓ 52.41 60.67 61.81 58.30 55.43 58.97 52.29 55.56
RNA-Net [27] ✓ ✓ 50.89 54.24 55.90 53.68 53.11 59.32 43.82 52.08
SimMMDG [28] ✓ ✓ 55.86 64.60 59.34 59.93 57.88 60.79 48.62 55.76
CMRF (ours) ✓ ✓ 57.24 64.94 66.12 62.76 59.06 61.79 55.04 58.49
Base ✓ ✓ ✓ 54.71 67.20 61.70 61.20 70.29 71.25 53.57 65.07
SAM [18] ✓ ✓ ✓ 56.78 65.20 62.22 61.40 75.36 73.68 57.34 68.79
SAGM [25] ✓ ✓ ✓ 57.76 67.12 61.78 62.22 76.56 75.48 56.92 69.65
SWAD [14] ✓ ✓ ✓ 55.84 68.21 64.90 62.98 75.78 74.95 58.02 69.58
EoA [26] ✓ ✓ ✓ 57.93 68.53 68.78 65.08 76.09 76.95 57.19 70.08
RNA-Net [27] ✓ ✓ ✓ 56.25 63.47 59.72 59.81 71.89 70.88 54.58 65.78
SimMMDG [28] ✓ ✓ ✓ 62.08 66.13 64.40 64.20 76.27 77.70 56.42 70.13
CMRF (ours) ✓ ✓ ✓ 61.84 70.13 70.12 67.36 78.26 79.54 60.09 72.44

Table 3: Multi-modal single-source DG with video, flow and audio three modalities on EPIC-Kitchens
and HAC datasets.

EPIC-Kitchens HAC

Source: D1 D2 D3 H A C

Method Target: D2 D3 D1 D3 D1 D2 Avg A C H C H A Avg
Base 56.80 53.08 47.36 59.65 55.63 56.93 54.91 64.20 39.45 64.85 52.29 57.97 65.90 57.44
SAM [18] 54.40 55.24 49.65 61.40 54.94 65.33 56.83 67.61 44.04 66.67 60.09 60.14 61.36 59.98
SAGM [25] 53.11 57.32 50.46 60.12 56.79 65.10 57.15 67.86 45.31 64.90 57.35 64.10 63.16 60.45
SWAD [14] 57.46 56.92 50.46 63.33 56.25 64.58 58.17 68.43 43.79 68.32 57.35 62.80 67.37 61.34
EoA [26] 58.40 57.39 51.26 64.58 55.17 63.33 58.35 68.18 44.95 69.94 56.88 67.39 69.02 62.73
RNA-Net [27] 50.32 51.27 48.90 61.34 53.76 55.89 53.58 62.35 43.24 64.21 53.46 55.37 66.82 57.57
SimMMDG [28] 54.13 57.90 50.57 63.04 60.69 64.27 58.43 64.77 39.44 71.38 50.46 60.14 70.77 59.49
CMRF (ours) 60.80 56.78 55.17 64.99 57.24 65.73 60.12 68.75 46.33 73.55 58.26 65.22 72.46 64.09

distinct domains for EPIC-Kitchens are D1, D2, and D3 and for HAC are humans (H), animals
(A), and cartoon figures (C). Our experiment setup follow [28]. Training details including model
structures, hyperparameters, and experimental environment can be found in Appendix. A.

Baselines. We compare our CMRF with seven different baselines that can be divided into four
groups: 1) Base, naive multi-modal joint training without any domain generalization strategies, 2)
SAM [18] and SAGM [25], searching for flat minima in parameter loss landscapes, 3) SWAD [14]
and EoA [26], ensemble-based methods for flat minima, and 4) RNA-Net [27] and SimMMDG [28],
domain generalization methods specifically designed for MMDG. SAM, SAGM, SWAD and EoA
are initially designed for uni-modal DG and we extent them into MMDG. For all methods, we follow
[41] and select the model with best validation (in-domain) accuracy to evaluate generalization on test
(out-of-domain) data. We report the Top-1 accuracy for all results.
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Table 4: The average results of uni-modal performance comparison under multi-modal multi-source
DG on EPIC-Kitchens with different modality combinations.

Video Audio Video-Audio Video Flow Video-Flow Flow Audio Flow-Audio

Uni-video 58.73 - - 58.73 - - - - -
Uni-flow - - - - 58.30 - 58.30 - -
Uni-audio - 40.04 - - - - - 40.04 -

Base 56.65 38.62 59.63 55.28 55.78 60.89 54.86 39.42 53.14
SAM [18] 58.80 37.77 61.19 59.76 56.05 64.05 56.82 40.35 57.42
EoA [26] 57.54 39.70 61.75 57.49 57.17 65.21 57.32 40.14 58.30
SimMMDG [28] 59.43 38.43 61.95 57.02 55.60 62.82 58.21 40.03 59.93
CMRF (ours) 60.66 43.13 63.91 59.83 58.33 66.01 59.63 43.58 62.76

Table 5: Ablations of each module on EPIC-
Kitchens with video and audio data. DL: distillation
loss, UCL: uni-modal classification loss, CL: con-
trastive loss, AW: adaptive weight, SMA: simple
moving average.

DLUCLCLAWSMAD2, D3 → D1D1, D3 → D2D1, D2 → D3 Avg
54.94 62.26 61.70 59.63

✓ 55.63 63.87 62.14 60.55
✓ 53.10 64.12 64.70 60.64

✓ ✓ 52.75 66.33 65.21 61.43
✓ ✓ ✓ 55.79 65.65 63.92 61.79
✓ ✓ ✓ ✓ 53.84 66.79 66.14 62.26
✓ ✓ ✓ ✓ 55.79 67.53 65.21 62.84
✓ ✓ ✓ ✓ ✓ 56.55 68.13 67.04 63.91

Table 6: Ablation studies on interpolated repre-
sentations on HAC with video and audio data.
SM dis: self-modal distillation, CM dis: cross-
modal distillation, Fixed Mix: interpolations
with fixed mixing ratio (0.5-0.5).

Method D2, D3 → D1 D1, D3 → D2 D1, D2 → D3 Avg
SM dis 74.37 80.68 56.42 70.49
CM dis 75.72 78.85 54.13 69.57
Fixed Mix 75.26 81.81 53.21 70.09
Rand Mix (ours) 76.45 82.39 56.88 71.91

4.2 Main Results

Multi-modal multi-source DG. Tab. 2 illustrate the results of our CMRF and all baselines on EPIC-
Kitchens and HAC under multi-modal multi-source domain generalization setting, where the models
are trained on multiple source domains and test on one target domain. We conduct experiments by
combining any two modalities, as well as all three modalities, to validate the generalization of our
method. As we can see from Tab. 2, our CMRF outperforms all baselines on almost all settings and
achieves great improvement on the average results (by up to 3.52% with video-audio modalities on
HAC). The uni-modal DG methods, especially SAGM and EoA, can improve the generalization of
multi-modal network to a certain extent, but their improvements are limited as they do not consider
modality competition and inconsistent flatness between modalities. Two MMDG methods RNA-Net
and SimMMDG also perform less than satisfactory since they do not fully exploit the generalization
capability of each modality.

Multi-modal single-source DG. Our CMRF does not requires domain labels for training, making
it feasible to perform multi-modal single-source domain generalization, where models are trained
on a single source domain and test on other multiple target domains. The results trained with three
modalities are presented in Tab. 3. Our CMRF still apparently outperforms all baselines on average
accuracy, despite being trained only on single-source domain data. For baselines with domain
generalization strategies, they can not improve consistently across datasets, e.g., SimMMDG achieves
the second best on EPIC-Kitchens but has limited improvement on HAC, showing their unstable
generalization and their limitations in the single-source DG setting.

Uni-modal performance in MMDG. As we discussed in Sec. 3.2, exploiting the generalization
capability of each modality simultaneously is the key to improving multi-modal domain generalization
performance. Therefore, we evaluate the uni-modal performance from multi-modal trained networks
to show the superiority of our method. We freeze the trained uni-modal feature extractor and train
a linear classifier to test uni-modal performance. The results of average multi-source accuracy on
EPIC-Kitchens are shown in Tab. 4. We can see that our CMRF not only improves the multi-modal
domain generalization, but also greatly promotes its uni-modal domain generalization, even better
than that of uni-modal training (60.66% vs. 58.73% and 43.12% vs. 40.04% for video and audio on
EPIC-Kitchens), indicating the effectiveness of CMRF to use cross-modal knowledge to promote the
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Figure 3: Parameter sensitivity analysis on HAC with video and audio data under A, C → H.

generalization of each modality via mitigating modality competition and flattening representation loss
landscape between modalities. In Appendix B, we show the alleviated competition under in-domain
performance and flatter region with perturbations. As for baselines, SAM and SimMMDG only
enhance the generalization of better modality and EoA just achieves marginal uni-modal improvement,
which means they can not utilize the generalization capability of all modalities comprehensively.
Detailed results for each test domain and more results on HAC dataset are shown in Appendix. B.

4.3 Ablation Studies

Ablation on each design. Our CMRF contains five main modules: distillation loss Lk
dis, uni-modal

classification loss Lk
cls, multi-modal supervised contrastive loss Lcon, adaptive weight, and SMA

for teacher model. We conduct extensive ablation experiments to verify the effectiveness of each
proposed module on EPIC-Kitchens with video-audio data under multi-source domain generalization
setting. The results are illustrated in Tab. 5. Only applying distillation loss or uni-modal classification
loss improves slightly and their combination leads to noticeable increase, highlighting the importance
of flattening representation loss landscape between modalities for domain generalization. However, it
does not guarantee steady improvement, e.g., the accuracy decreases from 54.94% to 52.75% in D2,
D3 → D1 setting. Multi-modal supervised contrastive loss can enhance the average generalization
by a small margin. Adaptive weight and using SMA network as teacher can both improve MMDG
by a large margin, suggesting that it is necessary to emphasize the more generalized modality and
obtain more stable distillation signals. Finally, combining all of them achieves the best results for
multi-modal domain generalization, hence, each of them is indispensable.

Table 7: The average results compared
with methods designed for modality
competition on HAC with video and
audio data under multi-source DG.

Validation Test
Base 91.41 63.11
Grad Blending [42] 92.70 66.82
OGM-GE [37] 93.67 64.33
PMR [38] 94.90 65.24
CMRF 93.21 71.91

Ablation on interpolations. In this paper, we mix multi-
modal representations in the random ratio generated from
Beta distribution as teacher signals, and choose interpola-
tions closer to current modality for distillation, as in Eq. 9.
We conduct experiments by using different forms of teacher
signals to verify our method’s effectiveness, as presented in
Tab. 6. For k-th modality, we set δ to 1, 0, 0.5 for self-modal
distillation, cross-modal distillation, and distillation with
fixed mixing ratio. Since self-modal distillation can enhance
learning for each modality via more generalizable signals, it
achieves great performance next to ours. The heterogeneous
knowledge between modalities makes cross-mode distilla-
tion worse. Fixed mixing ratio only locates one interpolation
while our random ratio covers all possible points, resulting in our better performance.

Comparison with methods designed for modality competition. Here, we conduct experiments with
three baselines Gradient Blending [42], OGM-GE [37], and PMR [38] for modality competition as
we attribute it as one challenge for MMDG. We not only report out-of-domain test accuracy but also
in-domain validation results, as shown in Tab. 7. We can see that these methods can actually promote
their performance on multi-modal validation set since they mitigate the competition. However, they
tend to locate at sharp minima and the generalization gap between modalities still makes it hard to
build consistent flat minima for different modalities. Hence, their performance increase on test set is
limited, while our method achieves significant improvement on both validation and test sets.

9



Parameter sensitivity. Fig. 3 shows the results of different values on loss weights λ1, λ2, and
λ3. Since our method uses the moving averaged teacher model for evaluation, it is insensitive to
hyperparameters.

5 Conclusion

In this paper, we analyze the behavior of multi-modal domain generalization and find that modality
competition and discrepant uni-modal flatness restrict the generalization capability of multi-modal
network. To address these challenges, we propose cross-modal representation flattening (CMRF) to
construct consistent flat regions in a shared representation-space loss landscape. Our method builds
interpolations by mixing multi-modal representations from moving averaged teacher model and use
feature distillation to optimize the high-loss regions between modalities. Our extensive experiments
on two benchmark datasets demonstrate the effectiveness of our method to promote multi-modal
domain generalization, as well as uni-modal domain generalization in multi-modal network.

Limitations. Currently, we need to test on validation set to estimate generalization of each modality
for Eq. 11, which can be time-consuming with the scale increase of validation set. In future work, we
can add low-frequency noise as in [23] for domain shifting to evaluate the generalization.
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A Experimental Setting

Dataset. We utilize two benchmark datasets: EPIC-Kitchens [40] and Human-Animal-Cartoon (HAC)
[28]. Our experimental setup follows the protocols established for the EPIC-Kitchens dataset in [43]
and for the HAC dataset in [28]. The EPIC-Kitchens dataset encompasses eight actions (‘put’, ‘take’,
‘open’, ‘close’, ‘wash’, ‘cut’, ‘mix’, and ‘pour’) captured across three different kitchens, forming
three distinct domains: D1, D2, and D3. The HAC dataset comprises seven actions (‘sleeping’,
‘watching tv’, ‘eating’, ‘drinking’, ‘swimming’, ‘running’, and ‘opening door’) executed by humans
(H), animals (A), and cartoon figures (C), resulting in three separate domains: H, A, and C. The HAC
dataset includes 3381 video clips sourced from the internet, with approximately 1000 samples per
domain. Both datasets offer three modalities: video, audio, and optical flow.

Baselines. In our experiments, we compare our CMRF with seven different baselines that can be
divided into four groups: 1) Base, naive multi-modal joint training without any domain generalization
strategies, 2) SAM [18] and SAGM [25], searching for flat minima in parameter loss landscapes,
3) SWAD [14] and EoA [26], ensemble-based methods for flat minima, and 4) RNA-Net [27] and
SimMMDG [28], domain generalization methods specifically designed for MMDG. SAM, SAGM,
SWAD and EoA are initially designed for uni-modal DG and we extent them into MMDG. For all
methods, we follow [41] and select the model with best validation (in-domain) accuracy to evaluate
generalization on test (out-of-domain) data. We report the Top-1 accuracy for all results.

Implementation Details. In our framework, we conduct experiments across three modalities:
video, audio, and optical flow, adhering to the implementation described in [28]. We leverage the
MMAction2 toolkit [44] for our experimental setup. To encode visual information, we utilize the
SlowFast network [45], initialized with pre-trained weights on Kinetics-400 [46]. For the audio
encoder, we employ ResNet-18 [47], initialized with weights from the VGGSound pre-trained
checkpoint [48]. The optical flow encoder uses the SlowFast network’s slow-only pathway with
Kinetics-400 pre-trained weights. The dimensions of the uni-modal feature h are 2304 for video,
512 for audio, and 2048 for optical flow. For the projector Projk (·), we implement a multi-layer
perceptron with two hidden layers of size 2048 and output size 128. We use the Adam optimizer [49]
with a learning rate of 0.0001 and a batch size of 16. The scalar temperature parameter τ is set to 0.1.
Additionally, we set λ1 = 2.0, λ2 = λ3 = 3.0, α in the Beta distribution to 0.1, and the SMA start
iteration t0 to 400 for EPIC-Kitchens and 100 for HAC respectively. All experiments were conducted
on an NVIDIA GeForce RTX 3090 GPU with a 3.9-GHz Intel Core i9-12900K CPU. The model is
trained with 15 epochs, taking two hours.

B More Results

Uni-modal in-domain validation performance. Modal competition refers to the mutual inhibition
between modalities in joint training, which is reflected in in-domain performance straightforwardly
as studied in previous literature. In Tab.8 we give the uni-modal validation results (in-domain)
on EPIC-kitchens with video and audio data. Modal competition is manifested in that each single
modality of Base performs worse than uni-modal training, which further leads to worse out-of-domain
performance as shown in Tab. 9. Our method achieves the best uni-modal in-domain performance,
indicating that it optimizes modal competition effectively, which in turn improves the generalization
ability to other domains as in Tab. 4.

Table 8: Uni-modal validation (in-domain) performance under multi-modal multi-source DG on
EPIC-Kitchens dataset with video and audio data.

Video Audio
D2, D3 → D1 D1, D3 → D2 D1, D2 → D3 Avg D2, D3 → D1 D1, D3 → D2 D1, D2 → D3 Avg

Uni-modal 79.58 75.58 75.19 76.78 60.32 54.29 53.16 55.92
Base 75.78 73.60 72.40 73.93 54.58 52.23 49.11 51.97
SAM 77.03 73.81 73.75 74.86 54.90 51.60 49.67 52.06
EoA 78.94 73.20 75.12 75.75 56.85 52.76 52.45 54.02

SimMMDG 80.86 74.81 74.57 76.75 54.58 53.34 52.90 53.60
CMRF(ours) 81.26 77.21 75.69 78.05 58.77 54.89 54.38 56.01

Flatness visualization. To evaluate the loss flatness, we can apply low-frequency perturbation from
the Gaussian Distribution on representations, where the variance controls the perturbation strength.
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Figure 4: Representation space loss flatness evaluation. We apply gaussian noise to the extracted
representations to be the domain shifts. The perturbation variance measures the distance between
the perturbed representation and the original representation. We use the performance drop against
perturbation variance to measure the sharpness of the landscapes around the minimum, where a larger
drop indicates a sharp minimum. The experiments are on EPIC-Kitchens with D2, D3 → D1 of
video-audio modalities. Left is the performance drop of video while right is the result of audio.
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Figure 5: Representation space loss flatness evaluation. EPIC-Kitchens with D2, D3 → D1 of
flow-audio modalities. Left is the performance drop of flow while right is the result of audio.

The magnitude of the performance drop indicates how flat the loss is. The results are shown Figs. 4
and 5 below. With the increase of Variance, our method has the smallest performance drop on each
modality, indicating that our method achieves flatter loss landscape for both modalities simultaneously
and in turn provides flatter multi-modal loss landscape.

Uni-modal out-of-domain performance. Here, we give the detailed results of uni-modal perfor-
mance comparison on EPIC-Kitchens in Tabs. 9, 10, and 11, which form the results in Tab. 4 in
the main paper. The results for HAC dataset are demonstrated in Tabs. 12, 13, and 14. Our method
can achieve the best uni-modal, as well as multi-modal, performance on both datasets with various
modality combinations.
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Table 9: Uni-modal performance under multi-modal multi-source DG on EPIC-Kitchens dataset with
video and audio data.

EPIC-Kitchens

Video Audio

D2, D3 → D1 D1, D3 → D2 D1, D2 → D3 Avg D2, D3 → D1 D1, D3 → D2 D1, D2 → D3 Avg
Uni-video 54.02 65.60 56.57 58.73 - - - -
Uni-audio - - - - 37.01 40.40 42.71 40.04
Base 53.33 62.00 54.62 56.65 36.32 34.60 44.95 38.62
SAM [18] 55.86 61.20 59.34 58.80 33.32 35.87 44.13 37.77
EoA [26] 53.82 63.14 55.67 57.54 38.16 37.04 43.55 39.70
SimMMDG [28] 54.67 63.75 59.87 59.43 32.21 34.98 48.12 38.43
CMRF (ours) 56.79 64.10 61.09 60.66 37.94 43.32 48.12 43.13

Table 10: Uni-modal performance under multi-modal multi-source DG on EPIC-Kitchens dataset
with video and optical flow data.

EPIC-Kitchens

Video Flow

D2, D3 → D1 D1, D3 → D2 D1, D2 → D3 Avg D2, D3 → D1 D1, D3 → D2 D1, D2 → D3 Avg
Uni-video 54.02 65.60 56.57 58.73 - - - -
Uni-flow - - - - 56.55 62.00 56.36 58.30
Base 47.82 61.47 56.57 55.28 52.18 60.53 54.62 55.78
SAM [18] 54.94 63.87 60.47 59.76 52.64 59.47 56.03 56.05
EoA [26] 51.67 63.33 57.48 57.49 53.04 62.13 56.34 57.17
SimMMDG [28] 50.54 60.76 59.77 57.02 50.33 62.89 53.58 55.60
CMRF (ours) 55.63 62.13 61.74 59.83 53.79 63.10 58.11 58.33

Table 11: Uni-modal performance under multi-modal multi-source DG on EPIC-Kitchens dataset
with optical flow and audio data.

EPIC-Kitchens

Flow Audio

D2, D3 → D1 D1, D3 → D2 D1, D2 → D3 Avg D2, D3 → D1 D1, D3 → D2 D1, D2 → D3 Avg
Uni-flow 56.55 62.00 56.36 58.30 - - - -
Uni-audio - - - - 37.01 40.40 42.71 40.04
Base 51.72 57.73 55.13 54.86 36.32 38.00 43.94 39.42
SAM [18] 53.56 60.00 56.90 56.82 37.70 38.93 44.43 40.35
EoA [26] 54.43 59.87 57.67 57.32 38.16 40.40 41.85 40.14
SimMMDG [28] 56.27 61.58 56.79 58.21 35.82 36.49 47.78 40.03
CMRF (ours) 56.27 63.37 59.24 59.63 40.00 41.47 49.28 43.58

Table 12: Uni-modal performance under multi-modal multi-source DG on HAC dataset with video
and audio data.

HAC

Video Audio

A, C → H H, C → A H, A → C Avg A, C → H H, C → A H, A → C Avg
Uni-video 73.29 77.11 53.80 68.07 - - - -
Uni-audio - - - - 28.26 38.09 32.11 32.81
Base 72.83 72.72 57.26 67.60 31.16 36.50 26.06 31.24
SAM [18] 71.84 78.41 55.13 68.46 30.25 39.20 25.23 31.56
CMRF (ours) 74.64 83.52 53.46 70.54 30.43 44.32 29.82 34.86
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Table 13: Uni-modal performance under multi-modal multi-source DG on HAC dataset with video
and optical flow data.

HAC

Video Flow

A, C → H H, C → A H, A → C Avg A, C → H H, C → A H, A → C Avg
Uni-video 73.29 77.11 53.80 68.07 - - - -
Uni-flow - - - - 57.97 58.52 43.12 53.20
Base 72.10 74.43 46.33 64.29 56.16 53.98 35.78 48.64
SAM [18] 74.64 78.98 49.08 67.57 53.62 50.00 37.15 46.92
CMRF (ours) 77.90 79.84 48.33 68.69 63.04 62.50 37.78 54.44

Table 14: Uni-modal performance under multi-modal multi-source DG on HAC dataset with optical
flow and audio data.

HAC

Flow Audio

A, C → H H, C → A H, A → C Avg A, C → H H, C → A H, A → C Avg
Uni-flow 57.97 58.52 43.12 53.20 - - - -
Uni-audio - - - - 28.26 38.07 32.11 32.81
Base 55.86 56.82 41.50 51.39 27.35 37.34 26.15 30.28
SAM 60.51 55.13 48.62 54.75 29.16 40.04 30.23 32.14
CMRF (ours) 61.59 57.95 47.49 55.68 31.88 41.48 33.03 35.46

Validation and test comparison with uni-modal training. In Tab. 15 and Tab. 16, we report the
in-domain validation and out-of-domain test results on EPIC-kitchens and HAC datasets for each
modality. We can see that for each modality, its validation performance is strongly positive correlated
to its test performance, i.e., modalities that perform better on the validation set usually perform better
on the test set. This provides empirical support for us to use validation set accuracy in Eq. 11 to
evaluate the generalization ability of different modalities.

Table 15: Uni-modal validation performance vs. test performance on EPIC-Kitchens dataset.
Validation Test

D2, D3 → D1 D1, D3 → D2 D1, D2 → D3 Avg D2, D3 → D1 D1, D3 → D2 D1, D2 → D3 Avg
Video 79.58 75.58 75.19 76.78 54.02 65.60 56.57 58.73
Flow 74.94 72.04 72.57 73.18 56.55 62.00 56.36 58.30
Audio 60.32 54.29 53.16 55.92 37.01 40.40 42.71 40.04

Table 16: Uni-modal validation performance vs. test performance on HAC dataset.
Validation Test

A, C → H H, C → A H, A → C Avg A, C → H H, C → A H, A → C Avg
Video 90.10 88.66 93.58 90.78 73.29 77.11 53.80 68.07
Flow 74.11 72.87 80.53 78.54 57.97 58.52 43.12 53.20
Audio 56.09 49.19 55.09 53.46 28.26 38.07 32.11 32.81
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The contributions and scope can be found in Sec. 1.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: Limitations can be found in Sec. 5

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]
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Justification: This paper does not include any proof for theoretical results.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: The reproducibility information can be found in Appendix. A.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]
Justification: We provide our codes open-sourced.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: These information can be found in Appendix. A
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [No]
Justification: Error bars are not reported because it would be too computationally expensive.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
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• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: These information can be found in Appendix. A.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We follow the Code Of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: There is no societal impact of the work performed as we aim to train networks
on public datasets.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: No new data or models are released.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We cite the papaer [28] that our code is based on.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: Not release new assets
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: No need for crowdsourcing nor research with human subjects in this paper.
Guidelines:2

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: No such risks.
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• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
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