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ABSTRACT

This paper introduces a novel approach for optimizing Generative Flow Networks
(GFlowNets) in stochastic environments by incorporating KL divergence objec-
tives with entropy-ratio estimation. We leverage the relationship between high and
low entropy states, as defined in entropy-regularized Markov Decision Processes
(MDPs), to dynamically adjust exploration and exploitation. Detailed proofs and
analysis demonstrate the efficacy of this methodology in enhancing mode discov-
ery, state coverage, and policy robustness in complex environments.

1 INTRODUCTION

Generative Flow Networks (GFlowNets) (Bengio et al., 2021a;b) have recently gained attention for
their application in a variety of tasks, such as molecule discovery (Bengio et al., 2021a; Jain et al.,
2022b), biological sequence design (Jain et al., 2022a), and robust scheduling (Zhang et al., 2023).
GFlowNets learn policies that generate objects x ∈ X sequentially, where the generation process is
similar to Monte-Carlo Markov chain (MCMC) methods (Metropolis et al., 1953; Hastings, 1970;
Andrieu et al., 2003), generative models (Goodfellow et al., 2014; Ho et al., 2020), and amortized
variational inference (Kingma & Welling, 2013). This sequential process of generating objects
through a policy also closely resembles reinforcement learning (RL) (Sutton & Barto, 2018).

2 BACKGROUND

Generative Flow Networks (GFlowNets) are variational inference algorithms designed to treat sam-
pling from a target probability distribution as a sequential decision-making process (Bengio et al.
(2021a;b)). Below, we briefly summarize the formulation and primary training algorithms for
GFlowNets. Consider a fully observed, deterministic Markov Decision Process (MDP) with a state
space S and a set of actions A ⊆ S × S. The MDP has a designated initial state s0, and cer-
tain states, called terminal states, are designated as having no outgoing actions. Let X denote the
set of terminal states. We assume that all states in S are reachable from s0 through a sequence
of actions, though not necessarily by a unique sequence. A complete trajectory is a sequence
of states τ = (s0 → s1 → · · · → sn), where sn ∈ X , and each pair of consecutive states
is connected by an action, i.e., ∀i (si, si+1) ∈ A. A policy in this MDP defines a distribution
PF (s

′|s) for each non-terminal state s ∈ S \ X , specifying the probability of transitioning to the
next state s′ in a single action. The policy induces a distribution over complete trajectories as fol-
lows: PF (s0 → s1 → · · · → sn) =

∏n−1
i=0 PF (si+1 | si). The marginal distribution over terminal

states, denoted P⊤
F , is the distribution on X induced by the policy over all complete trajectories. It

may be computationally intractable to compute P⊤
F directly, as P⊤

F (x) =
∑

τ→x PF (τ), where the
sum is taken over all complete trajectories that terminate at state x.

3 RELATED WORK

Unlike Reinforcement Learning (RL), where the goal is typically to maximize the expected reward
by learning a deterministic policy (Mnih et al., 2015; Lillicrap et al., 2015; Haarnoja et al., 2017; Fu-
jimoto et al., 2018; Haarnoja et al., 2018), GFlowNets aim to learn a stochastic policy for generating
composite objects x with probability proportional to the reward function R(x). This is particularly
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useful in real-world tasks where diversity in solutions is crucial, such as recommender systems (Ku-
naver & Požrl, 2017), drug discovery (Bengio et al., 2021a; Jain et al., 2022a), and sampling causal
models from a Bayesian posterior (Deleu et al., 2022). However, existing GFlowNet approaches
(Bengio et al., 2021a; Malkin et al., 2022; Madan et al., 2022) have primarily been developed for
deterministic environments, where state transitions are fixed. In real-world applications, stochastic-
ity in state transitions is common, presenting significant challenges for GFlowNets. Deterministic
GFlowNet methods can fail to model the correct state visitation distribution under stochastic transi-
tions. For instance, in the presence of stochastic dynamics, standard GFlowNets may learn incorrect
probabilities for visiting states, which do not align with the ideal distribution. This mismatch occurs
because existing methods do not properly account for randomness in state transitions. To address
these limitations, we propose a novel approach called KL Divergence Optimization with Entropy-
Ratio Estimation for Stochastic GFlowNets. Our method introduces a KL divergence objective
that optimizes the policy distribution while incorporating an entropy-ratio estimation mechanism
that dynamically balances exploration and exploitation. By adjusting the exploration-exploitation
trade-off through entropy-ratio estimation, our method enables GFlowNets to capture the correct
state visitation distribution, even in stochastic environments.

Our approach is general and can be applied to different GFlowNet learning objectives. It works
by minimizing the divergence between forward and backward policies, ensuring flow consistency
across stochastic transitions. The entropy-ratio estimation further enhances robustness by favoring
high-entropy states in situations where the environment exhibits higher stochasticity. This approach
allows for better mode discovery and improves state visitation coverage in stochastic tasks, such as
molecule discovery, biological sequence generation, and other structured object generation tasks.

Our contributions of this paper are as follows:

• We propose KL Divergence Optimization with Entropy-Ratio Estimation for Stochas-
tic GFlowNets, a novel approach that addresses the limitations of existing GFlowNet meth-
ods in stochastic environments.

• We provide a detailed analysis of how our method optimizes the flow consistency and
dynamically adjusts exploration in stochastic transitions, making it suitable for a wide range
of stochastic tasks.

• We conduct extensive experiments on benchmark tasks, demonstrating that our method sig-
nificantly outperforms existing baselines, including Stochastic GFlowNets (SGFN), PPO,
SAC and MCMC particularly in complex environments like biological sequence genera-
tion.

4 DETAILED BALANCE IN STOCHASTIC GFLOWNETS

Detailed balance (DB) is a fundamental principle in GFlowNets, ensuring the alignment between
forward and backward policies to maintain the desired state distribution. In stochastic GFlowNets,
DB must accommodate the randomness inherent in state transitions, which is crucial for accurately
representing the distribution over states under varying conditions.

4.1 STOCHASTIC ENVIRONMENTS

Stochastic GFlowNets (Pan et al. (2023)) extend the GFlowNet framework to environments where
state transitions are stochastic. These models introduce a decomposition of state transitions into
two steps: (1) a deterministic agent action and (2) a stochastic environment transition. This de-
composition helps in managing stochastic dynamics but increases the complexity of learning due
to the introduction of high variance in training, particularly when combined with trajectory balance
objectives. Flow consistency is defined in the forward policy:

F (st)π(at|st) =
∑
st+1

F (st+1)πB((st, at)|st+1). (1)

This equation highlights the balance of flow at each state by equating the inflow (left-hand side)
and outflow (right-hand side). It ensures that the total probability mass flowing out of state st
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via policy π matches the backward flow from subsequent states st+1. The consistency is vital for
GFlowNets as it stabilizes policy training, ensuring each decision balances the resulting flows in a
manner proportional to the overall reward. The stochastic state transitions are then applied to the
Detailed-Balance(DB) condition as follow

F (st)π(at|st)P (st+1|(st, at)) = F (st+1)πB((st, at)|st+1). (2)

This equation explicitly introduces the transition probability P (st+1|(st, at)), capturing the stochas-
tic nature of moving from state-action pairs (st, at) to the next state st+1. The need for this formu-
lation arises because stochastic transitions introduce variability that must be accounted for in both
forward and backward policies to ensure a robust and proportional sampling distribution. This rep-
resentation ensures that the detailed balance condition holds, preserving proportional flows between
forward and backward states, critical for maintaining the integrity of GFlowNets in stochastic envi-
ronments.

4.2 FROM DETAILED BALANCE TO KL DIVERGENCE WITH ENTROPY-RATIO ESTIMATION

To transform the detailed balance equation into a practical training objective, we express it as a KL
divergence minimization problem by incorporating entropy ratio density estimation:

Given:

P (st+1|(st, at)) =
Hhigh(st+1)

γHhigh(st+1) + (1− γ)Hlow(st+1)
, (3)

where Hhigh(st+1) and Hlow(st+1) represent the densities related to high and low entropy states,
respectively and 0 < γ < 1. We can rewrite the detailed balance in terms of this density ratio.
GFlowNet detailed balance is an off-policy algorithm that leverages training data from a variety of
distributions. Specifically, we can reframe the detailed balance objective from (Eq. 2) given the
environemnt dynamic (Eq. 3) into a KL divergence formulation

min
θ

DKL

πB((st, at)|st+1)

∥∥∥∥∥F ((st, at))
Hhigh(st+1)

γHhigh(st+1)+(1−γ)Hlow(st+1)

F (st+1)

 . (4)

The KL divergence can also be expressed as a summation over state-action pairs for policy πB :

DKL =
∑
s,a,s′

πB((s, a)|s′)
(
log πB((s, a)|s′)− logF (s, a)− log

Hhigh(s
′)

γHhigh(s′) + (1− γ)Hlow(s′)
+ logF (s′)

)
.

(5)

This summation highlights the direct contribution of state-action pairs, incorporating entropy ratio
estimations in the policy optimization process.

5 DYNAMICS LOSS USING CROSS ENTROPY WITH ENTROPY-RATIO
ESTIMATION

5.1 DYNAMICS LOSS

The dynamics loss is a crucial component that aligns the model’s predictions with the empirical
state transitions observed in stochastic environments. By integrating entropy-ratio estimations, this
loss function effectively adjusts the weight given to transitions based on their uncertainty, captured
through entropy measures. High-entropy transitions correspond to exploratory actions that increase
state visitation diversity, while low-entropy transitions focus on consolidating high-reward paths,
aiding exploitation.

3
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Deriving the Dynamics Loss (Mohammadpour et al. (2024)) defines the flow entropy which is
strictly concave function as

H(π) = E

[
T−1∑
t=0

H(π(·|st))

]
=

∑
s∈S

µπ(s)H(π(·|s)), (6)

where H(π(·|s)) = −
∑

a∈A(s) π(a|s) log π(a|s) measures the randomness of actions at state s.
The term µπ(s) represents the state visitation frequency under the policy π, denoting how often the
state s is encountered when following π. The flow entropy is calculated as a weighted sum of the
entropy of the policy at each state, where µπ(s) acts as the weighting factor. This approach ensures
that states visited more frequently have a greater influence on the overall entropy, which is essential
for analyzing the exploration behavior of the policy over time. We express the density ratio entropy
for a given γ as:

rγ(s) =
Hhigh(s)

γHhigh(s) + (1− γ)Hlow(s)
, (7)

The functional form of entropy (see section 9 for more details) at state s is defined Hhigh(s) =
exp (−βhigh ·H(s)) , Hlow(s) = exp (−βlow ·H(s)), where βhigh and βlow are scaling factors that
control the influence of entropy on exploration and exploitation. States with higher entropy con-
tribute more to Hhigh(s), while states with lower entropy contribute more to Hlow(s). This allow to
adjust the probability of each state-action pair based on the weighted contributions of high and low
entropy states. The dynamics loss, incorporating this entropy ratio, is derived as:

L(γ) = −
∑

s∈S,a∈A(s)

µπ(s)H(π(·|s)) (log rγ(s) + (1− γ)(1−H(π(·|s))) log(1− rγ(s))) . (8)

This loss penalizes deviations from expected entropy-weighted transitions, pushing the policy to
optimize flows that balance exploration with exploitation.

γ in Exploration vs. Exploitation Trade-off: The parameter γ plays a pivotal role in managing the
trade-off between exploration and exploitation by modulating the influence of high and low entropy
states in the transition dynamics. High values of γ emphasize high-entropy transitions, favoring
exploration by allowing the policy to sample diverse actions and visit more states. This promotes the
discovery of new modes, avoiding local optima by spreading the probability mass across a wider set
of states. Conversely, lower values of γ increase the influence of low-entropy transitions, focusing on
exploitation by reinforcing actions that lead to predictable and high-reward states. This controlled
trade-off ensures that the policy can balance between exploring new opportunities and exploiting
known profitable actions, directly impacting state visitation patterns and the robustness of the learned
policy. We provide the algorithm of our proposed method in algorithm 1.
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Algorithm 1 KL Divergence Optimization with Entropy-Ratio Estimation for Stochastic GFlowNets

1: Initialize policy parameters θ, environment dynamics, and γ (exploration-exploitation trade-off).
2: for each episode do
3: Initialize state s0.
4: while not in terminal state sT do
5: Sample action at ∼ πθ(a|st).
6: Transition to next state st+1 ∼ P (st+1|st, at).
7: Compute reward R(st+1).
8: Compute entropy ratio for state st+1:

rγ(st+1) =
Hhigh(st+1)

γHhigh(st+1) + (1− γ)Hlow(st+1)

9: end while
10: Minimize the KL divergence:

DKL =
∑
s,a,s′

πθ(s, a|s′) [log πθ(s, a|s′)− logF (s, a)− log rγ(s
′)]

11: Adaptively update γ:

γt+1 = γt + η(Var(R(st+1))− Var(R(st)))

12: end for

Practical Approximation of Dynamics Loss To make this loss computationally tractable, we ap-
proximate it by discretizing the state-action pairs:

L(θ, γ) = − 1

N

N∑
n=1

(znH(πθ(an|sn)) log rγ(sn) + (1− zn)H(πθ(an|sn)) log(1− rγ(sn))) ,

(9)

where zn denotes a binary classification that captures the occurrence of state-action pairs. This
practical form illustrates how high entropy (exploration) encourages broader state sampling, while
low entropy (exploitation) consolidates high-value trajectories, effectively guiding the policy.

Effect of Entropy on Loss Dynamics High entropy in state-action pairs incentivizes the policy
to discover new modes by exploring diverse states, preventing overfitting to high-reward areas and
maintaining broad state coverage. Low entropy, conversely, focuses on refining the policy toward
known high-reward paths, ensuring stability in high-reward regions. The balance between these
influences is controlled by γ, enabling adaptive policy adjustments that enhance overall robustness.

6 ANALYSIS OF rγ(s), STOCHASTICITY LEVEL α, AND DYNAMIC
ADJUSTMENT OF γ

The entropy ratio rγ(s) in Algorithm 1 is defined as:

rγ(s) =
Hhigh(s)

γHhigh(s) + (1− γ)Hlow(s)

where Hhigh(s) = exp(−βhigh ·H(s)) and Hlow(s) = exp(−βlow ·H(s)). This ratio helps balance the
influence of high-entropy and low-entropy states, effectively managing the exploration-exploitation
trade-off. The parameter γ plays a critical role in determining this balance.

The stochasticity level is controlled by the parameter α, which represents the probability of taking
random actions. A higher value of α indicates more random (exploratory) behavior, while a lower
α implies more deterministic (exploitative) behavior. When α is high, the system favors exploratory
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actions, which means that the entropy H(s) of state s tends to be higher, affecting Hhigh(s) and
Hlow(s) accordingly. Since H(s) is high, Hhigh(s) will have a moderate to low value due to the
negative exponential term, whereas Hlow(s) will be comparatively smaller. Consequently, rγ(s)
will be influenced more by the high-entropy component, encouraging diverse state visitation. Con-
versely, when α is low, the policy is more deterministic, leading to lower entropy in state visitation.
In this case, H(s) is low, which increases Hhigh(s) and Hlow(s), but the low-entropy component
Hlow(s) has a greater influence. The ratio rγ(s) will thus emphasize exploitation, focusing more
on high-reward, low-entropy states. The parameter γ is updated dynamically in Algorithm 1 to bal-
ance exploration and exploitation, depending on the observed variance in reward distributions. The
adaptive update rule is given by:

γt+1 = γt + η(Var(R(st+1))− Var(R(st)))

where η is the learning rate controlling the adjustment step, and Var(R(st)) and Var(R(st+1)) are
the reward variances observed before and after transitioning from state st to state st+1. The dynamic
adjustment of γ is directly influenced by the change in reward variance across state transitions, which
reflects the level of uncertainty or stochasticity present in the environment.

When the variance in rewards is high between two successive states (Var(R(st+1)) > Var(R(st))),
this implies a high level of uncertainty in the environment. In this case, the update rule for γ will
increase γ. This increases the weight on Hhigh(s) in rγ(s), effectively promoting exploration to
gather more information about the uncertain environment. As γ increases, rγ(s) is driven more by
the high-entropy component, resulting in more diverse state visitation and potentially discovering
novel, high-reward paths.

If the reward variance is low (Var(R(st+1)) < Var(R(st))), this implies that the environment is
more predictable, and the agent is starting to identify stable, rewarding actions. Consequently, the
update rule will decrease γ, which reduces the weight on Hhigh(s) and increases the influence of
Hlow(s), making rγ(s) emphasize low-entropy states. This results in more exploitative behavior,
allowing the agent to take advantage of known high-reward actions and converge to a stable, deter-
ministic policy.

The combined effect of α and γ on rγ(s) can be understood as follows. When both α and γ are high,
the agent strongly emphasizes exploration. A high α leads to more random actions, while a high
γ results in rγ(s) favoring high-entropy states. Together, this results in a broad exploration of the
state space, potentially identifying diverse high-reward regions. Conversely, when α and γ are both
low, the agent’s behavior becomes more deterministic and exploitative. The low value of α leads
to fewer random actions, while a lower γ results in rγ(s) putting greater emphasis on low-entropy
states, leading to stable exploitation of known rewards.

The dynamic adjustment of γ enables the model to be adaptive based on the stochasticity of the en-
vironment. During early stages of training, when the environment is largely unexplored and reward
variance is high, γ increases, promoting exploration. As training progresses, if reward variance de-
creases, suggesting the agent has identified promising regions of the state space, γ decreases, and
the model shifts towards exploitation. This approach ensures a balanced and adaptive exploration-
exploitation strategy tailored to the dynamics of the environment. By using the dynamic variance-
based adjustment, the agent can systematically adapt γ to improve learning efficiency and reward
maximization.

7 EXPERIMENTS

In this section, we conduct extensive experiments to investigate the following key questions: i) How
much can KL Divergence Optimization with Entropy-Ratio Estimation improve the performance of
Stochastic GFlowNets over standard GFlowNets in the presence of stochastic transition dynamics?
ii) Can our method scale to more complex and challenging tasks, such as generating biological
sequences and what is the effect of stochasticity level on its performance?

6
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7.1 GRIDWORLD

7.1.1 EXPERIMENTAL SETUP

Figure 1: The GridWorld environment. The
agent starts at the top-left corner and receives
the highest reward at the four dark blue posi-
tions near the corners (with keys), lower re-
wards at the 2 × 2 squares near the corners,
and even lower rewards at the lighter blue po-
sitions. Different grid sizes H and noise lev-
els α can be explored.

We begin by conducting a series of experiments in
the GridWorld task, originally introduced in Ben-
gio et al. (2021a), to evaluate the effectiveness of
GFlowNets optimization scheme. An illustration of
the task, with a grid size of H × H , is shown in
Figure 1. At each time step, the agent selects an
action to navigate the grid. The available actions
include increasing a coordinate, and a stop opera-
tion, which terminates the episode and ensures the
underlying Markov decision process (MDP) forms
a directed acyclic graph (DAG). The agent receives
a reward R(x), as defined in Bengio et al. (2021a),
when a trajectory reaches a terminal state x. The re-
ward function R(x) has four distinct modes, located
in the corners of the map (Figure 1). The agent’s ob-
jective is to model the target reward distribution and capture all reward modes. The shade of color
reflects the magnitude of the rewards, with darker colors indicating higher rewards. We introduce
stochasticity into the environment by adopting the transition dynamics from Machado et al. (2017)
and Yang et al. (2022). Specifically, with probability 1 − α, the environment follows the selected
action, but with probability α, a uniformly chosen random action is executed (leading to slips or
missteps to neighboring regions, as shown in Figure 1).

(a) Medium. (b) Large.

Figure 2: Comparison results of L1 error in GridWorld for varying map sizes.

(a) Medium. (b) Large.

Figure 3: Comparison results of the number of modes captured during training in GridWorld with
varying map sizes.

We compare the performance of KL Divergence Optimization with Entropy-Ratio Estimation
against vanilla GFlowNets, which are trained using trajectory balance (TB) Malkin et al. (2022),
Stochastic GFlowNets (SGFN) Pan et al. (2023), as well as other methods like Metropolis-Hastings

7
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MCMC Xie et al. (2021) and PPO Schulman et al. (2017). The evaluation is based on the empirical
L1 error, which measures the difference between the true reward distribution p(x) = R(x)

Z and the
estimated distribution π(x), derived by repeated sampling and frequency counting of visits to all
possible states x. Additionally, we compare the methods by counting the number of modes captured
during training. Each algorithm is run with five different random seeds, and we report the mean of
performance. The implementation details for each baseline are based on open-source code1.

7.1.2 PERFORMANCE COMPARISON

We now evaluate the effectiveness of KL Divergence Optimization with Entropy-Ratio Estimation
across different map sizes and stochasticity levels in the GridWorld environment.

Varying map sizes. Figure 2 shows the empirical L1 error for each method in GridWorld (with
stochasticity level α = 0.25) as the grid size increases. The results demonstrate that MCMC strug-
gles with larger grids, and GFN fails to converge. Additionally, the performance of TB degrades
significantly as the grid size grows, likely due to higher gradient variance, as suggested by Madan
et al. (2022). In contrast, our proposed method (KL Divergence Optimization with Entropy-Ratio
Estimation) consistently achieves the lowest L1 error and converges faster than all baselines, includ-
ing stochastic GFlowNets with DB-objective and Vanilla GFlowNets with TB-objective.

7.2 BIOLOGICAL SEQUENCE GENERATION

In biological sequence generation, the objective is to discover sequences with optimal properties by
maximizing a reward function corresponding to specific biological traits. This task is particularly
challenging due to the inherent complexity and stochasticity present in biological environments. For
example, in the task of generating DNA sequences, the objective might be to find sequences that
exhibit high binding affinity to a particular transcription factor.

To demonstrate the efficacy of our proposed method, we evaluate it on the TFBind8 task, where the
goal is to generate strings of nucleotides (e.g., DNA sequences of length 8). Conventionally, such
tasks are modeled using an autoregressive Markov Decision Process (MDP). However, we utilize a
prepend-append MDP (PA-MDP), where actions involve adding tokens (e.g., nucleotides) either to
the beginning or the end of a partial sequence. The reward function, in this case, measures the DNA
binding affinity to a human transcription factor, providing feedback on the sequence’s fitness.

The complexity of the biological sequence generation problem lies in handling the vast combi-
natorial search space and the stochastic nature of sequence interactions with biological targets. By
introducing stochasticity into the environment through transition dynamics, our method dynamically
balances exploration and exploitation using KL divergence optimization and entropy-ratio estima-
tion, which improves the robustness of the generated sequences and ensures better mode discovery.

TFBind8. Our goal is to generate a string of length 8 of nucleotides. Though an autoregressive MDP
is conventionally used for strings, we use a prepend-append MDP (PA-MDP) Shen et al. (2023), in
which the action involves either adding one token to the beginning or the end of a partial sequence.
The reward is a DNA binding affinity to a human transcription factor Trabucco et al. (2022).

7.2.1 QUALITY OF REWARDS

The quality of the rewards during the sequence generation process is directly influenced by the
adaptive tuning of the parameter γ, which balances exploration and exploitation through rγ(s). As
shown in Figure 4, the quality of rewards for varying stochasticity levels (α = 0.25, 0.50, 0.75)
demonstrates that our approach maintains high reward quality, even under increased stochasticity.
Specifically, as α increases, representing a more stochastic environment, existing methods such as
Stochastic GFlowNets (SGFN) and standard GFlowNets struggle to maintain reward quality. In
contrast, our method, which incorporates entropy-ratio estimation, successfully adapts to the in-
creased randomness by adjusting γ dynamically. The entropy ratio rγ(s) favors exploratory actions
in uncertain environments, thereby allowing the agent to discover new high-reward sequences while
maintaining robustness.

1https://github.com/GFNOrg/gflownet
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(a) α = 0.25. (b) α = 0.50.

(c) α = 0.75.

Figure 4: Comparison results of the quality of rewards captured during training for TFBIND exper-
iment for different levels of stochasticity.

(a) Entropy Search. (b) Dynamic Loss.

Figure 5: Comparison results of the Entropy Search and Dynamic loss behavior captured during
training for TFBIND experiment for different levels of stochasticity.

7.2.2 EFFECT OF rγ(s) ON ENTROPY SEARCH AND MODE DISCOVERY

The entropy ratio rγ(s) plays a critical role in controlling the balance between high-entropy (ex-
ploratory) and low-entropy (exploitative) states. Figure 5(a) shows impact of dynamically adjusting
γ values on entropy-based search and mode discovery. During the initial phases of training, when α
is high, γ also increases, leading to a greater emphasis on high-entropy components (Hhigh(s)). This
emphasis encourages exploration by allowing the agent to sample a broader set of actions and visit
more states, ultimately leading to better mode discovery. This behavior is evident in Figure 5(b),
where higher values of γ result in the agent discovering more unique modes, thus avoiding prema-
ture convergence to suboptimal sequences. As training progresses and reward variance decreases,
γ is adaptively reduced, shifting the balance towards low-entropy states (Hlow(s)), which promotes
the exploitation of known high-reward sequences.
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7.2.3 DYNAMIC LOSS AND ADAPTATION

Figure 5(b) illustrates the behavior of dynamic loss during the training process for different stochas-
ticity levels. The dynamics loss, incorporating entropy-ratio estimations, penalizes deviations from
the expected entropy-weighted transitions, effectively aligning the model’s predictions with ob-
served state transitions. The dynamic update of γ follows the rule:

γt+1 = γt + η (Var(R(st+1))− Var(R(st)))

where η is the learning rate. When the variance in rewards between two consecutive states
(Var(R(st+1)) and Var(R(st))) is high, indicating a high level of environmental uncertainty, γ is in-
creased to favor exploration. This adjustment causes rγ(s) to prioritize high-entropy states, thereby
enhancing exploration capabilities. Conversely, as the environment becomes more predictable and
reward variance decreases, γ is reduced, leading rγ(s) to emphasize low-entropy states and focus on
exploitation. This dynamic adaptation helps in maintaining a balance between discovering new high-
reward sequences and exploiting known sequences, ultimately ensuring robustness and efficiency in
learning.

7.2.4 ENTROPY SEARCH ON DYNAMIC STOCHASTICITY

Figure 5 depicts the interaction between γ and the stochasticity level α during entropy-based search.
When γ is high, the model emphasizes exploring less-visited regions of the sequence space, which
is especially effective under lower stochasticity (α = 0.25), where the environment is relatively
predictable. As α increases, indicating more randomness in the environment, the exploration be-
comes more erratic. Our method, by dynamically adjusting γ, manages to stabilize the exploration
process even under higher stochasticity, ensuring a balanced trade-off between discovering novel
high-reward sequences and exploiting already discovered optimal sequences.

7.2.5 IMPACT ON PERFORMANCE AND SEARCH EFFICIENCY

The dynamic interaction between γ and α plays a pivotal role in enhancing search efficiency in bi-
ological sequence generation. The parameter γ, by modulating the entropy ratio rγ(s), allows the
model to adjust its behavior based on the stochastic nature of the task, encouraging exploration when
necessary and promoting reliable exploitation once high-quality sequences are found. On the other
hand, α controls the environment’s stochasticity, influencing how the model handles uncertain tran-
sitions. Together, these parameters ensure an optimal balance between exploration and exploitation,
leading to improved performance in generating biological sequences with desirable properties, as
seen in Figure 4 and Figure 5.

8 CONCLUSION

In this paper, we introduced a novel methodology, KL Divergence Optimization with Entropy-Ratio
Estimation for Stochastic GFlowNets, which effectively extends GFlowNets to more complex and
realistic stochastic environments, where existing GFlowNet approaches tend to underperform. Our
method not only learns the GFlowNet policy but also incorporates entropy-ratio estimation to dy-
namically balance exploration and exploitation, making it more robust to stochastic transitions.

We conducted extensive experiments on standard GFlowNet benchmark tasks augmented with
stochastic transition dynamics, demonstrating that our method significantly outperforms previous
methods in terms of both mode discovery and state visitation coverage. The results show that by
leveraging KL divergence optimization and entropy-ratio estimation, our approach can better handle
the stochasticity in environments, leading to more efficient and accurate policy learning.

Future research could explore advanced model-based approaches for approximating transition dy-
namics in stochastic environments. Additionally, our method opens new possibilities for apply-
ing GFlowNets to other challenging real-world tasks, such as biological sequence generation and
molecule discovery, where stochasticity plays a key role.
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ARCHITECTURAL DETAILS FOR EXPERIMENTS

GRIDWORLD EXPERIMENTS

To reproduce the GridWorld experiments, we used the following network architecture:

• Policy Network:
– Input Layer: The state representation is a 2D grid encoded as a flattened vector of

size H ×H , where H is the grid size.
– Hidden Layers:

* Layer 1: Fully connected layer with 128 neurons, ReLU activation.
* Layer 2: Fully connected layer with 64 neurons, ReLU activation.

– Output Layer: Outputs the probabilities over all possible actions, implemented as a
softmax layer to ensure a valid probability distribution.

• Training Details:
– Optimizer: Adam optimizer with a learning rate of 0.001.
– Batch Size: 32.
– Exploration Parameter (γ): Initially set to 0.5 and adjusted adaptively during train-

ing based on the observed variance in the state-action values.
– Entropy Regularization: An additional entropy regularization term is added to the

loss function to encourage exploration, with a weight of 0.01.

BIOLOGICAL SEQUENCE GENERATION (TFBIND8)

For the TFBind8 biological sequence generation experiment, we used the following architecture:

• Policy Network:
– Input Layer: The input is a partial sequence of nucleotides represented as a one-hot

encoded vector. For sequences of length 8, the input size is 8×4 (since each nucleotide
can be one of 4 bases).

– Embedding Layer: An embedding layer maps the one-hot encoded representation to
a continuous vector space of dimension 16.

– LSTM Layer: A single LSTM layer with 128 hidden units is used to capture depen-
dencies between different positions in the sequence.

– Fully Connected Layer: The LSTM output is passed through a fully connected layer
with 64 neurons and ReLU activation.

– Output Layer: Outputs the probability distribution over the four nucleotides for the
next position, implemented as a softmax layer.

• Training Details:
– Optimizer: Adam optimizer with a learning rate of 0.0005.
– Batch Size: 64.
– Sequence Augmentation: During training, random noise is added to the nucleotide

embeddings to simulate stochasticity in biological environments.
– Entropy Regularization: To ensure mode discovery, we add an entropy regulariza-

tion term with a weight of 0.05.

DETAIL ON FUNCTIONAL FORM AND PARAMETER TUNING

FUNCTIONAL FORM OF ENTROPY

The entropy for a given state s is defined as:

H(s) = −
∑
a

π(a|s) log π(a|s)
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FORM OF HHIGH(s) AND HLOW(s)

Using the entropy H(s), the quantities Hhigh(s) and Hlow(s) are defined as follows:

Hhigh(s) = exp (−βhigh ·H(s)) , Hlow(s) = exp (−βlow ·H(s))

Where βhigh and βlow are scaling factors that adjust sensitivity to entropy. This formulation ensures
that states with higher entropy contribute more to Hhigh(s), while low-entropy states contribute more
to Hlow(s).

TUNING βHIGH AND βLOW

The parameters βhigh and βlow control the influence of high-entropy and low-entropy states in
balancing exploration and exploitation using the following strategy:

• Dynamic Tuning: Initially, βhigh = 0.4 and βlow = 0.6 are used (as a warm-up). If the
model converges too quickly or fails to explore effectively, βhigh can be increased or βlow
decreased to encourage more exploration. If reward variance is high and convergence is
not achieved, increasing βlow can help focus on exploiting high-reward actions.

Monitoring metrics like reward variance and state visitation allows adaptive tuning of β values to
achieve an optimal exploration-exploitation balance:

Hhigh(s) = exp(−βhigh ·H(s)), Hlow(s) = exp(−βlow ·H(s))

ADAPTIVE UPDATE OF γ

To balance exploration and exploitation, the parameter γ is adapted dynamically during training:

γt+1 = γt + η(Var(R(st+1))− Var(R(st)))

Where η is the **learning rate** that controls the adjustment of γ based on reward variance. This dy-
namic adjustment ensures that γ evolves in response to observed changes in environmental stochas-
ticity.
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