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Abstract

Inferring the actual road segment purely based on one positioning
point, known as single-point map matching (SMM), is vital for many
urban applications, e.g., ride-hailing and geo-tagging. However, it
is challenging due to inherent positioning errors and extrinsic het-
erogeneous environments. Existing methods either overlook the
heterogeneity of different regions, or do not exploit the commonal-
ity of different matching tasks. In this paper, we treat each region
as an individual SMM task to tackle the heterogeneity, and propose
Spatial Hierarchical Meta-Learning for SMM (SHSMM) to learn the
shared knowledge across tasks. SHSMM is equipped with a Dual-
view Map Matcher to perform the matching, which can perceive
the knowledge of road segments globally. To learn the task-specific
model parameters, SHSMM modulates initial parameters and scales
the local update learning rate based on hierarchical geographical
and semantic knowledge about spatial tasks. A local update learn-
ing rate scheduling strategy is further proposed to facilitate the
meta-training. Extensive experiments as well as case studies based
on two real-world datasets demonstrate the effectiveness of the
proposed method.
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1 Introduction

The development of positioning technology has given rise to many
location-based services (LBS). Most LBS applications rely on a fun-
damental step to process positioning data, i.e., single-point map
matching (SMM), which infers the actual road segment on which
the mobile object is located based on only one positioning point.
This function is equipped in many urban applications, e.g., ride
hailing [16, 40], geo-tagging [2, 13], and POI recommendation [30].
For example, in ride-hailing, a user usually stands at a fixed location,
and the platform needs to locate her on the correct road so that a
more appropriate vacant taxi can be assigned.

Nevertheless, SMM is challenging for two reasons: (1) Inherent
Positioning Errors. GPS devices have inevitable positioning er-
rors, so we cannot simply adopt the nearest road segment as the
matching result. (2) Extrinsic Heterogeneous Environments.
The positioning error varies from place to place given heteroge-
neous environments. For example, the positioning error in urban
canyons is significantly greater than that in open areas.

Existing work is mainly composed of two categories: 1) universal
modeling [14, 20], which trains a universal model to learn the
deviation pattern based on all training data in the study region;
and 2) separate modeling [1, 33], which trains different models
for different road segments. The former sacrifices the modeling of
spatial heterogeneity to ensure data sufficiency for the universal
model, while the latter allows data to be modeled in a heterogeneous
way yet faces the problem of data scarcity.

Recently, meta-learning [12] has shown its superiority in mod-
eling heterogeneous tasks, which allows common knowledge to
be shared across tasks. Therefore, if we divide the study region
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Figure 1: Motivating Examples.

into different subregions, as shown in Figure 1(a), treat SMM for
data falling in different subregions as different tasks, and introduce
meta-learning, we can not only tackle the spatial heterogeneity, but
also mitigate the data scarcity via task knowledge sharing.

However, simply applying existing meta-learning methods, e.g.,
MAML [9], is still insufficient for SMM: Firstly, constructing
meta-learning tasks will disrupt the integrity of the road
network. For example, Figure 1(b) and 1(c) show all candidate road
segments in the brown task, and the green task, respectively. We
find road segment c3 in the brown task, and road segment cy in the
green task are essentially the same from the global view. However,
they would be separately considered if we treat each subregion
as a separate SMM task. Secondly, most existing work over-
looks the explicit prior knowledge in spatial tasks, they only
derive beneficial task dependencies from the meta-training
set itself [10, 15, 37, 38]. The spatial prior knowledge is com-
posed of geographical knowledge and semantic knowledge. The
former reveals spatial closeness and spatial hierarchy according
to the First Law of Geography [25], while the latter indicates the
environmental discrepancy of task regions. For example, the top
row in Figure 1(d) shows the environments of two regions. We can
find the road condition in Region A is rather complex, while that
is simpler in Region B. The bottom row in Figure 1(d) shows the
positioning points in those regions. Same-colored points denote
that their corresponding road segments are the same. As can be
observed, SMM for Region A is much more difficult than that for
Region B, which is strongly related to the environment.

To this end, in this paper, we propose Spatial Hierarchical Meta-
Learning for SMM (SHSMM). SHSMM is a gradient-based meta-
learning method that considers the spatial properties of tasks and
is dedicated to SMM. We also devise a variant to tackle the “with
Destination” (SMMD) setting, which is also useful in some applica-
tions, e.g., ride-hailing. To tackle the disruption of the road network,
we design a base model, i.e., Dual-view Map Matcher, which in-
corporates a globally shared knowledge bank to store the global
knowledge of each road segment. To consider the explicit prior
knowledge of spatial tasks in meta-learning, we use the geographi-
cal knowledge to modulate the globally shared initial parameters
into region-specific initial parameters, and then leverage the se-
mantic knowledge to scale the local update learning rate to a task-
specific one. Both types of knowledge are considered hierarchically
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to maintain the spatial properties. We further propose a local update

learning rate scheduling strategy, i.e., Incremental Dropout, during

the meta-training process, to mitigate the overfitting caused by the
introduction of parameters that would not be locally updated. We
summarize our contributions as follows:

e We present the first attempt to leverage meta-learning to tackle
SMM, which not only considers the region heterogeneity but also
preserves the common matching knowledge across regions.

e We propose SHSMM, which is equipped with a Dual-view Map
Matcher and two spatial knowledge fusion modules, i.e., Initial
Parameter Modulation (IPM) and Learning Rate Scaling (LRS).
Incremental Dropout is further proposed to avoid overfitting.

o Extensive experiments as well as case studies on two real-world
datasets demonstrate the effectiveness of SHSMM. We also have

released our code for public use!.

2 Preliminaries

2.1 Problem Formulation

Definition 1 (Positioning Point). A positioning point p is a spatial
point, denoted as p = (Ing, lat). It captures the longitude Ing and
latitude lat of an object. The positioning point might deviate slightly
from the actual location of the object due to positioning errors.

Definition 2 (Road Network). A road network is a directed graph,
denoted as G = (V, E), where each vertex v € V is associated
with a location (Ing, lat), and each road segment e € & is a triplet
(eid, u,v), denoting its id eid and the connectivity from u to v.

Definition 3 (Spatial Knowledge). The spatial knowledge is com-
posed of the geographical knowledge KC¢° and semantic knowl-
edge KS¢™ of the study region. KC€ is just the location informa-
tion, and KS¢™ can be arbitrary semantics describing the region,
e.g., digital map or remote sensing images.

Problem Statement (Single-point Map Matching). Given a po-
sitioning point p generated by an object and a road network G, as
well as the spatial knowledge, infer the actual road segment e € &
where the object is located on.

In the Single-point Map Matching with Destination (SMMD)
setting, together with the inputs of SMM, the destination p@est,

which is another spatial point, is also given.

Uhttps://github.com/zouyiqing-221/SHSMM
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2.2 Model-Agnostic Meta-Learning

Model-Agnostic Meta-Learning (MAML) [9] is one of the most
prevalent methods, which takes initial parameters 6y of the base
model as the shared knowledge. It has two key processes:
Knowledge Utilization. Assuming we already have the globally
shared initial parameters 6y, for a task 7;, MAML adapts to the task-
specific parameter 6; based on several steps of gradient descent, i.e.,
local updates, over support set D generated from 7;. For example,
when using one-step gradient descent, we have

0; = 60 — Vg, L(fa). DY) @

where « is the local update learning rate, and £ is the task loss.
Knowledge Extraction. To learn the initial parameters 68y, MAML
aims to learn a globally shared 6 that can minimize the prediction
error over @? after local updates are performed based on D5 for
every 7; in 9. Formally, the training objective is given as follows,
which can be optimized via stochastic gradient descent:

6; = argmin Z 'E(feo*aveoﬁ(feo,ﬂf)’ﬂg)

b 7€,

@

3 Methodology

3.1 Overview

In this section, we present our proposed Spatial Hierarchical Meta-
Learning for SMM (SHSMM). We first divide the study region into
several uniform grid regions and treat SMM in each grid as a task.
For each task 7, data within the grid region will be further split into
support set D7 and query set D?. SHSMM follows the paradigm of
gradient-based meta-learning, which is depicted in Figure 2(a). We
first introduce a base model Dual-view Map-Matcher, which con-
tains some global-update-only parameters to learn common knowl-
edge of road segments across tasks. For each task, the parameters
6 that would be locally updated in Dual-view Map-Matcher would
be sent into an Initial Parameter Modulation (IPM), which gives
region-specific parameters 92 based on the geographical knowl-
edge 7(1.Ge". Then, we derive a task-specific local update learning
rate a; via Learning Rate Scaling (LRS) based on the semantic knowl-
edge '7(156”’. After that, K-step local updates would be conducted
to transform 02, into task-specific parameters GiK based on D7 and
;. Finally, we can use the base model with Ol.K and Z);Z to perform
the global updates for 6y and learnable parameters in IPM and LRS.
We further design an Incremental Dropout mechanism to postpone
the overfitting. Next, we elaborate on each design in detail.

3.2 Dual-view Map Matcher

Dual-view Map Matcher serves as the base model. Given the road
network G and a position p, it takes a set of nearby road segments
as candidates C, and infers the actual road segment for p.
Main Idea. A straightforward way is to adapt an existing trajec-
tory map matching model [3, 7, 19] as the base model, in which
the dimension of the outputs is fixed and equal to the size of the
road segment set. Such a design is reasonable when all data are
considered as a single set, but is not efficient as we divide the study
region into grid-based tasks when using meta-learning.

Instead, here we take SMM as a candidate selection problem,
in which the dimension of the outputs is equal to the size of the
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candidate set, which is not fixed for all samples and is much smaller
than the size of the whole road segment set.

The basic idea is to renumber IDs for the subset of road segments
for each task, i.e., local edge IDs, and use a local embedding layer
to embed them. However, a side effect is that nearby tasks may
share the same road segments, but the knowledge of the same road
segments can not be shared given that they may have different local
edge IDs in different tasks. To this end, we propose the Dual-view
Map Matcher, which not only considers road segments from the
local view but also leverages their knowledge from the global view,
i.e., across tasks.

Implementation. To implement, for each positioning point p,
we construct the candidate road segments C, which is a set of
road segments within D meters from p, i.e., C = {c|Vc € G.E A
dist(p,c) < D}. Following [3, 17, 19, 33], the matching distance
dist(p, c) is the perpendicular distance if the projection of p is on
c, otherwise, it is the distance to the closest endpoint of c. For
each candidate road segment c; € C, we calculate its distance d;
to p, retrieve its local edge ID eidj., which is renumbered by the

associated task, as well as its global edge ID eidd, ie., c.eid.

Those features would be fed into the proposed Dual-view Map
Matcher, which is shown in Figure 2(b). For each candidate c;, we
first use a local embedding layer Emb; to embed eidﬁ., which is then
concatenated with dj, followed by a fully connected (FC) layer to
generate candidate local representation, ie., hj = FC([Embl(eid§)||dj]),
where || is the concatenation operation. In candidate selection, it
is beneficial to model the inter-dependency among candidates as
reported in [20, 27, 32]. Therefore, we further feed all candidate
local representations into a Transformer encoder [26] to obtain

context-aware local representations zi, z, ..., Zn:

Z1, 22, ...,Zn = TransEnc({hy, hy, ..., h,})

®)

Next, each context-aware local representation z; would be con-
catenated with the global knowledge of each road segment via a
global embedding layer Embg, and fed into a FC layer to obtain the
final representation of each candidate:

i) = FC([2;[Enby (eid?)]) @

Note that, the parameters in Emb,; would not be updated during the
local update process, which only serves as a knowledge bank to
store the global knowledge about road segments. Its parameters
are only updated during the global update process. In this way, the
knowledge about road segments is globally learned across tasks.

Finally, another FC layer is applied to generate logits, followed
by a softmax activation over all candidates to obtain the matching
probabilities:

gl, ﬁg, e gn = softmax({FC(il), FC(iz), e FC(in)}) (5)

The candidate road segment with the maximum probability is se-
lected as the inferred matched road segment.

As for SMMD, to incorporate destination, we calculate the ori-
entation of the destination to each candidate road segment ¢; € C
<Cj.v—cjuu,pd€5'
lcj.o—cj.ul-|pdest—c;.o|’
and then replace the aforementioned candidate local representation
with hj = FC([Embl(eidj.)de||0j]).

—Cj.0>

viaoj = where < -, - > is the inner product,
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Figure 2: Framework of SHSMM.

3.3 Initial Parameter Modulation

After we have designed the base model, now we turn to learn
its parameters based on meta-learning. One important step is to
determine the starting point of local update, i.e., initial parameters,
for each task. In SHSMM, we use Initial Parameter Modulation
to obtain region-specific initial parameters based on geographical
knowledge to give each task a better start.

Main Idea. In MAML [9], all tasks share the same starting point.
Recent studies [28, 37] found it may be difficult to adapt to massive
tasks due to task diversity. Therefore, they proposed to organize
the tasks by customizing the initial parameters. The core idea here
is to transform the global initial parameters to task-specific [28] or
cluster-specific [37] initial parameters for better adaption. However,
these methods attempt to organize the tasks based on samples in
the support set, which are not designed for spatial tasks. Yet, for
a spatial task, we aim to consider natural geographical properties
to ensure a more reasonable organization of meta-tasks. Tobler’s
First Law (TFL) [25] indicates that “near things are more related
than distant ones". Inspired by this, we use a hierarchical manner
to encode the tasks, so that tasks in the same region will share
same region-specific initial parameters, and tasks in closer regions
will have more commonalities in their initial parameters. In this
way, we managed to organize the spatially related tasks using the
geographical knowledge.

2458

Implementation. We first define a hierarchy level of the study
region, i.e., Hy, and then use quad-tree [8] to recursively divide the
study region into four subregions until H, is reached, as shown in
Figure 2(e). We aim to modulate the global initial parameters for
each region at level H;.

For each task 7;, we assume its affiliated region at level H, is ;.
The region code of r; also follows a quad-tree coding scheme, which
is a sequence of numbers (range from 0-3) indicating the traversing
path from the root region to the current region. We transform it back
to a sequence of numbers, denoted as < ridl.l, ridl.z, rid?’ >, and
treat each of them as the position indicator at a certain granularity.
We regard them as the geographical knowledge of 7, i.e., ‘KiG €. In
this way, not only tasks in the region with the finest granularity
can share the same geographical knowledge, but tasks in adjacent
regions can also have similar knowledge as well.

Given ‘KIG €9, the modulation process is shown in Figure 2(c). We
first use an embedding layer to transform them into dense repre-
sentations, and then concatenate and fuse those representations to
obtain the hidden geographical knowledge r;:

ri = FC(|I/=H Emb(rid?)) (6)

After that, we use a fully connected layer followed by a sigmoid
activation to transform the hidden geographical knowledge r; into
a parameter gate g,, = Sigmoid(FC(r;)).
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Finally, the region-specific initial parameters 02_ are obtained by
modulating global initial parameters 8y with g,

eroi = 90 o gr,- (7)

where o is the Hadamard product.

3.4 Learning Rate Scaling

Given region-specific initial parameters 991,, the local update for
each task can be performed. We further use Learning Rate Scaling
to scale the local update learning rate of each task based on the
semantic knowledge to achieve customized parameter updating.
Main Idea. To obtain a good map matcher for each task, good
initial parameters and effective local updates are both important. In
MAML [9], the local update for each task is performed based on its
support set and a shared local update learning rate. However, for
different tasks, their adaptive ability may differ from each other due
to the great diversity even though they are in the same region. For
example, some tasks may have more support samples while others
may have fewer, and some tasks may have a large set of candidate
road segments while the size of others may be rather limited. This
motivates us to use different learning rates for different tasks. Since
the diversity caused by the above phenomenon is mainly due to
the difference in artificial and natural environments, we aim to
leverage the semantic knowledge of tasks to scale the local update
learning rate. However, if we only use specific semantics of a task to
module the local update learning rate, the knowledge-sharing across
tasks would be hurt. To further integrate cross-task knowledge, for
each task, we first extract the semantic features from different
granularities so that the learning rate scaling considers not only
the semantics of a task, but also its semantic context in the spatial
hierarchy, and then we cluster semantic features of different tasks
to obtain task context-aware local update learning rates.
Implementation. Since the images of digital maps are easily acces-
sible, and can reflect the built and natural environments of task re-
gions, we can use the digital map images as semantic knowledge. We
assume the region of a task 7; is at spatial level H, i.e., rlH , then we
can extract features from < rl.l, rl.z, rlH > to capture the hierarchi-
cal semantics, which is also shown in Figure 2(e). To extract features
at level H, we use a pre-trained image encoder [23] to transform
the region image into a hidden representation elH . For upper levels,
level h for example, we average over all hidden representations of
level-H subregions within rl.h, i.e., mean-pooling, to obtain level-h

h 1 H
£ [ S— .- nel In
i \{rfWr}qErl{’}l er €ry J

hidden representation e, i.e., ef’

this way, we represent the semantic knowledge of a task (K;Sem as
<ele? . efl >

The scaling process is shown in Figure 2(d). To fuse knowledge at
different levels and enhance the representation, we use an attention
mechanism [34] to obtain cross-level semantic representations <

<1 22 xH .
€;,€;, ..., & >

H
é?“ = Z afbe?bwe
h=1

®
exp(< e?“We, ef’bwe >))

ab _
R - h h
ZhO:1 exp(< e;*We,e;°We >))
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where W, is the learnable matrix for common knowledge extraction.
After that, we concatenate cross-level semantic representations of
different levels to obtain the hierarchical semantics of task 73, i.e.,
&= &

Then, to share the semantic knowledge of different tasks, we
transform the hierarchical semantics €é; to a task context-aware
semantics b; by exchanging the hierarchical semantic features of
different tasks via soft clustering [37]. The basic idea of soft cluster-
ing is to generate the representation of the input via the weighted
sum of cluster centers, which are hidden vectors learned during
the global update process among all tasks, such that all tasks can
sufficiently share semantic knowledge.

Next, based on the task context-aware semantics b;, we use it
to generate the task-specific scaling factor y;, which will be used
to scale the local update learning rate . More specifically, we first
use a shortcut mechanism [11] to fuse b; and the original semantic
representation ef.q , then transform the concatenated vector to a
scalar, and finally use an activation function to normalize it into
(0,1]:

yi = Sech(FC([FC(ef)[15:)])

where Sech(-) is the Sech function, i.e., Sech(-) =

)

2
(o is a scaling constant), which serves as the activation. The reason
that we do not use common activations, e.g., Sigmoid, is to prevent
the output from converging to the value 1, which will lead this
module to be redundant and useless.

Eventually, we get the task-specific local update learning rate by
multiplying y; to the original learning rate «, which is aware of the
task context:

ai=a-yi (10)

3.5 Optimization with Incremental Dropout

Given the above illustration, several sets of parameters should be
learned during the meta-training, i.e., the global initial parame-
ters and the global embedding layer in the base model, as well as
parameters in IPM and LRS modules.

To optimize those parameters, we need to choose the form of
loss function of a learning task. Here, we use the cross-entropy loss,
which is widely used for selection problems [20, 27, 32]:

n
LBouD) == Y, D,iloghem(C) (1)
(Cy)eD i=1

where D is the support set or query set of a learning task depend-
ing on the update stage (local or global update). ¢(g,,) denotes the
inference process of SHSMM to predict the matched road segment,
which contains parameters 0 that can be locally updated, and pa-
rameters g that would only be updated during the meta-training
stage. y is the one-hot representation of the ground-truth matching
result, i.e., only the index of the actual matched road segment in
candidates C is set to 1. Given L, the parameters in SHSMM can
be learned using Equation 2.

However, we find SHSMM overfits the meta-training datasets
quickly, which may be attributed to the distribution shift and the
introduction of global-update-only parameters pu. Those factors
would harm the generalization capability of SHSMM. Therefore,
we further present a local update learning rate scheduling method,
named Incremental Dropout, to postpone the overfitting issue.
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The basic idea is that when SHSMM is meta-trained at the early
stage, we have chance to locally update the base model with a small
gradient step (i.e., “dropout” the local update softly), which can
force SHSMM to learn initial parameters with better generalization
ability; when SHSMM is meta-trained at the late stage, the local
update learning rate should be smaller (increase the extent of soft
“dropout”), since we expect that an ideal task-specific model should
be obtained by slight task adaption at that stage. To achieve both
goals, during the meta-training stage, we apply a factor to the
task-specific local update learning rate a; as follows:

ai = [(1=m" ai, t ~ (1) (12)
where n € (0, 1] is the soft dropout rate, indicating the extent to
make ¢; smaller, and n is the current epoch during the meta-training.
t is a stochastic variable, that follows the exponential distribution,
and A is the hyperparameter of the distribution. Intuitively, with
the increase of n, the expectation of [(1 — 77)"]* becomes smaller.
However, due to the stochastic characteristic introduced by ¢, a;
also has a chance to be small when n is small. The pseudocode of
the meta-training process with IDP is given in Appendix A.1.

Note that, ¢; is only applied at the local update process during the
meta-training stage to avoid overfitting. During meta-validation/
testing, we still use the task-specific local update learning rate «;
produced by LRS to perform the local update.

3.6 Efficiency Analysis

Training Time. In the meta-training phase, local update is con-
ducted for each task respectively, and global update is conducted
for all tasks. Assume Typpr, Trrs and Tpaar are the time for feed-
forward in IPM, LRS and Dual-view Map Matcher, T, and T; are
time for backward propagation during global and local update, Nip;
and Ny are sizes of support and query set, then the time cost is
Nepoch|T |(Trpm + Ters + K(Nspt Ipmm + ) + NgryTpmm + Ty).
Inference Time. In the meta-testing phase, only local update
should be conducted. Thus, we can precompute the parameter gate
and the learning rate scaler, so that Typys and Ty grs can be omit-
ted, and the inference time is K(Nsp: Tpmm + Ty) + Tpmm for each
sample. To further accelerate the inference speed, we can maintain
the local updated model in memory, in which case the time cost is
reduced to Tppypm-

4 Experiments

4.1 Experimental Setup

Datasets. Although a single positioning point is widely accessible,
its label is difficult to obtain. The common practice in the litera-
ture [3, 33] is to first perform map matching for trajectories (the
accuracy is rather high when the trajectories are at high sampling
rate as reported in [17]), and then sample intermediate points with
matched road segments to construct SMM datasets (the last point
in the trajectory is also taken to form SMMD datasets) to repre-
sent different SMM(D) scenarios. We follow this paradigm and use
two real-world trajectory datasets from a ride-hailing company, i.e.,
DiDi?, whose sampling rate is 15s on average. Those trajectories are
between Oct. 1st to Oct. 7th, 2018 from an area of 10 kmx9 km in
Xi’an and Chengdu, China, respectively. The road structure of Xi’an

Zhttps://gaia.didichuxing.com/
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Table 1: Data Descriptions.

Datasets Xi’an Chengdu
# of Roads 6,160 6,500
Avg. # of Candi. Roads 5.84 6.06
Max. # of Candi. Roads 33 34
Train/Val/Test 504K/71K/71K  763K/105K/105K

is grid-like, while that of Chengdu is star-like, which are suitable
to evaluate the applicability of the proposed method. We perform
map matching on digital maps from OpenStreetMap (OSM)?, and
randomly select 1% intermediate points as well as their labels from
each trajectory to ensure diversity. After that, we take 80% position-
ing points for training, 10% points for validating, and the remaining
10% points for testing. The detailed statistics of resulting SMM(D)
datasets are shown in Table 1. The semantic knowledge of study
regions, i.e., digital map images, are also crawled from OSM.
Baselines. We compare SHSMM with three types of baselines: (1)
heuristics-based methods, which perform SMM based on the nearest
neighbor, i.e., MinDist; (2) traditional map matching methods, which
include PSMM [33], DeepMM [7], RNTrajRec [3] and DTInf* [20];
(3) meta-learning-based methods, which include MAML [9] and
other variants that deal with task heterogeneity, i.e., HSML [37]
and Adaptive-MAML [15] and task sparseness, i.e., MetaMix [35]
and MLTI [39]. In meta-learning-based methods, the base model is
replaced by ours. For fair comparison, we have tried to concatenate
the spatial prior knowledge into baselines, and report the perfor-
mance if it is higher than the original version. Detailed descriptions
of baselines are introduced in Appendix A.2.

Meta-learning Setup. We divide the whole region into 2H~1 x
2H=1 yniform grids, each of which is considered as a single task. H is
set to 10 by default, resulting in regions with size 20m X 18m. During
the meta-training phase, training data are divided into support and
query set. During the meta-validation/testing phase, the whole
training data is used as the support set, and the validation set and
test set are used as the query set, respectively. The detailed statistics
of meta-tasks are shown in Table 2.

Table 2: Data Statistics in Meta-Tasks.

Datasets Xi’an Chengdu
Avg. # of Roads 6.96 7.52
Avg. Support Set Size 23.45 29.20
Avg. Query Set Size 3.30 4.00
# of Tasks 21,514 26,138

Training Details & Hyperparameters. Our method, as well as
the baselines, are implemented by PyTorch with one GeForce RTX
4090 GPU. For the spatial hierarchy, we set H, = 4. For the learning
rate scaling module, we set o = 20. For the local update, local update
learning rate @ = 0.01, and the step number of local update K = 5.
During the meta-training, each training batch consists of 32 tasks,
and we use the Adam optimizer, setting the global update learning

3http://www.openstreetmap.org/
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Table 3: Overall Performance.

City Xi’an Chengdu
Method SMM SMMD SMM SMMD
MinDist 63.28%  63.28%  63.81%  63.81%

PSMM 67.32%  67.65%  67.34%  68.08%
DTInf* 72.26%  80.81%  70.21%  78.57%
DeepMM 73.49%  79.97%  70.81%  76.98%
RNTrajRec 74.55%  80.79%  72.83%  81.99%
MetaMix 73.74%  81.46%  70.97%  78.14%
Adaptive-MAML 73.92%  82.40%  71.44%  79.05%
MLTI 73.94%  83.07%  71.67%  78.84%
MAML 74.95%  83.57%  72.08%  79.79%
HSML 75.66%  84.10%  73.83%  81.25%
SHSMM (Ours) 76.85% 84.69% 74.60% 82.09%

rate f§ = 0.001, soft dropout rate = 0.03 and A = 10. After the loss
on the validation set no longer decreases for 5 epochs, then early
stop will occur. The detailed structure of Dual-view Map Matcher
can be found in Appendix A.3.

Evaluation Metrics. We follow existing work [7, 22, 33] to employ
the matching accuracy (ACC) to evaluate the model performance.

4.2 Overall Performance

The overall performance of our SHSMM and other baselines are
presented in Table 3. As we can see, SHSMM achieves the best
performance on the datasets collected from two cities for both SMM
and SMMD problems. This indicates that SHSMM is effective in
dealing with the SMM(D) problem which inherits the characteristic
of spatial correlations and spatial heterogeneity.

Specifically, the meta-learning-based models generally outper-
form traditional map matching methods (PSMM, DTInf*, DeepMM,
and RNTrajRec), which indicates the appropriateness of adopting a
meta-learning method to solve the problem. For the meta-learning
methods that adopt a hierarchical structure to organize tasks and
initial parameters (HSML and Adaptive-MAML), HSML, which
builds the structure based on task representation, performs better
than MAML, while Adaptive-MAML, which builds the structure
based on the task complexity, performs worse than MAML. These
results lead to the conclusion that a suitable hierarchy is of criti-
cal importance for problems facing severe task heterogeneity and
complex correlations, and a wrong hierarchy may even lead to
a worse performance. Moreover, since we build grid-based non-
overlapped tasks to solve the SMM(D) problem, this indeed leads
to some kind of task sparseness. Yet the methods aim to deal with
task sparseness and improve generalization ability through task
augmentation (MetaMix, MLTI), fail to improve the performance
compared to MAML. A possible explanation is that the augmen-
tation simply based on the samples (i.e. inputs and labels) cannot
effectively reconstruct spatial correlations and spatial continuity.

The performance of the meta-learning-based methods demon-
strates the importance of building a suitable hierarchy and recon-
structing continuity based on spatial characteristics and the ten-
dency to obey TFL for a spatial problem. This brings us to partially
understand why SHSMM can outperform the others. The reason
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Figure 3: Ablation Study.

is that SHSMM incorporates both local and global knowledge, and
builds spatial-based hierarchy. The former design reunites the road
network that has been broken down by the non-overlapped meta-
tasks, while the latter one generates region-specific initial parame-
ters and task-specific local update learning rates.

From the efficiency aspect, though SHSMM takes more time
than simple heuristics or machine learning baselines to make task-
specific adaption, it is still quite practical for real-world usage,
which only takes 0.0285s/sample.

4.3 Ablation Study
We compare SHSMM with the following variants:

SHSMM-nGK, which removes the global edge ID embedding
from the base model of SHSMM.

SHSMM-nIPM, which removes the IPM module from SHSMM,
so that all tasks share the same initial parameters 6.
SHSMM-nLRS, which removes the LRS module from SHSMM,
so that all the tasks share the same local update learning rate a.
SHSMM-nIDP, which replaces the Incremental Dropout during
meta-training phase with the commonly used dropout technique.

As shown in Figure 3, SHSMM outperforms all of the 4 variants
on the datasets of two cities for the SMM problem, which proves
the effectiveness of our design in tackling severe task heterogeneity
problems existing in real-world datasets. Specifically, the removal of
the global edge ID embedding (SHSMM-nGK) limits the knowledge
sharing between tasks, indicating the importance of introducing
both local view and global view when the integrity of the dataset is
disrupted due to the task division for adopting meta-learning. The
removal of the initial parameter modulator (SHSMM-nIPM) and lo-
cal update learning rate scaler (SHSMM-nLRS) makes it impossible
for the tasks to adopt a more customized starting point (i.e., the ini-
tial parameter) and a more favorable adapting route (i.e., the inner
loop optimization process affected by local update learning rate),
which is indeed important when dealing with heterogeneous tasks.
Moreover, the replacement of dropout mechanism (SHSMM-nIDP)
degrades the performance, suggesting that it is a possible way to
improve generalization capability. Since adopting global-update-
only parameters g may arrive at the stage of overfitting much faster
than 6y, and will thus limit the generalization ability, stochastically
and incrementally dropping out more local update learning rate
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as epoch grows can balance the training speed between p and 6.
Note that the differences in module effects between two cities may
possibly be caused by structure and distribution differences.

4.4 Hyperparameter Analysis

Since SHSMM involves some hyperparameters, we further study
the impact of several important hyperparameters.

Study on Level Number H. The whole region will be divided
into 2H~1 rows and columns, and this is the granularity where we
construct tasks and extract semantic knowledge. We investigate the
effect of the granularity of tasks, which will change the task com-
ponent, support/query set size and complexity, task-wise semantic
knowledge, etc. The result is as shown in Table 4. By increasing
H, the grid size decreases and may possibly lead to a smaller yet
more homogeneous support set, which in one way makes it possible
for the support set to bring more customized guidance, while in
the other way breaks down the integrity of the region into more
non-overlapped tasks. Based on this trade-off, we can see that for
SMM problem, H = 10 brings the best performance.

Table 4: Performance under Different Level Number H.

H 9 10 11
Xi’an 75.85% 76.85% 76.67%
Chengdu 73.83% 74.60% 74.32%

Study on Level Number of Region Hierarchy H,. We study the
influence of H, used for initial parameter modulation, as shown
in Figure 4 (a). By increasing Hy, fewer tasks will share the same
initial parameters, which will increase the customization ability in
sacrificing the generalization ability. On the contrary, by decreasing
Hy, more tasks would share a single starting point, which reduces
the learning difficulties for parameters in SHSMM, while hurts the
customization ability leading to degenerated performance. Based on
this trade-off, we can see that for SMM problem, H, = 4 is the best
to effectively balance between customization and generalization
ability of the initial parameters 6.

Study on Soft Dropout Rate 7. We further present the result of
using different soft dropout rates 7 in the meta-training process, as

—#— Xian  —@— Chengdu —#— Xi'an —@— Chengdu

—

0.03 0.05

(a) Region hierarchy level H,.. (b) Soft dropout rate 7.

Figure 4: Hyperparameter Study.
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Figure 5: Visualizations of Local Update Learning Rate in
Xi’an.

shown in Figure 4 (b). By increasing 1, we drop more local update
learning rates in the meta-training phase. Though we can increase
generalization ability by increasing 7, the result suggests that an
effective n should not be too small. Based on this trade-off, we can
see that for SMM problem, n = 0.03 is the best choice that allow
the model to converge to a better place.

4.5 Case Studies

Visualization of Local Update Learning Rates. We further visu-
alize some cases of the task-specific local update learning rates to
better understand the purpose of Learning Rate Scaling in SHSMM.
The study region of Xi’an is shown in Figure 5, where each colored
pixel corresponds to a task region. The pixel with darker color
means its local update learning rate is smaller. From this figure, we
have the following two observations.

Firstly, complicated road conditions lead to larger local update
learning rates. As shown in the figure, Regions a-d are in complex
road conditions (e.g., many overpasses), in which «; are similar with
relatively high values, while Region e contains straight roads, in
which most of the tasks have smaller ¢;. These phenomena suggest
that when we have a task in complicated road condition, we may
need a larger ;. This is a reasonable strategy, which can make our
learned initial parameters more generalizable.

Secondly, the hierarchical semantic features successfully capture
the local context. Due to the spatial heterogeneity, distant tasks may
need different learning strategy even they share similar semantics.
Thus, the corresponding hierarchical semantic knowledge would
be useful. Regions f and g show two regions with similar road
conditions in a micro-view, however, we can find tasks in Region
f generally have smaller ¢; than tasks in Region g, demonstrating
the spatial heterogeneity captured by the semantic hierarchy.
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Table 5: Performance under Extreme Cases for SMM on Xi’an. Symbol "/" means no constraints.

# of Roads / / / / >10 >15 >20 >10 >15 >15

Support Set Size <10 <5 <1 0 / / / <1 <5 <1
MinDist 59.65%  58.31% 55.34% 54.42%  57.64% 52.42% 50.05% 3991%  49.24%  40.00%
PSMM 62.25%  58.35%  53.26%  51.99%  57.64%  50.14%  41.71%  30.49%  32.58%  25.71%
MAML 69.60%  65.16% 57.08% 52.17%  68.30%  61.95%  60.30%  43.95% 53.03%  51.43%
HSML 70.05%  65.98% 58.40% 54.24%  69.80%  64.67%  63.04%  43.05% 50.76%  42.86%
SHSMM (Ours) 71.09% 67.56% 60.72% 56.86% 71.66% 66.77% 65.47% 47.09% 57.58% 57.14%

Performance under Extreme Cases. To further illustrate the
advantage of organizing tasks based on spatial prior knowledge, we
select several representative methods, and apply the trained model
to extreme cases, such as tasks with few samples, many roads,
or both. Taking SMM problem on Xi’an dataset as an example,
the experiment result is shown in Table 5. In all three extreme
cases, SHSMM shows better performance against other baselines.
Notably, when the support set size and the number of roads both
reach extreme states, the effectiveness of HSML [37] significantly
declines, while the advantage of SHSMM over other baseline models
became more pronounced.

A potential explanation is that HSML [37] organizes tasks purely
based on task representations derived from meta-training set, which
neglects spatial structure. It achieves overall improvements at the
cost of sacrificing performance on complex and hard tasks. Con-
versely, incorporating spatial prior knowledge to hierarchically
establish spatial structures like SHSMM, enhances the generaliza-
tion capability of meta-learning models, whereby the performance
under extreme cases will be simultaneously enhanced rather than
being sacrificed. This further underscores the necessity of spatial
structure modeling when addressing spatial problems.

5 Related Work
5.1 Map Matching

Map matching aims to associate positioning points of objects with
geospatial entities, which is a fundamental step for many urban
applications, e.g., traffic monitoring, travel time estimation, and
ride-hailing. While associating positioning points with polygonal
regions is straightforward, matching with road segments or Points
of Interest (Pols) is non-trivial due to positioning errors. A widely
studied problem in this field is trajectories map matching (TMM),
which can be handled by Hidden Markov Model [17], recurrent
neural network [7, 19, 31], or Transformer [3, 24]. Unlike TMM,
SMM is much more difficult because of the lack of contextual infor-
mation. The pioneering work studying SMM is PSMM [33], which
generates the matching result by a probabilistic model. Matching
positioning points to Pols, a variant of SMM, faces similar difficul-
ties, and existing works also leverage a learning-based approach to
tackle it [20, 22]. For all aforementioned methods, only PSMM [33]
builds several individual models considering spatial heterogeneity,
while others build a universal model considering the sufficiency
of training data. In this paper, we propose a spatial hierarchical
meta-learning-based approach to tackle SMM combining their ad-
vantages.

5.2 Meta-Learning

Meta-learning, also known as learning to learn, aims to tell the
learner how to learn from the training data. There are three cat-
egories, i.e., optimization-based, model-based and metric-based
meta-learning, among which optimization-based meta-learning,
e.g., MAML [9], is commonly used due to its simplicity and model-
agnostic property. Traditional meta-learning methods learn task
correlations implicitly, which have limited their generalization capa-
bility facing heterogeneous tasks. Further work established different
structures according to task representations [37, 38], model per-
formance [15] and domain attributes [10] to organize tasks. These
methods have shown the importance of structure in dealing with
heterogeneous tasks, yet the structure adopted by these methods
is not sufficiently suitable for spatial tasks. There are some studies
leveraging meta-learning to tackle spatial tasks, e.g., traffic predic-
tion [18, 36], travel time estimation [5, 6], POI completion [4], and
service time prediction [21, 29]. Among them, [18, 21, 29] conduct
primary attempts to fuse semantic information into meta-learning.
Different from these work, we simultaneously adopt geographical
knowledge and semantic knowledge of spatial tasks into meta-
learning considering the hierarchical spatial structure, and design
a dual-view base model dedicated for SMM.

6 Conclusion

In this paper, we propose a spatial hierarchical meta-learning method
for single-point map matching. We first divide the study region into

uniform grid regions, then treat each region as an SMM task. For

each task, SHSMM leverages Dual-view Map Matcher to perform

the matching which considers both local and global knowledge

about road segments. To learn the parameters of Dual-view Map

Matcher for each task, we perform customized local updates via Ini-
tial Parameter Modulation and Learning Rate Scaling based on the

hierarchical knowledge of spatial tasks. Incremental Dropout is fur-
ther proposed to avoid overfitting during the meta-training phase.
Extensive experiments as well as case studies on two real-world

datasets show the effectiveness of SHSMM. We envision that the

proposed framework also has the potential to address other spatial

tasks, such as house price prediction, which remains a subject for

future work.
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A Appendix
A.1 Pseudocode for meta-training of SHSMM

In this section, we show the pseudocode of the meta-training pro-
cess in SHSMM. In Line 5, we use IPM to generate region specific
initial parameter 09}_; while in Line 6, we use LRS to generate task-
specific update learning rate ;. In meta-training phase, a; will be
randomly dropout as shown in Line 7. Then we will get task-specific
parameter OiK through K step local update as shown in Line 9-11.

Algorithm 1 Meta-training of SHSMM.

Input: Task set 77 geographical knowledge K©¢°; semantic knowledge
J¢Se™; the number of step for local update K; the initial local update
learning rate a; global update learning rate S.
Output: The optimized parameters 6y and p of SHSMM.
Initialization: 6, (local and global update) and p (global update only).
: Epoch n « 0;
: repeat
for task 7; € 7 do
D7 and D? are the corresponding support and query set;
62, — IPM(KF#, 6p);
a; — LRS(’Kisem, a);
ai=[(1-m" e t ~e(A);
Let k « 0,9? — Ggl_;
for k <K do
9;”1 «— 9ik - diV£(¢(9k
k—k+1; '
(B0.1) — (Bo.p) = f 3 VL gx
T;eT i

13: ne—n+l;
14: until stopping criteria is met
15: return 6, y;
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A.2 Baseline Descriptions

e MinDist, which simply matches the positioning point to the
nearest road segment.
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PSMM [33], which is specifically designed to tackle the SMM
problem, and matches the positioning point to nearby road seg-
ments that produce the highest matching probability produced
by probabilistic models.

DeepMM [7], which is the first deep-learning-based trajectory
map matching model. It first discretes the positioning point into
a location ID, uses an embedding layer to transform it into a
hidden representation, and finally decodes it into a road segment
by a softmax function.

RNTrajRec [3], which proposes to use sub-graph to encode the
surrounding road network environment of a positioning point,
and uses a customized softmax layer constrained on distance to
infer the matched road segment.

DTInf* [20], which leverages a Transformer encoder to encode
different candidate road segments, and an attention-based de-
coder to infer the matched one.

MAML [9], which is a classic meta-learning method. It extracts
the shared knowledge among tasks into the initial parameters of
the base model.

HSML [37], which hierarchically structures tasks based on task
representation to tackle heterogeneous tasks that balance the
generalization and customization ability.

MetaMix [35], which linearly combines features and labels from
both support and query sets.

MLTI [39], which is a task augmentation method that interpo-
lates features and labels between tasks to achieve data-adaptive
meta-regularization.

e Adaptive-MAML [15], which hierarchically structures tasks
based on the task adaptive performance.

A.3 Structure of Dual-view Map Matcher

The distance threshold to find candidate road segments D is set
to 50m. To represent the road segments, local edge IDs eid! and
global edge IDs eid? are embedded into 3-dim and 16-dim vectors
respectively. The transformer encoder is of 64-dim and one head.
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