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Abstract

We revisit the result of Morris et al. (AAAI’19)
that message-passing graphs neural networks
(MPNNs) are equal in their distinguishing power
to the Weisfeiler–Leman (WL) isomorphism test.
Morris et al. show their result with ReLU activa-
tion function and O(n)-dimensional feature vec-
tors, where n is the size of the graph. Recently, by
introducing randomness into the architecture, Aa-
mand et al. (NeurIPS’22) improved this bound to
O(log n)-dimensional feature vectors, although
at the expense of guaranteeing perfect simulation
only with high probability. In all these construc-
tions, to guarantee equivalence to the WL test,
the dimension of feature vectors in the MPNN
has to increase with the size of the graphs. How-
ever, architectures used in practice have feature
vectors of constant dimension. Thus, there is a
gap between the guarantees provided by these re-
sults and the actual characteristics of architectures
used in practice. In this paper we close this gap
by showing that, for any non-polynomial analytic
(like the sigmoid) activation function, to guaran-
tee that MPNNs are equivalent to the WL test,
feature vectors of dimension d = 1 is all we need,
independently of the size of the graphs.

1. Introduction
A plethora of real-life data is represented as a graph. A
common deep-learning architecture for this kind of data is a
graph neural network (GNN) (Scarselli et al., 2008). In this
paper, we focus on message-passing graph neural networks
(MPNN), which are rather simple architectures that have
proved to be quite useful in practice.
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putacional, Universidad Católica de Chile 2Centro Nacional de
Inteligencia Artificial, Chile 3Instituto Milenio Fundamentos de
los Datos, Chile. Correspondence to: Alexander Kozachinskiy
<alexander.kozachinskyi@cenia.cl>.

Proceedings of the 41 st International Conference on Machine
Learning, Vienna, Austria. PMLR 235, 2024. Copyright 2024 by
the author(s).

MPNNs work as follows. First, as inputs to them, we con-
sider simple undirected graphs with node labels. MPNNs
work in layers, where each node of a graph has its own
feature vector that is updated at each layer. The initial fea-
ture vector of a node is some encoding of the label of this
node (typically a one-hot encoding if the number of differ-
ent labels is not too big). In each layer, the feature vector
of a node v is updated as follows. One takes the sum of
feature vectors of the neighbors of v, multiplies it by some
matrix (with learnable entries), and adds the feature vector
of v itself, multiplied by some other matrix (with learnable
entries as well). After that, a non-linear activation function
is applied coordinate-wise to the resulting vector, yielding
the new feature vector of v.

Why do MPNNs perform well in practice? To answer this
question, one needs to understand which specific architec-
tural characteristics of MPNNs can provide guarantees on
their performance, for example in terms of their trainabil-
ity, generalization power, or their ability to fit the data. In
this paper we will focus on the ability of MPNNs to accu-
rately represent the data, a property commonly referred to
as expressive power.

A main feature of MPNNs is that, by design, they com-
pute functions on graphs that assign the same output to
isomorphic graphs. That is, the functions they compute
are always invariant under isomorphisms. Which invari-
ant functions can MPNNs compute? It turns out that this
question is related to the MPNNs’s ability to distinguish
non-isomorphic graphs, in the sense of being able to pro-
duce different outputs for graphs that are not isomorphic.
An MPNN architecture is said to be complete for a class
of graphs if it can distinguish all pairs of non-isomorphic
graphs within the class. As shown in (Chen et al., 2019),
an MPNN architecture is universal (can approximate any
invariant function arbitrarily well) within a class of graphs,
if and only if it is complete for that class. Therefore, it
becomes relevant to identify the characteristics of MPNN
architectures that guarantee maximal distinguishing power.

It was observed independently by (Xu et al., 2019) and (Mor-
ris et al., 2019) that the distinguishing power of MPNNs
is upper bounded by the so-called Weisfeiler-Leman (WL)
test (Leman & Weisfeiler, 1968), in the sense that MPNNs
are incapable of distinguishing two node-labeled graphs
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that are not distinguished by the WL-test. Let us briefly
explain how the test works. Given two node-labeled graphs,
the test iteratively updates the labels and checks, after each
update, whether every label appears equally many times in
both graphs. If a discrepancy arises during this process, the
graphs are reported as non-isomorphic. In every update, the
label of a node is replaced by a pair consisting of its current
label together with the multiset of labels of its neighbors.
It is known that there are non-isomorphic graphs that can-
not be distinguished by this test, meaning that the test will
consistently fail to report them as non-isomorphic. This
implies that MPNNs are unable to distinguish all pairs of
non-isomorphic graphs.

Do architectures that are used in practice attain this WL
upper bound? In particular, what characteristics, such as the
type of activation function or the dimension of feature vec-
tors, are required to guarantee maximal expressive power?

Morris et al. answered this question by constructing, for any
given graph, an MPNN that can perfectly simulate the WL-
test on it. The characteristics of their MPNN are, however,
graph-dependent: ReLU activation function works, and the
dimension of feature vectors has to be O(n), where n is the
number of nodes in the graph. According to their result, if
one is working with graphs with around 1000 nodes, feature
vectors of dimension d = 1000 should be used. This is
in stark contrast to what is done in practice, where the
dimension of feature vectors is rather small (typically a few
hundred) and independent of graph size. Furthermore, the
parameter values in their construction also depend on the
input graph.

An exponential improvement to the construction of Morris
et al. was developed in (Aamand et al., 2022), where the
dimension of the feature vectors was reduced to O(log(n)).
Their construction also has the advantage of being partially
uniform, allowing a single MPNN to be used on all graphs
of a certain size. Their architecture is, however, random-
ized, and perfect simulation is only guaranteed with high
probability.

Does the dimension of feature vectors necessarily have to
grow with the size of the graphs? What guarantees can be
provided for MPNNs with continuous feature vectors of
constant dimension, such as those used in practice?

In this paper we answer the question above by showing that
for any non-polynomial analytic activation function (like
the sigmoid), MPNNs with one-dimensional feature vectors
are already as powerful as the WL-test. In particular, the
dimension of the feature vectors does not have to grow with
the size of a graph to guarantee full expressive power.

Key contributions.

1. We show that MPNNs with 1-dimensional features al-

ready attain the full expressive power of the WL test.
Besides that, they require just 1 parameter per iteration.
Moreover, for Lebesgue almost any fixation of param-
eters, we obtain a single MPNN that distinguishes any
pair of graphs that can be distinguished by the WL test.

In more detail, for an activation function a : R → R
we define an MPNN architecture with one parameter
per layer that we call 1parMPNN. It is parametrized
by a sequence (γ(0), γ(1), γ(2), . . .), where γ(t) ∈ R
denotes the parameter used in the t-th layer.

Assume we give it a graph G, possibly with node labels
coming from a fixed countable set. First, the architec-
ture assigns an initial feature scalar f (0)(v) ∈ R to
every node v of G. More specifically, nodes with dis-
tinct labels are mapped into square roots of distinct
prime numbers. Then, for t = 0, 1, 2, . . . and for every
node v, the architecture computes the feature scalar
f (t)(v) ∈ R of v after t iterations, by updating them in
the following fashion:

f (t+1)(v) = a

γ(t)

2
f (t)(v) + γ(t)

∑
u∈N(v)

f (t)(u)

 ,

where N(v) denotes the set of neighbors of v in G.
The architecture defines the read-out after T iterations
as follows:

1parMPNN(T )(G) =
∑

v is a node of G

f (T )(v).

Theorem 1.1. Let a : R → R be any analytic non-
polynomial function and let L be any countable set
of labels. Then for every integer T ≥ 0 and for
Lebesgue almost all (γ(0), . . . , γ(T−1)) ∈ RT the fol-
lowing holds. For any two graphs G1, G2 with node
labels from the set L, we have

1parMPNN(T )(G1) ̸= 1parMPNN(T )(G2)

if and only if G1 and G2 are distinguished by the WL
test after T iterations.

2. We experimentally validate this theoretical result by
demonstrating that our 1parMPNN architecture is ca-
pable of achieving perfect simulation of the WL algo-
rithm simultaneously for all graphs in the benchmark
dataset for graph kernels (Kriege et al., 2020), even if
we use the same value of the parameter γ in all the iter-
ations. We also explored how the minimum number of
precision bits required to guarantee perfect simulation
depends on the size of the graphs. Our results suggest
that logarithmically many bits of precision are enough.
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Our technique. To show equivalence between MPNNs
and the WL-test, one has to construct, for any given graph,
some MPNN with the property that after any number of
iterations, two nodes receive the same feature vectors if and
only if they receive the same WL labels. The proof goes
by induction on the number of iterations. In an MPNN,
the multiset of labels of a node is encoded by the sum of
the current feature vectors of the neighbors. To ensure
the injectivity of this encoding, the construction of Morris
et al. maintains linear independence of different feature
vectors after each iteration. However, since the number
of different labels in principle can be as large as n (the
number of nodes), this argument requires the dimension of
feature vectors to be at least n, as the number of linearly
independent vectors in Rd can not be larger than d.

To overcome this difficulty, we just observe that for the
argument it is enough to require linear independence over
rational numbers. That is because multisets of labels are
encoded as linear combinations of feature vectors, with co-
efficients that correspond to the multiplicities of the labels
in these multisets, and multiplicities are always integer num-
bers. Now, the point is that even in R, we can pick arbitrarily
many numbers that are linearly independent over Q, for in-
stance, square roots of prime numbers,

√
2,
√
3,
√
5, and

so on. Our main technical contribution is a demonstration
that any non-polynomial analytic activation function can
map arbitrarily many different numbers into a collection
of numbers that are linearly independent over Q, under a
suitable choice of a single parameter.

Related work. A similar result to our Theorem 1.1 was re-
cently obtained by (Amir et al., 2023), using an architecture
also with one-dimensional features but three parameters per
layer, whereas ours has only one. Additionally, our proof
is shorter and requires only standard properties of analytic
functions, easily derivable from definitions. At the same
time, due to a recent result of (Khalife & Basu, 2024), one
cannot drop the non-polynomiality condition in Theorem
1.1.

The connection between GNNs and the WL test has inspired
the development of new, more expressive GNN architec-
tures, mimicking higher-order versions of WL test (Cai
et al., 1992) and enjoying the same theoretical equivalence
to them (Morris et al., 2019; Maron et al., 2019). This con-
nection was also established for more general models of
graphs, such as geometric graphs (Joshi et al., 2023; delle
Rose et al., 2023) and relational graphs (Barceló et al., 2022).
In some cases, the new, WL-inspired architectures, demon-
strated an improvement over standard MPNNs as well as
over state-of-the-art models, for example, in the case of
learning 3-dimensional point clouds (Li et al., 2023). We
point out the interested reader to a survey on the use of the
WL-test in machine learning (Morris et al., 2023b).

2. Preliminaries
A multiset is a function f from some set S to N (elements of
S are taken with some finite multiplicities, specified by f ).
We use brackets

{{
,
}}

to denote multisets. More precisely, if
A,B are sets (and A is finite) and ϕ : A → B is a function,
we write

{{
ϕ(a) | a ∈ A

}}
for the multiset over elements of

B, where each element b ∈ B is taken with the multiplicity
|ϕ−1(b)| (that is, how many times b appears as the value of
ϕ when we go through elements of A).

We consider simple undirected graphs with node labels taken
from some countable set L. Such a graph can be given as
a triple G = ⟨V,E, ℓ⟩, where V is the set of nodes of the
graph, E ⊆

(
V
2

)
is the set of edges of the graph (some set

of 2-element subsets of V ), and ℓ : V → L is the node-
labeling function. For v ∈ V , we denote by NG(v) the set
of neighbors of v in the graph G, that is, NG(v) = {u ∈
V | {u, v} ∈ E}. If G is clear from the context, we drop
the subscript G.

Weisfieler Leman test. The Weisfeiler–Leman algorithm
receives on input a node-labeled graph G = ⟨V,E, ℓ⟩ and
produces a sequence of “node labeling” functions

ϕ
(0)
G , ϕ

(1)
G , ϕ

(2)
G : V → ...,

defined iteratively as follows:

• ϕ
(0)
G (v) = ℓ(v) for v ∈ V .

• ϕ
(t+1)
G (v) =

(
ϕ
(t)
G (v),

{{
ϕ
(t)
G (u) | u ∈ N(v)

}})
The Weisfieler Leman test receives on input two labeled
graphs G1 = ⟨V1, E1, ℓ1⟩ and G2 = ⟨V2, E2, ℓ2⟩. It runs
the Weisfieler Leman algorithm on both of them, obtaining
two sequences of node labeling functions {ϕ(t)

G1
}t≥0 and

{ϕ(t)
G2

}t≥0. If for some t ≥ 0 the test finds out that the
multisets of WL-labels in G1 and G2 after t iterations are
different:{{

ϕ
(t)
G1

(v) | v ∈ V1

}}̸
=

{{
ϕ
(t)
G2

(v) | v ∈ V2

}}
,

the test outputs that these graphs can be distinguished. It is
standard that whether or not the WL test distinguishes two
graphs can be checked in polynomial time.

MPNNs. A T -layer message-passing graph neural net-
work (MPNN) N with d-dimensional feature vectors and
activation function a : R → R is specified by:

• a label-encoding function e : L → Rd;

• a sequence of t pairs of d× d real matrices

W
(1)
1 ,W

(1)
2 , . . . ,W

(T )
1 ,W

(T )
2
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(in practice, elements of these matrices are to be
learned).

Given a node-labeled graph G = ⟨V,E, ℓ⟩, the MPNN N
works on it as follows. First, it computes initial feature
vectors using the label-encoding function:

f (0)(v) = e(ℓ(v)) ∈ Rd, v ∈ V.

Then for t = 0, . . . , T − 1, it does the following updates of
the feature vectors:

f (t+1)(v) = a

W
(t+1)
1 f (t)(v) +W

(t+1)
2

∑
u∈N(v)

f (t)(u)

 ,

(1)

f (t+1)(v) ∈ Rd, v ∈ V. (2)

(we assume that a is applied component-wise).

The output of N on the graph G is defined as the sum of all
feature vectors after T iterations:

N (G) =
∑
v∈V

f (T )(v).

We say that two graphs G1, G2 are distinguished by N if
N (G1) ̸= N (G2).

Non-polynomial analytic activation functions. We re-
call that an analytic function f : R → R is an infinitely
differentiable function such that for every x0 ∈ R, its Taylor
series at x0:

T (x) =

∞∑
n=0

f (n)(x0)

n
(x− x0)

n

converges to f(x) in a neighborhood of x0.

We will require our activation functions to be analytic and
non-polynomial. Common examples are the sigmoid func-
tions such as the Arctangent function, or the logistic func-
tion:

σ(x) =
ex

1 + ex
.

We will need the following well-known fact. For the reader’s
convenience, we also include a proof.

Proposition 2.1. Let f : R → R be an analytic function.
Suppose there is a point x0 where all the derivatives of f
vanish. Then f is the constant zero function.

Proof. We consider the set

D = {x ∈ R : f (n)(x) = 0 for all n ≥ 0}

and show that D = R. First, we note that x0 ∈ D, so D
is nonempty. Second, we note that since f is analytic, for

any x ∈ D there is a neighborhood of x where f equals
its Taylor series at x. It follows that every point in this
neighborhood is also in D, and thus D is open. Finally,
since all the f (n) are continuous, the sets {x : f (n)(x) = 0}
are all closed. Thus, being a countable intersection of closed
sets, D is also closed. Being open, closed, and nonempty, it
follows that D = R.

3. Proof of the Main Result
We start with a formal definition of the architecture
1parMPNN. It is parametrized by a sequence {γ(t) ∈
R}+∞

t=0 , with one parameter per iteration. Recall that we
work with a countable set L = {z1, z2, z3, . . .} of labels.
We define a label-encoding function e : L → R by mapping
distinct labels into roots of distinct prime numbers:

e(zi) =
√
pi, where pi is the ith prime.

Given a graph G = ⟨V,E, ℓ⟩ with a node labeling ℓ : V →
L, we define for every v ∈ V and t ≥ 0 the feature scalar
f (t)(v) ∈ R of the node v after t iterations as follows:

f (0)(v) = e(ℓ(v)), (3)

f (t+1)(v) = a

γ(t)

2
f (t)(v) + γ(t)

∑
u∈N(v)

f (t)(u)

 ,

(4)

v ∈ V, t ≥ 0. (5)

Finally, we define the read-out on G after t iterations of our
architecture as:

1parMPNN(t)(G) =
∑
v∈V

f (t)(v). (6)

Theorem 3.1 (Restatement of Theorem 1.1). Let a : R → R
be any analytic non-polynomial function and let L be any
countable set of labels. Then for every integer T ≥ 0 and for
Lebesgue almost all (γ(0), . . . , γ(T−1)) ∈ RT the following
holds. For any two graphs G1, G2 with node labels from
the set L, we have

1parMPNN(T )(G1) ̸= 1parMPNN(T )(G2)

if and only if G1 and G2 are distinguished by the WL test
after T iterations.

Proof. It is well-known and standard that if two graphs
can be distinguished by some MPNN, in particular, by
1parMPNN after T iterations, then they can also be dis-
tinguished by the WL test after T iterations.

It remains to establish the other direction of the theorem.
We say that a set S ⊆ R is linearly independent over Q
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if for any m ≥ 1 and for any distinct x1, . . . , xm ∈ S we
have:

λ1x1 + . . .+ λmxm = 0 =⇒ λ1 = . . . = λm = 0

for all λ1, . . . , λm ∈ Q. The theorem can be derived from
the following lemma.

Lemma 3.2. Let a : R → R be any analytic non-polynomial
function and G = ⟨V,E, ℓ : V → L⟩ be any node-labeled
graph. Then for all T ≥ 0, and for Lebesgue almost all
(γ(0), . . . , γ(T−1)) ∈ RT when T > 0, we have the follow-
ing conditions:

• f (T )(u) = f (T )(v) ⇐⇒ ϕ(T )(u) = ϕ(T )(v) for
every u, v ∈ V . Here ϕ(T )(v) is the WL-label of the
node v after T iterations.

• the set FT = {f (T )(v) | v ∈ V } is linearly indepen-
dent over Q.

Let us first explain how Lemma 3.2 implies the theorem.
First of all, since there are just countably many graphs G
with labels from L (because L is countable), we have that
for Lebesgue almost all (γ(0), . . . , γ(T−1)) ∈ RT both con-
ditions of Lemma 3.2 are satisfied for all graphs G.

We now take any fixation of (γ(0), . . . , γ(T−1)) ∈ RT

for which conditions of Lemma 3.2 are true for all G
and show for this fixation that 1parMPNN(T )(G1) ̸=
1parMPNN(T )(G2) for any two graphs G1 = ⟨V1, E1, ℓ1⟩
and G2 = ⟨V2, E2, ℓ2⟩ that are distingushed by the WL test
after T iterations. That is, our goal is to show that∑

v∈V1

f (T )(v) ̸=
∑
v∈V2

f (T )(v). (7)

Note that these two sums involve feature scalars of
1parMPNN from two different graphs, G1 and G2. How-
ever, we may equally assume that these are the feature
scalars of the nodes of the disjoint union of G1 and G2,
denoted by G1 ⊔G2 (formally, it consists of a copy of G1

and a copy of G2, with no edges between the copies). To fin-
ish the argument, we use Lemma 3.2 for the graph G1 ⊔G2.
Since G1 and G2 are distinguished by the WL test after T
iterations, there will be a WL label that appears a different
number of times in G1 and G2 after T iterations. By the
first condition of Lemma 3.2, this means that there will be
a feature scalar that appears a different number of times in
the left-hand side and the right-hand side of (7). Thus, the
difference between the left-hand and the right-hand side of
(7) gives a non-trivial linear combination of feature scalars
of the nodes G1 ⊔G2 with rational coefficients (in fact, inte-
gral). Since the feature scalars are linearly independent over
Q by the second condition of Lemma 3.2, this difference
has to be non-zero.

It remains to establish Lemma 3.2, which we do by induc-
tion on T . The base case, T = 0, holds just because our
label-encoding function maps different labels into different
numbers that form a set that is linearly independent over Q.

Now, assume that the statement of the lemma is already
proved for T . We establish it for T + 1. For that, we fix any
choice of the first T parameters (γ(0), . . . , γ(T−1)) ∈ RT

for which the conditions of Lemma 3.2 are satisfied for T .
We show that for all but countably many γ(T ) ∈ R, by
extending the sequence of parameters with γ(T ), we satisfy
the conditions of Lemma 3.2 for T + 1 (this means that if
the set of values of the first T parameters that satisfy the
lemma was full-measure in RT , then the set of values of
the first T + 1 parameters that satisfy the lemma will be
full-measure in R(T+1) as well, as required).

Denoting

xv =
1

2
· f (T )(v) +

∑
u∈N(v)

f (T )(u), v ∈ V,

we obtain by (4) that

f (T+1)(v) = a
(
γ(T ) · xv

)
.

Using the first condition of our lemma for T , we first es-
tablish that xu = xv if and only if ϕ(T+1)(u) = ϕ(T+1)(v)
for all u, v ∈ V . In other words, the value of xv uniquely
determines the value of ϕ(T+1)(v), and vice versa. It is easy
to see that

ϕ(T+1)(v) =
(
ϕ(T )(v),

{{
ϕ(T )(u) | u ∈ N(v)

}})
uniquely determines the value of xv, because xv is a func-
tion of f (T )(v) and

∑
u∈N(v) f

(T )(u), which in turn are
functions of ϕ(T )(v) and

{{
ϕ(T )(u) | u ∈ N(v)

}}
, corre-

spondingly.

We now establish that

xv =
1

2
· f (T )(v) +

∑
u∈N(v)

f (T )(u) (8)

uniquely determines ϕ(T+1)(v). For that, we use the fact
that the set of feature scalars FT after T iterations is linearly
independent over Q. This means that by knowing the value
of some linear combination of numbers from FT with ratio-
nal coefficients, we can uniquely determine the coefficients
of this linear combination. In particular, knowing the value
of xv in (8), we first can determine the value f (T )(v) be-
cause it is the only feature whose coefficient is not integral.
By subtracting 1

2 from the coefficient in front of f (T )(v),
we get the coefficients for all feature scalars with which they
occur in the sum

∑
u∈N(v) f

(T )(u), and these coefficients
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allow us to restore the multiset
{{
f (T )(u) | u ∈ N(v)

}}
.

Using the condition that after T iterations, WL labels and
feature scalars are in a one-to-one correspondence, we can
then uniquely restore ϕ(T )(v) and

{{
ϕ(T )(u) | u ∈ N(v)

}}
,

and thus ϕ(T+1)(v), as required.

At this point, it is enough to show that for all but countably
many γ(T ) ∈ R, the mapping:

xv 7→ a(γ(T )xv) = f (T+1)(v)

is injective (which establishes the first condition of the
lemma for T + 1) and that its image is linearly indepen-
dent over Q (which establishes the second condition). This
follows from the following lemma.

Lemma 3.3. Let a : R → R be any non-polynomial analytic
function. Then, for any m ∈ N, any sequence x1, . . . , xm

of m real numbers such that 0 < |x1| < |x2| < . . . < |xm|
(in other words, x1, . . . , xm are distinct non-zero real num-
bers among which no two are opposite to each other).
and for all but countably many γ ∈ R, it holds that,
first, a(γx1), . . . ,a(γxm) are distinct, and second, the set
{a(γx1), . . . ,a(γxm)} is linearly independent over Q.

To apply this lemma, we have to check that in the set {xv ∈
v ∈ V } all numbers are non-zero and no two are opposite to
each other. This is because each xv is a linear combination
with positive rational coefficients of some numbers from
FT . This means that any equality of the form xv = 0 or
xv + xu = 0 would lead to a non-trivial linear combination
with rational coefficients of some numbers from FT , which
is impossible because FT is linearly independent over Q. It
only remains to prove Lemma 3.3.

Proof of Lemma 3.3. We show that for all but countably
many γ ∈ R there exists no (λ1, . . . , λm) ∈ Qm \
{(0, 0, . . . , 0)} such that λ1a(γx1)+ . . .+λma(γxm) = 0.
For all such γ, we have that a(γx1), . . . ,a(γxm) are dis-
tinct (otherwise, we could have taken λi = 1, λj = −1
for some i ̸= j) and that the set {a(γx1), . . . ,a(γxm)} is
linearly independent over Q.

Let BAD denote the set of γ ∈ R for which there exists a
sequence (λγ

1 , . . . , λ
γ
m) ∈ Qm \ {(0, 0, . . . , 0)}, such that:

λγ
1a(γx1) + . . .+ λγ

ma(γxm) = 0.

Our task is to show that BAD is countable. We have a
mapping from BAD to a countable set Qm\{(0, 0, . . . , 0)}:

Φ: γ 7→ (λγ
1 , . . . , λ

γ
m).

To establish that the set BAD is countable, it is enough
to show that for any (λ1, . . . , λm) ∈ Qm \ {(0, 0, . . . , 0)}
there exists just countably many γ ∈ R such that

λ1a(γx1) + . . .+ λma(γxm) = 0.

Indeed, this would imply that Φ−1((λ1, . . . , λm)) is count-
able for every (λ1, . . . , λm) ∈ Qm \ {(0, 0, . . . , 0)}, mean-
ing that we can represent BAD as a countable union of
countable sets:

BAD =
⋃

λ∈Qm\{(0,0,...,0)}

Φ−1(λ),

getting that BAD is countable.

To finish the proof, we take an arbitrary tuple of coefficients
(λ1, . . . , λm) ∈ Qm \ {(0, 0, . . . , 0)} and show that the
function:

g(γ) = λ1a(γx1) + . . .+ λma(γxm)

has only countably many roots. Observe that the function g
is analytic. It is a well-known fact that any analytic function
other than the zero function has at most countably many
roots, meaning that it is enough to show that g is not the
zero function. For the reader’s convenience, we give a
simple derivation of this fact about analytic functions from
Proposition 2.1. Consider any analytic g with uncountably
many roots. Then it has infinitely many roots in a bounded
interval [−n, n] for some n ∈ N. Any bounded infinite
set of real numbers has an accumulation point, that is, a
point γ0 such that every neighborhood of γ0 has a point
from the set other than γ0. We apply this fact to the set
of roots of g in [−n, n]. We observe that all derivatives
of g at γ0 must be equal to 0, implying that g is the zero
function by Proposition 2.1. Indeed, otherwise we can write
g(γ) = g(k)(γ0)

k! (γ−γ0)
k+o((γ−γ0)

k) as γ → γ0 for the
smallest k with g(k)(γ0) ̸= 0, which would imply that g(γ)
is different from 0 for all γ ̸= γ0 sufficiently close to γ0.

Thus, it remains to show that g is not the zero function, and
we do this by obtaining a contradiction from the assumption
that g is the zero function. Assuming that g is the zero
function, we have:

g(k)(0) = (λ1x
k
1 + . . .+ λmxk

m)a(k)(0)

for every k ≥ 0. In turn, since a is a non-polynomial
analytic function, we have a(k)(0) ̸= 0 for infinitely many1

k, meaning that

λ1x
k
1 + . . .+ λmxk

m = 0

for infinitely many k.

Take the largest i ∈ {1, . . . ,m} such that λi ̸= 0 (it exists

1Indeed, if all derivatives of a of sufficiently large order are
equal to 0 at 0, by Proposition 2.1 we have that some derivative of a
is the constant zero function, meaning that a itself is a polynomial.
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because not all λi are equal to 0). Then we have:

lim
k→∞

λ1x
k
1 + . . .+ λmxk

m

xk
i

= lim
k→∞

λ1

(
x1

xi

)k

+ . . .+ λi

(
xi

xi

)k

.

Since 0 < |x1| < |x2| < . . . < |xm|, this limit is equal to
λi ̸= 0. However, the expression under the limit is equal to
0 for infinitely many k, a contradiction.

4. Experiments
To precisely describe our experiments, let us start by es-
tablishing some terminology. We say that two labelings l1
and l2 of the nodes of a given graph G are equivalent if for
any two nodes u, v in G, it holds that l1(u) = l1(v) ⇐⇒
l2(u) = l2(v). For a given graph G, we say that the WL al-
gorithm converges in T steps if T is the first time for which
the labelings at T and T + 1 are equivalent. It is not hard
to see that in this case the labeling of G at iteration T will
in fact be equivalent to the labeling at T + t for all t > 0.
Given a graph G on which WL converges in T iterations,
we say that a given MPNN M perfectly simulates WL on
G if the labeling assigned to G by M after T iterations is
equivalent to the one assigned by WL.

In our experiments, we implemented our architecture
1parMPNNMγ with sigmoid activation function and with
γ(0) = γ(1) = γ(2) = . . . = γ for a randomly chosen γ,
so that the same value of a parameter was used for all the
iterations.

Uniform perfect simulations To demonstrate the empir-
ical validity of our theoretical findings, we tested our one-
dimensional architecture 1parMPNN on the benchmark
dataset for graphs kernels introduced in (Kersting et al.,
2016; Kriege et al., 2020), which consists of a collection
of 26 different datasets with graphs from different domains
including molecular biology, social networks, and computer
vision. The number of graphs in these datasets ranges from
300 for the smaller dataset up to 9362 graphs in the largest
one. The average number of nodes goes from 14 to 430 (we
refer to (Kriege et al., 2020) for a more detailed statistical
description).

In our first experiment, we generated 10 values of γ ∈
(0, 0.5)2 chosen uniformly at random and ran our architec-
ture on these datasets. Recall that we are using the sigmoid
activation function and the same value of γ in all iterations.

2We experimentally observed that smaller values for γ tend to
work better, which explains the chosen range for this experiment.

For each dataset and each value of γ, we computed the
completeness ratio of 1parMPNN as the fraction of graphs
in the dataset on which it perfectly simulated WL:

WL-completeness ratio =
Perfect simulations
Number of graphs

For graphs with node labels, we initialized their scalar fea-
tures as the square roots of different prime numbers for
different labels (suitably normalized). For unlabeled graphs,
initial scalar node features were simply set to 1. All the
computations were performed with 50 bits of precision. Fig-
ure 1 shows the completeness ratio for each chosen γ and
for each dataset.

Figure 1. Empirical expressive power of a one-dimensional MPNN
with a single parameter γ, for different values of γ and different
datasets. The entries correspond to the fraction of graphs in the cor-
responding dataset on which the corresponding value of γ achieved
a perfect simulation.

Dependence on precision bits To study how the number
of precision bits required to achieve perfect simulation is
affected by the size of the input graphs, we performed the
following two experiments. First, we generated random
Erdos-Renyi graphs of increasing sizes, from n = 10 to
n = 3000 with a step size of 50, together with 20 values for
γ chosen uniformly at random between 0 and 1. For each
graph and each value of γ, we computed the minimum num-
ber of bits required for perfect simulation. Figure 2 shows,
for each n, the average over γ of this minimum precision,
together with the standard deviations. The obtained curve is
approximately O(log(n)).

Finally, we analyzed the real-world graph from the database

7
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Figure 2. The figure shows the number of precision bits required
for perfect simulation as a function of the size of the graph.

CORA3 as well as a big Erdos-Renyi random graph with
5000 nodes and measured how the performance of the one-
dimensional MPNNs improves as a function of the number
of precision bits. Figure 3 shows, for 20 randomly chosen
values of γ, the number of classes obtained by 1parMPNN
as a function of the number of precision bits. We have made
available the code of all our experiments4.

5. Conclusion and Future Work
In this paper, we have demonstrated that, as far as expressive
power is concerned, the dimensionality of feature vectors is
not necessarily a restricting factor in the design of MPNNs.
However, another restricting factor for practical computa-
tions is error-resilience. One can imagine that architectures
of bigger size have better error-resilience. This leaves an
open question, how error-resilient is our “minimalistic” ar-
chitecture?

More specifically, assume that the result of any internal
computation in our architecture can be “off” by some ε > 0.
What is the minimal ε > 0 such that our architecture still has
the same distinguishing power as the WL test in this setting?
It is natural to conjecture that this time ε can not be chosen
independently of the size of the graphs. Ideally, if n denotes
the number of nodes, we could hope that ε = 1/poly(n) is
sufficient so that it is enough to do all computations with
logarithmically many bits of precision.

Another interesting possible improvement of our main result
would be to show that our 1parMPNN architecture has the
same distinguishing power as the WL test, even if the value
of parameters in all iterations are taken to be the same. Our
experiments suggest that it might be true but we could not

3https://graphsandnetworks.com/
the-cora-dataset/

4https://anonymous.4open.science/r/
Single-channel-GNN-B05F/

Figure 3. The figures display the quality of the simulation as a
function of the number of precision bits. For each precision and
each value of γ, the number of classes in the final labeling output
by 1parMPNN is plotted. The true number of classes in the case
of CORA is 2365, whereas for the big (5000 nodes) Erdos-Renyi
graph is 3729.

obtain a proof of this result.

Besides providing some theoretical justification of the be-
havior already observed in practice for these architectures,
there are some consequences related to generalization that
may be relevant for practical considerations. As shown in
(Morris et al., 2023a), low-dimensional architectures exhibit
significantly better generalization performance, as compared
to higher-dimensional ones. According to the experiments
they report, the difference between training and testing accu-
racies was systematically below 5% across all data sets for
d = 4, whereas for d = 1024 this difference can become
more than 45% for some data sets. The accuracy itself for
low-dimensional architectures, however, was observed to
vary significantly along different data sets, ranging from
30% of accuracy for some data sets to more than 90% for
others.

What is the reason for this discrepancy in accuracy across
different data sets?

A natural hypothesis is that such low-dimensional architec-
tures have limited expressive power, and thus there exist
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data sets that are simply impossible to fit for them. Our
results, however, suggest that this may not necessarily be
the case. The explanation, therefore, could rather be more
related to the training process itself (relative to the data),
than to the intrinsic limitations of the architecture. How
does this trade-off work, and how to find the optimal dimen-
sionality for different practical applications, are interesting
topics for future research.
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