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Abstract
We develop a new measure of the exploration/exploita-
tion trade-off in infinite-horizon reinforcement learning (RL)
problems called the occupancy information ratio (OIR),
which is comprised of a ratio between the infinite-horizon av-
erage cost of a policy and the entropy of its induced long-term
state occupancy measure. Modifying the classic RL objective
in this way yields policies that strike an optimal balance be-
tween exploitation and exploration, providing a new tool for
addressing the exploration/exploitation trade-off in RL. The
paper develops for the first time policy gradient and actor-
critic algorithms for OIR optimization based upon a new en-
tropy gradient theorem, and establishes both asymptotic and
non-asymptotic convergence results with global optimality
guarantees. In experiments, these methodologies outperform
several deep RL baselines in problems with sparse rewards.

Introduction
Stochastic optimization problems, where the goal is to op-
timize an objective that takes the form of an expectation,
are ubiquitous in machine learning. Classic methods for an-
alyzing stochastic optimization techniques like stochastic
gradient descent frequently rely on the well-known con-
nections between stochastic approximation (Robbins and
Monro 1951) and dynamical systems (Borkar 2008). Pol-
icy optimization in reinforcement learning (RL) (Sutton and
Barto 2018) can be viewed as a special form of stochastic
optimization problem, where the expectation in the objec-
tive is taken over the trajectories induced by an agent’s pol-
icy when interacting with its environment. In the model-free
RL setting, where the agent’s environment is unknown, how-
ever, the policy optimization problem features an additional,
external imperative: the environment must be explored in or-
der to learn an effective policy. This so-called exploration/-
exploitation trade-off justifies attempts to alter the landscape
of the underlying dynamical system by augmenting the cor-
responding optimization objective to appropriately balance
exploration with exploitation.

*All proofs and additional numerical studies have been omitted
due to space considerations, but are available upon request and will
be contained in a forthcoming publication.
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Intelligence (www.aaai.org), AAAI 2023 Workshop “When Ma-
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tions” (MLmDS 2023). All rights reserved.

In control of dynamical systems, this exploration/ex-
ploitation trade-off is often addressed by separating the steps
of planning and control: first one conducts state estimation
(system identification (Åström and Eykhoff 1971)) over a
stochastic system, and then solves for actuation parameters
in terms of it (Bertsekas and Shreve 1996). The utility of
RL-based methods for control of dynamical systems is well-
established (Recht 2019; Meyn 2022). Indeed, RL methods
for control have been placed on solid theoretical footing for
a variety of classic control problems, including for linear
quadratic regulators (LQR) (Fazel et al. 2018; Bhandari and
Russo 2019; Lale et al. 2022), the linear quadratic Gaussian
(LQG) problem (Tang, Zheng, and Li 2021; Uehara et al.
2022), and ensuring safety (Berkenkamp et al. 2017; Cheng
et al. 2019). Importantly, many of these works have recog-
nized the importance of balancing exploration of the system
with exploitation of current knowledge to achieve critical
goals like safe state identification (Berkenkamp et al. 2017),
improved sample efficiency (Bhandari and Russo 2019), and
improved stability (Lale et al. 2022).

Recently, new approaches to addressing the exploration/-
exploitation trade-off in the RL context have led to key the-
oretical advances. In the context of policy gradient meth-
ods, the recent works (Bhandari and Russo 2019; Agarwal
et al. 2020a; Mei et al. 2020) have provided new insights
into the relationships between system exploration, conver-
gence rates, and global optimality. A key insight from these
works is that the right kind of exploration accelerates conver-
gence without sacrificing global optimality. The prior works
(Russo and Van Roy 2014; Lu et al. 2021) in multi-armed
bandits (MABs) and RL, on the other hand, seek to bal-
ance the goals of exploration and exploitation explicitly: by
minimizing an information ratio, defined as the ratio of cost
incurred – formulated as regret – to information acquired.
A key insight of these works is that explicitly optimizing
the rate of reward accrued per quantity information acquired
about the system leads to more intelligent exploration be-
haviors and improved regret. Despite the advantages of in-
formation ratio-based techniques and the recent advances in
the theory of policy gradient methods, however, the devel-
opment of policy gradient methods for information ratio ob-
jectives remains unexplored.

Our goal is to develop information ratio optimization ap-
proaches for infinite-horizon RL problems that can operate



in high-dimensional, possibly continuous spaces. The in-
formation ratio of (Lu et al. 2021) considers information
gain of a policy over a fixed time-horizon, which in the
infinite-horizon setting requires conditioning over an infi-
nite trajectory. Moreover, the deep Q-learning-based meth-
ods proposed in (Lu et al. 2021) are inherently restricted to
the finite action space case, limiting their scalability. To im-
prove this scaling, operating in parameter space instead is
required, for which policy gradient methods are most nat-
ural (Lillicrap et al. 2015; Schulman et al. 2017; Haarnoja
et al. 2018). Our goal thus requires a definition of infor-
mativeness that is amenable to policy search in parameter
space. Occupancy measure entropy has recently been used
as an optimization objective (Hazan et al. 2019; Lee et al.
2019; Zhang et al. 2020a) that captures the amount of infor-
mation about the environment that a policy provides through
the Kullback–Leibler divergence of its state occupancy mea-
sure (also called state marginal distribution) from a uniform
distribution. This motivates us to take occupancy measure
entropy, or occupancy information, of a policy as the funda-
mental quantity defining its informativeness.

Based on this definition, we develop a new objective
called the occupancy information ratio, or OIR, which cap-
tures the exploration/exploitation trade-off as defined by the
ratio of long-term average cost to occupancy information of
a policy. We underscore that OIR is the first RL objective
to concisely trade off exploration and exploitation and to
which parameterized policies also naturally apply, mak-
ing it the first to scale well to large spaces. Consequently,
we are able to derive policy gradient (PG) and actor-critic
(AC) algorithms to optimize the OIR in parameter space.
Moreover, through connections to quasiconcave program-
ming and a novel application of the perspective transform
that arises in fractional programming, we establish that this
objective has no spurious extrema (Theorem 6), extending
the hidden concavity arguments of (Zhang et al. 2020a) to
hidden quasiconcavity. Hence our newly derived PG and
AC algorithms exhibit convergence to global optimality as
established in Theorems 8 and 11. In experiments, we illus-
trate that the OIR yields policies that avoid spurious, sub-
optimal behavior in practice, whereas benchmarks exhibit
a tendency to become stuck. Due to the importance of the
exploration/exploitation trade-off in achieving critical goals
like safety, improved stability, and sample efficiency, we be-
lieve OIR-based methods are of interest to those working at
the intersection of learning and dynamical systems.

Problem Formulation
In this section we describe our problem setting and formu-
late the occupancy information ratio objective. We first de-
fine an underlying Markov decision process, then formulate
the OIR as an objective to be optimized over it.

Markov Decision Processes. Consider an average-cost
MDP described by the tuple (S,A, p, c), where S is the
finite state space, A is the finite action space, p : S ×
A → D(S) is the transition probability kernel mapping
state-action pairs to distributions over the state space, and
c : S × A → R+ is the cost function mapping state-action
pairs to positive scalars. In this setting, at time-step t, the

agent is in state st, chooses an action at according to a pol-
icy π : S → D(A) mapping states to distributions over A,
incurs cost c(st, at), and then the system transitions into a
new state st+1 ∼ p(·|st, at). Since we are interested in pol-
icy gradient methods, we give the following definitions with
respect to a parameterized family {πθ : S → D(A)}θ∈Θ of
policies, where Θ ⊂ Rd is some set of permissible policy pa-
rameters. Note that analogous definitions apply to any policy
π. For any θ ∈ Θ, let dθ(s) = limt→∞ P (st = s | πθ) de-
note the steady-state occupancy measure over S induced by
πθ, which we assume to be independent of the initial start-
state. In addition, let λθ(s, a) = limt→∞ P (st = s, at =
a | πθ) denote the state-action occupancy measure induced
by πθ over S × A. Notice that λθ(s, a) = dθ(s)πθ(a|s).
Furthermore, let J(θ) =

∑
s dθ(s)

∑
a πθ(a|s)c(s, a) de-

note the long-run average cost of using policy πθ. Finally,
given θ, define the entropy of the state occupancy measure
induced by πθ to be H(dθ) = −

∑
s dθ(s) log dθ(s). This

quantity measures how well πθ covers the state space S in
the long run.

Occupancy Information Ratio. In this paper we con-
sider the OIR objective

ρ(θ) =
J(θ)

κ+H(dθ)
, (1)

where κ > −minθH(dθ) is a user-specific constant, dis-
cussed in Remark 1. Given an MDP (S,A, p, c), our goal
is to find a policy parameter θ∗ such that πθ∗ minimizes (1)
over the MDP, i.e., subject to its costs and dynamics. As
J(θ) and H(dθ) are both long-run, infinite-horizon quanti-
ties, we regard (1) as an infinite-horizon objective.
Remark 1. Since κ scales the relative importance of H(dθ)
in (1), it can be viewed (and used) as a regularizer. When
minimizing a function f(x), one frequently considers a regu-
larized objective function f(x)+κ ∥x∥, where κ ≥ 0. Here,
the larger κ becomes, the more important the regulariza-
tion term becomes with respect to the objective function. In
contrast, for (1), the relative importance of the entropy term
actually diminishes as κ becomes larger: when κ is small,
even minor changes in the value of H(dθ) can have a large
effect on the value of ρ(θ); when κ is large, on the other
hand, even significant perturbations of the value of H(dθ)
have little effect on the value of ρ(θ).

Remark 2. Though we stipulated that κ > −minθH(dθ)
in the definition of the OIR above, letting κ <
−maxθH(dθ) has an important interpretation as well.
When κ < −maxθH(dθ) and J(θ) ≥ 0, for all θ ∈ Θ,
clearly the OIR ρ(θ) will always be non-positive. Because
of this, minimizing the OIR will in fact minimize the ratio
of −J(θ) to the absolute value |κ + H(dθ)|. This means
that the expected cost J(θ) of the underlying MDP is in-
stead treated as an expected reward to be maximized, and
any algorithm for minimizing the OIR will therefore balance
maximizing the reward J(θ) with maximizing the shifted
entropy |κ + H(dθ)|. This allows the OIR framework to
accommodate rewards by simply replacing the cost func-
tion c in the MDP with a reward function r, and choosing
κ < −maxθH(dθ).



Policy Gradients
Sampling the gradient of (1) is not straightforward using ex-
isting tools, as obtaining stochastic estimates of ∇ρ(θ) in-
volves estimating

∇ρ(θ) = ∇J(θ)(κ+H(dθ))− J(θ)∇H(dθ)

[κ+H(dθ)]2
. (2)

Though we can use the classical policy gradient theorem [cf.
Eq. (3)] to estimate ∇J(θ) and we can empirically estimate
J(θ) and H(dθ), it is not obvious how to estimate∇H(dθ).
In what follows we prove an entropy gradient theorem that
allows us to estimate∇H(dθ) and consequently ∇ρ(θ).

Policy Gradient Preliminaries. Given an MDP
(S,A, p, c) and policy πθ, two important objects from
the RL literature are the relative state value func-
tion Vθ(s) =

∑∞
t=0 Eπθ

[c(s, a)− J(θ) | s0 = s]
and the relative action value function Qθ(s, a) =∑∞

t=0 Eπθ
[c(s, a)− J(θ) | s0 = s, a0 = a] . Under the

assumption that πθ(a|s) is differentiable in θ, for all
s ∈ S, a ∈ A, classic policy gradient methods minimize
J(θ) by taking stochastic gradient descent steps in the di-
rection −∇J(θ). We are guaranteed by the policy gradient
theorem (Sutton et al. 1999) that, under certain conditions,

∇J(θ) =
∑
s

dθ(s)
∑
a

Qθ(s, a)∇πθ(a|s)

= Eπθ

[
(c(s, a)− J(θ))∇ log πθ(a|s)

]
. (3)

By following policy πθ, we can sample from the right-hand
side of (3) to estimate ∇J(θ), then use this to perform
stochastic gradient descent.

Cross-Entropy Gradient. To estimate ∇ρ(θ) we must
know how to estimate∇H(dθ). Fortunately, by using the re-
lationship between entropy and cross-entropy, ∇H(dθ) can
be estimated in a straightforward manner. Given two policy
parameters θ and θ′, define the cross-entropy between dθ and
dθ′ to be CE(dθ, dθ′) = −

∑
s dθ(s) log dθ′(s) and their

Kullback-Leibler (KL) divergence to be DKL(dθ || dθ′) =∑
s log

(
dθ(s)
dθ′ (s)

)
dθ(s). Also recall the useful fact that

CE(dθ, dθ′) = H(dθ) +DKL(dθ || dθ′). We now have:1

Lemma 1. For any θ′ ∈ Θ,

∇H(dθ)
∣∣
θ=θ′

= ∇CE(dθ, dθ′)
∣∣
θ=θ′

. (4)

This establishes an important fact: we can estimate the
entropy gradient ∇H(dθ)|θ=θt by instead estimating the
cross-entropy gradient ∇CE(dθ, dθt)|θ=θt . At first glance,
this simply substitutes one problem for another. However,
given a fixed θt, for any θ, we can use the classic policy
gradient theorem (3) to obtain a tractable expression for
∇CE(dθ, dθt)|θ=θt , as described next.

Entropy and OIR Policy Gradients. Our next results
provide tractable gradient expressions enabling policy gra-
dient algorithms for maximizing H(dθ) and minimizing (1).

1For a function f : Θ → R, we sometimes write ∇f(θ)|θ=θt

to emphasize the fact that the gradient of f w.r.t. θ is being taken
first, then subsequently evaluated at θ = θt.

Theorem 2. Let an MDP (S,A, p, c) and a differentiable
parametrized policy class {πθ}θ∈Θ be given, and recall the
definition above of the state occupancy measure dθ induced
by πθ on S. Fix a policy parameter iterate θt at time-step
t. The gradient ∇H(dθ)|θ=θt [cf. (4)] with respect to the
policy parameters θ of the state occupancy measure entropy
H(dθ), evaluated at θ = θt, satisfies∇H(dθ)

∣∣
θ=θt

=

Eπθt

[
(− log dθt(s)−H(dθt))∇ log πθt(a|s)

]
. (5)

With Theorem 2 in hand, we have the following OIR pol-
icy gradient theorem:
Theorem 3. Let an MDP (S,A, p, c), a differentiable
parametrized policy class {πθ}θ∈Θ, and a constant κ ≥ 0
be given, and recall the definitions of the average cost J(θ),
state occupancy measure dθ, and entropy H(dθ). Fix a pol-
icy parameter iterate θt at time-step t. The gradient ∇ρ(θt)
[cf. (2)] with respect to the policy parameters θ of the OIR
ρ(θ) [cf. (1)], evaluated at θ = θt, satisfies∇ρ(θt) =

Eπθt

[
δJt

(
κ+H(dθt)

)
− J(θt)δ

H
t

[κ+H(dθt)]
2 ∇ log πθt(a|s)

]
, (6)

where δJt = c(s, a)− J(θt), δHt = − log dθt(s)−H(dθt).

The claim follows by combining equations (2) and (3)
with Theorem 2. Armed with Theorem 3, we next develop
policy gradient algorithms for minimizing the OIR.

Algorithms
In this section we derive two policy search schemes for min-
imizing (1). Throughout this section, we will assume that an
average-cost MDP (S,A, p, c) is fixed. The reward setting
can be accommodated with minor changes by Remark 2.

Information-Directed REINFORCE. We present
Information-Directed REINFORCE (ID-REINFORCE),
which builds on the class REINFORCE algorithm (Williams
1992) to minimize the more complicated objective (1). At
each time-step t, the algorithm generates a trajectory using
the current policy πθt . It then forms estimates of J(θt)
and H(dθt) and in turn uses these to estimate ∇ρ(θt)
by leveraging (6). This gradient estimate is then used to
update the policy parameters. Note that, in order to estimate
H(dθt), it is necessary to first estimate dθt . This task is
addressed both implicitly and explicitly in previous works
(Hazan et al. 2019; Lee et al. 2019; Zhang et al. 2020a). As
in (Hazan et al. 2019), for ease of exposition we assume
access to an oracle DENSITYESTIMATOR that returns the
occupancy measure dθ = DENSITYESTIMATOR(θ) when
provided with input policy parameter θ ∈ Θ. When S
is finite and not too large, DENSITYESTIMATOR can be
implemented with a count-based estimator. We focus on this
setting in this paper. Pseudocode for ID-REINFORCE can
be found in Algorithm 1.

Information-Directed Actor-Critic. We next present the
Information-Directed Actor-Critic (IDAC) algorithm, a vari-
ant of the classic actor-critic algorithm (Konda 2002; Bhat-
nagar et al. 2009) with two critics: the standard critic corre-
sponding to average cost J(θ), and an entropy critic corre-
sponding to the shadow MDPs (S,A, p, rt), t ≥ 0, where



Algorithm 1: ID-REINFORCE

1: Initialization: Select rollout length K, step-sizes η > 0
and τ ∈ (0, 1], parametrized policy class {πθ}θ∈Θ, and
entropy additive constant κ ≥ 0. Randomly sample s0
and θ0, select µH

−1, µJ
−1 > 0, and set t← 0.

2: repeat
3: Generate trajectory {(si, ai)}i=1,...,K using πθt
4: Ĵ(θt) =

1
K

∑K
i=1 c(si, ai)

5: µJ
t = (1− τ)µJ

t−1 + τ Ĵ(θt)
6: dθt = DENSITYESTIMATOR(θt)

7: Ĥ(dθt) =
1
K

∑K
i=1 (− log dθt(si))

8: µH
t = (1− τ)µH

t−1 + τĤ(dθt)
9: for i = 1, . . . , k do

10: δJi = c(si, ai)− µJ
t

11: δHi = − log dθt(si)− µH
t

12: ψi = ∇ log πθt(ai|si)
13: end for
14: ∇̂ρ(θt) = 1

[κ+µH
t ]2

1
K

∑K
i=1

[
δJi

(
κ+ µH

t

)
− µJ

t δ
H
i

]
ψi

15: θt+1 = θt − η∇̂ρ(θt)
16: t← t+ 1
17: until convergence

rt(s, a) = − log dθt(s) is the shadow reward discussed in
the proof of Theorem 2. We assume access to the DEN-
SITYESTIMATOR oracle throughout. For IDAC, we modify
the classic actor-critic scheme by: (i) introducing an entropy
critic to estimate the entropy gradient, and (ii) altering the
policy update to take a gradient descent step in the direction
−∇ρ(θt) instead of −∇J(θt). At time-step t, the algorithm
computes two different TD errors: one corresponds to the
critic for the MDP (S,A, p, c), while the other corresponds
to the critic for the shadow MDP (S,A, p, rt). Next, the cost
and entropy critic TD errors are used to update their respec-
tive critics, which are in turn combined to perform the actor
update. Pseudocode for IDAC can be found in Algorithm 2.

Density Estimation Issue. As discussed above, these
algorithms estimate the state density with a count-based
estimator, which can be inefficient in continuous, high-
dimensional spaces. There are two main options for over-
coming this issue. First, more sophisticated density esti-
mation procedures may be used to directly estimate the
state occupancy measure in continuous, higher-dimensional
spaces. Recent works including (Hazan et al. 2019; Lee et al.
2019) have effectively leveraged kernel density estimation
and variational autoencoders to maximize state entropy in
the RL setting. These techniques can be extended to the OIR
setting to allow our methods to handle continuous, higher-
dimensional state spaces. Second, eliminating the need to
perform density estimation altogether by directly estimating
state entropy is another viable option. Indeed, recent works
in unsupervised RL have leveraged particle-based entropy
estimation techniques from statistics (Singh et al. 2003) to
efficiently perform maximum state entropy exploration in
continuous, high-dimensional domains (Yarats et al. 2021;
Liu and Abbeel 2021; Mutti, Pratissoli, and Restelli 2021).

Algorithm 2: IDAC

1: Initialization: Select rollout length K, stepsize se-
quences {αt}, {βt}, {τt}, parametrized policy class
{πθ}θ∈Θ, parametrized critic class {vω}ω∈Ω, and en-
tropy additive constant κ ≥ 0. Randomly sample
s0, θ0, ω

J
0 , ω

H
0 , select µH

−1, µJ
−1 > 0, and set t← 0.

2: repeat
3: Generate trajectory {(si, ai)}i=1,...,K using πθt
4: µJ

t = (1− τ)µJ
t−1 + τ 1

K

∑K
i=1 c(si, ai)

5: dθt = DENSITYESTIMATOR(θt)

6: µH
t = (1− τ)µH

t−1 + τ 1
K

∑K
i=1 (− log dθt(si))

7: for i = 1, . . . ,K do
8: Set vωJ

t
(sK+1) = vωH

t
(sK+1) = 0

9: δJi = c(si, ai)− µJ
t + vωJ

t
(si+1)− vωJ

t
(si)

10: δHi = − log dθt(si)− µH
t + vωH

t
(si+1)− vωH

t
(si)

11: ψi = ∇ log πθt(ai|si)
12: end for
13: ωJ

t+1 = ωJ
t + α 1

K

∑K
i=1 δ

J
i ∇vωJ

t
(si)

14: ωH
t+1 = ωH

t + α 1
K

∑K
i=1 δ

H
i ∇vωH

t
(si)

15: ∇̂ρ(θt) = 1

[κ+µH
t ]2

1
K

∑K
i=1

[
δJi

(
κ+ µH

t

)
− µJ

t δ
H
i

]
ψi

16: θt+1 = θt − β∇̂ρ(θt)
17: t← t+ 1
18: until convergence

These methods can be extended to obtain practical OIR
methods that avoid density estimation altogether. Building
on these techniques, the density estimation issue can be miti-
gated or eliminated, providing an important future direction.

Theoretical Results
In this section we provide the following key results under-
pinning policy search for the OIR problem: all stationary
points of ρ(θ) are in fact global minimizers; the stochastic
gradient descent scheme underlying ID-REINFORCE en-
joys a non-asymptotic convergence rate depending on κ,
the policy class, and ergodicity properties of the underyling
MDP; IDAC enjoys asymptotic, almost sure (a.s.) conver-
gence to a neighborhood of a stationary point. Taken to-
gether, these results prove that both algorithms converge to
globally optimal solutions under suitable conditions.

Stationarity Implies Global Optimality
As we will see, the OIR optimization problem enjoys a pow-
erful hidden quasiconcavity property: under certain condi-
tions on the set Θ and the policy class {πθ}θ∈Θ, stationary
points of ρ(θ) correspond to global optima of the OIR mini-
mization problem

min
θ ∈ Θ

ρ(θ) =
J(θ)

κ+H(dθ)
. (7)

This result is surprising, as the objective function ρ(θ) is
typically highly non-convex. Let Θ ⊂ Rk be convex and let
a parametrized policy class {πθ}θ∈Θ be given. Let λ : Θ→
D(S ×A) be a function mapping each parameter vector θ ∈



Θ to the state-action occupancy measure λ(θ) := λθ := λπθ

induced by the policy πθ over S×A. We make the following
assumptions.

Assumption 4. The set Θ is compact. For any s ∈ S, a ∈
A, the function πθ(a|s) is continuously differentiable with
respect to θ on Θ, and the Markov chain induced by πθ on
S is ergodic.

Assumption 5. The following statements hold:
1. λ(·) gives a bijection between Θ and its image λ(Θ), and
λ(Θ) is compact and convex.
2. Let h(·) := λ−1(·) denote the inverse mapping of λ(·).
h(·) is Lipschitz continuous.
3. The Jacobian matrix∇λ(θ) is Lipschitz on Θ.

We have the following theorem.

Theorem 6. Let Assumptions 4 and 5 hold. Let θ∗ be a sta-
tionary point of (7), i.e., ∇ρ(θ∗) = 0. Then θ∗ is globally
optimal for (7).

This powerful hidden quasiconcavity property implies
that any policy gradient algorithm that can be shown to con-
verge to a stationary point of the OIR optimization problem
minθ∈Θ ρ(θ) in fact converges to a global optimum. This
greatly strengthens the convergence results provided next by
guaranteeing that they apply to global optima. In contrast to
the global optimality guarantees for tabular, softmax policy
search established in (Bhandari and Russo 2019; Agarwal
et al. 2020b; Mei et al. 2020; Zhang et al. 2020a; Bedi et al.
2021) using persistent exploration conditions, our result in-
stead builds on hidden concavity arguments from (Zhang
et al. 2020a), which apply to parameterized policies. How-
ever, Theorem 6 generalizes these results in important ways.
First, it applies to ratio objectives, which have not been ad-
dressed in prior work. In addition, we establish hidden qua-
siconcavity for ratio objectives, not hidden concavity, which
requires reformulation via a novel application of the per-
spective transform. Theorem 6 is thus a strict generalization
of existing results for the landscape of RL objectives.

Non-Asymptotic Convergence Rate
Next, we establish a non-asymptotic convergence rate for the
following projected gradient descent scheme for solving the
OIR minimization problem (7):

θt+1 = ProjΘ (θt − η∇ρ(θt)) (8)

= argmin
θ

[ρ(θt) + ⟨∇ρ(θt), θ − θt⟩+
1

2η
∥θ − θt∥2],

for a fixed stepsize η > 0, where ProjΘ denotes euclidean
projection onto Θ and the second equality holds by the
convexity of Θ. Note that (8) is a reformulation of ID-
REINFORCE with null gradient estimation error and pro-
jection onto the set Θ; we assume the projection operation
for the purposes of analysis, and we discuss the gradient es-
timation issue at the end of this subsection.

Let Θ ⊂ Rk, {πθ}θ∈Θ, and λ : Θ → D(S × A) be as in
the previous section. Consider the mapping ζ : D(S×A)→
R|S||A|+1, defined to be ζ(λ) = (λ/c⊤λ, 1/c⊤λ), where c ∈
R|S||A|, c > 0 is a vector of positive costs. Notice that, under

the ergodicity conditions in Assumption 4 and properties of
entropy, minθ ρ(θ) > 0 and maxθ ρ(θ) <∞. In addition to
Assumptions 4 and 5, we will need the following.
Assumption 7. ∇ρ(θ) is Lipschitz andL > 0 is the smallest
number such that ∥∇ρ(θ)−∇ρ(θ′)∥ ≤ L ∥θ − θ′∥ , for all
θ, θ′ ∈ Θ.

We have the following convergence rate result for the pro-
jected gradient descent scheme (8).
Theorem 8. Let Assumptions 4, 5, and 7 hold. Let Dζ =
maxz,z′∈(ζ◦λ)(Θ) ∥z − z′∥ denote the diameter of the con-
vex, compact set (ζ ◦ λ)(Θ). Define M = maxθ∈Θ ρ(θ),
m = minθ∈Θ ρ(θ), K = max{m2L,M2m2L}, and L1 =
max{L,M2L}. Then, with η = 1/K, for all t ≥ 0,

ρ(θt)− ρ(θ∗) ≤
4M2L1ℓ

2D2
ζ

t+ 1
. (9)

Coupled with Theorem 6, this result provides a non-
asymptotic convergence rate to global optimality for algo-
rithms solving the OIR minimization problem (7).
Remark 3. When compared with the corresponding result
in (Zhang et al. 2020a), to which it is closely related, the
bound (9) of Theorem 8 contains an interesting dependence
on the user-specified κ, the policy class {πθ}θ∈Θ, and the
underlying MDP. The presence of M = maxθ∈Θ ρ(θ) =
maxθ[J(θ)/(κ+H(dθ))] in the bound (9) suggests that the
convergence rate depends on the value of κ as well as the
minimal possible value ofH(dθ) over θ ∈ Θ. To see why, let
C = maxθ∈Θ J(θ) and notice that

M ≤ max
θ∈Θ

C

κ+H(dθ)
=

C

κ+minθ∈ΘH(dθ)
. (10)

On the one hand, when the MDP dynamics and policy class
are such that minθ∈ΘH(dθ) is large, then M will be closer
to 0, yielding a tighter bound in (9). This suggests that it
may be easier to optimize the OIR over MDPs and/or policy
classes that tend to be “more ergodic”. When both κ and
minθ∈ΘH(dθ) are close to 0, on the other hand, M may be
very large, resulting in a looser bound in (9). This highlights
the usefulness of κ, as choosing larger κ values can be used
to smooth the objective function ρ(θ) and thereby lead to
stabler convergence when optimizing the OIR over MDPs
and policy classes that tend to be “less ergodic”.

In the preceding theorem, we assume “exact policy gradi-
ent,” or zero stochastic approximation error. This is limited
to Theorem 8, whereas Theorem 11 below allows stochas-
tic approximation error and Theorem 6 above is indepen-
dent of estimation issues. Though this assumption is a draw-
back for Theorem 8, it allows us to succinctly focus on a
core insight of this work: hidden quasiconcavity unlocks an
information-dependent convergence rate to global optimal-
ity. We also note that, for REINFORCE-like algorithms like
those considered in Theorem 8, long rollouts enable more
accurate gradient estimates, for which the existing assump-
tions approximately apply. A precise treatment of gradient
estimation error versus rollout length is an important direc-
tion future work, and can be achieved by extending the anal-
ysis in (Zhang et al. 2021) to the OIR problem.



Actor-Critic Convergence
We conclude this section by proving almost sure (a.s.) con-
vergence of IDAC to a neighborhood of a stationary point
of (7). By Theorem 6, this implies IDAC converges a.s. to a
neighborhood of a global optimum. This is much stronger
than existing asymptotic results for actor-critic schemes,
which typically guarantee convergence to a neighborhood
of a local optimum or saddle point (Bhatnagar et al. 2009;
Zhang et al. 2020b; Agarwal et al. 2020b).

We analyze the algorithm as given in Algorithm 2 under
the assumption that τt = αt, for all t ≥ 0, that K = 1,
and with the addition of a projection operation to the policy
update:

θt+1 = Γ
[
θt − βt

δJt (κ+ µH
t )− µJ

t δ
H
t(

κ+ µH
t

)2 ∇ log πθt(at|st)
]
,

(11)
where Γ : Rd → Θ maps any parameter θ ∈ Rd back onto
the compact set Θ ⊂ Rd of permissible policy parameters.
This projection, which is common in the actor-critic and
broader two-timescale stochastic approximation literatures
(see, e.g., (Kushner and Yin 2003; Borkar 2008; Bhatnagar
et al. 2009)) is for purposes of theoretical analysis, and is
typically not needed in practice. In addition to Assumption
4, we impose the following:

Assumption 9. Stepsizes {αt}, {βt} satisfy
∑

t αt =∑
t βt = ∞,

∑
t α

2
t + β2

t <∞, limt
βt
αt

= 0.

Assumption 10. The value function approximators vω
are linear, i.e., vω(s) = ω⊤ϕ(s), where ϕ(s) =
[ϕ1(s) · · · ϕK(s)]⊤ ∈ RK is the feature vector associated
with s ∈ S. The feature vectors ϕ(s) are uniformly bounded
for any s ∈ S, and the feature matrix Φ = [ϕ(s)]⊤s∈S ∈
R|S|×K has full column rank. For any u ∈ RK , Φu ̸= 1,
where 1 is the vector of all ones.

Assumptions 4, 9, and 10 are standard in two-timescale
convergence analyses for actor-critic algorithms (Bhatnagar
et al. 2009). Moreover, we consider neural network param-
eterizations in our experiments and observe favorable con-
vergence behavior, so we believe Assumption 10 can be re-
laxed. Consider the ordinary differential equation (ODE)

θ̇ = Γ̂(∇ρ(θ)), (12)

where Γ̂(∇ρ(θ)) := limη→0+ [γ (θ + η∇ρ(θ))− θ] /η. We
note here that (12) can be interpreted as the projected ODE
θ̇ = ∇ρ(θ) + z(θ), where z(θ) is the minimal force nec-
essary to project θ back onto Θ. We now present the main
result of this subsection, which establishes convergence of
the actor-critic algorithm.

Theorem 11. Let Z denote the set of asymptotically sta-
ble equilibria of the ODE (12). Given any ε > 0, define
Zε = {z | infz′∈Z ∥z − z′∥ ≤ ε}. For any θ ∈ Θ, let
εθ = (ϵJθ [κ+H(dθ)] − J(θ)ϵHθ )/([κ+H(dθ)]

2
). Under

Assumptions 4, 9, and 10, given any ε > 0, there exists
δ > 0 such that, for {θt} obtained from Algorithm 2 with
projection (11), if supt ∥ϵθt∥ < δ, then θt → Zε a.s. as
t→∞.

Combined with Theorem 6, Theorem 11 establishes al-
most sure convergence of IDAC to a neighborhood of a
global optimum of the OIR minimization problem (7). Note
that if the linear approximation and features are expressive
enough, then ε will be small or even zero.

Experiments
The experiments presented in this section demonstrate that
OIR policy gradient methods avoid spurious behavior, while
state-of-the-art methods can become overconfident and set-
tle into suboptimality. In particular, when the reward signal
is sparse, OIR methods can lead to improved performance
when compared with vanilla RL methods. For Fig. 1, we
first compared a neural network version of IDAC with the
Stable Baselines 3 implementations (Raffin et al. 2019) en-
vironment depicted in Fig. 2 in the appendix; for Fig. 3 pre-
sented in the appendix, we also compared tabular versions
of IDAC and vanilla actor-critic with softmax policies on the
GridWorld2 depicted in Fig. 2. Details on the gridworld
implementations are provided in the appendix.

Figure 1: Comparison of neural network IDAC with common deep
RL methods on the sparse-reward LargeGridWorld. Plots give
means and 95% confidence intervals. Optimal average cost is 0.1.
Training took place over 1e+6 timesteps; no further improvement
occurred beyond timestep 1.2e+5.

In all cases, the vanilla methods prematurely converge to
suboptimal policies, whereas the OIR-based methods solve
the problem. This illustrates that, in sparse-reward environ-
ments, the inherent skepticism of OIR-based policy gradient
methods can lead to improved performance.

Conclusion
In this paper we have addressed the exploration/exploita-
tion trade-off in reinforcement learning via a new RL objec-
tive: the OIR. Interesting future directions include clarifying
the relationship between optimal solutions to the OIR and
vanilla problems, development of continuous-spaces version
of IDAC, and thorough empirical evaluation of deep RL
variants of IDAC on a range of benchmark problems.
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APPENDIX
Experiments, Continued

Environments
Each gridworld is composed of an n ×m grid of states, S = {0, . . . , n − 1} × {0, . . . ,m − 1}, along with a designated start
state sstart, designated goal state sgoal, and a set B ⊂ S of blocked states which the agent is not permitted to enter. Episodes
are of fixed length K, and the agent begins each episode in state sstart. In a given state s = (i, j), the agent chooses an action
a ∈ {stay, up, down, left, right}. The agent then attempts to move in the direction corresponding to the action selected: if the
selected action would move the agent off the grid or into a blocked state, the agent remains in s; otherwise, the agent moves
into (or remains in) the state corresponding to the action selected. For example, if a = up is chosen, the agent attempts to move
to state s′ = (i, j − 1). If s′ is off the grid (i.e. j − 1 < 0) or s′ ∈ B, the agent remains in s. Otherwise, the agent transitions
to s′. Finally, let A(s) denote the set of all actions at s that do not lead off the grid or into a blocked state; the cost function is
then given by:

c(s, a) =


cgoal if s = sgoal and a ∈ A(s),
callowed if s ̸= sgoal and a ∈ A(s),
cblocked if a /∈ A(s),

where 0 < cgoal < callowed < cblocked. A policy minimizing J(θ) will move as quickly as possible to sgoal while always choosing
actions withinA(s). Because of this, when a problem is small enough that the agent can reach the goal state quickly and remain
in it for most of the episode, the optimal average cost should be close to 1. A policy minimizing ρ(θ), on the other hand, will
seek to balance minimizing J(θ) with maximizing H(dθ), while avoiding actions a /∈ A(s).

For the first set of experiments, we considered the Gridworld1, 2, and 3 environments shown in Figure 2. The
LargeGridWorld environment used in the second experiment is also depicted in Figure 2.
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Figure 2: GridWorld environments. For Gridworlds 1, 2, and 3, the start state is S and goal state is G.
Shaded regions represent blocked states B. For the LargeGridWorld environment, the blue square is the start
state and the green square is the goal state.

Figure 3: Comparison of tabular, softmax policy versions of vanilla actor-critic and IDAC with κ = 1.0 on GridWorld2. Optimal average
cost is 1. Cost: both algorithms decrease to 10; vanilla AC gets stuck, IDAC’s cost decreases well below 10. Entropy: vanilla AC’s policy
becomes deterministic, while IDAC maintains higher-entropy policies. OIR: IDAC minimizes the OIR, vanilla AC increases it.


