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Abstract

Terpene synthases (TPS) are a key family of enzymes responsible for generating the
diverse terpene scaffolds that underpin many natural products, including front-line
anticancer drugs such as Taxol. However, de novo TPS design through directed
evolution is costly and slow. We introduce TpsGPT, a generative model for scalable
TPS protein design, built by fine-tuning the protein language model ProtGPT2
on 79k TPS sequences mined from UniProt. TpsGPT generated de novo enzyme
candidates in silico and we evaluated them using multiple validation metrics,
including EnzymeExplorer classification, ESMFold structural confidence (pLDDT),
sequence diversity, CLEAN classification, InterPro domain detection, and Foldseek
structure alignment. From an initial pool of 28k generated sequences, we identified
seven putative TPS enzymes that satisfied all validation criteria. Experimental
validation confirmed TPS enzymatic activity in at least two of these sequences. Our
results show that fine-tuning of a protein language model on a carefully curated,
enzyme-class-specific dataset, combined with rigorous filtering, can enable the
de novo generation of functional, evolutionarily distant enzymes.

1 Introduction

Terpene synthases (TPS) are a specialized family of enzymes that generate hydrocarbon scaffolds for
terpenes—the largest and most diverse class of natural products, encompassing widely used flavors,
fragrances, and frontline medicines [Samusevich et al., 2025]]. Terpenes exhibit diverse bioactivities,
including analgesic, anticonvulsant, and anti-inflammatory properties [Del Prado-Audelo et al., 2021].
More than 76,000 terpenes have been characterized to date [Rudolf and Chang, [2019]]. Among them,
Taxol, a diterpene, remains a first-line anticancer drug with multi-billion-dollar annual sales [Weaver,
2014].

Despite their importance, terpenes are notoriously difficult to synthesize industrially due to their
structural complexity [[Del Moral et al.,|2019]. Conventional chemical synthesis requires numerous
steps and incurs high energy and resource costs, making it unsustainable at scale. In contrast, synthetic
biology offers a more efficient route by leveraging TPS enzymes to catalyze key reactions [Zhang
and Hong, 2020].

Here we present TpsGP a terpene synthase sequence generation model fine-tuned on a distilled
protein language model — ProtGPT2 Tiny [Ferruz et al., 2022, protgpt2 tiny}, |2022]. TpsGPT is
trained on a carefully curated 79k homologous TPS dataset mined from large scale repositories like
UniProt. The mining process initially used a very small 1125 experimentally characterized actual
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TPS enzymes from published sources as a seed to identify TPS patterns based on which the mining
process produced 79k homologous TPS sequences. TpsGPT generated evolutionary distant sequences
while conserving key TPS structural features. The resulting de novo sequences exhibit high predicted
structural stability and low sequence identity relative to the training set. Our results demonstrate
that fine-tuning protein language models on a carefully curated, enzyme-class-specific dataset, can
effectively explore the vast protein sequence space, producing valid enzyme candidates even for
underrepresented protein families like terpene synthases.

2 Related Work

Protein engineering. The design of novel TPS enzymes for terpene biosynthesis remains a complex
and time-consuming task. There are two main approaches for protein engineering: rational design and
directed evolution [Vidal et al.;[2023]]. Rational design involves performing chosen point mutations,
insertions or deletions in the coding sequence. Directed evolution, on the other hand, bypasses the
need to determine specific mutations a priority by mimicking the process of natural evolution in
the laboratory. While promising, these methods have a major disadvantage — the sequences they
generate often remain highly similar to naturally occurring proteins, leaving vast regions of the protein
sequence space unexplored [[Yang et al., 2024]]. Moreover, robotics-accelerated high-throughput
directed evolution techniques like Phage-Assisted Continuous Evolution are prohibitively expensive,
with costs reaching hundreds of thousands of dollars [Aoudjane et al., 2024]]

Computational design of terpene synthases. Machine learning-assisted annotation methods
predict and label likely TPS enzymes in large protein databases like UniProt and UniRef [Samusevich
et al.,[2025] | Bateman, |2018} Suzek et al.,|2014]] but such methods only uncover existing proteins in
nature. De novo enzyme design approaches such as RFdiffusion use diffusion-based deep learning
architectures to generate novel protein backbones [Watson et al.| [2023[]. Although promising,
RFDiffusion is a structure-based method and requires a comprehensive understanding of a catalytic
site and its activity to generate functional enzymes [Lauko et al.,[2025]]. Instead, our work aims to
design enzymes given only a set of family-specific sequences.

Protein Language Models (PLMs). PLMs are based on large language models (LLMs) like GPT2,
which leverage the Transformer architecture to model sequential data [[Vaswani et al.,|2017]]. Prior
work has shown that fine-tuning PLMs can generate de novo proteins within specific families [Win;
nifrith et al., 2024]. However, existing PLM fine-tuning methods to generate sequences rely on
extensive family-specific datasets and often require additional inputs such as control tags for model
conditioning. Additionally, the fine-tuning is typically done on large models such as ProGEN with 280
million parameters [Madani et al.l2023]]. ProtGPT?2 is a state-of-the-art autoregressive Transformer-
based PLM with 738 million parameters [Ferruz et al., 2022]] and enables high-throughput protein
generation in seconds. Additionally, ProtGPT2 offers a tiny model [protgpt2 tinyl 2022]] with 38.9
million parameters with comparable performance as the original bigger model. Motivated by these
properties, we fine-tune ProtGPT2 tiny to generate de novo terpene synthase sequences starting from
a small dataset of 1125 TPS sequences.

3 Materials and Methods

We developed TpsGPT, a scalable in silico framework for de novo TPS enzyme design (Figure|T)).
The approach combines protein language model fine-tuning with principled sequence generation and
multi-stage validation to produce viable, evolutionarily distant TPS candidates.

3.1 Dataset Preparation

As a starting point, we used a dataset of 1125 experimentally validated TPS sequences, which was
later extended to 79k computationally-mined TPS sequences [Calounova and Pluskal, 2024]. In the
mining process, HMMER’s hmmsearch was used with merged and indexed TPS-specific Pfam and
SUPERFAMILY databases to identify terpene synthases [[Finn et al.| 201 1} |[Mistry et al., 2020, Wilson
et al.} 2006]. For the preclustered Big Fantastic Database (BFD), only representative sequences were
mined first, with full clusters analyzed if hits were found [Jumper et al.|[2021]]. Post-mining, several
filtering steps enhanced reliability: removing sequences outside the 300-1100 amino acid range,
excluding those with stronger hits to non-TPS domains, requiring characteristic TPS catalytic motifs
(DDXXD and NSE/DTE motifs of Class I TPSs and the DXDD motif of Class II TPSs), discarding
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Figure 1: Overview of our approach. Part 1: We collected 1125 experimentally characterized TPS enzymes
from all published sources to mine the 79k TPS dataset from UniProt [Calounova and Pluskall [2024]. We created
an 80/20 split using SpanSeq [Florensa et al., |2024]] with at most 30% sequence identity between the splits and
fine-tuned the distilled ProtGPT?2 tiny [protgpt2 tiny} 2022] model to create TpsGPT. Part 2: We generated 28k
sequences using TpsGPT and filtered them using seven validation metrics: Sequence filters: Perplexity and
max sequence identity to training set. Function filters: EnzymeExplorer TPS score [[Samusevich et al.| [2025]],
CLEAN enzyme classification [[Yu et al.,|2023]], and InterPro domain prediction [Blum et al., | 2024] Structure
filters: pLDDT using ESMFold [esmfold} 2025] and max Foldseek TM-score to training set [[Van Kempen et al.,
2023||. Above filters reduced the 28k sequences to seven putative TPS sequences. Wet-lab validation using
yeast expression followed by liquid chromatography coupled with mass spectrometry (LC-MS) showed TPS
enzymatic activity in two sequences [Pitt, |2009].

sequences with incomplete or atypical domain architectures, and filtering out sequences with >80%
identity to known isoprenyl diphosphate synthases [Liu et al.|[2025 Jiang et al.,|2019]]. The remaining
sequences were designated as candidate terpene synthases and were used to fine-tune ProtGPT2.

To avoid data leakage and ensure generalization, the sequences were clustered using SpanSeq [[Flo4
rensa et al., |2024] into six partitions at 30% sequence identity between partitions. We combined
five partitions (~63k sequences) for training while the remaining partition (~16k sequences) was
reserved for validation, resulting in an 80/20 split.

3.2 Model Fine-Tuning

The original ProtGPT2 model contains 738 million parameters, making full fine-tuning computa-
tionally expensive [protgpt2] 2022]. Hence, we fine-tuned the distilled ProtGPT?2 tiny model with
38.9 million parameters. The distilled tiny model retains comparable perplexities to the original
large model while offering up to six times faster inference, enabling high-throughput sequence
generation [protgpt2 tiny, |2022]. Fine-tuning was performed using Lightning Al on a single NVIDIA
L4 tensor core [lightning, [2025].

3.3 TPS Sequence Generation and Filtering

After fine-tuning, we generated 28k protein sequences. A multi-stage filtering pipeline was applied to
identify putative TPS enzymes from the 28k sequences:

Sequence Filters: The 28k sequences were ranked by perplexity, and the top 10% (2,800 sequences)
were retained. Maximum pairwise sequence identity (maxID) to the training set was computed, and
only sequences with maxID < 60% were retained to encourage evolutionary distance.

Function Filters: We used EnzymeExplorer with a TPS detection threshold of 0.7 (range 0-1) to
select sequences likely to possess TPS activity [Samusevich et al.l [2025]. CLEAN (Contrastive
Learning Enabled Enzyme ANnotation) is a ML model that assigns EC (Enzyme Commission)
number to protein sequences [[Yu et al., [ 2023|]. We used CLEAN to predict EC numbers and selected
only those with a terpenoid/terpene biosynthetic pathway in BRENDA [brenda, [2025]]. InterPro is
another model that predicts domains given a sequence [Blum et al.| 2024]. We selected only those
sequences when the InterPro predicted domain was a terpene synthase specific domain or a domain
with an overlapping superfamily containing a TPS domain.

Structure Filters: We computed Predicted Local Distance Difference Test (pLDDT) scores from
ESMFold [esmfold, 2025], retaining only sequences with pLDDT > 70, indicative of accurate back-
bone modeling and valid 3D structures. To ensure conservation of TPS structure, we used Foldseek
to do 3D structural comparison of the generated sequences relative to their respective top structural
matches in the training set and retained those with TM-scores between 0.6 and 0.9 [Van Kempen
et al.| 2023|].
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This pipeline produced candidates that are structurally feasible, TPS-like, and evolutionarily distant,
representing potential de novo TPS enzymes suitable for downstream experimental validation.

4 Results

We fine-tuned the distilled ProtGPT?2 tiny model on 79k TPS sequences mined from UniProt and
generated 28k TPS sequence candidates. After picking the top 10% (2800) sequences by perplexity
score, we applied the following filters: pLDDT score, EnzymeExplorer TPS detection score, max
sequence identity to training set, Foldseek alignment (TM-Score), CLEAN classified EC number,
and InterPro domain to identify putative de novo TPS sequences.
4.1 TpsGPT Generates Valid TPS Sequences

CDF of pLDDT Scores

10{ — coF
© pLDDT = 70 (40.6%)

Among the top 2,800 sequences ranked by perplexity,
40% achieved pLDDT scores > 70 (Figure2). From *
this set, 77 sequences passed the EnzymeExplorer
TPS detection threshold (>= 0.7). A detection score
above 0.7 indicates the potential to catalyze terpenes.

Cumulative Probability

4.2 Evolutionarily Distant
Sequences with Conserved TPS Structures T T N )

pLDDT

From the 77 candidates, we filtered down to seven  Figure 2: CDF of pLDDT scores of the top 2800
with < 60% sequence identity to the training set, rep- generated sequences. More than 40% had pLDDT
resenting potential de novo TPS enzymes (Table[T). > 70 indicating stable structures.

3D structural comparison of the generated sequences relative to their respective top structural matches
in the training set using Foldseek confirmed TM-scores between 0.6 and 0.9 (Table[I), consistent
with belonging to the same structural family [Van Kempen et al.,2023]. Moreover, CLEAN assigned
all seven sequences to TPS EC classes, providing robust computational support 2023
(Table [T). InterPro analysis detected at least one relevant TPS specific domain in each sequence

as shown in Figure [3] 2024]]. Together, the above results show that TpsGPT generates
evolutionary distant yet structurally conserved de novo TPS enzymes.
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Figure 3: ColabFold-generated 3D structures of the seven de novo putative TPS enzymes, with TPS domains
annotated by InterPro [Mirdita et al}} 2022} [Blum et al.} [2024]. maxID denotes the maximum sequence identity
of each sequence to those in the training set. The figure shows that TpsGPT can generate evolutionarily distant
TPS sequences while conserving TPS domains.
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Table 1: Properties of the seven putative de novo TPS sequences. Each sequence is distinguished by a unique
Sequence ID. EnzymeExplorer TPS score measures TPS-like characteristics, pPLDDT score indicates the stability
of 3D folding, Max Foldseek TM-score indicates structural alignment with TPS sequences in training set, Max
seq. identity to training set denotes the uniqueness of the TPS sequence, CLEAN-predicted EC number provides
the enzyme classification, and InterPro predicts the domains in the sequence. TpsGPT1 and TpsGPT2 are shown
in bold, indicating experimentally-validated enzymatic activity in both sequences.

Seq ID EnzymeExplorer TPS pLDDT Max Foldseek TM-Score Max seq. identity CLEAN Predicted InterPro Predicted
Score Score to training set to training set EC number Domain

TpsGPT1 0.75 78 0.73 49.67% Germacrene D Synthase ~ Terpene synthase, N-terminal

(4.2.3.75) domain and Terpene synthase,
metal-binding domain

TpsGPT2 0.72 74 0.79 59.72% Squalene Synthase Trans-isoprenyl diphosphate
(2.5.1.21) synthases, head-to-head domain

TpsGPT3 0.73 74 0.84 60.00% Cucurbitadienol Syn- Squalene-hopene cyclase, N-
thase (5.4.99.33) terminal domain

TpsGPT4 0.73 70 0.65 60.08% Squalene Synthase Trans-isoprenyl diphosphate
(2.5.1.21) synthases, head-to-head domain

TpsGPT5 0.78 80 0.72 59.75% Beta-amyrin Synthase Squalene-hopene cyclase, N-
(5.4.99.39) terminal domain

TpsGPT6 0.73 71 0.69 57.33% Squalene Synthase Trans-isoprenyl diphosphate
(2.5.1.21) synthases, head-to-head domain

TpsGPT7 0.74 71 0.72 52.19% Cycloartenol Synthase Squalene-hopene cyclase, N-
(5.4.99.8) terminal domain

4.3 Experimental Validation Confirms Enzymatic Activity

To functionally characterize the enzymes designed with TpsGPT, we heterologously expressed the
corresponding genes in the budding yeast Saccharomyces cerevisiae strain JWY501. This strain has
been engineered for elevated production of the diterpene substrate geranylgeranyl pyrophosphate.
Using liquid chromatography, coupled with mass spectrometry (LC-MS) [Pitt, 2009], we confirmed
the enzymatic activity in two sequences (TpsGPT1 and TpsGPT2) (Figure[4).

—— TpsGPT1 replicates
—— TpsGPT2 replicates
—— Control

Control peak intensity

5,

N

AN

4.50 5.00 5.50 6.00 6.50 7.00 7.50 8.00
Retention time

Figure 4: Chromatogram showing wet-lab validation of enzymatic activity for the generated TpsGPT1 and
TpsGPT2 sequences. Extracted ion chromatograms (XIC) at the mass of C29H3602 confirm the production
of diterpene-like products (e.g., sclareol; CHEBI:9053) in yeast expressing TpsGPT1 (red; two replicates) and
TpsGPT2 (blue; two replicates). Black trace represents the control.

5 Conclusion

In this work, we demonstrate the potential of fine-tuning protein language models, specifically
ProtGPT?2 Tiny, on a carefully curated TPS dataset to generate novel and valid terpene synthases. The
seven sequences generated by TpsGPT exhibited high pLDDT scores, indicating stable 3D structures,
and low perplexity scores, suggesting syntactically valid protein sequences. The seven sequences
were also functionally validated by EnzymeExplorer, CLEAN and InterPro models. Furthermore, low
pairwise sequence identity and favorable Foldseek TM-scores indicate the likelihood of discovering
evolutionarily distant TPS enzymes not present in nature. Importantly, the entire pipeline was
executed with less than $200 in GPU cost, demonstrating the scalable and cost-efficient nature of
this approach. Additionally, our approach can also be applied to underrepresented protein families
with little characterized enzyme datasets. These results validate our hypothesis that ProtGPT2 can be
fine-tuned on a carefully curated TPS dataset to produce valid de novo TPS candidates.
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Among the seven generated sequences, enzymatic activity was so far confirmed in only two, and
the presence of oxygen in the product chemical formula suggests they cannot yet be confirmed as
canonical TPS enzymes. We plan to conduct further wet-lab experiments to characterize their activity
and refine our in silico pipeline. Ongoing experiments aim to characterize their catalytic mechanisms
in more detail, as well as to validate other generated TPSs. Future directions include conditioning
TPS generation on terpene subclasses via curated datasets to generate specific terpenes. While this
study focused on the TPS family, the methodology can be generalized to other protein families, such
as, for example, lysozymes, to explore functional diversity.
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7 Appendix

7.1 Supplementary Methods
7.1.1 Hyperparameter Optimization

To obtain a well-generalized model, we optimized key hyperparameters of the ProtGPT2 fine-
tuning process using the run_clm.py script from HuggingFace. The following hyperparameters were
considered:

1. Learning rate: Learning rate controls how quickly the model updates its weights based on
the training sequences. After experimentation, we selected a learning rate of le-4, at which
point the validation loss converged. Higher rates (e.g., le-3) resulted in continued training
loss reduction but increased overfitting, as shown in Table [AT] and Figure[AT]

2. Block size: We used a block size of 512 tokens, consistent with the original ProtGPT?2 paper.
Each block represents the maximum sequence length fed into the model during training.

3. Batch size and Gradient accumulation steps: Regular batch size was set to 64. To simulate
a larger effective batch size of 512 on a single GPU, we set gradient accumulation steps to
8, summing the gradients over eight steps during backpropagation.

4. Max steps: The max steps parameter controls the total number of optimization steps
(analogous to training epochs). We empirically determined that 4,000 steps were optimal,
achieving convergence in both training and validation loss (Table[A2]and Figure[AZ).

7.1.2 Sequence Validation Methods

1. EnzymeExplorer: We applied the EnzymeExplorer command-line tools [enzyme explorer,
2025]] with a detection threshold of 0.7 to identify putative TPS sequences.

2. CLEAN: We used the CLEAN web server [clean, [2025] to predict the EC numbers for the
seven generated TPS sequences.

3. InterPro: We used the InterProScan web server [interprol 2025] to predict the protein
domains for the seven generated TPS sequences.

4. Foldseek: We employed the Foldseek command-line tools [foldseek, [2025]] to construct
a target database from the training set proteins (63k). Using the easy-search command,
we identified the top structural match in this database for each of the seven generated TPS
sequences and recorded the corresponding TM-score (Figure [Ad).


https://doi.org/10.1093/nar/gkl910
https://doi.org/10.1016/j.sbi.2024.102794
https://doi.org/10.1021/acscentsci.3c01275
https://doi.org/10.1126/science.adf2465
https://doi.org/10.3389/fbioe.2020.00347
https://doi.org/10.3389/fbioe.2020.00347
https://doi.org/10.3389/fbioe.2020.00347
https://dspace.cuni.cz/handle/20.500.11956/190195

359

360
361

363

364
365
366

368

369

7.2 Threshold Selection

1. maxID: maxID threshold of < 60% was chosen based on past experimental data from

protein generation [Ruffolo et al.| [2025].

prediction with misplacement of some side chains

. pLDDT: We chose a pLDDT threshold of > 70 which corresponds to a correct backbone

. EnzymeExplorer Threshold: EnzymeExplorer TPS detection threshold was > 0.7 to

identify likely TPS sequences. Past research work has used thresholds between 0.35 and

0.7 [Samusevich et al,[2023].

structural similarity and fold with representative TPS functions.

7.3 Appendix Tables and Figures

10.0

Loss

M Training Loss [l Evaluation Loss

learning rates.

. TM-Score: We filtered to sequences with TM-Scores between 0.6 and 0.9 to preserve

Table Al: Training and evaluation loss for different

Learning rate

Training Loss  Evaluation Loss

le-6
le-5

1.00E-06 1.00E-05 1.00E-04 1.00E-03 1e-4

le-3

Learning rate

8.4
7.5
6.1
4.2

8.0
7.8
7.5
7.4

Figure A1: Training and evaluation loss as a function
of learning rate.
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Max steps  Training Loss  Evaluation Loss
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Figure A2: Training and evaluation loss as a function
of max steps.
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Figure A3: Distribution of perplexity scores for the top 2800 sequences.
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Figure A4: Foldseek structural alignment for the seven TPS sequences with their respective top matches in the

training set. Foldseek TM-scores were between 0.6 and 0.9 consistent with belonging to the same TPS family.
Blue represents the generated TPS sequences and yellow is the target top structural match in the training set.
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