
De novo generation of functional terpene synthases
using TpsGPT

Hamsini Ramanathan1 Roman Bushuiev2, 3 Matouš Soldát3 Jiří Kohout3
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Abstract

Terpene synthases (TPS) are a key family of enzymes responsible for generating the1

diverse terpene scaffolds that underpin many natural products, including front-line2

anticancer drugs such as Taxol. However, de novo TPS design through directed3

evolution is costly and slow. We introduce TpsGPT, a generative model for scalable4

TPS protein design, built by fine-tuning the protein language model ProtGPT25

on 79k TPS sequences mined from UniProt. TpsGPT generated de novo enzyme6

candidates in silico and we evaluated them using multiple validation metrics,7

including EnzymeExplorer classification, ESMFold structural confidence (pLDDT),8

sequence diversity, CLEAN classification, InterPro domain detection, and Foldseek9

structure alignment. From an initial pool of 28k generated sequences, we identified10

seven putative TPS enzymes that satisfied all validation criteria. Experimental11

validation confirmed TPS enzymatic activity in at least two of these sequences. Our12

results show that fine-tuning of a protein language model on a carefully curated,13

enzyme-class-specific dataset, combined with rigorous filtering, can enable the14

de novo generation of functional, evolutionarily distant enzymes.15

1 Introduction16

Terpene synthases (TPS) are a specialized family of enzymes that generate hydrocarbon scaffolds for17

terpenes—the largest and most diverse class of natural products, encompassing widely used flavors,18

fragrances, and frontline medicines [Samusevich et al., 2025]. Terpenes exhibit diverse bioactivities,19

including analgesic, anticonvulsant, and anti-inflammatory properties [Del Prado-Audelo et al., 2021].20

More than 76,000 terpenes have been characterized to date [Rudolf and Chang, 2019]. Among them,21

Taxol, a diterpene, remains a first-line anticancer drug with multi-billion-dollar annual sales [Weaver,22

2014].23

Despite their importance, terpenes are notoriously difficult to synthesize industrially due to their24

structural complexity [Del Moral et al., 2019]. Conventional chemical synthesis requires numerous25

steps and incurs high energy and resource costs, making it unsustainable at scale. In contrast, synthetic26

biology offers a more efficient route by leveraging TPS enzymes to catalyze key reactions [Zhang27

and Hong, 2020].28

Here we present TpsGPT1, a terpene synthase sequence generation model fine-tuned on a distilled29

protein language model — ProtGPT2 Tiny [Ferruz et al., 2022, protgpt2 tiny, 2022]. TpsGPT is30

trained on a carefully curated 79k homologous TPS dataset mined from large scale repositories like31

UniProt. The mining process initially used a very small 1125 experimentally characterized actual32

1https://github.com/colorfulcereal/TpsGPT
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TPS enzymes from published sources as a seed to identify TPS patterns based on which the mining33

process produced 79k homologous TPS sequences. TpsGPT generated evolutionary distant sequences34

while conserving key TPS structural features. The resulting de novo sequences exhibit high predicted35

structural stability and low sequence identity relative to the training set. Our results demonstrate36

that fine-tuning protein language models on a carefully curated, enzyme-class-specific dataset, can37

effectively explore the vast protein sequence space, producing valid enzyme candidates even for38

underrepresented protein families like terpene synthases.39

2 Related Work40

Protein engineering. The design of novel TPS enzymes for terpene biosynthesis remains a complex41

and time-consuming task. There are two main approaches for protein engineering: rational design and42

directed evolution [Vidal et al., 2023]. Rational design involves performing chosen point mutations,43

insertions or deletions in the coding sequence. Directed evolution, on the other hand, bypasses the44

need to determine specific mutations a priority by mimicking the process of natural evolution in45

the laboratory. While promising, these methods have a major disadvantage — the sequences they46

generate often remain highly similar to naturally occurring proteins, leaving vast regions of the protein47

sequence space unexplored [Yang et al., 2024]. Moreover, robotics-accelerated high-throughput48

directed evolution techniques like Phage-Assisted Continuous Evolution are prohibitively expensive,49

with costs reaching hundreds of thousands of dollars [Aoudjane et al., 2024]50

Computational design of terpene synthases. Machine learning-assisted annotation methods51

predict and label likely TPS enzymes in large protein databases like UniProt and UniRef [Samusevich52

et al., 2025, Bateman, 2018, Suzek et al., 2014] but such methods only uncover existing proteins in53

nature. De novo enzyme design approaches such as RFdiffusion use diffusion-based deep learning54

architectures to generate novel protein backbones [Watson et al., 2023]. Although promising,55

RFDiffusion is a structure-based method and requires a comprehensive understanding of a catalytic56

site and its activity to generate functional enzymes [Lauko et al., 2025]. Instead, our work aims to57

design enzymes given only a set of family-specific sequences.58

Protein Language Models (PLMs). PLMs are based on large language models (LLMs) like GPT2,59

which leverage the Transformer architecture to model sequential data [Vaswani et al., 2017]. Prior60

work has shown that fine-tuning PLMs can generate de novo proteins within specific families [Win-61

nifrith et al., 2024]. However, existing PLM fine-tuning methods to generate sequences rely on62

extensive family-specific datasets and often require additional inputs such as control tags for model63

conditioning. Additionally, the fine-tuning is typically done on large models such as ProGEN with 28064

million parameters [Madani et al., 2023]. ProtGPT2 is a state-of-the-art autoregressive Transformer-65

based PLM with 738 million parameters [Ferruz et al., 2022] and enables high-throughput protein66

generation in seconds. Additionally, ProtGPT2 offers a tiny model [protgpt2 tiny, 2022] with 38.967

million parameters with comparable performance as the original bigger model. Motivated by these68

properties, we fine-tune ProtGPT2 tiny to generate de novo terpene synthase sequences starting from69

a small dataset of 1125 TPS sequences.70

3 Materials and Methods71

We developed TpsGPT, a scalable in silico framework for de novo TPS enzyme design (Figure 1).72

The approach combines protein language model fine-tuning with principled sequence generation and73

multi-stage validation to produce viable, evolutionarily distant TPS candidates.74

3.1 Dataset Preparation75

As a starting point, we used a dataset of 1125 experimentally validated TPS sequences, which was76

later extended to 79k computationally-mined TPS sequences [Čalounová and Pluskal, 2024]. In the77

mining process, HMMER’s hmmsearch was used with merged and indexed TPS-specific Pfam and78

SUPERFAMILY databases to identify terpene synthases [Finn et al., 2011, Mistry et al., 2020, Wilson79

et al., 2006]. For the preclustered Big Fantastic Database (BFD), only representative sequences were80

mined first, with full clusters analyzed if hits were found [Jumper et al., 2021]. Post-mining, several81

filtering steps enhanced reliability: removing sequences outside the 300–1100 amino acid range,82

excluding those with stronger hits to non-TPS domains, requiring characteristic TPS catalytic motifs83

(DDXXD and NSE/DTE motifs of Class I TPSs and the DXDD motif of Class II TPSs), discarding84
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Figure 1: Overview of our approach. Part 1: We collected 1125 experimentally characterized TPS enzymes
from all published sources to mine the 79k TPS dataset from UniProt [Čalounová and Pluskal, 2024]. We created
an 80/20 split using SpanSeq [Florensa et al., 2024] with at most 30% sequence identity between the splits and
fine-tuned the distilled ProtGPT2 tiny [protgpt2 tiny, 2022] model to create TpsGPT. Part 2: We generated 28k
sequences using TpsGPT and filtered them using seven validation metrics: Sequence filters: Perplexity and
max sequence identity to training set. Function filters: EnzymeExplorer TPS score [Samusevich et al., 2025],
CLEAN enzyme classification [Yu et al., 2023], and InterPro domain prediction [Blum et al., 2024] Structure
filters: pLDDT using ESMFold [esmfold, 2025] and max Foldseek TM-score to training set [Van Kempen et al.,
2023]. Above filters reduced the 28k sequences to seven putative TPS sequences. Wet-lab validation using
yeast expression followed by liquid chromatography coupled with mass spectrometry (LC-MS) showed TPS
enzymatic activity in two sequences [Pitt, 2009].

sequences with incomplete or atypical domain architectures, and filtering out sequences with >80%85

identity to known isoprenyl diphosphate synthases [Liu et al., 2025, Jiang et al., 2019]. The remaining86

sequences were designated as candidate terpene synthases and were used to fine-tune ProtGPT2.87

To avoid data leakage and ensure generalization, the sequences were clustered using SpanSeq [Flo-88

rensa et al., 2024] into six partitions at 30% sequence identity between partitions. We combined89

five partitions (∼63k sequences) for training while the remaining partition (∼16k sequences) was90

reserved for validation, resulting in an 80/20 split.91

3.2 Model Fine-Tuning92

The original ProtGPT2 model contains 738 million parameters, making full fine-tuning computa-93

tionally expensive [protgpt2, 2022]. Hence, we fine-tuned the distilled ProtGPT2 tiny model with94

38.9 million parameters. The distilled tiny model retains comparable perplexities to the original95

large model while offering up to six times faster inference, enabling high-throughput sequence96

generation [protgpt2 tiny, 2022]. Fine-tuning was performed using Lightning AI on a single NVIDIA97

L4 tensor core [lightning, 2025].98

3.3 TPS Sequence Generation and Filtering99

After fine-tuning, we generated 28k protein sequences. A multi-stage filtering pipeline was applied to100

identify putative TPS enzymes from the 28k sequences:101

Sequence Filters: The 28k sequences were ranked by perplexity, and the top 10% (2,800 sequences)102

were retained. Maximum pairwise sequence identity (maxID) to the training set was computed, and103

only sequences with maxID ≤ 60% were retained to encourage evolutionary distance.104

Function Filters: We used EnzymeExplorer with a TPS detection threshold of 0.7 (range 0–1) to105

select sequences likely to possess TPS activity [Samusevich et al., 2025]. CLEAN (Contrastive106

Learning Enabled Enzyme ANnotation) is a ML model that assigns EC (Enzyme Commission)107

number to protein sequences [Yu et al., 2023]. We used CLEAN to predict EC numbers and selected108

only those with a terpenoid/terpene biosynthetic pathway in BRENDA [brenda, 2025]. InterPro is109

another model that predicts domains given a sequence [Blum et al., 2024]. We selected only those110

sequences when the InterPro predicted domain was a terpene synthase specific domain or a domain111

with an overlapping superfamily containing a TPS domain.112

Structure Filters: We computed Predicted Local Distance Difference Test (pLDDT) scores from113

ESMFold [esmfold, 2025], retaining only sequences with pLDDT ≥ 70, indicative of accurate back-114

bone modeling and valid 3D structures. To ensure conservation of TPS structure, we used Foldseek115

to do 3D structural comparison of the generated sequences relative to their respective top structural116

matches in the training set and retained those with TM-scores between 0.6 and 0.9 [Van Kempen117

et al., 2023].118
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This pipeline produced candidates that are structurally feasible, TPS-like, and evolutionarily distant,119

representing potential de novo TPS enzymes suitable for downstream experimental validation.120

4 Results121

We fine-tuned the distilled ProtGPT2 tiny model on 79k TPS sequences mined from UniProt and122

generated 28k TPS sequence candidates. After picking the top 10% (2800) sequences by perplexity123

score, we applied the following filters: pLDDT score, EnzymeExplorer TPS detection score, max124

sequence identity to training set, Foldseek alignment (TM-Score), CLEAN classified EC number,125

and InterPro domain to identify putative de novo TPS sequences.126

4.1 TpsGPT Generates Valid TPS Sequences127

Figure 2: CDF of pLDDT scores of the top 2800
generated sequences. More than 40% had pLDDT
≥ 70 indicating stable structures.

Among the top 2,800 sequences ranked by perplexity,128

40% achieved pLDDT scores ≥ 70 (Figure 2). From129

this set, 77 sequences passed the EnzymeExplorer130

TPS detection threshold (>= 0.7). A detection score131

above 0.7 indicates the potential to catalyze terpenes.132

4.2 Evolutionarily Distant133

Sequences with Conserved TPS Structures134

From the 77 candidates, we filtered down to seven135

with ≤ 60% sequence identity to the training set, rep-136

resenting potential de novo TPS enzymes (Table 1).137

3D structural comparison of the generated sequences relative to their respective top structural matches138

in the training set using Foldseek confirmed TM-scores between 0.6 and 0.9 (Table 1), consistent139

with belonging to the same structural family [Van Kempen et al., 2023]. Moreover, CLEAN assigned140

all seven sequences to TPS EC classes, providing robust computational support [Yu et al., 2023]141

(Table 1). InterPro analysis detected at least one relevant TPS specific domain in each sequence142

as shown in Figure 3 [Blum et al., 2024]. Together, the above results show that TpsGPT generates143

evolutionary distant yet structurally conserved de novo TPS enzymes.144

TpsGPT1
maxID 49.67%

TpsGPT2
maxID 59.72%

TpsGPT3
maxID 60.00%

TpsGPT4
maxID 60.08%

TpsGPT5
maxID 59.75%

TpsGPT6
maxID 57.33%

TpsGPT7
maxID 52.19%

Figure 3: ColabFold-generated 3D structures of the seven de novo putative TPS enzymes, with TPS domains
annotated by InterPro [Mirdita et al., 2022, Blum et al., 2024]. maxID denotes the maximum sequence identity
of each sequence to those in the training set. The figure shows that TpsGPT can generate evolutionarily distant
TPS sequences while conserving TPS domains.
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Table 1: Properties of the seven putative de novo TPS sequences. Each sequence is distinguished by a unique
Sequence ID. EnzymeExplorer TPS score measures TPS-like characteristics, pLDDT score indicates the stability
of 3D folding, Max Foldseek TM-score indicates structural alignment with TPS sequences in training set, Max
seq. identity to training set denotes the uniqueness of the TPS sequence, CLEAN-predicted EC number provides
the enzyme classification, and InterPro predicts the domains in the sequence. TpsGPT1 and TpsGPT2 are shown
in bold, indicating experimentally-validated enzymatic activity in both sequences.

Sequence ID EnzymeExplorer TPS pLDDT Max Foldseek TM-Score Max seq. identity CLEAN Predicted InterPro Predicted
Score Score to training set to training set EC number Domain

TpsGPT1 0.75 78 0.73 49.67% Germacrene D Synthase
(4.2.3.75)

Terpene synthase, N-terminal
domain and Terpene synthase,
metal-binding domain

TpsGPT2 0.72 74 0.79 59.72% Squalene Synthase
(2.5.1.21)

Trans-isoprenyl diphosphate
synthases, head-to-head domain

TpsGPT3 0.73 74 0.84 60.00% Cucurbitadienol Syn-
thase (5.4.99.33)

Squalene-hopene cyclase, N-
terminal domain

TpsGPT4 0.73 70 0.65 60.08% Squalene Synthase
(2.5.1.21)

Trans-isoprenyl diphosphate
synthases, head-to-head domain

TpsGPT5 0.78 80 0.72 59.75% Beta-amyrin Synthase
(5.4.99.39)

Squalene-hopene cyclase, N-
terminal domain

TpsGPT6 0.73 71 0.69 57.33% Squalene Synthase
(2.5.1.21)

Trans-isoprenyl diphosphate
synthases, head-to-head domain

TpsGPT7 0.74 71 0.72 52.19% Cycloartenol Synthase
(5.4.99.8)

Squalene-hopene cyclase, N-
terminal domain

4.3 Experimental Validation Confirms Enzymatic Activity145

To functionally characterize the enzymes designed with TpsGPT, we heterologously expressed the146

corresponding genes in the budding yeast Saccharomyces cerevisiae strain JWY501. This strain has147

been engineered for elevated production of the diterpene substrate geranylgeranyl pyrophosphate.148

Using liquid chromatography, coupled with mass spectrometry (LC-MS) [Pitt, 2009], we confirmed149

the enzymatic activity in two sequences (TpsGPT1 and TpsGPT2) (Figure 4).150
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Figure 4: Chromatogram showing wet-lab validation of enzymatic activity for the generated TpsGPT1 and
TpsGPT2 sequences. Extracted ion chromatograms (XIC) at the mass of C20H36O2 confirm the production
of diterpene-like products (e.g., sclareol; CHEBI:9053) in yeast expressing TpsGPT1 (red; two replicates) and
TpsGPT2 (blue; two replicates). Black trace represents the control.

5 Conclusion151

In this work, we demonstrate the potential of fine-tuning protein language models, specifically152

ProtGPT2 Tiny, on a carefully curated TPS dataset to generate novel and valid terpene synthases. The153

seven sequences generated by TpsGPT exhibited high pLDDT scores, indicating stable 3D structures,154

and low perplexity scores, suggesting syntactically valid protein sequences. The seven sequences155

were also functionally validated by EnzymeExplorer, CLEAN and InterPro models. Furthermore, low156

pairwise sequence identity and favorable Foldseek TM-scores indicate the likelihood of discovering157

evolutionarily distant TPS enzymes not present in nature. Importantly, the entire pipeline was158

executed with less than $200 in GPU cost, demonstrating the scalable and cost-efficient nature of159

this approach. Additionally, our approach can also be applied to underrepresented protein families160

with little characterized enzyme datasets. These results validate our hypothesis that ProtGPT2 can be161

fine-tuned on a carefully curated TPS dataset to produce valid de novo TPS candidates.162
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Among the seven generated sequences, enzymatic activity was so far confirmed in only two, and163

the presence of oxygen in the product chemical formula suggests they cannot yet be confirmed as164

canonical TPS enzymes. We plan to conduct further wet-lab experiments to characterize their activity165

and refine our in silico pipeline. Ongoing experiments aim to characterize their catalytic mechanisms166

in more detail, as well as to validate other generated TPSs. Future directions include conditioning167

TPS generation on terpene subclasses via curated datasets to generate specific terpenes. While this168

study focused on the TPS family, the methodology can be generalized to other protein families, such169

as, for example, lysozymes, to explore functional diversity.170
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7 Appendix330

7.1 Supplementary Methods331

7.1.1 Hyperparameter Optimization332

To obtain a well-generalized model, we optimized key hyperparameters of the ProtGPT2 fine-333

tuning process using the run_clm.py script from HuggingFace. The following hyperparameters were334

considered:335

1. Learning rate: Learning rate controls how quickly the model updates its weights based on336

the training sequences. After experimentation, we selected a learning rate of 1e-4, at which337

point the validation loss converged. Higher rates (e.g., 1e-3) resulted in continued training338

loss reduction but increased overfitting, as shown in Table A1 and Figure A1.339

2. Block size: We used a block size of 512 tokens, consistent with the original ProtGPT2 paper.340

Each block represents the maximum sequence length fed into the model during training.341

3. Batch size and Gradient accumulation steps: Regular batch size was set to 64. To simulate342

a larger effective batch size of 512 on a single GPU, we set gradient accumulation steps to343

8, summing the gradients over eight steps during backpropagation.344

4. Max steps: The max steps parameter controls the total number of optimization steps345

(analogous to training epochs). We empirically determined that 4,000 steps were optimal,346

achieving convergence in both training and validation loss (Table A2 and Figure A2).347

7.1.2 Sequence Validation Methods348

1. EnzymeExplorer: We applied the EnzymeExplorer command-line tools [enzyme explorer,349

2025] with a detection threshold of 0.7 to identify putative TPS sequences.350

2. CLEAN: We used the CLEAN web server [clean, 2025] to predict the EC numbers for the351

seven generated TPS sequences.352

3. InterPro: We used the InterProScan web server [interpro, 2025] to predict the protein353

domains for the seven generated TPS sequences.354

4. Foldseek: We employed the Foldseek command-line tools [foldseek, 2025] to construct355

a target database from the training set proteins (63k). Using the easy-search command,356

we identified the top structural match in this database for each of the seven generated TPS357

sequences and recorded the corresponding TM-score (Figure A4).358
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7.2 Threshold Selection359

1. maxID: maxID threshold of ≤ 60% was chosen based on past experimental data from360

protein generation [Ruffolo et al., 2025].361

2. pLDDT: We chose a pLDDT threshold of ≥ 70 which corresponds to a correct backbone362

prediction with misplacement of some side chains [Embl-Ebi]363

3. EnzymeExplorer Threshold: EnzymeExplorer TPS detection threshold was ≥ 0.7 to364

identify likely TPS sequences. Past research work has used thresholds between 0.35 and365

0.7 [Samusevich et al., 2025].366

4. TM-Score: We filtered to sequences with TM-Scores between 0.6 and 0.9 to preserve367

structural similarity and fold with representative TPS functions.368

7.3 Appendix Tables and Figures369

Figure A1: Training and evaluation loss as a function
of learning rate.

Table A1: Training and evaluation loss for different
learning rates.

Learning rate Training Loss Evaluation Loss

1e-6 8.4 8.0
1e-5 7.5 7.8
1e-4 6.1 7.5
1e-3 4.2 7.4

Figure A2: Training and evaluation loss as a function
of max steps.

Table A2: Training and evaluation loss as a function
of max steps.

Max steps Training Loss Evaluation Loss

1200 6.07 7.49
1875 5.66 7.41
3000 5.21 7.34
4000 4.94 7.32
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Figure A3: Distribution of perplexity scores for the top 2800 sequences.

TpsGPT1 TpsGPT2 TpsGPT3 TpsGPT4

TpsGPT5 TpsGPT6 TpsGPT7

Figure A4: Foldseek structural alignment for the seven TPS sequences with their respective top matches in the
training set. Foldseek TM-scores were between 0.6 and 0.9 consistent with belonging to the same TPS family.
Blue represents the generated TPS sequences and yellow is the target top structural match in the training set.
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