
De novo generation of functional terpene synthases using TpsGPT

Hamsini Ramanathan¹ Roman Bushuiev^{2,3} Matouš Soldát³ Jiří Kohout³
Téo Hebra³ Joshua David Smith³ Josef Sivic² Tomáš Pluskal³

¹Seattle Academy of Arts and Sciences (SAAS), Seattle

²Czech Institute of Informatics, Robotics and Cybernetics, Czech Technical University

³Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences

Abstract

1 Terpene synthases (TPS) are a key family of enzymes responsible for generating the
2 diverse terpene scaffolds that underpin many natural products, including front-line
3 anticancer drugs such as Taxol. However, *de novo* TPS design through directed
4 evolution is costly and slow. We introduce TpsGPT, a generative model for scalable
5 TPS protein design, built by fine-tuning the protein language model ProtGPT2
6 on 79k TPS sequences mined from UniProt. TpsGPT generated *de novo* enzyme
7 candidates *in silico* and we evaluated them using multiple validation metrics,
8 including EnzymeExplorer classification, ESMFold structural confidence (pLDDT),
9 sequence diversity, CLEAN classification, InterPro domain detection, and Foldseek
10 structure alignment. From an initial pool of 28k generated sequences, we identified
11 seven putative TPS enzymes that satisfied all validation criteria. Experimental
12 validation confirmed TPS enzymatic activity in at least two of these sequences. Our
13 results show that fine-tuning of a protein language model on a carefully curated,
14 enzyme-class-specific dataset, combined with rigorous filtering, can enable the
15 *de novo* generation of functional, evolutionarily distant enzymes.

16

1 Introduction

17 Terpene synthases (TPS) are a specialized family of enzymes that generate hydrocarbon scaffolds for
18 terpenes—the largest and most diverse class of natural products, encompassing widely used flavors,
19 fragrances, and frontline medicines [Samusevich et al., 2025]. Terpenes exhibit diverse bioactivities,
20 including analgesic, anticonvulsant, and anti-inflammatory properties [Del Prado-Audelo et al., 2021].
21 More than 76,000 terpenes have been characterized to date [Rudolf and Chang, 2019]. Among them,
22 Taxol, a diterpene, remains a first-line anticancer drug with multi-billion-dollar annual sales [Weaver,
23 2014].

24 Despite their importance, terpenes are notoriously difficult to synthesize industrially due to their
25 structural complexity [Del Moral et al., 2019]. Conventional chemical synthesis requires numerous
26 steps and incurs high energy and resource costs, making it unsustainable at scale. In contrast, synthetic
27 biology offers a more efficient route by leveraging TPS enzymes to catalyze key reactions [Zhang
28 and Hong, 2020].

29 Here we present **TpsGPT**¹, a terpene synthase sequence generation model fine-tuned on a distilled
30 protein language model — ProtGPT2 Tiny [Ferruz et al., 2022, protgpt2 tiny, 2022]. TpsGPT is
31 trained on a carefully curated 79k homologous TPS dataset mined from large scale repositories like
32 UniProt. The mining process initially used a very small **1125** experimentally characterized actual

¹<https://github.com/colorfulcereal/TpsGPT>

33 TPS enzymes from published sources as a seed to identify TPS patterns based on which the mining
34 process produced 79k homologous TPS sequences. TpsGPT generated evolutionary distant sequences
35 while conserving key TPS structural features. The resulting *de novo* sequences exhibit high predicted
36 structural stability and low sequence identity relative to the training set. Our results demonstrate
37 that fine-tuning protein language models on a carefully curated, enzyme-class-specific dataset, can
38 effectively explore the vast protein sequence space, producing valid enzyme candidates even for
39 underrepresented protein families like terpene synthases.

40 2 Related Work

41 **Protein engineering.** The design of novel TPS enzymes for terpene biosynthesis remains a complex
42 and time-consuming task. There are two main approaches for protein engineering: rational design and
43 directed evolution [Vidal et al., 2023]. Rational design involves performing chosen point mutations,
44 insertions or deletions in the coding sequence. Directed evolution, on the other hand, bypasses the
45 need to determine specific mutations a priority by mimicking the process of natural evolution in
46 the laboratory. While promising, these methods have a major disadvantage — the sequences they
47 generate often remain highly similar to naturally occurring proteins, leaving vast regions of the protein
48 sequence space unexplored [Yang et al., 2024]. Moreover, robotics-accelerated high-throughput
49 directed evolution techniques like Phage-Assisted Continuous Evolution are prohibitively expensive,
50 with costs reaching hundreds of thousands of dollars [Aoudjane et al., 2024]

51 **Computational design of terpene synthases.** Machine learning-assisted annotation methods
52 predict and label likely TPS enzymes in large protein databases like UniProt and UniRef [Samusevich
53 et al., 2025, Bateman, 2018, Suzek et al., 2014] but such methods only uncover existing proteins in
54 nature. *De novo* enzyme design approaches such as RFdiffusion use diffusion-based deep learning
55 architectures to generate novel protein backbones [Watson et al., 2023]. Although promising,
56 RFdiffusion is a structure-based method and requires a comprehensive understanding of a catalytic
57 site and its activity to generate functional enzymes [Lauko et al., 2025]. Instead, our work aims to
58 design enzymes given only a set of family-specific sequences.

59 **Protein Language Models (PLMs).** PLMs are based on large language models (LLMs) like GPT2,
60 which leverage the Transformer architecture to model sequential data [Vaswani et al., 2017]. Prior
61 work has shown that fine-tuning PLMs can generate *de novo* proteins within specific families [Win-
62 nifirth et al., 2024]. However, existing PLM fine-tuning methods to generate sequences rely on
63 extensive family-specific datasets and often require additional inputs such as control tags for model
64 conditioning. Additionally, the fine-tuning is typically done on large models such as ProGEN with 280
65 million parameters [Madani et al., 2023]. ProtGPT2 is a state-of-the-art autoregressive Transformer-
66 based PLM with 738 million parameters [Ferruz et al., 2022] and enables high-throughput protein
67 generation in seconds. Additionally, ProtGPT2 offers a tiny model [protgpt2 tiny, 2022] with 38.9
68 million parameters with comparable performance as the original bigger model. Motivated by these
69 properties, we fine-tune ProtGPT2 tiny to generate *de novo* terpene synthase sequences starting from
70 a small dataset of 1125 TPS sequences.

71 3 Materials and Methods

72 We developed **TpsGPT**, a scalable *in silico* framework for *de novo* TPS enzyme design (Figure 1).
73 The approach combines protein language model fine-tuning with principled sequence generation and
74 multi-stage validation to produce viable, evolutionarily distant TPS candidates.

75 3.1 Dataset Preparation

76 As a starting point, we used a dataset of 1125 experimentally validated TPS sequences, which was
77 later extended to 79k computationally-mined TPS sequences [Čalounová and Pluskal, 2024]. In the
78 mining process, HMMER’s hmmsearch was used with merged and indexed TPS-specific Pfam and
79 SUPERFAMILY databases to identify terpene synthases [Finn et al., 2011, Mistry et al., 2020, Wilson
80 et al., 2006]. For the preclustered Big Fantastic Database (BFD), only representative sequences were
81 mined first, with full clusters analyzed if hits were found [Jumper et al., 2021]. Post-mining, several
82 filtering steps enhanced reliability: removing sequences outside the 300–1100 amino acid range,
83 excluding those with stronger hits to non-TPS domains, requiring characteristic TPS catalytic motifs
84 (DDXXD and NSE/DTE motifs of Class I TPSs and the DXDD motif of Class II TPSs), discarding

Figure 1: Overview of our approach. Part 1: We collected 1125 experimentally characterized TPS enzymes from all published sources to mine the 79k TPS dataset from UniProt [Calounová and Pluskal, 2024]. We created an 80/20 split using SpanSeq [Florensa et al., 2024] with at most 30% sequence identity between the splits and fine-tuned the distilled ProtGPT2 tiny [protgpt2 tiny, 2022] model to create TpsGPT. **Part 2:** We generated 28k sequences using TpsGPT and filtered them using seven validation metrics: **Sequence filters:** Perplexity and max sequence identity to training set. **Function filters:** EnzymeExplorer TPS score [Samusevich et al., 2025], CLEAN enzyme classification [Yu et al., 2023], and InterPro domain prediction [Blum et al., 2024] **Structure filters:** pLDDT using ESMFold [esmfold, 2025] and max Foldseek TM-score to training set [Van Kempen et al., 2023]. Above filters reduced the 28k sequences to **seven** putative TPS sequences. Wet-lab validation using yeast expression followed by liquid chromatography coupled with mass spectrometry (LC-MS) showed TPS enzymatic activity in two sequences [Pitt, 2009].

85 sequences with incomplete or atypical domain architectures, and filtering out sequences with >80%
 86 identity to known isoprenyl diphosphate synthases [Liu et al., 2025, Jiang et al., 2019]. The remaining
 87 sequences were designated as candidate terpene synthases and were used to fine-tune ProtGPT2.
 88 To avoid data leakage and ensure generalization, the sequences were clustered using SpanSeq [Flo-
 89 rensa et al., 2024] into six partitions at 30% sequence identity between partitions. We combined
 90 five partitions (~63k sequences) for training while the remaining partition (~16k sequences) was
 91 reserved for validation, resulting in an 80/20 split.

92 3.2 Model Fine-Tuning

93 The original ProtGPT2 model contains 738 million parameters, making full fine-tuning computa-
 94 tionally expensive [protgpt2, 2022]. Hence, we fine-tuned the distilled ProtGPT2 tiny model with
 95 38.9 million parameters. The distilled tiny model retains comparable perplexities to the original
 96 large model while offering up to six times faster inference, enabling high-throughput sequence
 97 generation [protgpt2 tiny, 2022]. Fine-tuning was performed using Lightning AI on a single NVIDIA
 98 L4 tensor core [lightning, 2025].

99 3.3 TPS Sequence Generation and Filtering

100 After fine-tuning, we generated 28k protein sequences. A multi-stage filtering pipeline was applied to
 101 identify putative TPS enzymes from the 28k sequences:

102 **Sequence Filters:** The 28k sequences were ranked by perplexity, and the top 10% (2,800 sequences)
 103 were retained. Maximum pairwise sequence identity (maxID) to the training set was computed, and
 104 only sequences with $\text{maxID} \leq 60\%$ were retained to encourage evolutionary distance.

105 **Function Filters:** We used EnzymeExplorer with a TPS detection threshold of 0.7 (range 0–1) to
 106 select sequences likely to possess TPS activity [Samusevich et al., 2025]. CLEAN (Contrastive
 107 Learning Enabled Enzyme ANnotation) is a ML model that assigns EC (Enzyme Commission)
 108 number to protein sequences [Yu et al., 2023]. We used CLEAN to predict EC numbers and selected
 109 only those with a terpenoid/terpene biosynthetic pathway in BRENDA [brenda, 2025]. InterPro is
 110 another model that predicts domains given a sequence [Blum et al., 2024]. We selected only those
 111 sequences when the InterPro predicted domain was a terpene synthase specific domain or a domain
 112 with an overlapping superfamily containing a TPS domain.

113 **Structure Filters:** We computed Predicted Local Distance Difference Test (pLDDT) scores from
 114 ESMFold [esmfold, 2025], retaining only sequences with $\text{pLDDT} \geq 70$, indicative of accurate back-
 115 bone modeling and valid 3D structures. To ensure conservation of TPS structure, we used Foldseek
 116 to do 3D structural comparison of the generated sequences relative to their respective top structural
 117 matches in the training set and retained those with TM-scores between 0.6 and 0.9 [Van Kempen
 118 et al., 2023].

119 This pipeline produced candidates that are structurally feasible, TPS-like, and evolutionarily distant,
120 representing potential *de novo* TPS enzymes suitable for downstream experimental validation.

121 4 Results

122 We fine-tuned the distilled ProtGPT2 tiny model on 79k TPS sequences mined from UniProt and
123 generated 28k TPS sequence candidates. After picking the top 10% (2800) sequences by perplexity
124 score, we applied the following filters: pLDDT score, EnzymeExplorer TPS detection score, max
125 sequence identity to training set, Foldseek alignment (TM-Score), CLEAN classified EC number,
126 and InterPro domain to identify putative *de novo* TPS sequences.

127 4.1 TpsGPT Generates Valid TPS Sequences

128 Among the top 2,800 sequences ranked by perplexity,
129 40% achieved pLDDT scores ≥ 70 (Figure 2). From
130 this set, **77 sequences** passed the EnzymeExplorer
131 TPS detection threshold (≥ 0.7). A detection score
132 above 0.7 indicates the potential to catalyze terpenes.

133 4.2 Evolutionarily Distant 134 Sequences with Conserved TPS Structures

135 From the 77 candidates, we filtered down to seven
136 with $\leq 60\%$ sequence identity to the training set, rep-
137 resenting potential *de novo* TPS enzymes (Table 1).
138 3D structural comparison of the generated sequences relative to their respective top structural matches
139 in the training set using Foldseek confirmed TM-scores between 0.6 and 0.9 (Table 1), consistent
140 with belonging to the same structural family [Van Kempen et al., 2023]. Moreover, CLEAN assigned
141 all seven sequences to TPS EC classes, providing robust computational support [Yu et al., 2023]
142 (Table 1). InterPro analysis detected at least one relevant TPS specific domain in each sequence
143 as shown in Figure 3 [Blum et al., 2024]. Together, the above results show that TpsGPT generates
144 evolutionary distant yet structurally conserved *de novo* TPS enzymes.

Figure 2: CDF of pLDDT scores of the top 2800 generated sequences. More than 40% had pLDDT ≥ 70 indicating stable structures.

Figure 3: ColabFold-generated 3D structures of the seven *de novo* putative TPS enzymes, with TPS domains annotated by InterPro [Mirdita et al., 2022, Blum et al., 2024]. maxID denotes the maximum sequence identity of each sequence to those in the training set. The figure shows that TpsGPT can generate evolutionarily distant TPS sequences while conserving TPS domains.

Table 1: Properties of the seven putative *de novo* TPS sequences. Each sequence is distinguished by a unique Sequence ID. EnzymeExplorer TPS score measures TPS-like characteristics, pLDDT score indicates the stability of 3D folding, Max Foldseek TM-score indicates structural alignment with TPS sequences in training set, Max seq. identity to training set denotes the uniqueness of the TPS sequence, CLEAN-predicted EC number provides the enzyme classification, and InterPro predicts the domains in the sequence. TpsGPT1 and TpsGPT2 are shown in bold, indicating experimentally-validated enzymatic activity in both sequences.

Sequence ID	EnzymeExplorer TPS Score	pLDDT Score	Max Foldseek TM-Score to training set	Max seq. identity to training set	CLEAN Predicted EC number	InterPro Predicted Domain
TpsGPT1	0.75	78	0.73	49.67%	Germacrene D Synthase (4.2.3.75)	Terpene synthase, N-terminal domain and Terpene synthase, metal-binding domain
TpsGPT2	0.72	74	0.79	59.72%	Squalene Synthase (2.5.1.21)	Trans-isoprenyl diphosphate synthases, head-to-head domain
TpsGPT3	0.73	74	0.84	60.00%	Cucurbitadienol Synthase (5.4.99.33)	Squalene-hopene cyclase, N-terminal domain
TpsGPT4	0.73	70	0.65	60.08%	Squalene Synthase (2.5.1.21)	Trans-isoprenyl diphosphate synthases, head-to-head domain
TpsGPT5	0.78	80	0.72	59.75%	Beta-amyrin Synthase (5.4.99.39)	Squalene-hopene cyclase, N-terminal domain
TpsGPT6	0.73	71	0.69	57.33%	Squalene Synthase (2.5.1.21)	Trans-isoprenyl diphosphate synthases, head-to-head domain
TpsGPT7	0.74	71	0.72	52.19%	Cycloartenol Synthase (5.4.99.8)	Squalene-hopene cyclase, N-terminal domain

145 4.3 Experimental Validation Confirms Enzymatic Activity

146 To functionally characterize the enzymes designed with TpsGPT, we heterologously expressed the
 147 corresponding genes in the budding yeast *Saccharomyces cerevisiae* strain JWY501. This strain has
 148 been engineered for elevated production of the diterpene substrate geranylgeranyl pyrophosphate.
 149 Using liquid chromatography, coupled with mass spectrometry (LC-MS) [Pitt, 2009], we confirmed
 150 the enzymatic activity in two sequences (**TpsGPT1** and **TpsGPT2**) (Figure 4).

Figure 4: Chromatogram showing wet-lab validation of enzymatic activity for the generated **TpsGPT1** and **TpsGPT2** sequences. Extracted ion chromatograms (XIC) at the mass of $C_{20}H_{36}O_2$ confirm the production of diterpene-like products (e.g., sclareol; CHEBI:9053) in yeast expressing TpsGPT1 (red; two replicates) and TpsGPT2 (blue; two replicates). Black trace represents the control.

151 5 Conclusion

152 In this work, we demonstrate the potential of fine-tuning protein language models, specifically
 153 ProtGPT2 Tiny, on a carefully curated TPS dataset to generate novel and valid terpene synthases. The
 154 seven sequences generated by **TpsGPT** exhibited high pLDDT scores, indicating stable 3D structures,
 155 and low perplexity scores, suggesting syntactically valid protein sequences. The seven sequences
 156 were also functionally validated by EnzymeExplorer, CLEAN and InterPro models. Furthermore, low
 157 pairwise sequence identity and favorable Foldseek TM-scores indicate the likelihood of discovering
 158 evolutionarily distant TPS enzymes not present in nature. Importantly, the entire pipeline was
 159 executed with less than **\$200** in GPU cost, demonstrating the scalable and cost-efficient nature of
 160 this approach. Additionally, our approach can also be applied to underrepresented protein families
 161 with little characterized enzyme datasets. These results validate our hypothesis that ProtGPT2 can be
 162 fine-tuned on a carefully curated TPS dataset to produce valid *de novo* TPS candidates.

163 Among the seven generated sequences, enzymatic activity was so far confirmed in only two, and
164 the presence of oxygen in the product chemical formula suggests they cannot yet be confirmed as
165 canonical TPS enzymes. We plan to conduct further wet-lab experiments to characterize their activity
166 and refine our *in silico* pipeline. Ongoing experiments aim to characterize their catalytic mechanisms
167 in more detail, as well as to validate other generated TPSs. Future directions include conditioning
168 TPS generation on terpene subclasses via curated datasets to generate specific terpenes. While this
169 study focused on the TPS family, the methodology can be generalized to other protein families, such
170 as, for example, lysozymes, to explore functional diversity.

171 6 Acknowledgments

172 T.P. was supported by the European Union's Horizon Europe program (ERC, TerpenCode, 101170268
173 and Marie Skłodowska-Curie Actions, ModBioTerp, 101168583). J.S. was supported by the European
174 Union's Horizon Europe program (ERC, FRONTIER, 101097822, ELIAS, 101120237 and CLARA,
175 101136607). Views and opinions expressed are however those of the author(s) only and do not
176 necessarily reflect those of the European Union or the European Research Council. Neither the
177 European Union nor the granting authority can be held responsible for them.

178 References

179 180 181 Samir Aoudjane, Stefan Golas, Osaid Ather, Michael J. Hammerling, and Erika DeBenedictis. A practical guide to phage- and robotics-assisted near-continuous evolution. *Journal of Visualized Experiments*, (203), 1 2024. doi: 10.3791/65974. URL <https://doi.org/10.3791/65974>.

182 183 184 Alex Bateman. UniProt: a worldwide hub of protein knowledge. *Nucleic Acids Research*, 47(D1): D506–D515, 10 2018. doi: 10.1093/nar/gky1049. URL <https://doi.org/10.1093/nar/gky1049>.

185 186 187 188 189 190 191 192 193 Matthias Blum, Antonina Andreeva, Laise Cavalcanti Florentino, Sara Rocio Chuguransky, Tiago Grego, Emma Hobbs, Beatriz Lazaro Pinto, Ailsa Orr, Typhaine Paysan-Lafosse, Irina Ponamareva, Gustavo A Salazar, Nicola Bordin, Peer Bork, Alan Bridge, Lucy Colwell, Julian Gough, Daniel H Haft, Ivica Letunic, Felipe Llinares-López, Aron Marchler-Bauer, Laetitia Meng-Papaxanthos, Huaiyu Mi, Darren A Natale, Christine A Orengo, Arun P Pandurangan, Damiano Piovesan, Catherine Rivoire, Christian J A Sigrist, Narmada Thanki, Françoise Thibaud-Nissen, Paul D Thomas, Silvio C E Tosatto, Cathy H Wu, and Alex Bateman. InterPro: the protein sequence classification resource in 2025. *Nucleic Acids Research*, 53(D1):D444–D456, 11 2024. doi: 10.1093/nar/gkae1082. URL <https://doi.org/10.1093/nar/gkae1082>.

194 195 brenda. BRENDA Enzyme Database, 3 2025. URL <https://www.brenda-enzymes.org/index.php>.

196 clean. Clean, 2025. URL <https://clean.platform.moleculemaker.org/configuration>.

197 198 199 200 José Francisco Quílez Del Moral, Álvaro Pérez, and Alejandro F. Barrero. Chemical synthesis of terpenoids with participation of cyclizations plus rearrangements of carbocations: a current overview. *Phytochemistry Reviews*, 19(3):559–576, 9 2019. doi: 10.1007/s11101-019-09646-8. URL <https://doi.org/10.1007/s11101-019-09646-8>.

201 202 203 204 205 María Luisa Del Prado-Audelo, Hernán Cortés, Isaac H. Caballero-Florán, Maykel González-Torres, Lidia Escutia-Guadarrama, Sergio A. Bernal-Chávez, David M. Giraldo-Gómez, Jonathan J. Magaña, and Gerardo Leyva-Gómez. Therapeutic applications of terpenes on inflammatory diseases. *Frontiers in Pharmacology*, 12, 8 2021. doi: 10.3389/fphar.2021.704197. URL <https://doi.org/10.3389/fphar.2021.704197>.

206 207 208 209 Embl-Ebi. pLDDT: Understanding local confidence | AlphaFold. URL <https://www.ebi.ac.uk/training/online/courses/alphafold/inputs-and-outputs/evaluating-alphafofolds-predicted-structures-using-confidence-scores/plddt-understanding-local-confidence/>.

210 211 212 enzyme explorer. GitHub - pluskal-lab/EnzymeExplorer: Highly accurate discovery of terpene synthases powered by machine learning, 2025. URL <https://github.com/pluskal-lab/EnzymeExplorer>.

213 esmfold. GitHub - facebookresearch/esm: Evolutionary Scale Modeling (esm): Pretrained language
214 models for proteins, 2025. URL <https://github.com/facebookresearch/esm>.

215 Noelia Ferruz, Steffen Schmidt, and Birte Höcker. ProtGPT2 is a deep unsupervised language model
216 for protein design. *Nature Communications*, 13(1), 7 2022. doi: 10.1038/s41467-022-32007-7.
217 URL <https://doi.org/10.1038/s41467-022-32007-7>.

218 R. D. Finn, J. Clements, and S. R. Eddy. HMMER web server: interactive sequence similarity
219 searching. *Nucleic Acids Research*, 39(suppl):W29–W37, 5 2011. doi: 10.1093/nar/gkr367. URL
220 <https://doi.org/10.1093/nar/gkr367>.

221 Alfred Ferrer Florensa, Jose Juan Almagro Armenteros, Henrik Nielsen, Frank Møller Aarestrup,
222 and Philip Thomas Lanken Conradsen Clausen. SpanSeq: similarity-based sequence data splitting
223 method for improved development and assessment of deep learning projects. *NAR Genomics and*
224 *Bioinformatics*, 6(3), 7 2024. doi: 10.1093/nargab/lqae106. URL <https://doi.org/10.1093/nargab/lqae106>.

226 foldseek. GitHub - steineggerlab/foldseek: Foldseek enables fast and sensitive comparisons of large
227 structure sets., 2025. URL <https://github.com/steineggerlab/foldseek>.

228 interpro. InterPro, 2025. URL <https://www.ebi.ac.uk/interpro/search/sequence/>.

229 Shu-Ye Jiang, Jingjing Jin, Rajani Sarojam, and Srinivasan Ramachandran. A Comprehensive
230 Survey on the Terpene Synthase Gene Family Provides New Insight into Its Evolutionary Patterns.
231 *Genome Biology and Evolution*, 11(8):2078–2098, 7 2019. doi: 10.1093/gbe/evz142. URL
232 <https://pmc.ncbi.nlm.nih.gov/articles/PMC6681836/>.

233 John Jumper, Richard Evans, Alexander Pritzel, Tim Green, Michael Figurnov, Olaf Ronneberger,
234 Kathryn Tunyasuvunakool, Russ Bates, Augustin Žídek, Anna Potapenko, Alex Bridgland,
235 Clemens Meyer, Simon A. A. Kohl, Andrew J. Ballard, Andrew Cowie, Bernardino Romera-
236 Paredes, Stanislav Nikolov, Rishabh Jain, Jonas Adler, Trevor Back, Stig Petersen, David Reiman,
237 Ellen Clancy, Michał Zieliński, Martin Steinegger, Michałina Pacholska, Tamas Berghammer,
238 Sebastian Bodenstein, David Silver, Oriol Vinyals, Andrew W. Senior, Koray Kavukcuoglu,
239 Pushmeet Kohli, and Demis Hassabis. Highly accurate protein structure prediction with Al-
240 phaFold. *Nature*, 7 2021. doi: 10.1038/s41586-021-03819-2. URL <https://doi.org/10.1038/s41586-021-03819-2>.

242 Anna Lauko, Samuel J. Pellock, Kiera H. Sumida, Ivan Anishchenko, David Juergens, Woody
243 Ahern, Jihun Jeung, Alexander F. Shida, Andrew Hunt, Indrek Kalvet, Christoffer Norn, Ian R.
244 Humphreys, Cooper Jamieson, Rohith Krishna, Yakov Kipnis, Alex Kang, Evans Brackenbrough,
245 Asim K. Bera, Banumathi Sankaran, K. N. Houk, and David Baker. Computational design of
246 serine hydrolases. *Science*, 388(6744):eaud2454, 2025. doi: 10.1126/science.adu2454. URL
247 <https://www.science.org/doi/abs/10.1126/science.adu2454>.

248 lightning. Lightning AI | Turn ideas into AI, Lightning fast, 2025. URL <https://lightning.ai/>.

249 Xinghui Liu, Wenqiang Chen, Linxuan Li, Detian Mu, Iain W. Wilson, Xueshuang Huang, Yahui Xi-
250 ang, Lina Zhu, Limei Pan, Deyou Qiu, and Qi Tang. Identification and Functional Characterization
251 of a Geraniol Synthase UrGES from Uncaria rhynchophylla. *Plants*, 14(15):2273, 7 2025. doi: 10.
252 3390/plants14152273. URL <https://pmc.ncbi.nlm.nih.gov/articles/PMC12348840/>.

253 Ali Madani, Ben Krause, Eric R. Greene, Subu Subramanian, Benjamin P. Mohr, James M. Holton,
254 Jose Luis Olmos, Caiming Xiong, Zachary Z. Sun, Richard Socher, James S. Fraser, and Nikhil
255 Naik. Large language models generate functional protein sequences across diverse families.
256 *Nature Biotechnology*, 41(8):1099–1106, 1 2023. doi: 10.1038/s41587-022-01618-2. URL
257 <https://doi.org/10.1038/s41587-022-01618-2>.

258 Milot Mirdita, Konstantin Schütze, Yoshitaka Moriwaki, Lim Heo, Sergey Ovchinnikov, and Mar-
259 tin Steinegger. ColabFold: making protein folding accessible to all. *Nature Methods*, 19(6):
260 679–682, 5 2022. doi: 10.1038/s41592-022-01488-1. URL <https://doi.org/10.1038/s41592-022-01488-1>.

262 Jaina Mistry, Sara Chuguransky, Lowri Williams, Matloob Qureshi, Gustavo A Salazar, Erik L L
263 Sonnhammer, Silvio C E Tosatto, Lisanna Paladin, Shriya Raj, Lorna J Richardson, Robert D Finn,
264 and Alex Bateman. Pfam: The protein families database in 2021. *Nucleic Acids Research*, 49(D1):
265 D412–D419, 10 2020. doi: 10.1093/nar/gkaa913. URL <https://pubmed.ncbi.nlm.nih.gov/33125078/>.

267 James J Pitt. Principles and applications of Liquid Chromatography-Mass Spectrometry in clinical
268 biochemistry, 2 2009. URL <https://pmc.ncbi.nlm.nih.gov/articles/PMC2643089/>.

269 protgpt2. nferruz/ProtGPT2 · Hugging Face, 2022. URL <https://huggingface.co/nferruz/ProtGPT2>.

271 protgpt2 tiny. littleworth/protgpt2-distilled-tiny · Hugging Face, 7 2022. URL <https://huggingface.co/littleworth/protgpt2-distilled-tiny>.

273 Jeffrey D. Rudolf and Chin-Yuan Chang. Terpene synthases in disguise: enzymology, structure, and
274 opportunities of non-canonical terpene synthases. *Natural Product Reports*, 37(3):425–463, 10
275 2019. doi: 10.1039/c9np00051h. URL <https://doi.org/10.1039/c9np00051h>.

276 Jeffrey A. Ruffolo, Stephen Nayfach, Joseph Gallagher, Aadyot Bhatnagar, Joel Beazer, Riffat
277 Hussain, Jordan Russ, Jennifer Yip, Emily Hill, Martin Pacesa, Alexander J. Meeske, Peter
278 Cameron, and Ali Madani. Design of highly functional genome editors by modelling CRISPR–Cas
279 sequences. *Nature*, 645(8080):518–525, 7 2025. doi: 10.1038/s41586-025-09298-z. URL
280 <https://www.nature.com/articles/s41586-025-09298-z>.

281 Raman Samusevich, Téo Hebra, Roman Bushuiev, Martin Engst, Jonáš Kulhánek, Anton Bushuiev,
282 Joshua D. Smith, Tereza Čalounová, Helena Smrčková, Marina Molineris, Renana Schwartz,
283 Adéla Tajovská, Milana Perković, Ratthachat Chatpatanasiri, Sotirios C. Kampranis, Dan Thomas
284 Major, Josef Sivic, and Tomáš Pluskal. Structure-enabled enzyme function prediction unveils
285 elusive terpenoid biosynthesis in archaea. *bioRxiv*, 2025. doi: 10.1101/2024.01.29.577750. URL
286 <https://www.biorxiv.org/content/early/2025/04/29/2024.01.29.577750>.

287 Baris E. Suzek, Yuqi Wang, Hongzhan Huang, Peter B. McGarvey, and Cathy H. Wu. UniRef
288 clusters: a comprehensive and scalable alternative for improving sequence similarity searches.
289 *Bioinformatics*, 31(6):926–932, 11 2014. doi: 10.1093/bioinformatics/btu739. URL <https://doi.org/10.1093/bioinformatics/btu739>.

291 Michel Van Kempen, Stephanie S Kim, Charlotte Tumescheit, Milot Mirdita, Jeongjae Lee, Cameron
292 L M Gilchrist, Johannes Söding, and Martin Steinegger. Fast and accurate protein structure search
293 with Foldseek. *Nature Biotechnology*, 42(2):243–246, 5 2023. doi: 10.1038/s41587-023-01773-0.
294 URL <https://doi.org/10.1038/s41587-023-01773-0>.

295 Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz
296 Kaiser, and Illia Polosukhin. Attention is all you need, 6 2017. URL <https://arxiv.org/abs/1706.03762>.

298 Lara Sellés Vidal, Mark Isalan, John T. Heap, and Rodrigo Ledesma-Amaro. A primer to di-
299 rected evolution: current methodologies and future directions. *RSC Chemical Biology*, 4(4):271–
300 291, 1 2023. doi: 10.1039/d2cb00231k. URL <https://pmc.ncbi.nlm.nih.gov/articles/PMC10074555/#cit4>.

302 Joseph L. Watson, David Juergens, Nathaniel R. Bennett, Brian L. Trippe, Jason Yim, Helen E.
303 Eisenach, Woody Ahern, Andrew J. Borst, Robert J. Ragotte, Lukas F. Milles, Basile I. M.
304 Wicky, Nikita Hanikel, Samuel J. Pellock, Alexis Courbet, William Sheffler, Jue Wang, Preetham
305 Venkatesh, Isaac Sappington, Susana Vázquez Torres, Anna Lauko, Valentin De Bortoli, Emile
306 Mathieu, Sergey Ovchinnikov, Regina Barzilay, Tommi S. Jaakkola, Frank DiMaio, Minkyung
307 Baek, and David Baker. De novo design of protein structure and function with RFdiffusion. *Nature*,
308 620(7976):1089–1100, 7 2023. doi: 10.1038/s41586-023-06415-8. URL <https://www.nature.com/articles/s41586-023-06415-8>.

310 Beth A. Weaver. How Taxol/paclitaxel kills cancer cells. *Molecular Biology of the Cell*, 25(18):
311 2677–2681, 9 2014. doi: 10.1091/mbc.e14-04-0916. URL <https://doi.org/10.1091/mbe.e14-04-0916>.

313 D. Wilson, M. Madera, C. Vogel, C. Chothia, and J. Gough. The SUPERFAMILY database in
314 2007: families and functions. *Nucleic Acids Research*, 35(Database):D308–D313, 11 2006. doi:
315 10.1093/nar/gkl910. URL <https://doi.org/10.1093/nar/gk1910>.

316 Adam Winnifirth, Carlos Outeiral, and Brian L Hie. Generative artificial intelligence for de novo
317 protein design. *Current Opinion in Structural Biology*, 86:102794, 4 2024. doi: 10.1016/j.sbi.
318 2024.102794. URL <https://doi.org/10.1016/j.sbi.2024.102794>.

319 Jason Yang, Francesca-Zhoufan Li, and Frances H. Arnold. Opportunities and Challenges for
320 Machine Learning-Assisted Enzyme Engineering. *ACS Central Science*, 10(2):229–229, 2 2024.
321 doi: 10.1021/acscentsci.3c01275. URL <https://doi.org/10.1021/acscentsci.3c01275>.

322 Tianhao Yu, Haiyang Cui, Jianan Canal Li, Yunan Luo, Guangde Jiang, and Huimin Zhao. Enzyme
323 function prediction using contrastive learning. *Science*, 379(6639):1358–1363, 3 2023. doi:
324 10.1126/science.adf2465. URL <https://doi.org/10.1126/science.adf2465>.

325 Caizhe Zhang and Kui Hong. Production of terpenoids by synthetic biology approaches. *Frontiers
326 in Bioengineering and Biotechnology*, 8, 4 2020. doi: 10.3389/fbioe.2020.00347. URL <https://doi.org/10.3389/fbioe.2020.00347>.

328 Tereza Čalounová and Tomáš Pluskal. Mining novel terpene synthases from large-scale repositories,
329 6 2024. URL <https://dspace.cuni.cz/handle/20.500.11956/190195>.

330 7 Appendix

331 7.1 Supplementary Methods

332 7.1.1 Hyperparameter Optimization

333 To obtain a well-generalized model, we optimized key hyperparameters of the ProtGPT2 fine-
334 tuning process using the *run_clm.py* script from HuggingFace. The following hyperparameters were
335 considered:

- 336 1. **Learning rate:** Learning rate controls how quickly the model updates its weights based on
337 the training sequences. After experimentation, we selected a learning rate of 1e-4, at which
338 point the validation loss converged. Higher rates (e.g., 1e-3) resulted in continued training
339 loss reduction but increased overfitting, as shown in Table A1 and Figure A1.
- 340 2. **Block size:** We used a block size of 512 tokens, consistent with the original ProtGPT2 paper.
341 Each block represents the maximum sequence length fed into the model during training.
- 342 3. **Batch size and Gradient accumulation steps:** Regular batch size was set to 64. To simulate
343 a larger effective batch size of 512 on a single GPU, we set **gradient accumulation steps** to
344 8, summing the gradients over eight steps during backpropagation.
- 345 4. **Max steps:** The max steps parameter controls the total number of optimization steps
346 (analogous to training epochs). We empirically determined that 4,000 steps were optimal,
347 achieving convergence in both training and validation loss (Table A2 and Figure A2).

348 7.1.2 Sequence Validation Methods

- 349 1. **EnzymeExplorer:** We applied the EnzymeExplorer command-line tools [enzyme explorer,
350 2025] with a detection threshold of 0.7 to identify putative TPS sequences.
- 351 2. **CLEAN:** We used the CLEAN web server [clean, 2025] to predict the EC numbers for the
352 seven generated TPS sequences.
- 353 3. **InterPro:** We used the InterProScan web server [interpro, 2025] to predict the protein
354 domains for the seven generated TPS sequences.
- 355 4. **Foldseek:** We employed the Foldseek command-line tools [foldseek, 2025] to construct
356 a target database from the training set proteins (63k). Using the *easy-search* command,
357 we identified the top structural match in this database for each of the seven generated TPS
358 sequences and recorded the corresponding TM-score (Figure A4).

359 **7.2 Threshold Selection**

360 1. **maxID**: maxID threshold of $\leq 60\%$ was chosen based on past experimental data from
361 protein generation [Ruffolo et al., 2025].

362 2. **pLDDT**: We chose a pLDDT threshold of ≥ 70 which corresponds to a correct backbone
363 prediction with misplacement of some side chains [Embl-Ebi]

364 3. **EnzymeExplorer Threshold**: EnzymeExplorer TPS detection threshold was ≥ 0.7 to
365 identify likely TPS sequences. Past research work has used thresholds between 0.35 and
366 0.7 [Samusevich et al., 2025].

367 4. **TM-Score**: We filtered to sequences with TM-Scores between 0.6 and 0.9 to preserve
368 structural similarity and fold with representative TPS functions.

369 **7.3 Appendix Tables and Figures**

Figure A1: Training and evaluation loss as a function of learning rate.

Table A1: Training and evaluation loss for different learning rates.

Learning rate	Training Loss	Evaluation Loss
1e-6	8.4	8.0
1e-5	7.5	7.8
1e-4	6.1	7.5
1e-3	4.2	7.4

Figure A2: Training and evaluation loss as a function of max steps.

Table A2: Training and evaluation loss as a function of max steps.

Max steps	Training Loss	Evaluation Loss
1200	6.07	7.49
1875	5.66	7.41
3000	5.21	7.34
4000	4.94	7.32

Figure A3: Distribution of perplexity scores for the top 2800 sequences.

Figure A4: Foldseek structural alignment for the seven TPS sequences with their respective top matches in the training set. Foldseek TM-scores were between 0.6 and 0.9 consistent with belonging to the same TPS family. Blue represents the generated TPS sequences and yellow is the target top structural match in the training set.