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Abstract

Terpene synthases (TPS) are a key family of enzymes responsible for generating the1

diverse terpene scaffolds that underpin many natural products, including front-line2

anticancer drugs such as Taxol. However, de novo TPS design through directed3

evolution is costly and slow. We introduce TpsGPT, a generative model for scalable4

TPS protein design, built by fine-tuning the protein language model ProtGPT25

on 79k TPS sequences mined from UniProt. TpsGPT generated de novo enzyme6

candidates in silico and we evaluated them using multiple validation metrics,7

including EnzymeExplorer classification, ESMFold structural confidence (pLDDT),8

sequence diversity, CLEAN classification, InterPro domain detection, and Foldseek9

structure alignment. From an initial pool of 28k generated sequences, we identified10

seven putative TPS enzymes that satisfied all validation criteria. Experimental11

validation confirmed TPS enzymatic activity in at least two of these sequences. Our12

results show that fine-tuning of a protein language model on a carefully curated,13

enzyme-class-specific dataset, combined with rigorous filtering, can enable the14

de novo generation of functional, evolutionarily distant enzymes.15

1 Introduction16

Terpene synthases (TPS) are a specialized family of enzymes that generate hydrocarbon scaffolds for17

terpenes—the largest and most diverse class of natural products, encompassing widely used flavors,18

fragrances, and frontline medicines [Samusevich et al., 2025]. Terpenes exhibit diverse bioactivities,19

including analgesic, anticonvulsant, and anti-inflammatory properties [Del Prado-Audelo et al., 2021].20

More than 76,000 terpenes have been characterized to date [Rudolf and Chang, 2019]. Among them,21

Taxol, a diterpene, remains a first-line anticancer drug with multi-billion-dollar annual sales [Weaver,22

2014].23

Despite their importance, terpenes are notoriously difficult to synthesize industrially due to their24

structural complexity [Del Moral et al., 2019]. Conventional chemical synthesis requires numerous25

steps and incurs high energy and resource costs, making it unsustainable at scale. In contrast, synthetic26

biology offers a more efficient route by leveraging TPS enzymes to catalyze key reactions [Zhang27

and Hong, 2020].28

Here we present TpsGPT1, a terpene synthase sequence generation model fine-tuned on a distilled29

protein language model — ProtGPT2 Tiny [Ferruz et al., 2022, protgpt2 tiny, 2022]. TpsGPT is30

trained on a carefully curated 79k homologous TPS dataset mined from large scale repositories like31

UniProt. The mining process initially used a very small 1125 experimentally characterized actual32

TPS enzymes from published sources as a seed to identify TPS patterns based on which the mining33

process produced 79k homologous TPS sequences. TpsGPT generated evolutionary distant sequences34

while conserving key TPS structural features. The resulting de novo sequences exhibit high predicted35
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structural stability and low sequence identity relative to the training set. Our results demonstrate36

that fine-tuning protein language models on a carefully curated, enzyme-class-specific dataset, can37

effectively explore the vast protein sequence space, producing valid enzyme candidates even for38

underrepresented protein families like terpene synthases.39

2 Related Work40

Protein engineering: The design of novel TPS enzymes for terpene biosynthesis remains a complex41

and time-consuming task. There are two main approaches for protein engineering: rational design and42

directed evolution [Vidal et al., 2023]. Rational design involves performing chosen point mutations,43

insertions or deletions in the coding sequence. Directed evolution, on the other hand, bypasses the44

need to determine specific mutations a priority by mimicking the process of natural evolution in45

the laboratory. While promising, these methods have a major disadvantage — the sequences they46

generate often remain highly similar to naturally occurring proteins, leaving vast regions of the protein47

sequence space unexplored [Yang et al., 2024]. Moreover, robotics-accelerated high-throughput48

directed evolution techniques like Phage-Assisted Continuous Evolution are prohibitively expensive,49

with costs reaching hundreds of thousands of dollars [Aoudjane et al., 2024]50

Computational design of terpene synthases: Machine learning-assisted annotation methods51

predict and label likely TPS enzymes in large protein databases like UniProt and UniRef [Samusevich52

et al., 2025, Bateman, 2018, Suzek et al., 2014] but such methods only uncover existing proteins in53

nature. De novo enzyme design approaches such as RFdiffusion use diffusion-based deep learning54

architectures to generate novel protein backbones [Watson et al., 2023]. Although promising,55

RFDiffusion is a structure-based method and requires a comprehensive understanding of a catalytic56

site and its activity to generate functional enzymes [Lauko et al., 2025]. To the best of our knowledge,57

little work has been done to explore the generation of valid de novo TPS enzymes that differ58

substantially from natural variants. We address this limitation with our work.59

Protein Language Models (PLMs): PLMs are based on large language models (LLMs) like GPT2,60

which leverage the Transformer architecture to model sequential data [Vaswani et al., 2017]. Prior61

work has shown that fine-tuning PLMs can generate de novo proteins within specific families [Win-62

nifrith et al., 2024]. However, existing PLM fine-tuning methods to generate sequences rely on63

extensive family-specific datasets and often require additional inputs such as control tags for model64

conditioning. Additionally, the fine-tuning is typically done on large models such as ProGEN with 28065

million parameters [Madani et al., 2023]. ProtGPT2 is a state-of-the-art autoregressive Transformer-66

based PLM with 738 million parameters [Ferruz et al., 2022] and enables high-throughput protein67

generation in seconds. Additionally, ProtGPT2 offers a tiny model [protgpt2 tiny, 2022] with 38.968

million parameters with comparable performance as the original bigger model. Motivated by these69

properties, we fine-tune ProtGPT2 tiny to generate de novo terpene synthase sequences starting from70

a small dataset of 1125 TPS sequences.71

3 Materials and Methods72

We developed TpsGPT, a scalable in silico framework for de novo TPS enzyme design (Figure 1).73

The approach combines protein language model fine-tuning with principled sequence generation and74

multi-stage validation to produce viable, evolutionarily distant TPS candidates.75

3.1 Dataset Preparation76

As a starting point, we used a dataset of 1125 experimentally validated TPS sequences, which77

was later extended to 79k computationally-mined TPS sequences [Čalounová and Pluskal, 2024].78

The mining process identified TPS enzyme patterns based on sequence length, protein embedding79

similarity, conserved motifs, taxonomy, and domain architectures across UniProt and other large-scale80

repositories, resulting in the dataset of 79k putative TPS sequences.81

To avoid data leakage and ensure generalization, the sequences were clustered using SpanSeq [Flo-82

rensa et al., 2024] into six partitions at 30% sequence identity between partitions. We combined83

five partitions (∼63k sequences) for training while the remaining partition (∼16k sequences) was84

reserved for validation, resulting in an 80/20 split.85

2



Figure 1: Overview of our approach. Part 1: We collected 1125 experimentally characterized TPS enzymes
from all published sources to mine the 79k TPS dataset from UniProt [Čalounová and Pluskal, 2024]. We created
an 80/20 split using SpanSeq [Florensa et al., 2024] with at most 30% sequence identity between the splits and
fine-tuned the distilled ProtGPT2 tiny [protgpt2 tiny, 2022] model to create TpsGPT. Part 2: We generated 28k
sequences using TpsGPT and filtered them using seven validation metrics: Sequence filters: Perplexity and
max sequence identity to training set. Function filters: EnzymeExplorer TPS score [Samusevich et al., 2025],
CLEAN enzyme classification [Yu et al., 2023], and InterPro domain prediction [Blum et al., 2024] Structure
filters: pLDDT using ESMFold [esmfold, 2025] and max Foldseek TM-score to training set [Van Kempen et al.,
2023]. Above filters reduced the 28k sequences to seven putative TPS sequences. Wet-lab validation using
yeast expression followed by liquid chromatography coupled with mass spectrometry (LC-MS) showed TPS
enzymatic activity in two sequences [Pitt, 2009].

3.2 Model Fine-Tuning86

The original ProtGPT2 model contains 738 million parameters, making full fine-tuning computa-87

tionally expensive [protgpt2, 2022]. Hence, we fine-tuned the distilled ProtGPT2 tiny model with88

38.9 million parameters. The distilled tiny model retains comparable perplexities to the original89

large model while offering up to six times faster inference, enabling high-throughput sequence90

generation [protgpt2 tiny, 2022]. Fine-tuning was performed using Lightning AI on a single NVIDIA91

L4 tensor core [lightning, 2025].92

3.3 TPS Sequence Generation and Filtering93

After fine-tuning, we generated 28k protein sequences. A multi-stage filtering pipeline was applied to94

identify putative TPS enzymes from the 28k sequences:95

Sequence Filters: The 28k sequences were ranked by perplexity, and the top 10% (2,800 sequences)96

were retained. Maximum pairwise sequence identity (maxID) to the training set was computed, and97

only sequences with maxID ≤ 60% were retained to encourage evolutionary distance.98

Function Filters: We used EnzymeExplorer with a TPS detection threshold of 0.7 (range 0–1) to99

select sequences likely to possess TPS activity [Samusevich et al., 2025]. CLEAN (Contrastive100

Learning Enabled Enzyme ANnotation) is a ML model that assigns EC (Enzyme Commission)101

number to protein sequences [Yu et al., 2023]. We used CLEAN to predict EC numbers and selected102

only those with a terpenoid/terpene biosynthetic pathway in BRENDA [brenda, 2025]. InterPro is103

another model that predicts domains given a sequence [Blum et al., 2024]. We selected only those104

sequences when the InterPro predicted domain was a terpene synthase specific domain or a domain105

with an overlapping superfamily containing a TPS domain.106

Structure Filters: We computed Predicted Local Distance Difference Test (pLDDT) scores from107

ESMFold [esmfold, 2025], retaining only sequences with pLDDT ≥ 70, indicative of accurate back-108

bone modeling and valid 3D structures. To ensure conservation of TPS structure, we used Foldseek109

to do 3D structural comparison of the generated sequences relative to their respective top structural110

matches in the training set and retained those with TM-scores between 0.6 and 0.9 [Van Kempen111

et al., 2023].112

This pipeline produced candidates that are structurally feasible, TPS-like, and evolutionarily distant,113

representing potential de novo TPS enzymes suitable for downstream experimental validation.114

4 Results115

We fine-tuned the distilled ProtGPT2 tiny model on 79k TPS sequences mined from UniProt and116

generated 28k TPS sequence candidates. After picking the top 10% (2800) sequences by perplexity117

score, we applied the following filters: pLDDT score, EnzymeExplorer TPS detection score, max118
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sequence identity to training set, Foldseek alignment (TM-Score), CLEAN classified EC number,119

and InterPro domain to identify putative de novo TPS sequences.120

4.1 TpsGPT Generates Valid TPS Sequences121

Figure 2: CDF of pLDDT scores of the top 2800 gen-
erated sequences. More than 40% had pLDDT ≥ 70
indicating stable structures.

Among the top 2,800 sequences ranked by per-122

plexity, 40% achieved pLDDT scores ≥ 70 (Fig-123

ure 2). From this set, 77 sequences passed124

the EnzymeExplorer TPS detection threshold125

(>= 0.7). A detection score above 0.7 indicates126

the potential to catalyze terpenes.127

4.2 Evolutionarily Distant Sequences with Conserved TPS Structures128

From the 77 candidates, we filtered down to seven with ≤ 60% sequence identity to the training set,129

representing potential de novo TPS enzymes (Table 1). 3D structural comparison of the generated130

sequences relative to their respective top structural matches in the training set using Foldseek131

confirmed TM-scores between 0.6 and 0.9 (Table 1), consistent with belonging to the same structural132

family [Van Kempen et al., 2023]. Moreover, CLEAN assigned all seven sequences to TPS EC classes,133

providing robust computational support [Yu et al., 2023] (Table 1). InterPro analysis detected at least134

one relevant TPS specific domain in each sequence as shown in Figure 3 [Blum et al., 2024]. Together,135

the above results show that TpsGPT generates evolutionary distant yet structurally conserved de novo136

TPS enzymes.137

TpsGPT1
maxID 49.67%

TpsGPT2
maxID 59.72%

TpsGPT3
maxID 60.00%

TpsGPT4
maxID 60.08%

TpsGPT5
maxID 59.75%

TpsGPT6
maxID 57.33%

TpsGPT7
maxID 52.19%

Figure 3: ColabFold-generated 3D structures of the seven de novo putative TPS enzymes, with TPS domains
annotated by InterPro [Mirdita et al., 2022, Blum et al., 2024]. maxID denotes the maximum sequence identity
of each sequence to those in the training set. The figure shows that TpsGPT can generate evolutionarily distant
TPS sequences while conserving TPS domains.
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Table 1: Properties of the seven putative de novo TPS sequences. Each sequence is distinguished by a unique
Sequence ID. EnzymeExplorer TPS score measures TPS-like characteristics, pLDDT score indicates the stability
of 3D folding, Max Foldseek TM-score indicates structural alignment with TPS sequences in training set, Max
seq. identity to training set denotes the uniqueness of the TPS sequence, CLEAN-predicted EC number provides
the enzyme classification, and InterPro predicts the domains in the sequence. TpsGPT1 and TpsGPT2 are shown
in bold, indicating experimentally-validated enzymatic activity in both sequences.

Sequence ID EnzymeExplorer TPS pLDDT Max Foldseek TM-Score Max seq. identity CLEAN Predicted InterPro Predicted
Score Score to training set to training set EC number Domain

TpsGPT1 0.75 78 0.73 49.67% Germacrene D Synthase
(4.2.3.75)

Terpene synthase, N-terminal
domain and Terpene synthase,
metal-binding domain

TpsGPT2 0.72 74 0.79 59.72% Squalene Synthase
(2.5.1.21)

Trans-isoprenyl diphosphate
synthases, head-to-head domain

TpsGPT3 0.73 74 0.84 60.00% Cucurbitadienol Syn-
thase (5.4.99.33)

Squalene-hopene cyclase, N-
terminal domain

TpsGPT4 0.73 70 0.65 60.08% Squalene Synthase
(2.5.1.21)

Trans-isoprenyl diphosphate
synthases, head-to-head domain

TpsGPT5 0.78 80 0.72 59.75% Beta-amyrin Synthase
(5.4.99.39)

Squalene-hopene cyclase, N-
terminal domain

TpsGPT6 0.73 71 0.69 57.33% Squalene Synthase
(2.5.1.21)

Trans-isoprenyl diphosphate
synthases, head-to-head domain

TpsGPT7 0.74 71 0.72 52.19% Cycloartenol Synthase
(5.4.99.8)

Squalene-hopene cyclase, N-
terminal domain

4.3 Experimental Validation Confirms Enzymatic Activity138

To functionally characterize the enzymes designed with TpsGPT, we heterologously expressed the139

corresponding genes in the budding yeast Saccharomyces cerevisiae strain JWY501. This strain has140

been engineered for elevated production of the diterpene substrate geranylgeranyl pyrophosphate.141

Using liquid chromatography, coupled with mass spectrometry (LC-MS) [Pitt, 2009] we confirmed142

the enzymatic activity in two sequences (TpsGPT1 and TpsGPT2) (Figure 4). Ongoing experiments143

aim to characterize their catalytic mechanisms in more detail, as well as to validate other generated144

TPSs.145

4.50 5.00 5.50 6.00 6.50 7.00 7.50 8.00
Retention time

XI
C

  C
20

H
36

O
2

TpsGPT1

TpsGPT2

Figure 4: Chromatogram showing wet-lab validation of enzymatic activity for the generated TpsGPT1 and
TpsGPT2 sequences. Extracted ion chromatograms (XIC) at the mass of C20H36O2 confirm the production
of diterpene-like products (e.g., sclareol; CHEBI:9053) in yeast expressing TpsGPT1 (red; two replicates) and
TpsGPT2 (blue; two replicates). Black trace represents the control.

5 Conclusion146

In this work, we demonstrate the potential of fine-tuning protein language models, specifically147

ProtGPT2 Tiny, on a carefully curated TPS dataset to generate novel and valid terpene synthases. The148

seven sequences generated by TpsGPT exhibited high pLDDT scores, indicating stable 3D structures,149

and low perplexity scores, suggesting syntactically valid protein sequences. The seven sequences150

were also functionally validated by EnzymeExplorer, CLEAN and InterPro models. Furthermore, low151

pairwise sequence identity and favorable Foldseek TM-scores indicate the likelihood of discovering152

evolutionarily distant TPS enzymes not present in nature. Importantly, the entire pipeline was153

executed with less than $200 in GPU cost, demonstrating the scalable and cost-efficient nature of154

this approach. Additionally, our approach can also be applied to underrepresented protein families155

with little characterized enzyme datasets. These results validate our hypothesis that ProtGPT2 can be156

fine-tuned on a carefully curated TPS dataset to produce valid de novo TPS candidates.157
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Among the seven generated sequences, enzymatic activity was so far confirmed in only two, and158

the presence of oxygen in the product chemical formula suggests they cannot yet be confirmed as159

canonical TPS enzymes. We plan to conduct further wet-lab experiments to characterize their activity160

and refine our in silico pipeline. Future directions include conditioning TPS generation on terpene161

subclasses via curated datasets to generate specific terpenes. While this study focused on the TPS162

family, the methodology can be generalized to other protein families, such as, for example, lysozymes,163

to explore functional diversity.164
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6 Appendix280

6.1 Supplementary Methods281

6.1.1 Hyperparameter Optimization282

To obtain a well-generalized model, we optimized key hyperparameters of the ProtGPT2 fine-283

tuning process using the run_clm.py script from HuggingFace. The following hyperparameters were284

considered:285

1. Learning rate: Learning rate controls how quickly the model updates its weights based on286

the training sequences. After experimentation, we selected a learning rate of 1e-4, at which287

point the validation loss converged. Higher rates (e.g., 1e-3) resulted in continued training288

loss reduction but increased overfitting, as shown in Table A1 and Figure A1.289

2. Block size: We used a block size of 512 tokens, consistent with the original ProtGPT2 paper.290

Each block represents the maximum sequence length fed into the model during training.291

3. Batch size and Gradient accumulation steps: Regular batch size was set to 64. To simulate292

a larger effective batch size of 512 on a single GPU, we set gradient accumulation steps to293

8, summing the gradients over eight steps during backpropagation.294

4. Max steps: The max steps parameter controls the total number of optimization steps295

(analogous to training epochs). We empirically determined that 4,000 steps were optimal,296

achieving convergence in both training and validation loss (Table A2 and Figure A2).297

6.1.2 Sequence Validation Methods298

1. EnzymeExplorer: We applied the EnzymeExplorer command-line tools [enzyme explorer,299

2025] with a detection threshold of 0.7 to identify putative TPS sequences.300
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2. CLEAN: We used the CLEAN web server [clean, 2025] to predict the EC numbers for the301

seven generated TPS sequences.302

3. InterPro: We used the InterProScan web server [interpro, 2025] to predict the protein303

domains for the seven generated TPS sequences.304

4. Foldseek: We employed the Foldseek command-line tools [foldseek, 2025] to construct305

a target database from the training set proteins (63k). Using the easy-search command,306

we identified the top structural match in this database for each of the seven generated TPS307

sequences and recorded the corresponding TM-score (Figure A4).308

6.2 Appendix Tables and Figures309

Figure A1: Training and evaluation loss as a function
of learning rate.

Table A1: Training and evaluation loss for different
learning rates.

Learning rate Training Loss Evaluation Loss

1e-6 8.4 8.0
1e-5 7.5 7.8
1e-4 6.1 7.5
1e-3 4.2 7.4

Figure A2: Training and evaluation loss as a function
of max steps.

Table A2: Training and evaluation loss as a function
of max steps.

Max steps Training Loss Evaluation Loss

1200 6.07 7.49
1875 5.66 7.41
3000 5.21 7.34
4000 4.94 7.32

Figure A3: Distribution of perplexity scores for the top 2800 sequences.
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TpsGPT1 TpsGPT2 TpsGPT3 TpsGPT4

TpsGPT5 TpsGPT6 TpsGPT7

Figure A4: Foldseek structural alignment for the seven TPS sequences with their respective top matches in the
training set. Foldseek TM-scores were between 0.6 and 0.9 consistent with belonging to the same TPS family.
Blue represents the generated TPS sequences and yellow is the target top structural match in the training set.
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