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Abstract

Natural language generation (NLG) plays an
important role in task-oriented dialog sys-
tems to provide meaningful and natural re-
sponses to user’s requests. However, training
a NLG model that could surface production-
ready quality responses usually requires a
large amount of training data. In this pa-
per, we propose two novel data-efficient ap-
proaches to bootstrap the model. We first pro-
pose a template-based approach that leverages
a scenario generation framework to create full
coverage of possible scenarios and their corre-
sponding synthetic annotations. Secondly, we
leverage the pretrained BART model with a
bucketing method that groups scenarios based
on their dialog act structures. Extensive exper-
iments on three datasets show our approaches
achieve production-quality with 10 times less
labelled data than a standard NLG dataset.

1 Introduction

Natural language generation (NLG) plays an impor-
tant role in task-oriented dialog system to provide
meaningful and natural responses to user’s requests.
NLG components of dialog systems have often re-
lied on handcrafted templates (Deemter et al., 2005)
to produce system responses. Although template-
based approaches provide good control and easy
domain bootstrapping, the number of templates re-
quired for full coverage has an impractical scaling
behavior as the complexity of a domain increases.
Additionally, it is not trivial to condition a response
on the user’s request or other available context, sub-
stantially limiting the naturalness of the response.

Recently, model-based NLG has attracted
widespread attention (Dušek et al., 2019; Balakr-
ishnan et al., 2019) for its ability to generate more
contextual and cohesive responses and generalize
across domains and languages. However, data-
driven NLG approaches require a large number

of annotated training utterances, and creating an-
notated responses with structure information (e.g.,
dialog acts) is very time consuming in general.

In this work, we aim to combine the merits of
both worlds. We first propose a scenario generation
framework which uses a template-like approach to
create an unlimited number of synthetically an-
notated <scenario, response> pairs. The frame-
work is designed to be user-friendly and domain-
agnostic so that creating grammatically-correct and
natural-sounding responses is straightforward. Ex-
periments show that models trained on such syn-
thetic data produce fully grammatical and semanti-
cally correct responses.

As a second approach, we leverage pre-trained
language models for further domain bootstrapping.
We consider the BART model (Lewis et al., 2019)
given its superior results on sequence generation
tasks. Unlike previous approaches that fine-tune
on a random selection of samples, we propose a
bucketing idea that groups scenarios by their tree
structures and find it to be more data-efficient. We
fine-tune the pre-trained BART model on bucketing
data, and perform data-augmentation by using se-
quence level knowledge distillation (Kim, 2016), to
auto-annotate the unlabelled scenarios. Combining
these ideas, we find we can achieve production-
ready quality for a domain with minimal data label-
ing.

We view our contributions as follows:
• We propose a novel domain-agnostic framework

for synthetic annotation creation for NLG.
• We propose a new bucketing and data augmenta-

tion idea with BART to improve data efficiency.
• We release two new datasets on Alarm and Time

domains for use in data-efficient NLG modeling.
• Extensive experiments show our approach can

achieve production-ready quality with as little
as 10% of the labelled data of a standard NLG
dataset.
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Reference It’ll be sunny throughout this weekend. The high will be in the 60s, but expect temperatures to drop as low
as 43 degrees by Sunday evening.

Flat MR condition1[sunny] date time1[this weekend] avg high1[60s] low2[43]
date time2[Sunday evening]
INFORM [ condition[sunny], date time range[ colloquial[this weekend ] ] ]

Our MR CONTRAST [
(Scenario) INFORM [ avg high[60s] date time[ [colloquial this weekend ] ] ]

INFORM [ low[43] date time[ week day[Sunday] colloquial[evening] ] ]
]

Annotated [INFORM It’ll be [condition sunny ] throughout [date time range colloquial[this weekend ] ].
[CONTRAST [INFORM The high will be in the [avg high 60s ] ] ] ,

Reference [INFORM but expect temperatures to drop as low as [avg low 43 degrees ] by [date time
[week day Sunday ] [colloquial evening ] ] ].

Bucket Hash [inform[condition,date time range[colloquial]],contrast[inform[avg high, date time[colloquial]],
inform[low, date time[colloquial,week day]]]]

Table 1: Sample flat MR with reference compared against tree-structured MR. The last second row shows an
annotated reference with the tree-structured MR. Nodes in blue are all children of the root node of the tree.

2 Related Work

NLG from structured data has been an active re-
search area for decades, facilitated by datasets like
the E2E Challenge (Novikova et al., 2017), Multi-
Woz (Budzianowski et al., 2018) and Weather (Bal-
akrishnan et al., 2019). Early NLG system (Reiter
and Dale, 2000) divide generation into content se-
lection, macro/micro planning and surface realiza-
tion. Recently, data-driven approaches (Wen et al.,
2015), especially Seq2Seq methods (Balakrishnan
et al., 2019; Rao et al., 2019), have become popular
for their superior naturalness and simplicity.

Our work is closest to (Chen et al., 2020; Peng
et al., 2020), where they leverage pretrained GPT
models (Radford et al., 2019) and fine-tune on
a small amount of domain examples. However,
there are a few key differences: First, we adopt the
tree-structured meaning representations (MRs) pro-
posed in (Balakrishnan et al., 2019), which lead to
increased response naturalness and modeling com-
plexity compared to flat MRs. Second, we propose
novel methods of combining synthetic data creation
and data augmentation with BART (Lewis et al.,
2019) model. Lastly, we achieve the same level of
accuracy attained by the large pretrained models
by distilling substantially smaller models that can
be easily deployed in a real production setting.

3 Approach

Inspired by Balakrishnan et al. (2019), we reuse
their tree-structured meaning representation (MR)
which provides a better control of the discourse
structure and content in generated utterances. Their
tree-structured MRs consist of three sets of non-
terminal tokens: argument, dialog act and
discourse act. A dialog act is a minimum
atomic unit that contains arguments to be expressed

in an utterance, while discourse acts define the
relationship between dialog acts. A tree-structured
MR example for the weather domain is provided in
Table 1, along with a flat MR and human reference.
Experiments in Balakrishnan et al. suggest that
tree-structured MRs lead to better controllability
and naturalness of model responses. For clarity, we
use MR and scenario interchangeably in the paper.

3.1 Scenario Generation Framework

A major challenge for data-driven NLG models is
that the creation of annotated responses is time-
consuming. Additionally, a live NLG system needs
to have full coverage of different MR (scenario)
structures to make sure almost all user requests can
be fulfilled. Our scenario generation framework is
exactly designed to provide an easy way to generate
all possible scenario structure variations and cre-
ate synthetic annotated responses. The framework
contains three major components:
• Entity: Each entity is an argument type. Exam-

ple entities include date time, location,
duration, person, etc. Note that argu-
ments can be nested, e.g., location can
have a single sub-argument city or both
street address and zipcode. At the gen-
eration time, the entity structure and value are
randomly generated from pre-defined ranges.

• Operator: Defines the relationship between enti-
ties in a scenario. Such relationship are important
to create semantically correct scenarios. For ex-
ample, we would like to have date time of
alarms chronologically ordered if a user is query-
ing for multiple alarms. Example operators in-
clude min, max, compare, contrast, etc.

• Config: A triple of the form <user request, sce-
nario, annotation>. Each config includes a prede-
fined list of user requests, annotations, and corre-
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sponding scenarios. A config can have reference
to multiple entities to fill in the entity structure
and value. We provide a simple example config
in Table 1 in the Appendix section.
With this framework, we can create unlimited

annotations that cover all possible MR structures.
This approach provides several benefits to boot-
strap an NLG model: 1) While ensuring coverage,
the created configs are also carefully reviewed to
be grammatical and semantically correct; 2) The
framework can be easily extended to different do-
mains and languages, making the synthetic data
creation simple to finish in a few hours; 3) Though
it’s a rule-based approach, we could still make an-
notations more natural by conditioning on user’s
requests, e.g., we could add YES/NO to annota-
tions when a user request is a binary question.

3.2 Data Augmentation with BART

In this work, we adopt the BART model to inves-
tigate how pre-training can help in the NLG con-
text. After fine-tuning BART on a small set of
data, we run it on the unlabelled scenarios, as in
self-training approaches (Kedzie and McKeown,
2019). The model predictions that match the unla-
belled scenarios in tree structures are considered as
“correct” annotations and selected for augmenting
the training data, along the lines of sequence-level
knowledge distillation (Kim, 2016). This simple
idea offers us unlimited “free” annotations and al-
lows us to train small models for both effectiveness
and efficiency considerations.
Bucketing. As our ontology is fully tree-
structured, modeling structure biases can be essen-
tial. Rao et al. (2019) suggested a naive model that
doesn’t consider structure is difficult to generalize
to unseen structures. Therefore, to further improve
data efficiency, we propose a bucketing strategy
that groups scenarios into buckets based on their
bucket hashes. A bucket hash is generated by an
in-order traversal of ascenario tree, while ignoring
argument values. An example of bucket hash is
shown in the last row in Table 1.

4 Experiments

Datasets: We conduct experiments on both the
public Weather dataset from (Balakrishnan et al.,
2019) and two internal datasets for Alarm and Time
domains. The Alarm and Time datasets are created
by following the same process in Balakrishnan et al.
(2019), which we detail in the Appendix section.

Dataset Train(HUMAN) Train(SYN) Val Test
#Sample #Buck #Sample #Buck

Weather 25390 2180 86401 6141 3078 3121
Alarm 7163 126 39079 1354 2024 1024
Time 6237 273 48039 218 1717 891

Table 2: Dataset Statistics.

We will release the two internal datasets and our
synthetic datasets upon acceptance. The dataset
statistics are shown in Table 2. For the human-
annotated and synthetic training sets, we report
both number of samples and buckets. As we can
see, weather is a more complicated domain due to
its large bucket size.

Models: We consider both a standard attention-
based Seq2Seq (Bahdanau et al., 2014) (S2S) and
BART model (Lewis et al., 2019) in our experimen-
tation. We leave the hyper-parameter details in the
Appendix section. For each model, we experiment
with different data for model training:
• BASE: the original full training set was used.
• SYN: the synthetic data generated from Sec. 3.1.
• 1B: we randomly selected 1 example from each

bucket in the full training set and used these for
model training.

For all these data settings, the validation and the
test sets remain the same. Additionally, for S2S
model, we experiment with following:
• 1B-AUG: We first used the BART model trained

under 1B setting to annotate the remaining sce-
narios in the original training set. Then we select
annotations that pass tree accuracy check, and
combine them with 1B data for model training.

• SYN-1B-AUG: combines SYN and 1B-AUG.

Metrics: We consider both automatic metrics
and human evaluation results. For automatic met-
rics, we report both BLEU-4 (Papineni et al., 2002)
and Tree Accuracy (TreeAcc). Tree accuracy is
a binary metric which measures whether the on-
tology tree structure in model prediction matches
that in scenario input. For human evaluation, we
asked annotators to rate model responses on a bi-
nary scale on the following two dimensions:
• Grammaticality (Gram): Our evaluation guide-

lines included considerations for proper subject-
verb agreement, word order, completeness, etc.

• Correctness (Corr): Measures semantic cor-
rectness of the responses. Our guidelines in-
cluded considerations for sentence structure, con-
trast, hallucinations (incorrectly added attributes),
and missing attributes. We asked annotators to
evaluate model predictions against the MR.
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Data Model Weather Time
Metric BLEU TREEACC CORR GRAM BLEU TREEACC CORR GRAM

BASE S2S 91.5 91.4 99 99 96.1 99.7 99 100
BART 91.5 93.4 100 99 95.4 99.7 99 100

SYN S2S 65.7 44.8 79 99 89.8 90.1 100 99
BART 76.2 44.0 97 99 93.1 91.1 99 100

1B S2S 68.3 55.3 97 98 84.8 67.9 87 90
BART 90.0 89.8 100 99 93.2 89.5 93 91

1B-AUG S2S 90.3 91.2 99 99 94.1 99.8 96 92
SYN-1B-AUG S2S 90.1 90.7 100 99 93.3 97.9 97 100

Table 3: Results on Weather and Time datasets. All metrics are percentages.

Data Model Alarm
Metric BLEU ACC CORR GRAM

BASE S2S 92.9 99.4 100 100
BART 92.9 99.8 100 100

SYN S2S 89.2 98.2 100 99
BART 89.8 99.5 100 99

1B S2S 58.9 24.5 80 97
BART 92.2 88.9 100 99

1B-AUG S2S 81.4 91.3 100 98
SYN-1B-AUG S2S 90.5 99.7 100 100

Table 4: Results on Alarm dataset.

Due to the shortage of annotator bandwidth by
Covid-19, part of the human evaluations were con-
ducted by the authors. However, our extensive
prior experience has indicated that our evaluations
are highly correlated to the third-party annotators’.
Also, Gram and Corr are fairly objective, and thus
unlikely to be biased by the authors’ involvement.

5 Results
We show our results on weather and time in Table 3,
and alarm in Table 4. For each experiment, we ran-
domly sampled 100 model responses that pass tree
accuracy for human evaluations.1 In the 1B set-
ting, the data percentages for weather/time/alarm
domain are 8.5%/4.3%/1.7%, respectively.

As we can see, first, on all three datasets, S2S
and BART are roughly comparable in BASE set-
ting for all metrics, suggesting the pretraining ben-
efits are limited when we have enough human an-
notations. However, the differences between S2S
and BART are huge under 1B setting when data
is scarce. Using the synthetic data (SYN), we
can see all three domains achieve close to 100%
grammaticality and correctness. Tree accuracy on
Time and Alarm are fairly high, while Weather is
much lower, which is due to a large number of
buckets missing in the weather synthetic training
data. Combining BART augmentation with buck-
eting (1B-AUG), we can see a significant boost
on all metrics with a small S2S model for all three
domains. Moreover, combing synthetic data with

1In a production system, a template-based back-off strategy
can be used for responses that fail the tree accuracy filter,
so only the ones that pass the filter are relevant for human
evaluation.
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Figure 1: Bucketing Ablation Study on Weather/Time
1B-AUG (SYN-1B-AUG), we can see a further
boost on grammaticality and correctness, while
still being roughly comparable in tree accuracy and
BLEU score. To conclude, combining all these
ideas enables us to train a small S2S model that
achieves production-ready quality with less than
10% human annotations.2

Bucketing: To further study how bucketing helps,
we performed ablation studies to compare: 1) se-
lecting different number of examples per bucket,
i.e., [1,2,3,4], to the training set; and 2) selecting
same amount of examples randomly. Our results
on weather and time domain are shown in Figure 1.
As alarm domain shows similar trend to time, we
put its figure in the appendix. The x-axis shows the
number of examples per bucket and the percentage
of full training set, and y-axis shows tree accuracy.
Clearly we can see that bucketing leads to better
data efficiency for both S2S and BART model. A
minor exception is on the Time domain, where
the BART model with random sampling surpassed
bucketing with >2 examples per bucket. Overall,
we see bucketing is more effective for small models
and data-scarce settings.

6 Conclusion
In this work, we have introduced a novel syn-
thetic data creation approach and a data augmen-
tation method with pretrained language models.
Experiments show combining these ideas enables
production-quality NLG models to be trained with
minimum annotations.

2In fact, our models for all three domains have been de-
ployed in production at the submission time, and currently
serve thousands of user requests daily.
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Ondřej Dušek, Jekaterina Novikova, and Verena Rieser.
2019. Evaluating the state-of-the-art of end-to-end
natural language generation: The E2E NLG Chal-
lenge. arXiv preprint arXiv:1901.11528.

Chris Kedzie and Kathleen McKeown. 2019. A good
sample is hard to find: Noise injection sampling and
self-training for neural language generation models.
In Proceedings of the 12th International Conference
on Natural Language Generation, pages 584–593,
Tokyo, Japan. Association for Computational Lin-
guistics.

Rush Kim. 2016. Sequence-level knowledge distilla-
tion. In Proceedings of the 2016 Conference on
Empirical Methods in Natural Language Processing,
pages 1317–1327.

Mike Lewis, Yinhan Liu, Naman Goyal, Mar-
jan Ghazvininejad, Abdelrahman Mohamed, Omer
Levy, Ves Stoyanov, and Luke Zettlemoyer. 2019.
Bart: Denoising sequence-to-sequence pre-training
for natural language generation, translation, and
comprehension. arXiv preprint arXiv:1910.13461.
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