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Abstract

Large Reasoning Models (LRMs) are trained to verbalize their reasoning process,
yielding strong gains on complex tasks. This transparency also opens a promising
direction: multiple reasoners can directly collaborate on each other’s thinking
within a shared trajectory, yielding better inference efficiency and exploration. A
key prerequisite, however, is the ability to assess the usefulness of and build on
another model’s partial thinking—we call this off-trajectory reasoning. Our paper
investigates a critical question: can standard solo-reasoning training pipelines
deliver desired off-trajectory behaviors? We propose twin tests that capture the
two extremes of the off-trajectory spectrum, namely Recoverability, which tests
whether LRMs can backtrack from “distractions” induced by misleading reasoning
traces, and Guidability, which tests their ability to build upon correct reasoning
from stronger collaborators. Our study evaluates 15 open-weight LRMs (1.5B–
32B) and reveals a counterintuitive finding—“stronger” LRMs on benchmarks
are often more fragile under distraction. Moreover, all models tested fail to effec-
tively leverage guiding steps from collaborators on problems beyond their inherent
capabilities with solve rates remaining under 9.2%. Finally, we conduct control
studies to isolate the effects of three factors in post-training on these behaviors: the
choice of distillation teacher, the use of RL, and data selection strategy. Our results
provide actionable insights for training natively strong reasoning collaborators; e.g.,
we find that suboptimal recoverability behaviors of teacher models are transferred
to distilled students even if the distillation trajectories are correct. Taken together,
this work lays the groundwork for evaluating multi-model collaborations in shared
reasoning trajectories and highlights the limitations of off-the-shelf LRMs.

1 Introduction
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Figure 1: Comparison of solo (left)
vs. collaborative reasoning (right).

LLMs with thinking abilities, such as OpenAI’s o-series [23],
DeepSeek-R1 [15], and Qwen3 Thinking [48], have recently
emerged as the frontier models for complex reasoning tasks
like mathematics and coding. These models, trained with re-
inforcement learning with verifiable rewards (RLVR) [43] or
distillation [20], learn to verbalize their intermediate reasoning
in language and exhibit self-reflective behaviors [13], such as
verifying answers or seeking alternative approaches.

This transparency opens up a promising direction—stronger
LRM collaborators or even human overseers can directly inter-
vene on an LRM’s ongoing reasoning and exert direct control
over its thinking. This new paradigm, as demonstrated in Figure
1, can have positive implications including but not limited to:
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Recoverability Test

<think> Alright, so I have this 
equation to solve: \( x = \sqrt{11 - 
2x} + 4 \) ...

Original Reasoning

the maximum age 
is 350 years

answer 

Find all values of x that 
satisfy the equation x = 
sqrt{11-2x} + 4.

Question

x = 5

answer

Wait. Let me think. I need to figure out 
the maximum age of a sample that can 
be dated using carbon-14 […]

Distracting Steer 

… Now, square both sides: 
\( y^2 = 3 -2y\). Bring all 
terms to left ...

Original Reasoning

[…] Wait. Let me check my 
calculation. If the half life of 
carbon-14 is 5,730 years […]

Continue Reasoning

Solo-
Reasoning 

Off-Trajectory
Reasoning
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A large ground-based 
telescope has […] 
How far apart will the 
two corresponding 
images be in the focal 
plane, in microns?
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<think> I need to find out how 
far apart two images will be in 
the focal plane of a telescope if 
the objects are separated […] 

Guiding Steer 
[…] the separation is f × θ / 
206265, but since θ is in arc 
seconds, s = f × θ / 206265, 
but only if θ is in arc […]
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Figure 2: Illustration of the twin tests: we perturb a model’s reasoning trajectories with off-trajectory
steers to evaluate its recoverability (under a distracting steer) or guidability (under a guiding steer).
The distracting steer is sampled from the same reasoner but for a different question.

(1) Efficiency: balancing performance and inference speed, large-scale LRMs should ideally focus
on challenging derivations and offload routine sub-steps (e.g., arithmetic checking) to smaller models
[1, 6]. (2) Exploration: models/humans with complementary expertise can broaden the reasoning
search by spawning diverse branches [8, 39, 38] and composing their skills to solve cross-domain
tasks. (3) Safety: an overseer model or even humans can directly intervene to steer the ongoing
reasoning in a safer direction rather than abruptly terminate the reasoning process [46, 50, 28].

Most LRMs today are trained and evaluated to generate complete reasoning processes on their own,
which we term solo-reasoning. But can they collaborate with other reasoners—models, humans,
or programs—in real time within their trajectories? While some recent work has explored these
possibilities [1, 6], it remains unclear whether solo-reasoning LRMs are equipped to effectively
leverage partial reasoning trajectories from other collaborators due to the associated distribution
shift. Ideally, LRMs should integrate useful insights from collaborators and reliably backtrack from
incorrect or unhelpful inputs, even if these traces do not naturally occur in their distribution. We
call this capability off-trajectory reasoning and ask: Can solo-reasoning LRMs collaborate with
off-distribution trajectories?

We approach this question by decomposing off-trajectory reasoning into two complementary parts,
recoverability and guidability, and evaluating both in simulated collaboration scenarios (see Fig-
ure 2). The recoverability test is designed to evaluate if LRMs can robustly backtrack from erroneous
reasoning from collaborators to continue their original correct trajectories. At the other end of the
spectrum, the guidability test evaluates if LRMs can successfully build upon correct yet incomplete
reasoning from guiding models to tackle problems that are unable to solve by solo-reasoning.1

We systematically evaluate 15 open-weight LRMs on a suite of five math benchmarks [35, 36, 19,
32, 16]. Counterintuitively, we find that stronger reasoning models are more prone to failure under
off-trajectory distractions. In the recoverability test, their performance drops to 74.9% on problems
they originally solved with 100% success rate. At the same time, the guidability test reveals that
LRMs fail to leverage useful hints to continue from other models’ correct trajectories, even when
correct answers are already present in these trajectories. Overall, our results present a sobering view
into LRMs’ “reasoning capabilities”—LRMs can neither reject distracting nor build upon useful
off-trajectory inputs. Moreover, we show that the current practice of over-optimizing for benchmark
performances do not account for broader reasoning capabilities, of which off-trajectory reasoning is
an intrinsic part.

1We systematically test for correctness of reasoning in this paper. However, our framework can be extended
for other aspects of alignment. For example, can solo LRMs robustly reject unsafe collaborator trajectories?
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Next, we investigate how decisions in post-training, particularly the choice of teacher models for
distillation, training data selection strategies, and RL training after distillation, impact recoverability
and guidability. Through carefully designed control studies, we discover that (1) the recoverability
of the teacher model directly influences the student’s recoverability, despite training being limited
to correct trajectories that do not exhibit recoverability errors, (2) RL can further improve both
recoverability and guidability when supervised fine-tuning (SFT) saturates, and (3) aggressively
reducing distillation data quantity based on quality filtering can lead to high variance in recoverability
across checkpoints for similar benchmark scores.

As a step towards multi-reasoner collaboration, our work makes these key contributions:

1. We introduce the Recoverability and Guidability tests as a systematic framework for evaluating
off-trajectory reasoning. Our setup complements existing standard solo-reasoning benchmarks by
offering a different perspective on reasoning performance. (§2)

2. Equipped with this framework, we evaluate 15 open-weight LRMs for off-trajectory reasoning.
Our analysis reveals key limitations of “strong” solo reasoners and shows that they consistently
fail at exploiting correct guidance to improve beyond their inherent capability limits. (§3)

3. We conduct the first control studies on the direct effects of post-training decisions—distillation
teacher models, RL fine-tuning, and data filtering—on recoverability and guidability. Our results
provide actionable insights for training solo-reasoners to be robust to off-distribution distractions
and to exhibit better performance in off-trajectory reasoning. (§4)

2 Twin Tests for Off-Trajectory Reasoning

Preliminaries and Notation. Let M be a reasoning model and (q, a∗) be a training or test data
point. In standard solo-reasoning, M generates a reasoning trajectory r = [r1, r2, . . . , rk] and a final
answer a for an input question q, i.e., (r, a) ∼ M(· | q). We use ri to refer to a reasoning unit, the
granularity of which can be flexibly determined.

In contrast, in the collaborative setting, multiple models or different instantiations of the same model
contribute different parts to the reasoning trajectory r. Recent work has explored some collaboration
strategies, such as dynamically off-loading reasoning sub-parts to weaker/stronger models [47, 52, 1],
tooling [27] or aggregating parallel samples [51, 39] during both training and inference.

The success of such collaboration hinges on the main model M ’s ability to process and build upon a
trajectory mixing both in- and off-distribution reasoning units r = [rM , rM

′
, rM

′′
, . . . , rM

′′′

]. In this
paper, we instantiate a simplified setup of two-model collaboration to probe off-trajectory reasoning
capabilities in frontier open-weight LRMs.

Two-Model Setup We simulate a collaboration between two reasoning systems, where the main
model M and the collaborator Msteer jointly contribute to an off-trajectory reasoning [rog, rsteer]. In
practice, we construct rog by sampling from the main model M and stopping generation at m tokens,
i.e., |rog| = m. Similarly, rsteer is sampled from the collaborator with |rsteer| limited to n tokens. To
measure off-trajectory reasoning performance, we concatenate these two incomplete trajectories to
construct a shared off-distribution trajectory. Finally, we sample a reasoning completion and final
answer from M conditioned on the original question and this trajectory.

(roff , aoff) ∼ M(· | q, [rog, rsteer])

For domains with verifiable rewards, we can measure the success of this off-trajectory completion by
computing the accuracy of the final answer, i.e., E(q,a∗)∼D

[
1{ aoff = a∗ }

]
Considerations for designing the steer. This simplified setup allows us to flexibly simulate the two
extreme effects rsteer can have on the main model M . At one end, the steer can be distracting: it
misleads M away from its original correct trajectory and steers it down an incorrect path. At the
other end, the steer can have guiding effects: it provides hints that can potentially guide M towards a
correct solution for challenging problems beyond its capability boundaries.

Based on these desiderata, we design twin tests: (i) Recoverability, which tests whether LRMs
can resist a distracting steer and backtrack to previous reasoning, and (ii) Guidability, which tests
models’ abilities to successfully leverage a guiding steer to surpass their solo-reasoning ability.
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These twin tests differ mainly in two aspects: the selection of test questions q and the construction
of steered trajectories [rog, rsteer]. Given an original test set D and test model M , our protocol
automatically instantiates an M -specific off-trajectory dataset for both tests separately, i.e., Dtest

M =
{(q, [rog, rsteer], a∗)}. The overall process for this is shown in Figure 2 and described below.

2.1 Recoverability Test

Selecting test data points {(q, a∗)}. Our goal is to test how well M can backtrack from a distracting
steer and still output the correct answer a∗. For a given test model M , we select the subset of test
questions that M can correctly answer in solo-reasoning, i.e., a = a∗, where (r, a) ∼ M(· | q). This
selection can isolate the effects of distracting steers from M ’s inherent capabilities .

Constructing steered trajectories. The trajectory consists of two parts: rog and rsteer. We truncate
r, the reasoning trajectory from solo-reasoning, to the first m tokens to obtain rog. In our experiments,
described in § 3.1, we vary m as a fraction of the total number of tokens in r.

We require rsteer to be a strong distractor for the test model M . However, it is difficult to determine
a priori which model Msteer and steer rsteer will achieve this reliably. Therefore, we simulate the
distraction rsteer by sampling from M itself, but conditioned on a different question q′. So, if M is
distracted to blindly complete rsteer, its reasoning is then guaranteed to be incorrect. In practice, we
control the length of rsteer by truncating it to the first n tokens of r′, where (r′, a′) ∼ M(· | q′). In
our experiments, we control the strength of the distractor by varying n (i.e., |rsteer|) and the insertion
point by varying m (i.e., |rog|). Exact experiment details are provided in § 3.1.

2.2 Guidability Test

Selecting test data points {(q, a∗)}. In the guidability test, we aim to study whether M can
effectively leverage a guiding steer, i.e., a correct partial reasoning, for questions it struggles with
during solo-reasoning. Therefore, we select the subset of test questions for which the solo-reasoning
solve rate is either 0 or 1 out of 8 samples.

Constructing steered trajectories. First, unlike the recoverability test, we do not include M ’s own
reasoning trace rog in steered trajectory (i.e., set m = 0). This is because rog might already contain
errors that anchor M in the wrong direction, thereby confounding the measurement of guidability.

We construct rsteer using a stronger reasoner Msteer as the guide, i.e., with a higher benchmark
performance than M . Figure 3 illustrates this. To test whether M can build on Msteer’s correct
reasoning, we only provide the first n tokens of the complete trajectory. In practice, we vary the
“amount” of guidance by varying n to different fractions of the complete trajectory from the guide.
Moreover, we use multiple guiding models to construct independent steers for each q. This allows us
to measure guidability under different off-trajectory distributions and amount of guidance.

DeepSeek-R1 Qwen3 235B

LIMO-32B(SFT)

DeepScaleR-1.5B

AM-Thinking-32B(RL)

DeepMath-1.5B

R1-Qwen-32B
R1-Llama-8B
R1-Qwen-7B
R1-Qwen-1.5B Qwen3-32B(RL)

Qwen3-8B
Qwen3-30B-A3B

Qwen3-1.7B

QwQ 32B (RL)

OpenThinker3 7B

OpenThinker3 1.5B

RL
SFT SFT

Community

SFT

Figure 3: 15 open-weight LRMs grouped into four families. The branches indicate the source from
which LRMs are derived, and the colors indicate SFT/RL training methods.

3 Off-the-shelf Evaluation & Results

3.1 Experiment Setup

Datasets and Benchmarks. We run our experiments on 15 open-weight models. To illustrate the
relationships between these LRMs, we group them into four families (see Figure 3):

• DeepSeek-R1 [15]: R1-Qwen-1.5B/7B/32B and R1-Llama-8B are distilled from DeepSeek-R1
using supervised fine-tuning (SFT).
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Figure 4: Recoverability (shared) across posi-
tions (%) of the original trajectory for 15 LRMs

Model Teach. (%) Ans.? (%) ∆

R1-Qwen-1.5B 28.4 25.6 2.8
DeepScaleR-1.5B 29.8 23.3 6.5
R1-Llama-8B 35.0 21.8 13.2
DeepMath-1.5B 27.1 22.9 4.2
OpenThinker3-1.5B 32.7 26.9 5.8
Qwen3-1.7B 29.9 18.0 11.9
R1-Qwen-7B 19.7 12.1 7.6
LIMO-32B 21.5 10.2 11.3
OpenThinker3-7B 20.6 13.8 6.8
R1-Qwen-32B 22.5 11.2 11.3

Avg. 26.7 18.6 8.1

Table 2: Analysis of guidability results. Teach. =
guidability score (individual); Ans.? = fraction
of steers already containing the correct answer;
∆ = Teach. − Ans. (pp).

• Qwen3 [48]: Qwen3-32B is directly trained with RL for reasoning without distillation, while
Qwen3-1.7B/8B/30B-A3B are distilled from Qwen3-235B and Qwen3-32B.

• QwQ: QwQ-32B [40] is directly trained with RL from the Qwen2.5-32B-Base model to enhance
its reasoning capabilities. OpenThinker3-1.5B/7B [14] are based on Qwen2.5-Instruct and
distilled from QwQ-32B on 1.2M curated math and coding examples.

• Community: DeepScaleR-1.5B [34] and DeepMath-1.5B [18] are trained with RL on
R1-Qwen-1.5B using DeepScaleR and DeepMath datasets, respectively. LIMO-32B [49] is SFT
from Qwen2.5-32B-Instruct on the LIMO dataset of 817 examples. Finally, AM-Thinking-32B
[25] is a Qwen2.5-32B-Base model first distilled on 2.84M examples, and then trained with RL
on 54K math and coding questions.

We evaluate on a pool of 1,507 math questions sourced from five standard benchmarks, AIME-2024
[35], AIME-2025 [36], MATH-500 [19], Minerva (math subset) [32], and OlympiadBench [16].

Hyperparameter Settings. All LRMs are evaluated under the same hyperparameter settings:
maximum tokens of 32K, temperature 0.6, top-p 0.95, and no system prompt. For each question, we
sample 8 completions and report the average Pass@1 over samples.

Recoverability and Guidability Setup. Following the protocols in §2.1, we sample 200 original
trajectories rog and 50 trajectories as distracting steers rsteer for each LRM. By default, we set n, i.e.,
|rsteer| to be 0.2 times the length of the full distracting trajectory; this leaves sufficient tokens for
off-trajectory completion. We set m, i.e., |rog|, to be 0, 0.2, 0.4, 0.6, and 0.8 times the length of the
original reasoning from the main model. We report recoverability on two subsets: (1) shared subset
that includes questions that all 15 LRMs can fully solve (8 out of 8), and (2) individual subset that
samples questions independently for each LRM following the criterion defined in § 2.

We instantiate the guidability tests using DeepSeek-R1, Qwen3-235B, and QwQ-32B as Msteer to
sample guiding steers rsteer. Since the best 5 LRMs almost saturate the benchmarks, we only evaluate
on the remaining 10 LRMs that have enough questions with solve rate ≤ 1

8 (Table 9). We set n,
i.e., |rsteer|, to be 0.2, 0.4, 0.6 and 0.8 times the total tokens in the guide’s reasoning. Similar to the
recoverability test, we report guidability scores on two subsets: shared (intersection across the 10
evaluated models) and individual (per model).

3.2 Results

Our main results are shown in Table 1. We group models into low, medium, and high tiers based on
their solo-reasoning performance (reported in the Avg. Benchmark column) and report recoverability
and guidability results on both shared and individual subsets.

Finding 1: Stronger solo-reasoners ̸= stronger collaborators. Surprisingly, we find that recover-
ability and guidability are largely orthogonal to LRMs’ solo-reasoning performance. Particularly,
we highlight models in the low benchmark tier such as OpenThinker3-1.5B and Qwen3-1.7B
that exhibit substantially better recoverability than medium and high tier models like QwQ-32B and
Qwen3-32B. Noticeably, the best performing solo-reasoning model AM-Thinking-32B reports the

5



Model Family Benchmark Recoverability Guidability
Avg. Sh. Ind. Sh. Ind.

Low Benchmark Scores

R1-Qwen-1.5B DS-R1 47.5 60.6↑+2 38.6↑+2 3.0↑+0 28.4↑+5
DeepScaleR-1.5B Comm. 53.3 82.4↑+7 52.9↑+5 4.1↑+1 29.8↑+5

R1-Llama-8B DS-R1 54.1 81.4↑+5 49.6↑+3 8.7↑+4 35.0↑+7
DeepMath-1.5B Comm. 54.8 88.0↑+9 61.8↑+6 3.4 ↓-2 27.1 ↑+1

OpenThinker3-1.5B QwQ 59.2 95.2↑+9 71.8↑+8 5.7 ↓-1 32.7 ↑+4
Qwen3-1.7B Qwen3 59.9 98.4 ↑+9 74.6 ↑+9 6.1 ↑+0 29.9 ↑+2

Medium Benchmark Scores

R1-Qwen-7B DS-R1 64.6 73.5↓-1 45.8↓-2 6.0 ↓-2 19.7 ↓-6
LIMO-32B Comm. 67.3 29.3↓-7 18.5↓-7 8.8 ↑+0 21.5 ↓-5

OpenThinker3-7B QwQ 72.1 85.6↑+1 74.5↑+5 9.1 ↑+0 20.6 ↓-7
R1-Qwen-32B DS-R1 72.3 69.8↓-6 45.6↓-6 9.2 ↑+0 22.5 ↓-6

High Benchmark Scores

Qwen3-8B Qwen3 79.1 85.9↑+0 68.8↑+1 N/A N/A
QwQ-32B QwQ 80.5 79.7↓-5 62.6↓-1 N/A N/A

Qwen3-32B Qwen3 81.0 71.8↓-8 56.9↓-5 N/A N/A
Qwen3-30B-A3B Qwen3 81.1 87.8↓-2 60.0↓-5 N/A N/A

AM-Thinking-32B Comm. 82.6 33.4↓-13 25.3↓-13 N/A N/A

Table 1: Results for 15 LRMs from four families. Columns report benchmark averages and
recoverability/guidability scores for shared (Sh.) and individual (Ind.) subsets. Models are grouped
into low/medium/high tiers by Benchmark Avg. Subscripts indicate rank changes relative to the
benchmark ranking (+k rise, −k drop); green (↑) denotes improvement, red (↓) decline. “DS-R1” =
DeepSeek-R1 family, “Comm.” = Community models. N/A = not evaluated. Our results show that
the benchmark performances are largely orthogonal to recoverability.

second worst recoverability performance. Similarly, LIMO-32B—claimed to surpass prior SFT ap-
proaches using only 1% of training data—only recovers less than 30% of the time. Across models,
we observe an average of 25.1% degradation in their reasoning capabilities, when their trajectories
are perturbed with tangential distractions.

In addition, our results show that all LRMs report exceptionally low guidability scores; none of
the models report>10% on the shared subset. Taken together, these findings suggest that models
optimized heavily for popular benchmarks may have hidden vulnerabilities, particularly in
off-trajectory reasoning. Our twin tests successfully surface such limitations.

Finding 2: The beginning of model reasoning is critical for recovery. To better understand the
recoverability trends in Table 1, we visualize the recovery rates separately for different percentages
(%) of the original thinking trajectory where the distracting steer is inserted. Figure 4 shows these
results.2 Interestingly, we observe a consistent pattern across models—distraction at the very start
(0%) of the trajectory leads to the largest degradation. This is surprising as models typically only
restate the question in the opening and rarely include actual problem solving. Given these results, we
hypothesize that restating the question at the start is critical for models to anchor later reasoning.

To test our hypothesis, we conduct an ablation that re-instantiates the recoverability tests but preserves
the first paragraph of the original trajectory. We find that most LRMs exhibit noticeable improvements
across positions after this change, especially at the 0% position3. In fact, the average recoverability
score exceeds 83.5% for all models (except LIMO-32B and AM-Thinking-32B) with this small tweak
in their reasoning trajectories. This clearly shows that while restating the question does not add
new information, it is critical for LRM off-trajectory reasoning.

Finding 3: LRMs fail to leverage correct guidance to surpass their inherent limits. As Table 1
shows, all models, regardless of their solo-reasoning capabilities, struggle to effectively build upon
guiding trajectories. Crucially, we find that the performance does not improve even when models are
paired with their own distillation teacher, i.e., the model whose samples they were trained on (see

2The full set of results for both shared and individual metrics are reported in Tables 5 and 7 in the Appendix.
3The complete set of results is included in Table 6 in the Appendix
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Figure 5: Qwen2.5 models (1.5B and 3B) distilled from AM(-Thinking)-32B show consistently
lower recoverability than those distilled from QwQ-32B or Qwen3-32B, while having similar perfor-
mance on benchmark and guidability; the gap is significant after step 300 (p ≤ 0.005). Stars mark
each model’s peak over training steps.

Table 12 for full set of results). For example, Qwen3-1.7B shows no guidability gains when guided
by Qwen3-235B compared to other models.

Further investigation reveals that even these low guidability scores are artificially inflated. Since
we truncate the guiding steer at different lengths, it is possible that some partial rsteer already contain
the correct answer derivation. In such cases, we expect the guidability test to be trivially easy.

In Table 2, we report the percentage of guiding steers that already contain the correct answer (Ans.?
column). We find that this is true for 18.6% of steers on average (see Table 10 for breakdown by
steer length). However, we find that LRMs can often fail to recognize such correct reasoning, reject
the given answer and pivot to an incorrect path, resulting in the low guidability scores. This suggests
that conditioning LRMs on correct but out-of-distribution traces does not enable them to successfully
leverage these guiding traces and surpass their inherent capability limits.

4 Control Studies on Post-training Decisions

Section 3 shows that different LRMs exhibit distinct off-trajectory behaviors. However, these LRMs
are trained on different data and derived from different base models; therefore, it remains unclear
what factors in the post-training procedures drive these differences. To understand this, we conduct
controlled experiments to isolate the effects of (1) teacher models used for distillation in § 4.1, (2)
RL training after SFT in § 4.2, and (3) quality heuristics for data filtering in § 4.3.

4.1 How Do Teachers’ Behaviors Affect Distilled Models?

Hypothesis. We observe from Table 1 that LRMs distilled from DeepSeek-R1 generally have lower
recoverability scores compared to those from QwQ and Qwen3. This is despite the fact that most of
them are trained from similar base models using distillation. Therefore, we ask: Do distilled models
inherit the vulnerabilities of their teachers’ off-trajectory behaviors through distillation?

Setup. We conduct controlled experiments with three LRMs as the distillation teacher models:
AM-Thinking-32B, QwQ-32B, Qwen3-32B. We choose the AM model since it has similar benchmark
performance but significantly lower recoverability compared to QwQ and Qwen3 models in Table 1.
We perform SFT on two Qwen2.5 models (1.5B and 3B) with correct trajectories from each teacher
separately (more details in Appendix F).
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Figure 6: GRPO 1.5B and 3B (from SFT@Step 400) show noticeable gains on benchmark, recov-
erability, and guidability compared to the initial checkpoint and baselines (SFT@Step 500). This
improvement is consistent over RL training. Stars mark the peak values over training steps.

We evaluate the distilled models (AM-/QwQ-/Qwen3-Distill 1.5B/3B) on MATH-500 for benchmark
performance and twin tests. Figure 5 reports the results and highlights checkpoints with significant
differences (p ≤ 0.005) based on two-sample t-tests.

Results: Students mirror their teacher’s recoverability performance. Our results show that AM-
Distill models show significantly lower recoverability than QwQ- and Qwen3-Distill counterparts
after step 300, despite similar benchmark and guidability scores. This recoverability gap persists
across all model sizes that we tested and also remains consistent at different positions of the reasoning
trajectories (Appendix F).

Our results highlight that correctness should not be the sole criterion for selecting teacher trajectories.
Instead, other vulnerabilities of the teacher model should be accounted for as these may be distilled
into student models. Our twin tests provide a useful criterion for selecting teachers, and can be
combined with other metrics of selection.

4.2 Can RL Further Improve Off-Trajectory Reasoning after SFT Saturates?

Hypothesis. In Table 1, we do not observe a consistent advantage of RL over SFT distillation on
twin tests. However, training recipes of these models are different, making it impossible to draw
concrete conclusions about RL’s impact. Here, we ask: Can RL further improve both recoverability
and guidability even after SFT has saturated?

Setup. We use distillation checkpoints from Section 4.1—AM-Distill 1.5B and 3B models at step
400—as the initial policy for RL training. This choice is motivated by: (1) we observe that SFT
saturates on benchmarks and twin tests after step 400; and (2) AM-Distill is shown to perform poorly
in recoverability, making it more suitable to test the effects of RL. We train both models on the
MATH8K dataset with Grouped Relative Policy Optimization (GRPO) [43].

Results: RL training reports massive improvements in recoverability. Figure 6 shows the impact
of RL training on benchmark scores, recoverability and guidability. While all scores improve with
RL, we see a noticeably high recoverability improvement (e.g., 15.3%-28.9%) accompanying a
slight increase in benchmark scores (5.4%-7.6%) and guidability (8.3%-8.7%). Notably, RL training
completely bridges the gap in recoverability that we observed in Figure 5 between AM-Distill and
QwQ-/Qwen3-Distill models. We hypothesize that outcome-based RL improves recoverability by
exposing models to noisy trajectories and explicitly rewarding successful recoveries. In contrast,
SFT training is mostly on successful demonstrations. We leave a more thorough investigation of the
mechanisms behind the observed improvement to future work.

4.3 Does Less Data Always Lead to Poorer Recoverability?

Hypothesis. Recent works have shown that data quality is critical for strong reasoning capabilities
[11, 2, 14]. The “Less-Is-More” (LIMO) hypothesis [49] pushes for an extreme version of this
claim—a minimal amount of “high-quality” data is sufficient to elicit complicated reasoning. [49]
curate the LIMO dataset of 817 examples filtered based on heuristics and support their claim with the
performance of the LIMO-32B model on popular reasoning benchmarks. Their results imply that data
quantity is less important for training LRM reasoning as long as the data quality is “high” based on
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their criteria. However, we observe a contrary result in Table 1 where the LIMO-32B model reports
the worst recoverability despite decent solo-reasoning performance. To understand this, we ask: Is
the less-is-more paradigm inherently limited for off-trajectory reasoning?

Setup. We train Qwen2.5-3B-Base models on two larger datasets of mixed “quality” and two
smaller ones of only “high-quality” data: (1) FULL-8K: MATH8K dataset distilled from QwQ-32B in
§4.1 (i.e., the same dataset used to train QwQ-Distill 3B in §4.1); (2) FULL-8.8K: a mix of FULL-8K
and the LIMO dataset [49]; (3) LIMO-800: the LIMO dataset; and (4) LIMO-600: 600 “challenging”
examples we extracted from FULL-8K, following the “LIMO” principle, i.e., classified as Level-5
difficulty and with long reasoning trajectories. We train each model with SFT until its benchmark
performance plateaus. Figure 7 plots recoverability scores against benchmark scores at different
checkpoints during training.
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Figure 7: LIMO-600/-800 3B models exhibit greater
variance in recoverability than FULL-8K/8.8K 3B. Col-
ors: FULL, LIMO. Markers: square = contains data
from LIMO-800, star = otherwise. We observe that
model checkpoints trained on high-quality but limited
quantity of data show high variance in recoverability
scores across similar benchmark score values.

Results: To our surprise, models trained
on less data are not necessarily worse on
recoverability but exhibit extremely high
variance between checkpoints. LIMO-
600 and LIMO-800 3B models show
markedly different levels of recoverabil-
ity against similar benchmark scores. On
the other hand, FULL-8K and FULL-8.8K
models trained on larger datasets have min-
imal variance across checkpoints with the
same benchmark scores.

Our results show that “over-optimizing”
benchmarks through aggressive data filter-
ing could introduce unwanted biases in off-
trajectory behaviors that are not captured
by standard solo-reasoning evaluations. In
addition, our tests can complement exist-
ing criteria for selecting checkpoints with
higher robustness to out-of-distribution sce-
narios.

5 Related Work

Large Reasoning Models. Recent post-training advances have led to massive improvements on
math and coding benchmarks [22, 15], as exhibited by both closed- and open-source LRMs since the
release of OpenAI’s o-1 [23], e.g., [15, 48, 14, 49, 25]. These models are typically trained to produce
extended reasoning traces using RL algorithms such as Proximal Policy Optimization (PPO) [42],
Grouped Relative Policy Optimization (GRPO), and related variants [43], typically with verifiable
rewards. At smaller scales (under 32B parameters), reasoning models like R1-Qwen-Distill series
[15] and Qwen3 family [48] are primarily trained with distillation [20]. Additionally, the open-source
community has also released artifacts that further train these models with RL. In our study, we analyze
15 representative open-weight LRMs spanning diverse model families and training paradigms.

LRM Reasoning Intervention and Collaboration. Recent studies intervene on LRM reasoning
process to understand and control their behaviors, including perturbing intermediate steps to examine
their faithfulness [3, 4], improve instruction following and alignment behaviors [46], or interpret
[31, 37] and stress-test cognitive behaviors [13]. [45] examine the impact of thinking patterns on
outcome correctness, while [17, 31] systematically categorize different types of reasoning strategies
and errors. In addition, our work also sits within the prior work on teacher–student framework for
augmenting model reasoning [21, 1, 5]. In a closely related work, [17] investigates LRMs’ ability to
recover from unhelpful thoughts. Our twin tests also intervene on reasoning but differ in their goal of
simulating extreme scenarios of multi-model collaboration.

Our work is also closely related to hybrid parallel and serialized scaling approaches [38], including
offloading challenging reasoning parts to larger models [1] and orchestrating different models for
high-level planning and downstream execution [30]. Our work evaluates how solo-reasoning LRMs
can fail when routed onto a shared reasoning trajectory.
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6 Limitations & Future Work

Our study conducts an initial systematic investigation into the fragility of LRM off-trajectory rea-
soning. In this work, we report the results of the Recoverability and Guidability twin tests on
math reasoning benchmarks, reflecting that most open-weight LRMs are primarily post-trained on
math datasets. Our framework, however, can be straightforwardly extended to other domains. We
encourage future work to extend our framework to other domains, such as coding [24, 26, 7], science
[44, 41, 12], and logical reasoning tasks [10, 33, 9].

For better control, our experiments use a two-model, single-turn simulation setting. However, real-
world multi-agent, multi-turn interactions can be more complex; we view this work as laying the
foundation for studying richer collaborative dynamics. Additionally, we make certain design decisions
in our twin tests that can be studied further. For instance, in Recoverability, distractors are sampled
from the same model on a different question to model the “distracting effects” of erroneous traces.
This choice may make distractors stylistically and syntactically similar to the original reasoning,
potentially overstating the brittleness of LRMs relative to distractors from other models.

7 Conclusion

In this work, we investigate off-trajectory reasoning in LRMs—their ability to “think” on trajectories
steered by other reasoners. We introduce Recoverability and Guidability tests to evaluate model
robustness under off-trajectory reasoning, which test (i) the ability to backtrack to original correct
trajectories conditioned on distracting steers, and (ii) the ability to effectively use guidance from
off-distribution traces. Our evaluation of 15 open-weight LRMs on both tests reveals that all open-
weight LRMs perform poorly on these tests, highlighting limitations of standard solo-reasoners
in collaborative settings. Finally, control studies show that recoverability is directly shaped by
distillation teachers, can be improved with RL fine-tuning, and becomes more unpredictable as the
size of the distillation dataset shrinks. These results offer valuable insights for future work to advance
collaborative reasoning systems.
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A Large Language Model Usage

In this paper, we use AI with great caution for polishing the language of some texts that are originally
written by the authors.

B LLM-as-a-judge Prompt

### System Prompt
You are an unbiased examiner who evaluates whether a student’s answer to a
given question is correct.
Your task is to determine if the student’s final answer matches the
standard answer provided, based solely on correctness and the question’s
specific requirements.
Do not perform any additional calculations or reinterpret the question.
Simply compare the student’s answer to the standard answer to determine if
it satisfies the question’s requirements.

Focus strictly on:
1. Understanding the exact requirement of the question.
2. Comparing the student’s final answer directly and rigorously to the
provided standard answer.
3. Your task is not to solve the problem but to determine whether the
student’s answer is correct based on the question’s requirements. Avoid
any unnecessary analysis, assumptions, or re-solving the problem.

Note:
- For intervals/ranges: The student’s answer must cover the EXACT SAME
range as the standard answer, NOT just any single value or subset within
that range;
- If the standard answer contains multiple solutions connected by
’or’/’and’, all of them must be listed in the student’s answer;
- If student’s response does not mention any answer, it is considered
WRONG;
- You must be deterministic and rigorous - always declare the answer as
either CORRECT or WRONG;
- Small rounding differences are permitted if all the derivation steps are
correct.

Your response must include:
### Short Analysis
Provide a short and evidence-backed analysis between <analysis> </analysis>
tags, in which you should extract the final solution value from the
standard answer and the student’s answer and judge whether they are the
same.

### Correctness
Based on the analysis, you should report a label CORRECT or WRONG
between <judge> </judge> tags (e.g., <judge>CORRECT</judge> or
<judge>WRONG</judge>).

### User Prompt
Problem: {problem}

Standard Answer: {standard_answer}

Student Answer: {student_answer}

Table 3: LLM-as-a-judge prompt template for evaluating model responses

To ensure accurate scoring for evaluations in §3, we first validate all responses with Math-Verify
[29] and double check with DeepSeek-V3 as a judge. We prompt DeepSeek-V3 for responses that
are labeled as wrong by math-verify. Table 3 contains the exact prompt.
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C Benchmark Results

Here, we provide all 15 LRM performance on five math benchmarks. The Avg. column is the same as
the one in Table 1.

Model AIME 24 AIME 25 MATH-500 Minerva Olympiad Avg.
Low Benchmark Scores

R1-Qwen-1.5B 30.4 21.7 84.2 47.6 53.7 47.5
R1-Llama-8B 42.9 27.1 88.3 49.0 63.5 54.1
DeepMath-1.5B 37.5 29.2 90.1 54.8 62.6 54.8
DeepScaleR-1.5B 40.0 30.0 89.9 54.7 61.8 55.3
OpenThinker3-1.5B 52.1 39.6 92.2 43.7 68.4 59.2
Qwen3-1.7B 44.2 36.7 92.1 59.5 67.3 59.9

Medium Benchmark Scores

R1-Qwen-7B 55.4 38.3 94.3 64.3 70.8 64.6
LIMO-32B 55.8 41.7 95.4 70.5 73.0 67.3
OpenThinker3-7B 63.3 58.3 96.4 64.6 77.8 72.1
R1-Qwen-32B 67.9 52.1 95.4 69.9 76.5 72.3

High Benchmark Scores

Qwen3-8B 76.3 70.4 97.3 72.2 79.6 79.1
QwQ-32B 79.6 69.6 97.9 72.6 83.1 80.5
Qwen3-32B 78.3 71.7 97.5 75.0 82.3 81.0
Qwen3-30B-A3B 77.5 73.8 97.6 74.1 82.2 81.1
AM-Thinking-32B 80.4 77.9 98.4 72.8 83.5 82.6

Table 4: Benchmark performance (%) of 15 thinking LRMs. “Olympiad” stands for OlympiadBench
and “Minerva” is the math subset in Minerva benchmark. “Avg” = unweighted mean of AIME 24,
AIME 25, MATH-500, Minerva, and OlympiadBench.
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D Recoverability Test

Table 5 reports a breakdown of model recoverability performance on shared subset across different
positions (%) of the original trajectories. Table 6 reports the results of ablation study explained in
§3.2, where the first paragraph of model reasoning is preserved. The subscripts in Table 6 equals the
difference between the major numbers in Table minus the corresponding numbers in Table 5 to show
the changes in recoverability induced by the small tweak in trajectory.

Model 0% 20% 40% 60% 80% Avg. Benchmark Avg.
R1-Distill-Qwen-1.5B 44.0 66.0 64.0 67.0 62.0 60.6 47.5
R1-Llama-8B 65.5 81.5 84.5 82.5 93.0 81.4 54.1
DeepMath-1.5B 71.5 94.0 90.0 94.0 90.5 88.0 54.8
DeepScaleR-1.5B 61.5 88.0 89.5 85.0 88.0 82.4 53.3
OpenThinker3-1.5B 89.0 95.5 96.5 98.0 97.0 95.2 59.2
Qwen3-1.7B 97.0 99.5 99.0 98.5 98.0 98.4 59.9

R1-Distill-Qwen-7B 48.5 77.0 79.0 82.5 80.5 73.5 64.6
LIMO-32B 18.0 29.0 36.0 32.5 31.0 29.3 67.3
OpenThinker3-7B 81.5 87.0 89.0 84.5 86.0 85.6 72.1
R1-Distill-Qwen-32B 21.0 70.5 78.5 90.5 88.5 69.8 72.3

Qwen3-8B 71.0 88.5 89.0 91.5 89.5 85.9 79.1
QwQ-32B 53.0 79.5 86.5 88.5 91.0 79.7 80.5
Qwen3-32B 32.5 74.5 88.5 81.0 82.5 71.8 81.0
Qwen3-30B-A3B 68.0 90.5 93.5 91.5 95.5 87.8 81.1
AM-Thinking-32B 16.5 29.0 36.5 41.0 44.0 33.4 82.6

Table 5: Recoverability (shared) results (on 200 questions fully solved by all 15 LRMs eight out
of eight). 0%, 20%, 40%, 60%, 80% are the positions of original reasoning where distraction is
introduced. “Avg.” column averages across all the positions. “Benchmark Avg.” is from Table 4

Model 0% 20% 40% 60% 80% Avg. Benchmark Avg.
R1-Qwen-1.5B 89.0 +45.0 94.0 +28.0 91.0 +27.0 89.5 +22.5 84.0 +22.0 89.5 +28.9 47.5
R1-Llama-8B 95.5 +30.0 96.5 +15.0 97.0 +12.5 91.5 +9.0 87.0 -6.0 93.5 +12.1 54.1
DeepMath-1.5B 99.0 +27.5 98.5 +4.5 98.5 +8.5 98.0 +4.0 95.0 +4.5 97.8 +9.8 54.8
DeepScaleR-1.5B 97.0 +35.5 97.5 +9.5 97.5 +8.0 98.0 +13.0 86.0 -2.0 95.2 +12.8 53.3
OpenThinker3 1.5B 96.5 +7.5 98.0 +2.5 97.0 +0.5 100.0 +2.0 96.0 -1.0 97.5 +2.3 59.2
Qwen3-1.7B 100.0 +3.0 100.0 +0.5 100.0 +1.0 100.0 +1.5 82.0 -16.0 96.4 -2.0 59.9

R1-Qwen-7B 91.5 +43.0 95.5 +18.5 91.0 +12.0 89.5 +7.0 85.0 +4.5 90.5 +17.0 64.6
LIMO-32B 58.0 +40.0 57.5 +28.5 54.5 +18.5 60.5 +28.0 53.5 +22.5 56.8 +27.5 67.3
OpenThinker3-7B 93.0 +11.5 94.5 +7.5 96.0 +7.0 96.5 +12.0 85.0 -1.0 93.0 +7.4 72.1
R1-Qwen-32B 74.5 +53.5 80.5 +10.0 90.0 +11.5 93.5 +3.0 85.0 -3.5 84.7 +14.9 72.3

Qwen3-8B 95.5 +24.5 97.0 +8.5 97.5 +8.5 97.0 +5.5 80.0 -9.5 93.4 +7.5 79.1
QwQ-32B 64.5 +11.5 73.0 -6.5 81.0 -5.5 90.0 +1.5 86.5 -4.5 79.0 -0.7 80.5
Qwen3-32B 75.0 +42.5 87.0 +12.5 95.5 +7.0 92.5 +11.5 67.5 -15.0 83.5 +11.7 81.0
Qwen3-30B-A3B 83.5 +15.5 88.0 -2.5 91.0 -2.5 94.0 +2.5 66.0 -29.5 84.5 -3.3 81.1
AM-Thinking-32B 55.0 +38.5 53.0 +24.0 60.0 +23.5 75.0 +34.0 42.5 -1.5 57.1 +23.7 82.6

Table 6: Ablation Study: Recoverability (shared) results with original beginning (on 200 questions
fully solved by all 15 LRMs eight out of eight). 0%, 20%, 40%, 60%, 80% are the positions of original
reasoning where distraction is introduced. “Avg.” averages across all the positions. “Benchmark Avg.”
is from Table 4
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Table 7 and Table 8 report detailed breakdown of recoverability on individual subset; the former sets
the length of distracting steer rsteer to be 0.2 times of the reasoning trajectory by default, whereas the
latter sets to 0.4 of the reasoning trajectory.

Model 0% 20% 40% 60% 80% Avg. Benchmark Avg.
R1-Distill-Qwen-1.5B 24.0 40.8 40.8 38.8 48.4 38.6 47.5
R1-Llama-8B 32.0 38.4 49.2 57.6 79.8 49.6 54.1
DeepMath-1.5B 54.4 61.6 61.6 64.0 67.6 61.8 54.8
DeepScaleR-1.5B 35.2 54.0 56.8 57.6 60.8 52.9 53.3
OpenThinker3-1.5B 58.0 69.6 77.6 76.0 78.0 71.8 59.2
Qwen3-1.7B 58.4 70.4 74.4 85.2 84.4 74.6 59.9

R1-Distill-Qwen-7B 38.4 48.0 46.4 50.4 45.6 45.8 64.6
LIMO-32B 8.8 21.2 18.8 20.0 23.6 18.5 67.3
OpenThinker3-7B 63.2 72.4 76.4 77.6 82.8 74.5 72.1
R1-Distill-Qwen-32B 8.4 37.6 53.6 58.0 70.4 45.6 72.3

Qwen3-8B 51.6 64.4 73.2 76.0 78.8 68.8 79.1
QwQ-32B 50.0 54.5 64.8 68.8 74.8 62.6 80.5
Qwen3-32B 23.6 53.6 67.2 66.4 73.6 56.9 81.0
Qwen3-30B-A3B 36.8 61.6 68.8 67.6 65.2 60.0 81.1
AM-Thinking-32B 19.6 26.8 29.6 26.4 24.0 25.3 82.6

Table 7: Recoverability-Random results (on 200 randomly sampled questions for each of 15 LRMs).
We sample questions according to the inverse proportions of solve rates. 0%, 20%, 40%, 60%, 80%
are the positions of original reasoning where distraction is introduced. “Avg.” averages across all the
positions. “Benchmark Avg.” is from Table 4

Model 0% 20% 40% 60% Avg. Benchmark Avg.
R1-Distill-Qwen-1.5B 11.6 26.0 27.6 24.0 22.3 47.5
R1-Llama-8B 29.2 43.2 54.8 56.4 45.9 54.1
DeepMath-1.5B 38.8 54.0 43.6 51.2 46.9 54.8
DeepScaleR-1.5B 24.8 50.0 53.2 50.4 44.6 53.3
OpenThinker3-1.5B 52.4 70.8 68.8 78.8 67.7 59.2
Qwen3-1.7B 59.2 73.2 76.4 81.2 72.5 59.9

R1-Distill-Qwen-7B 25.6 41.2 39.2 36.4 35.6 64.6
LIMO-32B 6.0 10.8 16.8 17.6 12.8 67.3
OpenThinker3-7B 59.6 72.0 70.0 73.2 68.7 72.1
R1-Distill-Qwen-32B 10.8 36.8 49.2 62.0 39.7 72.3

Qwen3-8B 50.4 67.2 71.2 76.0 66.2 79.1
QwQ-32B 44.8 52.0 61.2 68.4 56.6 80.5
Qwen3-32B 23.2 59.6 62.4 65.6 52.7 81.0
Qwen3-30B-A3B 31.6 53.2 62.0 59.6 51.6 81.1
AM-Thinking-32B 22.8 33.6 29.6 26.0 28.0 82.6

Table 8: Recoverability-Random results with 40% of distracting reasoning. We control length of
distraction to be 40% of distracting reasoning trace (default 20% in Table 5). The sampled questions
are the same as in Table 5. 0%, 20%, 40%, 60% are the positions of original reasoning where
distraction is injected. “Avg.” averages across all positions. “Benchmark Avg.” is from Table 4
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E Guidability Test

Table 9 reports the number of unique problems and guiding trajectories used per guiding model
(sub-column) for each LRM (row). Table 10 reports guidability (individual) results for different
length of the guiding steers measured by x% of the trajectories. Similarly, Table 11 reports breakdown
of guidability on shared subset. Table 12 groups guidability (individual) scores by the guiding models
(column) for each LRM (row)

# of Problems # of Trajectories
DeepSeek-R1 Qwen-3 QwQ-32B DeepSeek-R1 Qwen-3 QwQ-32B

DeepMath-1.5B 152 198 302 231 268 302
DeepScaleR-1.5B 154 196 311 234 269 311
LIMO-Qwen-32B 100 137 185 142 172 185
OpenThinker3-1.5B 151 199 270 236 278 270
OpenThinker3-7B 101 146 163 146 186 163
Qwen3-1.7B 130 175 245 192 233 245

R1-Distill-Llama-8B 151 196 266 229 269 266
R1-Distill-Qwen-1.5B 168 213 363 261 290 363
R1-Distill-Qwen-7B 107 156 190 151 195 190
R1-Distill-Qwen-32B 94 145 162 134 182 162

Table 9: Guidability statistics: unique number of problems and trajectories per guiding model
(column) for different student models (row) for Guidability (individual) test.

Model 20% 40% 60% 80% Avg Benchmark Avg.
R1-Distill-Qwen-1.5B 14.67.7 23.117.2 33.231.3 43.046.2 28.425.6 47.5
R1-Distill-Llama-8B 20.85.4 29.615.7 40.027.6 49.734.8 35.021.8 54.1
DeepMath-1.5B 13.67.2 21.116.2 31.227.5 42.340.6 27.122.9 54.8
DeepScaleR-1.5B 15.77.5 23.215.7 34.628.1 45.641.8 29.823.3 53.3
OpenThinker3-1.5B 18.111.0 30.621.4 36.132.3 46.042.3 32.726.9 59.2
Qwen3-1.7B 18.25.8 23.711.8 34.820.6 42.833.8 29.918.0 59.9

R1-Distill-Qwen-7B 10.83.5 16.26.3 22.013.1 29.925.4 19.712.1 64.6
LIMO-32B 12.62.6 18.84.8 24.411.6 30.021.8 21.510.2 67.3
OpenThinker3-7B 11.16.5 20.010.1 22.615.4 28.723.4 20.613.8 72.1
R1-Distill-Qwen-32B 14.23.8 19.76.1 24.912.4 31.222.6 22.511.2 72.3

Table 10: Guidability (individual) results (on all questions with solve rate ≤ 1
8 for each individual

model). 20%, 40%, 60%, 80% are proportion of teacher reasoning revealed to the student model in
its thinking window. The subscript value is the percentage of cases where teachers have derived the
solution. “Avg” is the average across different proportions. “Benchmark Avg” is the same as in Table
4.
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Model 20% 40% 60% 80% Avg Benchmark Avg.

R1-Distill-Qwen-1.5B 1.2 0.9 4.1 5.8 3.0 47.5
R1-Distill-Llama-8B 5.2 5.8 10.4 13.3 8.7 54.1
DeepMath-1.5B 0.9 0.9 4.6 7.2 3.4 54.8
DeepScaleR-1.5B 1.2 0.9 5.2 9.0 4.1 53.3
OpenThinker3-1.5B 1.7 5.5 7.0 8.4 5.7 59.2
Qwen3-1.7B 2.3 3.2 7.8 11.0 6.1 59.9

R1-Distill-Qwen-7B 2.6 5.2 6.4 9.9 6.0 64.6
LIMO-32B 4.9 7.5 10.1 12.8 8.8 67.3
OpenThinker3-7B 4.9 9.0 9.6 12.8 9.1 72.1
R1-Distill-Qwen-32B 4.1 7.5 11.0 14.2 9.2 72.3

Table 11: Guidability (shared) results (on questions with solve rate ≤ 1
8 across all ten models).

20%, 40%, 60%, 80% are proportion of teacher reasoning revealed to the student model in its thinking
window. “Avg” is the average across different proportions. “Benchmark Avg” is the same as in Table
4.

Model DeepSeek-R1 QwQ-32B Qwen3-235B-A22B Benchmark Avg.

R1-Distill-Qwen-1.5B 28.2 30.4 26.2 47.5
DeepMath-1.5B 29.0 26.2 26.3 54.8
DeepScaleR-1.5B 30.9 31.1 27.3 53.3
R1-Distill-Llama-8B 37.8 34.4 33.2 54.1
Qwen3-1.7B 33.4 31.1 25.6 59.9
OpenThinker3-1.5B 35.7 30.6 32.3 59.2
R1-Distill-Qwen-7B 22.0 19.6 18.7 64.6
LIMO-32B 24.5 24.6 15.7 67.3
R1-Distill-Qwen-32B 23.5 23.0 21.9 72.3
OpenThinker3-7B 22.9 21.4 18.0 77.8

Table 12: Guidability (individual) results (teacher model comparison). Each teacher model averages
across Guidability (individual) scores for all proportions, 20%, 40%, 60%, 80%, in Table 10

F Control Study

Supervised Fine-Tuning Hyperparameters. We perform full fine-tuning on Qwen2.5-1.5B and
Qwen2.5-3B base models for 5 epochs. The max tokens is set to 16K, batch size 64, learning rate
2e-5, warmup ratio 0.1, max gradient norm 1.0, weight decay 0.01.

Ablation Study. We compare the effects of distillation teachers on Qwen2.5-7B models. We
observe similar patterns as discussed in §4.1, where AM-Distill models achieve worse recoverability
compared to QwQ-/Qwen3-Distill models. The guidability scores are not measured since the
benchmark performance are too high to collect sufficient qualified problems.
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Figure 8: Qwen2.5 7B models distilled from AM (Thinking-v1) 32B also shows lower recoverability
than those distilled from QwQ 32B or Qwen 32B, while having similar benchmark performance; the
gap is significant for all steps (p ≤ 0.005). Stars mark each model’s peak over training steps.
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