
Unexpected Patterns Generated while Attempting the Design of an Algorithm for
Generating Natural Fractal Objects Using Evolutionary Computation

Habiba Akter 1, Rupert Young 2

Department of Engineering and Design,
School of Engineering and Informatics,

University of Sussex,
United Kingdom

1 h.akter@sussex.ac.uk
2 r.c.d.young@sussex.ac.uk

Abstract

This paper presents results and observations from initial ex-
periments with an aim to implement Evolutionary Computa-
tion to generate realistic fractal objects. The target fractals
are both regular and irregular, commonly observed in nature.

Keywords: Fractal Objects, Evolutionary computation, Ge-
netic Algorithm, Iterated Function Systems.

Introduction
Despite being efficient in explaining different patterns, the
classic geometry cannot explain the complex structures
(Frame, Michael and Urry, Amelia, 2016). In this case,
the fractal geometry plays an important role to categorise
and explain them mathematically (Mandelbrot and Mandel-
brot, 1982; Campbell and Abhyankar, 1978). Unlike the
simple structures, the dimension of fractals are fractional
numbers (Uthayakumar and Prabakar, 2012). Fractal struc-
tures are very often seen in the biological organism, spe-
cially in plants. Widely used examples are the Barnsley fern,
the roughness of the coastline, strokes of clouds, mountain
ranges, mammalian lungs etc (Brambila, 2017). The fractal
objects can be mainly divided into the following two cate-
gories (Bayırlı et al., 2014; Hutchinson, 1981):

1. Regular fractals: This category includes the objects
which are self-similar. If they are zoomed in, at every
scale, they look similar to their original shapes. They are
also known as geometric fractals.

2. Irregular fractals: These structures do not have the fea-
ture of self-similarity property. They are also known as
non-geometric fractals.

We propose to design a tool using an Evolutionary Algo-
rithm (EA) to generate both regular and irregular fractals.

Main Objectives

The main objectives of this work are set as follows:

• To generate natural fractals using a GA, without relying
on the popular reverse-calculation methods.

• To use the tool for generating both regular and irregular
fractals which resemble complex patterns observed in bi-
ological organisms.

Selection of Algorithm
The interest in the paradigm of "Evo-Devo" i.e., the evolu-
tionary developmental biology has been the main motiva-
tion of this work. The iterative nature of fractals inspired the
use of evolutionary computation to generate images of frac-
tal structures (Lauwerier and Lauwerier, 1991; Collet et al.,
2000). The development of computers has helped generating
fractal structures. One of the very first successful computer-
generated fractal image is the Mandelbrot’s set as shown in
Figure 1(Mandelbrot et al., 2004).

Figure 1: Computer-generated Mandelbrot’s Set



The idea of using the evolutionary computation in study-
ing fractals is not new (Lutton, 1999; Collet et al., 2000).
The work in (Collet et al., 2000) discusses a new technique
for treating the inverse problem for Iterated Functions Sys-
tems (IFS) for generating fractals using Genetic Program-
ming (GP). This paper is based on the idea of implementing
a Genetic Algorithm (GA) for searching the parameters of
natural fractal objects. Originally developed by John Hol-
land, the GA is one of the most frequently used EAs by
the researchers (Mitchell, 1998; Sarker et al., 2002; Slowik
and Kwasnicka, 2020; Katoch et al., 2021). Researchers
have also justify the idea of implementing Genetic Algo-
rithm (GA) and fractals together (Véhel and Lutton, 1993;
Lutton, 1999; Bossard et al., 2016). We are not only inter-
ested in the regular fractals, but also irregular fractals which
are strikingly similar as the ones observed in real life.

Proposed Design
We aim to design a fractal-generating tool that outputs the
parameters by exploring the search space. These are the
GA-tuned parameters to be used in fractal functions. Fig-
ure 2 presents a flowchart of the steps involved in the GA
(Mitchell, 1998).

Figure 2: The steps in a Genetic Algorithm

However, the implementation is not simple as at each step,
the parameters are to be selected very carefully. This is
mainly because we wish to generate realistic patterns. At the
first step, a set of population, P is generated. The members
of P are known as “chromosomes” which are made with
genes. For our algorithm, the genes represent the values to
be used as the coefficients of mathematical functions to gen-
erate fractals. If n is the number of genes in a chromosome,
then a chromosome of the population P can be represented
using Figure 3.

Figure 3: The steps in a Genetic Algorithm

Each chromosome is then evaluated using a fitness func-
tion. To do so, we have used “fractal dimension” which is

a well-known method for measuring the complexity of frac-
tal structures. There are different methods for calculating
the fractal dimension of an image (Fernández-Martínez and
Sánchez-Granero, 2014a,b; Falconer, 2004; Husain et al.,
2021). We have used the Box-Counting Dimension method
for evaluation.

Equation 1 calculates the fractal dimension FD, which
represents the fitness of a chromosome, F :

F = lim
ϵ→0

log n

log 1
ϵ

(1)

Here, n is the number of boxes covering the points of an
image and ϵ is the size of boxes. The range of ϵ needs to be
pre-selected.

The fitter chromosomes from P are selected for repro-
duction, which undergo the process of crossover for a cer-
tain probability, ρc and produce offspring. We implemented
single-point crossover, where two parent chromosomes are
selected and crossed over.

Similarly, for mutation probability of ρm, a certain num-
ber of chromosomes undergo mutation to produce offspring.
A gene from the parent is randomly selected randomly and
its value is altered.

The offspring from both crossover and mutation are then
combined together to be sent as the population set, P for
the next iteration. This goes on until the algorithm meets
the terminating condition. We have run the tests setting up a
maximum number of iterations as the terminating condition.

Parameters Notation
Size of Population N
Crossover probability ρc
Mutation probability ρm
Crossover rate rc
Mutation rate rm
Terminating condition imax

Table 1: The parameters to be selected for the Genetic Algorithm
to develop the proposed algorithm to generated fractals

Experiments and Observations
We took the example of the Barnsley fern to compare with.
Barnsley came up with the Iterated Function Systems (IFS)
based on his “Collage Theorem” and an iteration algorithm
“decodes” the data back to images again. IFS generates
fractals using affine transformations (Barnsley and Demko,
1985; Barnsley, 2014; Barnsley et al., 2003). These affine
transformations for two dimensional (2-D) fractals can be
presented by the form shown in Equation 2.

[
xn+1

yn+1

]
=

[
a b
c d

] [
xn

yn

]
+

[
e
f

]
(2)



For better explanation, if we denote the coefficients a
through d as vi, then Equations 3 through 6 calculates the
affine transformation functions, f1 to f4:

xn+1 = v0 × xn + v1 × yn + e

yn+1 = v2 × xn + v3 × yn + f
(3)

xn+1 = v4 × xn + v5 × yn + e

yn+1 = v6 × xn + v7 × yn + f
(4)

xn+1 = v8 × xn + v9 × yn + e

yn+1 = v10 × xn + v11 × yn + f
(5)

xn+1 = v12 × xn + v13 × yn + e

yn+1 = v14 × xn + v15 × yn + f
(6)

Each equation is selected for a certain percentage. Table
2

Functions Percentage
f1 (Equation 3) 1%
f2 (Equation 4) 85%
f3 (Equation 5) 7%
f4 (Equation 6) 7%

Table 2: Probability of choosing each of the four affine transfor-
mations in the IFS to generate the Barnsley fern

The proposed GA evolves the values of the coefficients,
vi. The lower limit and upper limit of vi are denoted as
vmin and vmax in the rest of the paper.

Experiments with Different Parameters
At first, we paid attention to the initial population set to start
running the tests. Two different scenarios have been consid-
ered for this.

Table 3 lists the parameters set for these tests.

Parameters Values
Size of initial Population, N 100
Crossover probability, ρc 0.7
Mutation probability, ρm 0.2
Crossover rate, rc 0.5
Mutation rate, rm 0.02
Terminating condition imax

Table 3: The parameters to be selected for the Genetic Algorithm
to develop the proposed algorithm to generated fractals

Evolving four Coefficients, a, b, c and d: The first exper-
iment is set to generate the coefficients a to d for the four
affine transformation, f1 to f4. The variable are within the
range of vmin = −1 to vmax = 1.

Figure 4: Image generated after the 200th iteration

Figure 5: Image generated after the 500th iteration

It is clear that the idea of generating all the coefficients
within the same range is not feasible. As we can see even
if we increase the number of iterations, the images are far
from realistic.

Evolving two coefficients, c and d: The genes in each
chromosome are randomly generated within the range of −1
to 1. The image generated after 500 iterations is shown in
Figure 6.

We continued the iterations since, with the increase in the
number of iterations, the parameters are evolved and may
give better results. However, no improvement was noticed
and hence we stopped the rum after the 1000th iteration. Fig-
ure 7 includes the result image.

It is clear that even after a thousand iterations, the GA still
cannot generate a real life-like fractal fern when the range of



Figure 6: Image generated after the 500th iteration

Figure 7: Image generated after the 1000th iteration

the values for each gene is set within −1 and 1.

Experiments with Altering the Probability of using
the Transformation Functions
We decided to run some tests with different probability of
choosing the affine transformations. Our plan was to gener-
ate that randomly as well. But before that, we had run the
IFS only by altering the probabilities of choosing f1, f2, f3
and f4. Table 4 has the percentages for this set of experi-
ments.

Functions Percentage
f1 (Equation 3) 1%
f2 (Equation 4) 8%
f3 (Equation 5) 12%
f4 (Equation 6) 79%

Table 4: Probability of choosing each of the four affine transfor-
mations in the IFS to run the experiments of Section to generate
the Barnsley fern

Figure ?? has the image generated using the functions in
the IFS code for 70000 iterations.

Figure 8: Image generated after the 70000th iterations of the IFS
for fern

From this experiment it is clear that the probability of
choosing the transformation functions of an IFS to gener-
ate a self-similar fractal has to be chosen very carefully. If
not, the output will still be a self-similar pattern, but not the
“target” image.

Experiments with Fractal Optimisation Method
The box-counting dimension is optimised in order to gener-
ate an accurate fractal. At first, we selected a wide range for
the scaling of the boxes. We selected the range to be within
−0.8 to 1.

Figure 9 and Figure 10 include the images generated from
the 25th and 50th iteration.

Figure 9: Image generated after the 25th iteration

To see if the increment of iterations outputs better results,
we continued the run until it reaches the iteration of 100.
Figure 11 includes the final output image.



Figure 10: Image generated after the 50th iteration

Figure 11: Image generated after the 100th iteration

This set of tests proves that with a big range of size of
boxes ϵ, even after hundreds of iterations, the fractals are
not optimised. There is some self-similarity, but the images
do not resemble the real fern.

The graph in Figure 12 includes the box counting dimen-
sion calculated for all the 100 images generated.

It is clear from the graph that the values are not opti-
mised with the increase in the iterations. The values are also
changed in random order rather than ascending as assumed.

Conclusions and Discussion

Objectives Revisited

• To generate natural fractals using a GA, without relying
on the popular reverse-calculation methods.

• To use the tool for generating both regular and irregular
fractals which resemble complex patterns observed in bi-
ological organisms.

Figure 12: graph showing the box counting dimension of at-
tempted 100 images of fern

Concluding Comments
This work presents the results of some initial experiments
to achieve the objectives mentioned. After careful obser-
vations, we have come to a conclusion the Genetic Algo-
rithm requires a minimum estimation of ranges before the
initialisation of population. A large range of values for the
coefficients of an Iterated Function System will only gen-
erate some random patterns without any fractal characteris-
tics. A completely random choice of the probability of using
these functions in the code of the Iterated Function System
will generate a self-similar pattern but not resembling a nat-
ural fractal. The method of calculating the fractal dimension
from the values evolved by the Genetic Algorithm is also not
very simple. A bigger size of box gives a fractional value of
the dimension. Although this is a criteria of a fractal object,
the images generated are not real-life like.

Future Works
The experiments described in this paper have been helpful to
revisit the initial objectives. Later we have been able to de-
sign an algorithm using a standard Genetic Algorithm. But it
was clear from these experiments that we need to select the
parameters very carefully if we want to generated a fractal
object that resembles a biological organisms.

Acknowledgements
This work was funded by the Leverhulme Trust Research
Project Grant RPG- 2019-269 which the authors gratefully
acknowledge.

References
Barnsley, M., Hutchinson, J. E., and Stenflo, Ö. (2003). V-variable

fractals and superfractals. arXiv preprint math/0312314.

Barnsley, M. F. (2014). Fractals everywhere. Academic press,
Boston.

Barnsley, M. F. and Demko, S. (1985). Iterated function systems
and the global construction of fractals. Proceedings of the



Royal Society of London. A. Mathematical and Physical Sci-
ences, 399(1817):243–275.

Bayırlı, M., Selvi, S., and Çakılcıoğlu, U. (2014). Determining
different plant leaves’ fractal dimensions: a new approach to
taxonomical study of plants.

Bossard, J. A., Lin, L., and Werner, D. H. (2016). Evolving
random fractal cantor superlattices for the infrared using a
genetic algorithm. Journal of the Royal Society Interface,
13(114):20150975.

Brambila, F. (2017). Fractal analysis: applications in physics, en-
gineering and technology. BoD–Books on Demand.

Campbell, P. and Abhyankar, S. (1978). Fractals, form, chance and
dimension.

Collet, P., Lutton, E., Raynal, F., and Schoenauer, M. (2000). Polar
ifs+ parisian genetic programming= efficient ifs inverse prob-
lem solving. Genetic Programming and Evolvable Machines,
1(4):339–361.

Falconer, K. (2004). Fractal geometry: mathematical foundations
and applications. John Wiley & Sons.

Fernández-Martínez, M. and Sánchez-Granero, M. (2014a). Frac-
tal dimension for fractal structures. Topology and its Appli-
cations, 163:93–111.

Fernández-Martínez, M. and Sánchez-Granero, M. (2014b). Frac-
tal dimension for fractal structures: A hausdorff approach re-
visited. Journal of Mathematical Analysis and Applications,
409(1):321–330.

Frame, Michael and Urry, Amelia (2016). Fractal worlds: Grown,
built, and imagined. Yale University Press, New Heaven and
London.

Husain, A., Reddy, J., Bisht, D., and Sajid, M. (2021). Fractal di-
mension of coastline of australia. Scientific Reports, 11(1):1–
10.

Hutchinson, J. E. (1981). Fractals and self similarity. Indiana Uni-
versity Mathematics Journal, 30(5):713–747.

Katoch, S., Chauhan, S. S., and Kumar, V. (2021). A review on
genetic algorithm: past, present, and future. Multimedia Tools
and Applications, 80(5):8091–8126.

Lauwerier, H. and Lauwerier, H. A. (1991). Fractals: endlessly
repeated geometrical figures. ICON Group International.

Lutton, E. (1999). Genetic algorithms and fractals. Evolutionary
Algorithms in Engineering and Computer Science, Ed. K. Mi-
ettinen, P. Neittaanmaki, MM Makela, J, Periaux, John Wiley
& Sons.

Mandelbrot, B. B., Evertsz, C. J., and Gutzwiller, M. C. (2004).
Fractals and chaos: the Mandelbrot set and beyond, vol-
ume 3. Springer.

Mandelbrot, B. B. and Mandelbrot, B. B. (1982). The fractal ge-
ometry of nature, volume 1. WH freeman and Co., New York.

Mitchell, M. (1998). An Introduction to Genetic Algorithms. MIT
press.

Sarker, R., Mohammadian, M., and Yao, X. (2002). Evolution-
ary Optimization, volume 48. Springer Science & Business
Media.

Slowik, A. and Kwasnicka, H. (2020). Evolutionary algorithms
and their applications to engineering problems. Neural Com-
puting and Applications, 32(16):12363–12379.

Uthayakumar, R. and Prabakar, G. A. (2012). Creation of fractal
objects by using iterated function system. In 2012 Third In-
ternational Conference on Computing, Communication and
Networking Technologies (ICCCNT’12), pages 1–7. IEEE.

Véhel, J. L. and Lutton, E. (1993). Optimization of fractal: function
using genetic algorithms. PhD thesis, INRIA.


