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Abstract
Out-of-Distribution (OOD) detection is essential
for the trustworthiness of AI systems. Methods us-
ing prior information (i.e., subspace-based meth-
ods) have shown effective performance by extract-
ing information geometry to detect OOD data
with a more appropriate distance metric. How-
ever, these methods fail to address the geometry
distorted by ill-distributed samples, due to the
limitation of statically extracting information ge-
ometry from the training distribution. In this pa-
per, we argue that the influence of ill-distributed
samples can be corrected by dynamically adjust-
ing the prior geometry in response to new data.
Based on this insight, we propose a novel ap-
proach that dynamically updates the prior covari-
ance matrix using real-time input features, refin-
ing its information. Specifically, we reduce the
covariance along the direction of real-time input
features and constrain adjustments to the resid-
ual space, thus preserving essential data char-
acteristics and avoiding effects on unintended
directions in the principal space. We evaluate
our method on two pre-trained models for the
CIFAR dataset and five pre-trained models for
ImageNet-1k, including the self-supervised DINO
model. Extensive experiments demonstrate that
our approach significantly enhances OOD detec-
tion across various models. The code is released
at https://github.com/workerbcd/ooddcc.

1. Introduction
Deep learning has achieved remarkable success in pattern
recognition tasks (He et al., 2016; Han et al., 2022). How-
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Figure 1. Visualization of Mahalanobis distance score distributions
with (w) and without (w/o) Dynamic Adjustment. We compare
scores from the CIFAR-100 dataset (ID) and the SVHN dataset
(OOD) using a CIFAR-100 pre-trained DenseNet. Without dy-
namic adjustment, the scores have high variance and a large over-
lapping region. With dynamic adjustment, the variance is lower
and the overlap is reduced.

ever, deep models are often well-fitted to the data they are
trained on, known as the in-distribution (ID) data, and may
perform poorly on unseen or novel data, referred to as out-
of-distribution (OOD) data. Recognizing OOD samples
is crucial for ensuring the safety and reliability of AI sys-
tems, especially in critical applications like autonomous
driving (Filos et al., 2020), medical diagnostics (Fu et al.,
2023), and surveillance (Idrees et al., 2018). Therefore,
OOD detection is proposed to separate ID and OOD data to
define the performance boundaries of deep learning models.

The goal of OOD detection is to define a score function s(·)
that assigns higher scores to ID data and lower scores to
OOD data. Using a threshold λ, we can classify inputs as:

D(x, s, λ) =

{
x ∈ ID if s(x) > λ
x ∈ OOD if s(x) < λ

A variety of score functions have been proposed for OOD
detection (Yang et al., 2024). In this paper, we focus on de-
signing score functions for test-time OOD detection, where
models do not require retraining with ID data.

With the widespread use of pre-trained models and con-
trastive learning, classifier-free methods for test-time OOD
detection have been proposed, among which measuring the
distance between features is an effective approach. Previous
works (Sehwag et al., 2021; Lee et al., 2018) have shown
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the effectiveness of the Mahalanobis distance in OOD de-
tection. Mahalanobis distance computes distances using a
covariance matrix derived from the ID data, capturing its
information geometry. However, the distortion of informa-
tion geometry caused by the outlier features in the training
data is neglected in these methods. Specifically, if the ID
data has high variance deviating from semantic directions
due to outliers, the Mahalanobis distance may become less
sensitive to OOD samples that align with these directions.
This can lead to misclassifying OOD data as ID.

Recently, methods that project features onto the subspace of
ID data (Wang et al., 2022; Ammar et al., 2024; Chen et al.,
2023) have been proposed, which can be viewed as matrix-
induced distance scores. These approaches can be seen as
attempts to mitigate this issue by replacing the covariance
matrix in the Mahalanobis distance with tailored matrices.
By eliminating components associated with extreme vari-
ances, these methods aim to reduce the influence of outliers.
However, this may also remove important information in the
ID distribution and does not provide a targeted adjustment
for specific OOD directions. This raises the question: How
can we reduce the effect of outlier features on the informa-
tion geometry without losing important characteristics of
the ID data?

To address this challenge, we propose a novel approach that
dynamically adjusts the prior matrix using real-time input
features. Our key insight is that real-time input features
capture local information about the unknown distribution,
which can be used to refine the prior information geometry.
Specifically, we propose to adjust the covariance matrix by
decreasing the covariance in the direction of the real-time
features. This effectively contracts the covariance structure
along targeted directions, making the distance measure more
sensitive to deviations in those directions and improving
OOD detection performance.

However, not all information in the real-time features is suit-
able for adjustment. To avoid disrupting the main structure
of the ID data, we restrict changes to the residual space. By
adjusting the covariance in the residual space, we preserve
the main patterns of the ID data while enhancing OOD de-
tection by increasing sensitivity to samples that deviate in
these less significant directions. This focus also reduces
noise and redundancy, improving the distinction between
ID and OOD data. Our OOD detection score function is
computed on the transformed features, which allows the ID
distribution to form a denser manifold. Figure 1a shows the
effectiveness of our method. With dynamic adjustment, the
scores have lower variance and a smaller overlapping region
between ID and OOD data, indicating improved separability.
In summary, Our main contributions are as follows:

• We introduce a new perspective for designing distance-
based OOD score functions by utilizing real-time input

features to dynamically adjust the prior geometry. Our
proposed OOD detection score function reduces re-
dundant information in the covariance matrix in real
time, making it better tailored to OOD detection. By
restricting adjustments to the residual space, we en-
hance sensitivity to OOD samples while preserving the
essential structure of the ID data.

• Our regularization technique method can be applied to
distance measures that rely on covariance structures.
This broadens the applicability of our approach to var-
ious problems where adjusting the sensitivity of dis-
tance measures can improve performance.

• We evaluate our method on CIFAR benchmarks with 2
pre-trained models and on Imagenet with 5 pre-trained
models including the self-supervised pre-trained model
DINO, showing it outperforms state-of-the-art (SOTA)
in most cases.

2. Related Work
2.1. Out-of-distribution Detection

With the observation that the deep learning models are over-
confident in classifying samples over different semantic
distributions, out-of-distribution detection emerges to reject
the samples with different semantic information from the
training data (Yang et al., 2024). Unlike outlier detection
methods (Sehwag et al., 2021), OOD detection aims to de-
termine whether real-time data belongs to the in-distribution
or out-of-distribution. Thus, the group information can not
be obtained from the unseen distribution.

Many methods develop new training strategies (DeVries &
Taylor, 2018; Wang et al., 2021; Vyas et al., 2018; Chen
et al., 2021) or utilize the data augmentation (Hein et al.,
2019; Hendrycks et al., 2022) to manipulate the confidence.
However, this kind of method requires a training phase,
which may take a long time to achieve a score function with
different deep learning models. Moreover, the computa-
tional resource is also a limitation of these methods. So, in
this paper, we focus on the test-time OOD detection task
which consumes less time to get the score function.

2.2. Test-time OOD detection

As aforementioned in the introduction, test-time OOD detec-
tion aims to design the OOD score D(x, s, λ) with a fixed
pre-trained model. According to (Yang et al., 2024; Ammar
et al., 2024), the test-time OOD detection method can be
mainly divided into five categories: logit-based, gradient-
based, feature-based, distance-based, density-based, and
subspace-based. For the logit-based methods (Hendrycks &
Gimpel, 2017; Liu et al., 2020; Basart et al., 2022), these
works tend to detect the OOD data based on the high confi-

2



Improving Out-of-Distribution Detection via Dynamic Covariance Calibration

dence lying in the logit or probability from the ID data. For
gradient-based methods (Huang et al., 2021; Behpour et al.,
2023; ElAraby et al., 2023), these method aims to detect
OOD data with the differences of gradients. The gradient-
based method, GradNorm, has been proven to be related
to the logits and feature norms (Huang et al., 2021). For
the feature-based methods, feature manipulations like clip-
ping (Sun et al., 2021) and scaling (Xu et al., 2024) are pro-
posed to remove some redundant information. Similarly, the
weight pruning methods (Sun & Li, 2022; Ahn et al., 2023)
also tend to select important neurons with this motivation.
In addition, weight pruning methods are the same as feature
pruning, where different masks are given to the features
corresponding to different logits. For density-based meth-
ods, these methods (Morteza & Li, 2022; Peng et al., 2024)
design the OOD score function by modeling the density of
a certain distribution. Distance-based methods (Basart et al.,
2022; Lee et al., 2018; Liu & Qin, 2023) utilize the property
that the OOD features reside in the outlier of the feature
clusters. However, these methods require high-quality fea-
tures and may result in large variances with low-quality
features. For subspace methods (Wang et al., 2022; Ammar
et al., 2024; Chen et al., 2023), these methods project the
real-time features to a subspace of ID data, and the scores
are designed based on norms or distances. So, these meth-
ods can be regarded as distance-based score functions where
the distances are matrix-induced. In this paper, these score
functions are highly related to the matrix-induced distance
scores. Thus, the design of the subspace methods can be
viewed as defining new distances with various prior matri-
ces. Unlike previous studies that only estimate the prior
matrix on the training samples, we dynamically estimate
the matrix on the geometry of training distribution and local
geometry of unknown distribution from real-time data.

3. Preliminary and Insight
Given X as data space and Y as the label space, the ID
and OOD distributions can be defined as joint distributions
PXinYin

over Xid × Yid, and PXoodYood
over Xood × Yood,

respectively. Given a pre-trained model h ◦ g, where h is
an encoder and g is a classifier, we obtain the ID feature
distribution Fid = h(Xid) and the OOD feature distribution
Food = h(Xood). Considering an anchor feature fa ∈ Fid,
an intuitive insight is that d(fid, fa) ≤ d(food, fa), where
d(·, ·) is a pre-defined distance metric, with fid ∈ Fid and
food ∈ Food. Previous work (Liu & Qin, 2023) has revealed
the shortcomings of using Euclidean distance with global
mean µ as an anchor point in OOD detection. However, the
Mahalanobis distance has been demonstrated to be effective
as a detection score (Lee et al., 2018; Sehwag et al., 2021),
highlighting the necessity of considering information geom-
etry when designing distance-based scores. Therefore, we
simplify the distance designed for OOD detection scores as

a matrix-induced distance:

dM (f, fa) =
√

(f − fa)⊤M(f − fa), (1)

where the matrix M defines the geometry and f is a real-
time input feature.

For the Mahalanobis distance OOD detection score (Lee
et al., 2018; Sehwag et al., 2021), the matrix M is the pre-
cision matrix Σ−1 for the distribution of each class. These
methods consider each class of ID data as a distribution, and
the score is defined as the minimum distance from the data
point to the mean point over the geometry of each class.

For residual space method (Wang et al., 2022), M is defined
as R⊤R, where R is the basis of the residual space of the ID
data. Since the score function is

√
(f − µ)⊤R⊤R(f − µ),

this method effectively measures the distance between the
data point and the mean point over the manifold of distribu-
tion N (µ, (R⊤R)−1)

Similarly, for the principal space method (Ammar et al.,
2024), R is the basis in the principal space of the data. As
the features are standardized in the first stage, the score
considers the distance between the data and the zero point
over the manifold N (0, (P⊤P )−1), where P is the basis of
the principle space of ID data. The dominator in the score
function can be viewed as normalization for each feature.

As discussed above, previous works tend to consider the
static geometry from ID data. Therefore, outlier features
from the training samples can consistently affect the distance
for every real-time input data. To mitigate this issue using
the local information from real-time features, the distance
in Equation 1 can be transformed as follows:

dM(f, fa) =
√

(f − fa)⊤M(f)(f − fa) (2)

where f is the real-input feature, fa is the anchor feature,
andM : Rd → Rd×d maps the d dimension features to the
d× d-matrix space. Figure 2 shows the difference between
the Euclidean distance and the matrix-induced distance as
defined in equations 1 and 2. In the following section, we
introduce our design for the matrixM in Equation 2.

4. Methodology
In Section 4.1, we propose a method to mitigate the impact
of outlier features in the covariance matrix of the Maha-
lanobis distance, with the core objective of finding a pro-
jection matrixM that maximally separates ID and OOD
samples. We hypothesize that these outlier features may
align with the features from novel distributions. We also
present the condition to ensureM to induce a valid distance.
In Section 4.2, we suggest constraining adjustments to the
residual space. We argue that, within the principal space of
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Figure 2. Visualization of the difference among distances calculated with no prior matrix, a static prior matrix, and a dynamic prior matrix.
The distance with no prior matrix is Euclidean distance where M is an identity matrix. In the case of the static prior matrix, the geometry
can not be adjusted, even if it is distorted by outlier features in the training samples. With the dynamic prior matrix, the geometry can be
refined using the local information from the real-time input features.

the training distribution, there exists information that cannot
be shrunk, such as semantic information or model distribu-
tion. Based on these findings, in Section 4.3, we propose an
OOD detection score and illustrate how its design meets the
properties of a valid distance function induced byM.

4.1. Dynamic Matrix Estimation

Here, we aim to design a mappingM to better separate ID
and OOD samples. As discussed in (Pinele et al., 2019),
the Mahalanobis distance measures distances within the
space of Gaussian distributions, influenced by their covari-
ance structures. Therefore, we can consider the covariance
matrix Σ as a key matrix encoding the primary geometric
characteristics of in-distribution (ID) data under Gaussian
assumptions. When a feature f from a novel distribution
feeds in, we aim to reduce its influence within the covari-
ance Σ. To achieve this, we modify the covariance matrix to
Σ− ff⊤. The following proposition explains this property
mathematically.

Proposition 4.1. Given vector v, v⊤(Σ− ff⊤)v ≤ v⊤Σv.
The difference can be determined by the square of similarity
(v⊤f)2.

To enhance the Mahalanobis distance for OOD detection,
given a feature f from a new distribution, we define the
mappingM(f) = (Σ − ff⊤)−1. However, with f fixed,
M(f) may not be a positive definite matrix. Fortunately,
we find that with a given anchor point a ̸= 0, the quadratic
form (f − a)⊤M(f)(f − a) can be guaranteed to have
a positive value under certain conditions and introduce a
theorem to provide this condition.

Theorem 4.2. Given a feature f ∈ Rd, a non-zero feature
a ∈ Rd, and a symmetric positive definite matrix Σ ∈
Rd×d, we define p = f⊤Σ−1f , q = a⊤Σ−1a, and s =
f⊤Σ−1a. Setting d(f) = (f −a)⊤(Σ−ff⊤)−1(f −a), if
p < 1, then d(f) ≥ 0; if p > 1 and (s−1)2 ≤ (p−1)(q−1),
then d(f) ≥ 0.

For OOD features, we can not estimate the magnitude of
p. Therefore, to maintain d(f) positive, we ensure that
(s−1)2 ≤ (p−1)(q−1). Interestingly, under the condition
where p ≫ 1 and q ≫ 1, this inequality simplifies to
(s− 1)2 ≤ pq, a condition satisfied by the Cauchy-Schwarz
inequality when s ≥ 01. In Section 4.3, we will discuss why
this condition can be satisfied.

4.2. Projection in Residual Space

As mentioned earlier, our foundational design of M in-
volves subtracting ff⊤. However, this operation may affect
the principal information of the training distribution, which
could align with real-time ID features. Furthermore, studies
in compatible learning (Pan et al., 2023) have illustrated
that features from different pre-trained models can come
form different distributions. We also visualize this phe-
nomenon in Figure 3 with ImageNet-1k (Deng et al., 2009)
pre-trained ViT (Dosovitskiy et al., 2021) and DeiT (Tou-
vron et al., 2021) models. The separated clusters demon-
strate that model distributions are principal factors affecting
feature distributions. Consequently, shared model distribu-
tions may influence the direction of adjustment. To pre-
serve semantic information while minimizing the impact

1When s < 0.5, the inequality is obviously satisfied.
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of shared model information on adjustment direction with
real-time features, we confine the adjustment to the residual
space (Wang et al., 2022) of the training distribution.

Figure 3. Visualization of the model distribution between
ImageNet-1k pre-trained ViT and DeiT. We labeled the features
from ViT with orange colour and DeiT with blue colour. The
features from different models are distributed separately, which
suggests the model distribution is also the principal information
affecting the feature distribution.

In this context, the feature from the unknown distribution in
the penultimate layer can be represented as fr =

∑
i aibi =

a⊤B, where B = {bi} is the basis matrix of the residual
space, and a = {ai} is the coefficient vector. Consequently,
M(f) is defined asM(f) = (Σ−B⊤aa⊤B)−1. Accord-
ing to (Wang et al., 2022), B is the eigenvectors correspond-
ing to the smallest eigenvalues of Σ.

VIM research (Wang et al., 2022) suggests that OOD fea-
tures typically exhibit more energy in residual space. More-
over, Neco (Ammar et al., 2024) builds on the Neural Col-
lapse phenomenon (Papyan et al., 2020) by suggesting that
features in the penultimate layer of ID and OOD data can be-
come increasingly orthogonal. This support the assumption
that the OOD features predominantly occupy the null space
of ID data, which also aligns with observations in VIM.
Further enhancing this, we assume that the stronger col-
lapse phenomenon may allow the residual space to capture
more out-of-distribution information from OOD features.
To strengthen the collapse phenomenon, all features undergo
L2 normalization in the initial stage (Haas et al., 2023).

4.3. Dynamic Covariance for Enhanced OOD Score

Building upon the theoretical findings from the previous
sections, we aim to define a score function that achieves our
ultimate goal of effectively separating ID and OOD samples.
To this end, by utilizing deviation features derived from

each class mean µc, we construct a zero-mean distribution
and adjust the within-class covariance matrix accordingly.

Specifically, from the mean of each class µi, we can derive
a deviation feature in the training sample as rin = fin− µc,
where c is the class label to which fin belongs. Then, we
have R = {rin} forming a zero-mean distribution, and we
define M(f) = (ΣR − B⊤aa⊤B)−1, where ΣR is the
covaraince matrix of R, namely the within-class covariance
of {fin}. Given the real-time feature f , the score function
can be defined as:

s(f) = −min
i

√
r⊤i M(f)ri, ri = f−µi, i = 0, 1, · · · , Nc

(3)
Where Nc is the number of classes. The function s(z) aims
to find the minimum distance between the real-time feature
and different class means, calculated over the dynamically
adjusted geometry based on the within-class covariance
matrix ΣR.

Rethinking the question in Section 4.1, if we consider the Σ
in Theorem 4.2 as the within-class covariance ΣR and a as
one class mean µc, we can easily obtain p≫ 1 and q ≫ 1,
since ΣR reflects the compactness of the class clusters and
none of the features tends to cluster around zero point. As
f and µc mostly lie in the span of the positive eigenspace
of ΣR, thus s ≥ 0. Therefore, we can build a distance
withM. Similarly, the same property can also be preserved
when f in the residual space as fr and a as µc − f ′

r, where
f = fr + f ′

r. We visualize the distributions of p and q in
the Section 5.7 and s in the appendix.

5. Experiments
5.1. Experiment Setup

To validate the effectiveness of our method, we conduct
experiments on two standard out-of-distribution (OOD)
detection benchmarks. In the first benchmark, we use
the official test split of CIFAR-10/CIFAR-100 as the in-
distribution (ID) datasets, with six datasets serving as OOD
data: SVHN (Netzer et al., 2011), Textures (Cimpoi et al.,
2014), Places365 (Zhou et al., 2017), LSUN (Yu et al.,
2015), LSUN Resize (Yu et al., 2015) and iSUN (Xu et al.,
2015).

For the second benchmark, we follow (Huang & Li, 2021)
to adopt ImageNet-1k (Deng et al., 2009) as the ID
dataset. There are six OOD datasets selected, including
Texture (Cimpoi et al., 2014), SUN (Xiao et al., 2010),
Places (Zhou et al., 2017), iNaturalist (Van Horn et al.,
2018), Imagenet-O (Hendrycks et al., 2021) and OpenImage-
O (Wang et al., 2022). Particularly, we use the subset of
SUN, Places and Texture curated by Mos (Huang & Li,
2021) as the OOD dataset. The OpenImage-O is a subset
of OpenImage (Krasin et al., 2017) selected by VIM (Wang
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Table 1. Comparision with different post-hoc OOD detection methods on CIFAR benchmarks. We present the AUROC and FPR95 results
on DenseNet and WideResNet and the average results over 2 ID datasets. The results of CIFAR-10/CIFAR-100 are averaged over 6 OOD
datasets. The detailed results can be viewed in the appendix.

DenseNet WideResNet
Method CIFAR-10 CIFAR-100 Avg. CIFAR-10 CIFAR-100 Avg.

AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓
MSP (Hendrycks & Gimpel, 2017) 92.5 48.72 74.37 80.13 83.44 64.43 91.07 50.64 76.93 77.48 84 64.06
Energy (Liu et al., 2020) 94.65 26.2 81.17 68.44 87.91 47.32 91.86 33.74 79.83 71.95 85.85 52.85
maxLogit (Basart et al., 2022) 94.64 26.36 81.06 68.53 87.85 47.45 91.84 33.61 79.92 72.37 85.88 52.99
ODIN (Liang et al., 2018) 94.65 26.35 81.06 68.53 87.86 47.44 91.85 33.62 79.93 72.38 85.89 53
Mahalanobis (Lee et al., 2018) 85.9 47.64 77.56 58.08 81.73 52.86 90.88 47.58 79.35 59.63 85.12 53.61
GEM (Morteza & Li, 2022) 88.01 31.73 84.19 56.93 86.1 44.33 93.22 37.28 82.71 57.15 87.97 47.22
KNN (Sun et al., 2022) 96.79 16.16 87.56 42.3 92.18 29.23 93.68 33.56 86.34 48.32 90.01 40.94
ReAct (Sun et al., 2021) 95.76 23.59 82.98 67.38 89.37 45.49 92.09 34.06 80.69 72.26 86.39 53.16
Line (Ahn et al., 2023) 96.99 14.75 88.76 35.11 92.88 24.93 78.94 61.6 66.33 83.45 72.64 72.53
DICE (Sun & Li, 2022) 95.01 21.44 86.55 51.66 90.78 36.55 90.48 34.44 78.44 71.04 84.46 52.74
FDBD (Liu & Qin, 2023) 97.23 13.86 89.25 50.57 93.24 32.22 92.27 36.87 85.14 65.77 88.71 51.32
ours 96.83 14.63 92.38 29.98 94.61 22.31 96.18 18.57 89.08 44.89 92.63 31.73

et al., 2022). There are no overlapping categories between
the OOD datasets and the ID dataset. We consider FPR95
and AUROC as performance metrics across both bench-
marks. Please refer to the appendix material for a more
detailed explanation.

5.2. Evaluation on CIFAR benchmark

We compare our method with a diverse set of post-hoc
OOD detection approaches, including one probability-based
method (MSP (Hendrycks & Gimpel, 2017)), three logit-
based methods (Energy (Liu et al., 2020), maxLogit (Sun
et al., 2022), ODIN (Liang et al., 2018)), one density-based
method (GEM (Morteza & Li, 2022)), and three distance-
based methods (Mahalanobis (Lee et al., 2018), KNN (Sun
et al., 2022), FDBD (Liu & Qin, 2023)). Additionally, we
compare our method with feature clipping and weight prun-
ing techniques such as ReAct (Sun et al., 2021), DICE (Sun
& Li, 2022), and LINE (Ahn et al., 2023).

Table 1 presents the averaged AUROC and FPR95 metrics
over six OOD datasets for the CIFAR benchmarks. Our
method demonstrates the best AUROC and FPR95 results
on average among all comparison methods. In particular,
our proposed method reduces the average FPR95 by 9.9%
on DenseNet and by 19.6% on WideResNet compared to
the second-best method, FDBD.

FDBD is the most relevant comparison method, as it detects
outlier data by employing a distance-based score function.
However, FDBD’s effectiveness depends heavily on the
quality of the extracted features, specifically the degree of
inter-class separability. This sensitivity can be observed by
comparing results on CIFAR-10 and CIFAR-100: when we
decrease the class separability by increasing the number of
classes, the performance of FDBD is significantly impacted,
even with the same backbone model. From this, we can
infer that FDBD performs better in scenarios where training
features are well-clustered and not prone to poor distribution.
These conditions are restrictive and difficult to achieve in

general settings, such as with a high number of classes
in the training set or limitations in the model’s capacity.
Our method addresses this limitation by regularizing prior
geometry with real-time features, enabling it to achieve a
greater performance improvement over FDBD on CIFAR-
100. This phenomenon shows that our method is more
robust under complex environments than FDBD.

5.3. Evaluation on ImageNet Benchmark

In this setting, we compare our method with baseline
methods (MSP (Hendrycks & Gimpel, 2017), Energy (Liu
et al., 2020), ODIN (Liang et al., 2018), React (Sun et al.,
2021) and maxLogit (Basart et al., 2022)), distance-based
methods (Malahnobis distance (Lee et al., 2018), KL di-
vergence (Basart et al., 2022), KNN (Sun et al., 2022)
and FDBD (Liu & Qin, 2023)) and subspace methods
(VIM (Wang et al., 2022), Neco (Ammar et al., 2024) and
WDiscOOD (Chen et al., 2023))

Table 2 comparative analysis of various OOD detection
methods on the ImageNet benchmark. The results show
that our method achieves state-of-the-art performance on
both AUROC and FPR95 metrics across all four pre-trained
models, highlighting its robustness and adaptability in large-
scale OOD detection tasks. Due to NaN scores encountered
with the SwinV2-B/16 model, the reported WDiscOOD
results are based on three models (i.e., ViT, ResNet-50, and
DeiT). More detailed results can be viewed in the appendix.

As mentioned in (Wang et al., 2022), the residual space
method is limited by the feature quality of the original net-
work. Moreover, we find that all subspace methods (Wang
et al., 2022; Ammar et al., 2024; Chen et al., 2023) meet
this problem. This phenomenon can be demonstrated by the
weak performance of the subspace methods on ResNet-50
from Table 2. Instead of statically relying on the prior
estimated geometry from training samples, our method
dynamically refines the geometry to reduce the effect of
ill-distributed samples in training distribution. Thus, our
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method achieves significantly better performance compared
to subspace methods on ResNet-50.

5.4. Evaluation using DINO

DINO (Caron et al., 2021) is a classical self-supervised
pre-training method. The DINO pre-trained ViT model is
publicly available, and we follow the same evaluation proto-
col as in the ImageNet benchmark. Due to the limitations
inherent in self-supervised learning, we restrict our compar-
isons to methods that do not require linear classifiers.

As shown in Table 3, our method achieves SOTA perfor-
mance on DINO in this setting. Notably, we omit WDis-
cOOD results because the whitening transformation in
WDiscOOD produced NaN values with DINO features,
making the evaluation infeasible. Our approach excels in
handling the unique characteristics of self-supervised fea-
tures, achieving superior OOD detection performance. This
highlights our method’s adaptability and effectiveness in
scenarios involving self-supervised pre-trained models.

5.5. Ablation Study

We show the unique functionality of our method by studying
three key components of our method: 1) DME: Dynamic
Matrix Estimation; 2) RSP: Residual Space Projection for
the real-time adjustment; 3) DCM: Dynamic Covariance
Modeling with within-class covariance.We conducted an
ablation study of both CIFAR and ImageNet benchmarks.
DenseNet is selected as the backbone network for CIFAR,
while ViT and ResNet-50 are exploited as the backbone
for ImageNet. This setup provides holistic coverage of a
small-scale to a large-scale dataset, and transformer to CNN.
We report the FPR95 index in this ablation study in Table
4. The baseline method is the Mahalanobis distance with
normalized features.

As shown in the table, the method without considering
the real-time features can not perform better than the full
method in all scenarios, illustrating the effectiveness of our
dynamic estimation of M. In addition, we can find that
the DCM significantly contributes to the final performance
for some backbone models, such as DenseNet and ViT. We
assume the large between-class covariance distorts the ge-
ometry with which the data can not form a dense manifold.
We discuss the benefit of within-class covariance in the
appendix. Also, without RSP, the performance can deteri-
orate in some situations like ResNet-50, which shows the
importance of avoiding prior adjustment in the principal
space. Note that RSP can only be computed using the full
covariance matrix (within-class + between-class), differing
from the RSP in the full model, which specifically opti-
mizes the within-class covariance. RSP can be detrimental
in this situation due to the large between-class covariance.
But it can solely work on poorly clustered scenarios since

within-class covariance dominates the overall covariance
matrix. However, DCM may have an inverse effect, as the
poorly clustered features could result in a smoother and
more unified distribution.
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Figure 4. AUROC on CIFAR-10 and CIFAR-100 pre-trained
DenseNet with different residual space dimension

5.6. Performance w.r.t Residual Dimensionality

Figure 4 and 5 show how the performance varies with dif-
ferent dimensions of the residual spaces on four pre-trained
models: CIFAR-10 and CIFAR-100 pre-trained DenseNet,
ImageNet-1k pre-trained ViT and ResNet50. As shown in
Figure 4, the performance does not fluctuate much with
different dimensions of residual space. In addition, the best
performance on both pre-trained models is achieved at di-
mensionalities around 250, indicating the consistency of our
method on the same model. The stable trend at the start in
Figure 5 shows the robustness of residual space in large-
scale OOD detection. The trend in the ViT experiments is
consistent with the findings in VIM (Wang et al., 2022).
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(a) AUROC on ResNet-50
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Figure 5. AUROC on ImageNet-1k pre-trained ResNet and ViT
with different residual space dimensions

5.7. Analyzing p and q Values

Theorem 4.2 emphasizes that p and q should be much larger
than 1 to guarantee the solid distance. Since the prior ad-
justments are confined to the residual space, p = f⊤

r Σ−1
R fr,

where fr = a⊤B is the real-time feature restricted in resid-
ual space, and q = (µc− f ′

r)
⊤Σ−1

R (µc− f ′
r). µc is selected
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Table 2. Comparision with different post-hoc OOD detection methods on ImageNet-1k benchmark. We present the AUROC and FPR95
results on ViT, ResNet-50, SwinV2-B, and DeiT. We also provide the average results over the 4 pre-trained models. The results of the four
pre-pretrained models are averaged over 6 OOD datasets. The detailed results can be viewed in the appendix. As we can not achieve solid
results with WDiscOOD on ImageNet-1k pre-trained SwinV2-B/16, the average results are from the other 3 pre-trained models.

Models
Method ViT ResNet-50 Swin-B DeiT Avg.

AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓
MSP (Hendrycks & Gimpel, 2017) 88.89 43.46 73.97 70.98 81.29 63.49 79.8 66.97 80.99 61.23
Energy (Liu et al., 2020) 94.11 27.56 79.53 65.8 80.07 60.35 71.65 72.65 81.34 56.59
ReAct (Sun et al., 2021) 94.07 27.69 83.34 54.81 85.2 53.53 77.16 68.74 84.94 51.19
ODIN (Liang et al., 2018) 93.73 29.68 79.42 65.77 80.68 58.94 76.07 66.43 82.47 55.2
maxLogit (Basart et al., 2022) 93.73 29.68 79.42 65.78 80.94 59.56 76.43 66.38 82.63 55.35
Mahalanobis (Lee et al., 2018) 94.27 27.11 68.36 80.63 87.86 52.07 83.98 73.86 83.62 58.42
KLMatch (Basart et al., 2022) 87.8 44.39 76.09 69.93 81.83 63.85 82.68 67.24 82.1 61.35
KNN (Sun et al., 2022) 92.6 34.38 84.43 57.46 85.08 65.24 82.75 76.24 86.22 58.33
VIM (Wang et al., 2022) 94.23 27.32 83.93 65.92 86.77 51.33 83.91 71.13 87.21 53.93
FDBD (Liu & Qin, 2023) 93.36 31.71 84.47 60.35 86.57 55.75 82.78 71.84 86.79 54.91
Neco (Ammar et al., 2024) 94.38 27.08 75.15 70.27 81.73 54.74 79.2 62.03 82.61 53.53
WDiscOOD (Chen et al., 2023) 94.41 26.35 70 78.71 - - 83.97 73.83 82.8 59.63
ours 94.27 26.94 87.43 51.77 88.1 51.89 84.97 68.29 88.69 49.72

Table 3. Comparison on DINO Comparision with different post-
hoc OOD detection methods on DINO. We report the averaged
AUROC and FPR95 results over 6 OOD datasets. The detailed
results can be viewed in the appendix.

Method DINO
AUROC↑ FPR95↓

SSD (Sehwag et al., 2021) 51.5 96.86
Neco (Ammar et al., 2024) 46.97 96.69
KNN (Sun et al., 2022) 84.99 63.88
Mahalanobis (Lee et al., 2018) 91.57 39.27
ours 91.65 38.23

based on the cluster means {µi} with the minimum Maha-
lanobis distance to f . Figure 6 illustrates the value of p and
q derived from ImageNet-1k benchmark experiments. As
we can see from the figure, both p and q consistently exceed
1 by a considerable margin, even with ResNet-50 which
produces less compact embedding space. This strongly sup-
ports our theoretical assumption. We also present the values
of s = f⊤

r Σ−1
R (µc − f ′

r) in the appendix on both ViT and
ResNet-50.
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Figure 6. p and q values on ImageNet-1k pre-trained ResNet-50

5.8. Vector Norms in Residual Space

In addition to examining the effectiveness of projection in
residual space based on performance metrics, we investigate

further how residual projection helps OOD detection by
analyzing feature scale. Given that all real-time features
are normalized before conducting the prior adjustment, the
norm of features before projected into the residual space is
1. But in residual space, the norm of a⊤B can be smaller
and with higher discriminative power. We visualize the
distribution of norms in Figure 7. As shown in the figure,
the OOD features tend to have larger norms in residual space
for both ViT and ResNet-50 backbones. This distinction in
norm distributions confirms that residual projection helps
distinguish OOD samples from ID samples
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Figure 7. The l2 norms of features extracted by ImageNet-1k pre-
trained ResNet-50 and ViT.

6. Conclusion
In this paper, we introduce a new perspective for defining
distance-based OOD scores that dynamically refine the dis-
torted geometry of the training distribution. Building on
this perspective, we design an OOD detection score that
adjusts the covariance in the Mahalanobis distance in real-
time. Specifically, we restrict the adjustment to the residual
space to avoid unintended influences. Extensive experi-
ments demonstrate the effectiveness of our method. We also
conduct experiments using the Euclidean distance and hard
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Table 4. Ablation study on different procedures. The smaller value of the reported FPR95(%) means the better performance. DME,
RSP and DCM are short for Dynamic Matrix Estimation, Residual Space Projection and Dynamic Covariance Modeling respectively.

DME RSP DCM CIFAR-10 DenseNet CIFAR-100 DenseNet ImageNet-1k ViT ImageNet-1k ResNet50
AUROC↑ FPR↓ AUROC↑ FPR↓ AUROC↑ FPR↓ AUROC↑ FPR↓

95.19 18.86 89.47 35.84 92.51 33.16 82.49 60.43
✓ 95.47 17.51 88.05 36.61 92.65 32.31 81.46 61.77
✓ ✓ 94.08 23.92 85.69 53.70 82.72 86.32 87.31 52.17
✓ ✓ 96.24 16.38 92.17 30.16 94.24 27.05 81.88 60.49
✓ ✓ ✓ 96.83 14.63 92.38 29.98 94.27 26.94 87.43 51.77

OOD detection in the appendix material, illustrating that
our method can be applied to various distance metrics. We
plan to explore the design ofM for vision language models
and large language models in future work.
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A. Theorical Proof
Proof of Theorem 4.2. With Sherman-Morrison Formula,
we have d(f) = (f − a)Σ−1(f − a) + ((f−a)⊤Σ−1f)2

1−fΣ−1f .

For p = f⊤Σ−1f < 1, obviously d(f) ≥ 0.

For p = f⊤Σ−1f > 1, we have

d(f) =p+ q − 2s+
(p− s)2

1− p
≥ 0

⇐⇒ p+ q − pq − 2s+ s2 ≤ 0

⇐⇒ s2 − 2s ≤ pq − p− q

⇐⇒ (s− 1)2 ≤ (p− 1)(q − 1).

B. Additional Experiments
B.1. Analyzing s Values

In Section 4.3, we argue that s = f⊤
r ΣR(µc − f ′

r) values
can be positive for within-class covariance, where µc is
selected based on the class means {µi} with the minimum
Mahalanobis distance to real-time features f . Figure 8
shows the distribution of s value on ImageNet-1k pre-trained
ViT and ResNet-50. As shown in Figure 8, the s scores are
always positive, supporting our assumption thatM induces
a valid distance.
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Figure 8. The s values on ImageNet-1k pre-trained ResNet-50 and
ViT.

B.2. Dynamic Adjustment in Euclidean Distance

Our approach can be utilized with various distances which
utilize covariance matrix structures. For instance, if we con-
sider Σ as the identity matrix I , which corresponds to the
Euclidean distance, thenM = (I − frf

T
r )−1. We compare

the OOD score with and without applying our approach in
Euclidean distance in Table 5. All the features are normal-
ized in the first stage. We conduct experiments on large-
scale OOD detection tasks with 3 ImageNet pre-trained
models, namely ViT, ResNet-50 and DINO, and CIFAR-
10/100 pret-trained DenseNet. As shown in Table 5, better
performance can be achieved with dynamic adjustment in

most cases. However, the improvement is insignificant since
other factors, such as geometry in the principal space, affect
the performance.

Table 5. Ablation study on Euclidean distance. We report the
performance on ImageNet-1k pre-trained ViT, ResNet and DINO,
and CIFAR-10/100 pre-trained DenseNet.

Model w adjustment w/o adjustment
AUROC↑ FPR95↓ AUROC↑ FPR95↓

CIFAR10
DenseNet 96.443 18.023 96.429 18.101

CIFAR100
DenseNet 89.563 39.836 89.217 41.032

ImageNet
ViT 93.993 28.691 93.267 32.817
ResNet-50 87.794 46.162 87.794 46.163
DINO 89 46.425 88.095 49.891

B.3. Near OOD detection

We conduct near OOD detection on OpenOOD bench-
mark (Yang et al., 2022) with ResNet18. We report the
experimental results in Table 6. We also compare with the
results of the recent distance score and subspace score avail-
able in OpenOOD, namely KNN and VIM. All the results
are averaged over 3 runs. We also provide the results of
RMDS (Ren et al., 2021) with our covariance dynamic ad-
justment. RMDS is a Mahalanobis distance tailored for
near-OOD detection.

As the table shows, vanilla Mahalanobis distance struggles
to perform well on the near OOD detection task, which
aligns with observations in previous work (Tajwar et al.,
2021). In contrast, significantly enhances the effectiveness
of the Mahalanobis distance in near OOD detection. In
addition, it can also improve the performance of RMDS,
reflecting the robustness of our method in different distances
in near OOD detection.

C. Algorithm Details
We present the pseudocode for our method in Algorithm 1.
The calculation of B is similar to the R in residual space
method (Wang et al., 2022). We derive the basis matrix B
from the eigenspace of within-class covariance ΣR.

Why using within-class covariance µR? We aim for the
data to form a manifold, allowing us to easily determine its
geometry. However, the features from training distribution
form separate clusters for different classes in the penultimate
layer. The whole data can not form a manifold that requires
any local patch to be homomorphic to the Euclidean space.
A simple translation in a direction like µ can not change
the separated structure of the data distribution. However, if
we define the deviation feature with the class mean µc, the
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Table 6. Near OOD detection on OpenOOD benchmark. We conduct experiments under four settings. When using CIFAR-10 as the
seen dataset, we evaluate on CIFAR-100 and TinyImageNet as unseen datasets. Conversely, when CIFAR-100 serves as the seen dataset,
CIFAR-10 and TinyImageNet are used as the unseen datasets. Best results are highlighted in bold.

CIFAR10-CIFAR100 CIFAR10-Tiny CIFAR100-CIFAR10 CIFAR100-Tiny avg
Method FPR↓ AUROC↑ FPR↓ AUROC↑ FPR↓ AUROC↑ FPR↓ AUROC↑ FPR↓ AUROC↑
VIM 52.33 87.03 44.16 88.88 70.79 72.15 54.92 77.73 55.56 81.46
KNN 38.76 89.59 30.89 91.51 72.69 77.1 49.68 83.29 48.01 85.37
Mahalanobis 64.51 79.48 59.06 80.71 88.88 54.6 80.75 60.31 73.30 68.78
RMDS 49.76 88.26 37.63 90.29 62.90 77.69 49.55 82.60 49.96 84.71
Mahalanobis+dynamic (ours) 61.38 84.73 52.95 86.54 75.24 71.72 60.35 76.34 62.48 79.83
RMDS+dynamic (ours) 38.70 89.42 30.47 91.45 61.70 78.21 48.85 82.81 44.93 85.48

Table 7. Comparison of runtime and AUROC on CIFAR-10 pre-
trained DenseNet.

Time (s) AUROC(%)

Feature extraction only 218.42 N/A
GradNorm 473.70 92.6
Mahalanobis 221.53 85.9
ours 235.59 96.93

cluster from different classes can be translated to centered
as zero point, which is also the mean of the whole data. This
allows the score to be calculated over the denser distribution
as a manifold.

Algorithm 1 OOD Score s(·) Calculation
Input: Feature vector f , basis matrix B, within-class co-

variance matrix ΣR, class means {µi}
Output: Score function s(·)
Normalize f using the normalizer
a← torch.einsum(′i, bi→ b′, f,B)
adj ← B⊤a⊤aB
dygeo← torch.linalg.inv(ΣR − adj)
d← f − {µi}
dists← torch.einsum(′bi, ij, bj → b′, d, dygeo, d)
score← −torch.min(

√
dists)

return score

D. Detailed Results for CIFAR Benchmarks
Here, we present the detailed results for Table 1 of the main
paper in Table 8 and 9. More details can be viewed in our
source code in the supplementary.

E. Detailed Results for ImageNet Benchmarks
We present the detailed results for Table 2 and 3 of the main
paper, in Table 10. More details are in our source code in
the supplementary.

F. Discussion
OOD detection in Vision-Language model (VLM) and
Large language model (LLM) Limited by the computing
resource, it is impossible for us to evaluate our method
on some large foundation models. In addition, the out-
of-distribution is hard to define due to the large train set.
Even if WiscOOD (Chen et al., 2023) evaluates CLIP on
ImageNet benchmark, we doubt the validation of the ex-
periments since no verification has been stated that there
is no overlap between the image-text training set and the
OOD datasets in the benchmark. However, according to our
promising performance on different backbones, we believe
our dynamical adjustment can be helpful in OOD detection
of VLM and LLM.

Inference cost The computing complexity of our method
is O(n3), where n is the feature size. It takes around 0.002
seconds to calculate the score from each feature with 16GB
V100 GPU. We provide the detection time cost comparison
over 10,000 CIFAR-10 instances with DenseNet as the back-
bone network in Table 7. We note that our method has a
comparable time cost to Mahalanobis distance method. This
is because in post-hoc OOD detection, the dominant com-
putational cost lies in the feature extraction, which is shared
across most methods. In addition, we compare with the time
cost of GradNorm (Huang et al., 2021) in the table, which
shows the effectiveness of Mahanobis distance-based score
functions. So, we believe the inference cost of our method
is affordable in practice, especially with more advanced
equipment like A100.

G. Visualizaiton of Motivation
Our method is built on the assumption that the outlier fea-
tures can undermine the effectiveness of the Mahalanobis
distance. Figure 9 illustrates our motivation. As the fig-
ure shows, when outlier points shift away from the in-
distribution (ID) center towards some out-of-distribution
(OOD) points, the Mahalanobis distance can be smaller
between ID and these OOD points. This will affect the
performance of OOD detection.
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Table 8. Comparison on CIFAR pretrained DenseNet. We compare different post-hoc OOD detection methods on CIFAR benchmarks.
The base model is DenseNet.

OOD datasets
Method SVHN Texture LSUN Resize LSUN iSUN Places365 AVG

AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓
CIFAR-10

MSP 93.57 47.25 88.14 64.33 94.55 42.11 95.54 33.68 94.49 42.54 88.73 62.39 92.5 48.72
Energy 94.19 38.88 86.41 56.33 98.19 8.79 99.15 3.84 98.11 9.58 91.82 39.75 94.65 26.2
maxLogit 94.32 37.95 86.5 56.06 98.12 9.45 99.09 4.21 98.05 10.13 91.77 40.37 94.64 26.36
ODIN 94.33 37.83 86.52 56.05 98.12 9.48 99.09 4.21 98.05 10.15 91.77 40.37 94.65 26.35
MahaVanilla 98.11 7.93 92.81 25.66 87.91 51.71 82.62 67.99 88.79 45.52 65.15 87.02 85.9 47.64
KNN 99.29 3.96 96.39 19.61 98.12 9.9 98.75 6.91 98.2 10.26 89.95 46.33 96.79 16.16
ReAct 95.23 33.4 91.29 48 98.4 7.51 99.06 4.63 98.27 8.44 92.3 39.54 95.76 23.59
Line 97.75 11.42 95.11 23.44 99.1 4.12 99.83 0.62 99.02 5.08 91.13 43.85 96.99 14.75
DICE 94.96 27.82 86.96 46.03 99.06 4.23 99.9 0.38 98.99 5.2 90.18 45 95.01 21.44
FDBD 98.61 6.2 95.94 23.07 98.82 5.56 99.32 3.49 98.77 5.85 91.94 38.97 97.23 13.86
ours 98.41 8.21 96.41 16.51 99.34 3.01 99.82 0.71 99.17 4.04 87.84 55.28 96.83 14.63

CIFAR-100
MSP 75.18 82.01 71.41 84.8 69.18 85.22 85.6 60.5 70.17 86.01 74.71 82.24 74.37 80.13
Energy 81.3 88.02 71.01 84.33 80.14 70.69 97.43 14.75 78.95 74.6 78.15 78.25 81.17 68.44
maxLogit 81.42 86.26 71.18 83.44 79.77 71.7 97.06 16.98 78.69 75.05 78.22 77.78 81.06 68.53
ODIN 81.43 86.24 71.19 83.42 79.77 71.71 97.06 16.99 78.69 75.03 78.23 77.77 81.06 68.53
MahaVanilla 88.01 54.26 92.15 28.32 92.08 38.33 44.43 96.47 92.38 36.09 56.29 95.04 77.56 58.08
KNN 96.35 17.84 93.7 24.29 90.41 47.34 92.85 31.46 91.9 39.69 60.12 93.21 87.56 42.3
ReAct 82.77 83.69 77.7 79.79 81.71 71.56 97.13 15.82 81.06 75.19 77.53 78.25 82.98 67.38
Line 91.9 31.13 87.91 39.24 94.95 23.37 98.85 5.77 95.13 22.64 63.82 88.5 88.76 35.11
DICE 88.2 59.95 77.13 61.44 88.25 54.93 99.74 0.91 88.52 52.43 77.45 80.34 86.55 51.66
FDBD 91.38 49.75 91.59 43.3 88.71 57.75 96.54 19.19 89.43 56.03 77.87 77.39 89.25 50.57
ours 95.53 23.28 95.68 19.8 96.12 22.07 98.78 6.05 96.39 21.11 71.79 87.6 92.38 29.98

Table 9. Comparison on CIFAR pretrained WideResNet. We applied post-hoc OOD detection methods on CIFAR benchmarks. The
base model is WideResNet.

OOD datasets
Method SVHN Texture LSUN Resize LSUN iSUN Places365 AVG

AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓
CIFAR-10

MSP 90.1 54.89 87.17 63.88 92.89 47.46 97.02 23.05 91.32 52.97 87.93 61.6 91.07 50.64
Energy 88.49 44.99 84.24 58.9 95.47 23.05 99.27 2.88 93.99 30.05 89.69 42.55 91.86 33.74
MahaVanilla 97.02 16.45 95.99 20.62 89.93 59.07 90.8 55.79 89.43 58.24 82.1 75.29 90.88 47.58
KNN 95.01 31.32 92.26 40.6 95.05 27.53 95.33 26.85 93.93 30.98 90.47 44.06 93.68 33.56
maxLogit 88.57 44.11 84.41 57.7 95.38 23.43 99.17 3.25 93.9 30.36 89.62 42.79 91.84 33.61
ReAct 88.63 45.4 86.24 57.45 95.05 24.43 99.23 3.21 93.52 31.62 89.86 42.23 92.09 34.06
ODIN 88.58 44.11 84.42 57.71 95.38 23.42 99.17 3.29 93.9 30.38 89.62 42.81 91.85 33.62
GEM 97.56 13.26 97.3 15.32 93.16 43.03 94.11 39.64 92.67 44.01 84.51 68.43 93.22 37.28
DICE 86.31 45.88 81.07 60.11 95.12 22.8 99.74 0.48 93.71 29.36 86.93 48.03 90.48 34.44
Line 71.92 73.62 70.2 76.37 82.27 61.36 96.78 12.11 79.04 69.76 73.46 76.36 78.94 61.6
FDBD 92.8 38.52 89.03 48.55 93.38 32.82 97.65 13.1 91.4 38.94 89.36 49.29 92.27 36.87
ours 97.73 11.31 96.95 16.44 97.08 15.86 99.29 3.46 96.63 18.89 89.38 45.44 96.18 18.57

CIFAR-100
MSP 70.91 85.24 71.39 85.89 79.2 79.82 88.56 49.1 78.1 81.57 73.41 83.26 76.93 77.48
Energy 70.87 87.59 72.85 85.27 82.62 78.49 96.83 16.74 80.89 82.51 74.94 81.08 79.83 71.95
MahaVanilla 89.68 44.91 90.03 42.38 91.73 38.28 47.63 99.71 91.16 40.56 65.86 91.94 79.35 59.63
KNN 89.95 43.03 89.74 40.99 94.32 29.49 82.02 56.3 92.32 34.47 69.68 85.65 86.34 48.32
maxLogit 71.22 86.59 73.07 85.07 82.78 78.18 96.19 21.5 81.14 81.89 75.13 80.99 79.92 72.37
ReAct 74.61 87.63 76.22 84.33 81.27 79.76 96.77 17.1 79.92 83.53 75.36 81.22 80.69 72.26
ODIN 71.23 86.58 73.07 85.09 82.78 78.2 96.19 21.51 81.15 81.93 75.13 80.99 79.93 72.38
GEM 90.42 43.98 90.85 39.69 93.69 33.7 60.29 98.22 92.31 36.98 68.68 90.34 82.71 57.15
DICE 68.38 90.41 72.4 83.07 78.8 81.68 98.68 4.18 78.2 83.64 74.16 83.27 78.44 71.04
Line 66.08 94.43 70.86 79.59 56.42 97.83 92.64 34.63 58.88 98.33 53.08 95.88 66.33 83.45
FDBD 83.18 73.01 83.26 71.97 89.75 58.07 91.16 45.85 88.16 63.22 75.31 82.51 85.14 65.77
ours 92.64 36.07 92.55 34.66 94.04 32.29 87.75 50.83 93.14 33.48 74.35 82 89.08 44.89
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Table 10. Comparison on ImageNet-1k pretrained models. We applied post-hoc OOD detection methods on ImageNet benchmarks.
The base models are Vit, ResNet-50, Swin-B, DeiT and DINO.

OOD datasets
Method Testure SUN Places iNaturalist ImageNet-O OpenImage-O AVG

AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓
ViT

MSP 85.42 52.43 86.93 53.22 85.72 57.75 96.97 13.63 85.81 51.75 92.48 31.99 88.89 43.46
Energy 91.25 36.13 93.28 34.44 90.98 42.82 98.94 5.6 93.36 30.3 96.87 16.07 94.11 27.56
MahaVanilla 91.71 36.21 92.82 35.35 89.51 46.22 99.77 1.08 94.28 30.1 97.51 13.7 94.27 27.11
KNN 90.81 38.39 90.46 46.67 87.16 54.8 98.66 6.81 92.47 39 96.06 20.6 92.6 34.38
VIM 91.47 37.75 93.3 32.64 89.77 44.44 99.66 1.55 94.09 31.05 97.11 16.48 94.23 27.32
maxLogit 90.86 38.56 92.81 37.45 90.66 44.65 98.81 6.03 92.69 33.55 96.54 17.83 93.73 29.68
KLMatch 84.9 51.86 85.11 56.62 83.56 61.49 96.36 13.7 85.16 50.9 91.7 31.76 87.8 44.39
ReAct 91.17 36.35 93.22 34.55 90.83 43.32 98.93 5.63 93.4 30.3 96.88 16.01 94.07 27.69
ODIN 90.86 38.56 92.81 37.46 90.66 44.66 98.81 6.03 92.69 33.55 96.54 17.83 93.73 29.68
FDB 90.54 39.17 92 40.7 89.59 48 98.76 6.59 92.77 36.6 96.49 19.23 93.36 31.71
Neco 91.92 35.37 93.79 32.85 91.12 42.39 99.01 5.15 93.42 30.8 97.01 15.9 94.38 27.08
WDiscOOD 91.83 35.87 93.19 33.32 89.77 44.35 99.79 1.03 94.41 29.55 97.49 13.95 94.41 26.35
ours 91.84 35.09 92.75 35.89 89.43 46.2 99.76 1.18 94.31 29.9 97.55 13.36 94.27 26.94

ResNet-50
MSP 80.46 66.13 81.75 68.58 80.63 71.57 88.42 52.77 28.64 100 83.91 66.84 73.97 70.98
Energy 86.73 52.29 86.73 58.28 84.13 65.4 90.59 53.95 41.92 100 87.06 64.88 79.53 65.8
MahaVanilla 89.98 43.48 52.02 97.37 51.68 97.33 63.9 93.78 80.94 66.35 71.63 85.46 68.36 80.63
KNN 97.49 10.85 80.71 69.64 74.86 78.03 86.02 59.55 84.62 62.4 82.89 64.29 84.43 57.46
VIM 96.86 14.79 81.1 82.05 78.42 83.27 87.53 71.33 70.87 85.05 88.81 59.01 83.93 65.92
maxLogit 86.4 54.33 86.59 59.9 84.18 65.68 91.13 50.87 40.86 100 87.36 63.9 79.42 65.78
KLMatch 82.82 64.77 80.55 73.51 78.86 75.56 89.91 44.29 38.67 100 85.74 61.48 76.09 69.93
ReAct 90.13 45.85 90.51 45.28 88.11 53.66 94.75 29.86 46.86 99.85 89.66 54.38 83.34 54.81
ODIN 86.4 54.31 86.59 59.9 84.18 65.67 91.14 50.86 40.86 100 87.36 63.88 79.42 65.77
FDB 92.1 37.52 86.81 61.25 84.07 67.11 93.71 40.16 59.83 100 90.3 56.07 84.47 60.35
Neco 95.62 17.8 66.46 87.25 66.44 88.28 69.17 83.39 75.88 73.3 77.32 71.61 75.15 70.27
WDiscOOD 91.62 38.83 54.64 96.64 53.65 96.82 65.98 91.98 82.16 64.1 71.95 83.9 70 78.71
ours 98.81 5.48 84 65.53 78.8 75.55 91.62 46.88 82.18 66.1 89.16 51.08 87.43 51.77

Swin-B
MSP 82.84 61.81 83.9 63.29 83.67 64.57 89.92 44 62.14 89.4 85.25 57.87 81.29 63.49
Energy 83.88 53.37 81.03 62.43 80.18 63.5 88.16 43.54 65.04 83.3 82.14 55.97 80.07 60.35
Maha 88.97 47.07 86.78 60.65 85.53 64.62 95.67 21.05 77.13 83.45 93.1 35.58 87.86 52.07
KNN 88.73 48.51 83.2 74.95 81.44 76.69 91.32 51.92 76.32 84.45 89.47 54.93 85.08 65.24
VIM 88.26 45.02 84.35 59.07 80.88 64.07 95.93 22.45 77.89 81.15 93.29 36.24 86.77 51.33
maxLogit 83.72 56.1 82.65 60.16 82.04 61.54 89.69 39.77 63.54 86.2 84 53.57 80.94 59.56
KLMatch 83.25 60.28 83.49 69.05 82.61 71.28 90.44 42.61 64.64 84.65 86.54 55.22 81.83 63.85
ReAct 87.33 50.83 86.89 54.38 85.87 57.2 93.31 31.27 68.67 82.8 89.13 44.7 85.2 53.53
ODIN 83.46 55.66 82.48 59.32 81.83 60.9 89.72 38.65 62.97 85.95 83.61 53.14 80.68 58.94
FDB 87.44 50.69 86.84 59.78 85.89 62.58 93.71 33.61 74.27 84.85 91.26 43.01 86.57 55.75
neco 82.65 54.5 84.17 53.65 83.35 56.32 93.82 24.96 60.66 92.65 85.73 46.36 81.73 54.74
ours 90.13 41.58 85.14 71.38 83.88 74.77 96.76 13.83 78.87 78.4 93.82 31.36 88.1 51.89

DeiT
MSP 81.59 64.56 80.72 68.35 80.37 70.04 88.46 51.18 63.24 87 84.39 60.71 79.8 66.97
Energy 77.5 65.37 70.43 75.96 69.17 77.48 78.02 67.14 60.12 83.3 74.65 66.63 71.65 72.65
MahaVanilla 82.91 78.33 81.93 78.53 80.88 77.29 92.14 55.62 76.26 90.55 89.73 62.82 83.98 73.86
KNN 86.57 59.91 78.98 84.68 76.97 84.1 88.64 73.98 77.56 87.1 87.8 67.7 82.75 76.24
VIM 83.3 75.96 81.93 74.79 80.06 74.2 92.9 49.94 75.43 89.7 89.84 62.22 83.91 71.13
maxLogit 80.26 61.38 76.12 68.45 75.44 70.18 85.23 53.28 61.04 84.7 80.52 60.31 76.43 66.38
KLMatch 84.14 63.37 82.34 72.91 81.56 74.76 90.8 49.64 69.7 83.5 87.56 59.26 82.68 67.24
ReAct 80.42 64.18 77.05 70.45 75.86 72.26 84.34 61.11 64.41 82.35 80.86 62.09 77.16 68.74
ODIN 80.01 61.47 75.63 68.62 74.94 70.47 85.13 52.92 60.54 84.6 80.15 60.47 76.07 66.43
FDB 82.66 70.09 81.18 74.8 80 74.58 89.47 62.74 75.16 86.5 88.22 62.32 82.78 71.84
neco 79.65 60.92 77.48 65.62 76.79 68.02 91.59 38.74 63.72 85 85.96 53.85 79.2 62.03
WDiscOOD 82.91 78.24 81.93 78.5 80.87 77.27 92.14 55.59 76.25 90.6 89.74 62.78 83.97 73.83
ours 87.15 58.24 79.68 89.49 78.25 89.63 94.43 37.42 78.85 80.55 91.45 54.41 84.97 68.29

DINO
SSD 50.61 97.34 52.6 96.71 51.83 96.08 53.84 99.59 47.27 95.15 52.82 96.27 51.5 96.86
Neco 50.65 93.85 45.33 98.02 46.98 98.06 39.77 98.44 51.56 95.25 47.51 96.52 46.97 96.69
KNN 93.8 26.51 83.82 73.04 79.63 76.29 87.76 65.14 81.32 75.45 83.6 66.84 84.99 63.88
MahaVanilla 96.84 13.35 90.62 46.95 87.48 55.01 96.99 14.53 84.77 67.3 92.71 38.49 91.57 39.27
ours 96.59 14.02 91.11 43.71 87.99 52.13 97.22 12.69 84.22 69.3 92.79 37.55 91.65 38.23
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Figure 9. Visualization of the phenomenon that Mahalanobis dis-
tance may become less sensitive to OOD samples that align with
the directions of high variance in ID data caused by outliers. The
bold (solid) line is the geodesic line without manually added out-
lier points, and the dashed line is the geodesic line with the added
outlier points. The two geodesic lines are on the same level.
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