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ABSTRACT

This paper introduces the Kernel Neural Operator (KNO), a novel operator
learning technique that uses deep kernel-based integral operators in conjunction
with quadrature for function-space approximation of operators (maps from func-
tions to functions). KNOs use parameterized, closed-form, finitely-smooth, and
compactly-supported kernels with trainable sparsity parameters within the integral
operators to significantly reduce the number of parameters that must be learned
relative to existing neural operators. Moreover, the use of quadrature for numer-
ical integration endows the KNO with geometric flexibility that enables operator
learning on irregular geometries. Numerical results demonstrate that on existing
benchmarks the training and test accuracy of KNOs is higher than popular opera-
tor learning techniques while using at least an order of magnitude fewer trainable
parameters. KNOs thus represent a new paradigm of low-memory, geometrically-
flexible, deep operator learning, while retaining the implementation simplicity and
transparency of traditional kernel methods from both scientific computing and ma-
chine learning.

1 INTRODUCTION

Operator learning is a rapidly evolving field that focuses on the approximation of mathematical op-
erators, often those arising from partial differential equations (PDEs). Modern approaches leverage
machine learning (ML) to approximate complex operator mappings between infinite-dimensional
spaces. Recent approaches include the DeepONet family of neural operators Lu et al. (2021; 2022);
Zhang et al. (2023); Jin et al. (2022), the family of Fourier neural operators (FNOs) Li et al. (2021);
Kovachki et al. (2021); Li et al. (2023; 2024), graph neural operators (GNOs) Li, Zongyi and Ko-
vachki, Nikola and Azizzadenesheli, Kamyar and Liu, Burigede and Bhattacharya, Kaushik and Stu-
art, Andrew and Anandkumar, Anima (2020); Li et al. (2020), and kernel/Gaussian-process-based
methods Batlle et al. (2024).

In this paper we propose a new method, the kernel neural operator (KNO), that improves upon
existing operator learning techniques (namely FNOs and GNOs) by leveraging kernel-based deep
integral operators. While numerous works have shown that such methods can produce accurate
approximations of non-linear operators, e.g. Li et al. (2021); Kovachki et al. (2021), this accuracy
comes at the cost of an extremely large model parameterization that induces onerous memory and
training requirements. These challenges arise because existing methods choose specific discretiza-
tions of the aforementioned integral operators without directly learning the kernels; for example, the
FNO uses a fast Fourier transform on an equispaced grid to learn the kernel in spectral space while
the GNO uses a graph parametrization to discretize the integral. This implicit kernel learning also
prevents some desirable properties from being directly encoded into the kernel and enforces other
properties that may not be necessary: e.g., FNOs implicitly restrict the class of learnable kernels to
radial and periodic ones.

In contrast to existing approaches, the KNO directly uses closed-form trainable kernels in con-
junction with quadrature to approximate the action of its integral operators. Our numerical results
show that the ability to utilize specific types of trainable kernels – namely sparse and compactly-
supported kernels – significantly improves the accuracy of the operators learned. Moreover, our
approach comes with many other immediate benefits: (1) the use of quadrature allows us to tackle
operator learning on irregular domains with little to no difficulty; (2) the use of specific closed-form
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trainable kernels allows us explicit control over the number of trainable parameters; (3) the use of
these explicit kernels allows us to directly operate on point-cloud inputs rather than being tied to a
regular grid; and (4) the use of closed-form trainable kernels improves the transparency of our neural
operator architecture. Additionally, like the FNO family of neural operators, the KNO is formulated
entirely in function space and therefore inherits the associated benefits: e.g., zero-shot super reso-
lution, superior generalization capabilities in both input and output spaces, discretization-invariance
in the input domain, and the ability to evaluate the architecture at arbitrary locations in the domain
of the learned operator.

In addition to the beneficial properties of the KNO outlined above, KNOs obtained state-of-the-
art accuracy on a variety of challenging operator learning benchmark problems involving PDEs,
including those on non-rectangular domains. Moreover, the KNO was able to accomplish this with
1-2 orders of magnitude fewer trainable parameters than reported in the literature for other neural
operators.

1.1 CONNECTIONS TO OTHER METHODS

Other operator learning techniques can handle irregular domains but possess restrictions. For exam-
ple, the DeepONet family of architectures Lu et al. (2022); Peyvan et al. (2024) can handle input and
output functions sampled on irregular domains, but require that all input functions must be sampled
at the same input domain locations. The FNO was generalized to tackle arbitrary domains as well,
first through the “dgFNO+” architecture Lu et al. (2022), then more recently through the geoFNO
architecture Li et al. (2023; 2024). The latter accomplished this by simultaneously learning both the
operator and a mapping from input locations to a regular grid, allowing for the use of the FFT. How-
ever, such mappings may not always exist or be feasible to compute. In contrast, the KNO possesses
none of these limitations, requiring only information transfer to a set of quadrature points through
straightforward function sampling, in a manner similar to Solodskikh et al. (2023) (though the latter
as presented was restricted to regular grids). In summary, the KNO leverages the rich literature on
compactly-supported kernels and the even richer literature on quadrature, resulting in a relatively
simple, parsimonious, and powerful architecture.

More broadly, kernel methods have been in use for decades in machine learning Rasmussen &
Williams (2006); Cortes & Vapnik (1995); Boser et al. (1992); Broomhead & Lowe (1988); Sharma
& Shankar (2022). Kernels have also been designed to fit data McCourt et al. (2018); Fasshauer
& McCourt (2015) and sparsified using partition-of-unity approximation Han et al. (2023). Addi-
tionally, kernel methods based on regression have been applied recently to operator learning prob-
lems Batlle et al. (2024) using an extremely small number of trainable parameters, albeit with gener-
ally lower accuracy than the KNO. The KNO falls on the spectrum between these kernel/GP operator
learning methods and FNOs (which are also kernel-based), being more parameterized than the for-
mer and less than the latter. Kernels have also been heavily leveraged in scientific computing within
(shallow) integral operators Gingold & Monaghan (1977); Peskin (2002); Kassen et al. (2022a;b);
Hsiao & Wendland (2008); Cortez (2001); Shankar & Olson (2015) or as generators of finite differ-
ence methods Wright & Fornberg (2006); Fornberg & Flyer (2015); Bayona et al. (2019); Fasshauer
& McCourt (2015); Shankar et al. (2014); Shankar & Fogelson (2018), and more recently to accel-
erate the training of physics-informed neural networks Sharma & Shankar (2022). Our development
of the KNO was the result of aggregating insights from this very broad body of work on kernel
methods and applying them deep learning and, more specifically, deep operator learning.

Limitations: Much like the FNO and other neural operators, our method is subject to a curse of
dimensionality, in our case for two reasons: first, because the kernel interpolant in our pipeline re-
quires decreasing fill distance of the data sample locations in order to converge; and second, because
the number of quadrature points in most standard quadrature rules grows exponentially with dimen-
sion (the FNO faces the same problem). There are some well-known approaches to ameliorate these
issues Zech & Schwab (2020); L’Ecuyer (2018), but we opt for a general presentation and so do
not use those approaches here. Finally, our results for other methods were based on reported data
from Lu et al. (2022); Batlle et al. (2024), not our own implementations; reported parameter counts
for those methods may hence not be optimal.
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2 KERNEL NEURAL OPERATORS (KNOS)

Given Euclidean domains Ωu,Ωy and du, dy ∈ N, neural operators learn mappings from a Banach
space U =

(
Ωu;Rdu

)
of Rdu -valued functions to a Banach space Y = Y(Ωy;Rdy ) of Rdy - valued

functions through supervised training on a finite number of input-output measurements. From a
statistical learning point of view, neural operators are learned from measurements of input functions
drawn from a probability measure ν on U

(
Ωu;Rdu

)
. In the following, we present the formulation

of KNOs, which are a special class of neural operators that leverage properties of certain kernel
functions for the benefit of efficiency and accuracy.

2.1 FUNCTION SPACE FORMULATION

Let G be an unknown operator we wish to learn that is an element of the L2-type Bochner space
L2
ν(U ;Y), i.e., G is a mapping from U to Y that is Borel-measurable with respect to the probability

measure ν on U . We are interested in learning a KNO G† that minimizes a loss function Lmeasuring
how well functions predicted by the operator match the training data. For example, the loss function
may be the L2

ν norm on operators,

L(H,G) = ∥H − G∥2L2
ν(U ;Y) = Ef∼ν∥H(f)− G(f)∥2Y ,

which is the loss function we use in our experiments, with the addition of some regularization on the
kernel scale parameters and a scaling term to account for relative error. The corresponding statistical
learning problem is

G† = argmin
H∈KNOs

L(H,G), (1)

where KNOs are operators of the form

H = P ◦ σ ◦ IL ◦ σ ◦ IL−1 ◦ σ ◦ . . . σ ◦ I1 ◦ L. (2)

The operators Iℓ,L,P are all trainable, and an appropriate parameterization of these defines a KNO.
The function σ is a nonlinear activation that operates pointwise: (σ·f)(x) := σ(f(x)). Additionally,
the initial operator L is a lifting operator that takes Rdu -valued functions to Rp0 -valued functions,
where p0 ∈ N. The ultimate operator P is a projection operator that takes RpL -valued functions
and compresses them down to Rdy -valued functions. The dimensions p0, . . . , pL denote the number
of channels in the architecture.

The workhorses of the KNO, containing most of the novelty and impact, are the latent operators Iℓ,
which are linear operator mappings from vector-valued functions to vector-valued functions. These
operators are defined by,

Iℓ(f ℓ) =

∫
Ωℓ−1

K(ℓ)(x, y)f ℓ(y)dy, f ℓ : Ωℓ−1 → Rpℓ−1 , gℓ = Iℓ(f) : Ωℓ → Rpℓ ,

where K(ℓ) : Ωℓ × Ωℓ−1 → Rpℓ×pℓ−1 is a matrix-valued kernel function,

K(ℓ)(x, y) =


K

(ℓ)
1,1(x, y) K

(ℓ)
1,2(x, y) · · · K

(ℓ)
1,pℓ−1

(x, y)

K
(ℓ)
2,1(x, y) K

(ℓ)
2,2(x, y) · · · K

(ℓ)
2,pℓ−1

(x, y)
...

...
. . .

...
K

(ℓ)
pℓ,1

(x, y) K
(ℓ)
pℓ,2

(x, y) · · · K
(ℓ)
pℓ,pℓ−1(x, y)

 ∈ Rpℓ×pℓ−1 , (3)

pℓ is the dimension of the range of the function that is output from Iℓ, and Ωl is its domain. In
contrast to the FNO family of neural operators, the KNO directly discretizes the integral operators I
using quadrature and closed-form trainable kernels. Further, we determined that the KNO obtained
the best accuracy when K(ℓ) was chosen from the class of 2k-smooth compactly-supported positive-
definite functions: i.e., K(ℓ) ∈ C2k

c (Ωℓ × Ωℓ−1;Rpℓ×pℓ−1). However, at a specific stage in our
pipeline, we also leverage a kernel with infinite smoothness. These choices simultaneously provided
model capacity and computational efficiency. We now describe the KNO in further detail; a block
diagram is shown in Figure 1, while mathematical formulations are shown in (2) and (12).
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Figure 1: A schematic of the KNO as defined by (12).

Integral operators FNOs use an implicitly-defined, dense, matrix-valued kernel that couples all
channels of the architecture. In contrast, the KNO enforces sparsity on this global matrix by utilizing
a diagonal matrix-valued kernel. While we briefly experimented with other choices such as tridi-
agonal matrix-valued kernels (see Appendix A.3), we found that the diagonal kernel resulted in the
fewest trainable parameters without degrading accuracy. Choosing a diagonal matrix-valued kernel
amounts to making the simple choices of (i) p0 = p1 = · · · = pL−1 = p and (ii) choosing K(ℓ) as a
diagonal kernel. This has the effect of creating p channels. The diagonal elements of K(ℓ) are fur-
ther compressed by making only q ≤ p of them trainable, resulting in q trainable kernel parameters
per index layer ℓ. We also choose Ωℓ = Ω ⊂ Rd for all ℓ ∈ [L] so that we may use radial kernels. In
particular, for ℓ ∈ [L−1], the functionK(ℓ)

i for each i ∈ [q] is chosen asK(ℓ)
i (x, y) = ϕℓ,i(∥x−y∥),

where ϕℓ,i : R → R is a radial kernel function with a trainable compact support parameter ϵℓ,i to
allow flexibility in sparsity; we explicitly provide our choice of ϕ in (4), and the final layer ℓ = L is
described later. We choose q independently of ℓ, so that these integral operators amount to (L− 1)q
trainable parameters. Notationally, we will refer to our particular parameterization of the general
kernel Iℓ as (Ip

q )ℓ:(
Ip
q

)
ℓ
(f) =

∫
Ω

K(ℓ)(x, y)f(y)dy K(ℓ) as in (3).

As in many neural operator formulations, we augment these kernel operations at the discrete level
with dense cross-channel affine transformations (“pointwise convolutions”) having trainable param-
eters. We describe this later when we introduce our discretization of the latent space.

2.2 CHOOSING KERNELS

Each layer of the KNO contains a set of kernels. In this paper, for all but the last layer, we used
compactly-supported radial kernels of the Wendland type. The Wendland kernels are a family of
compactly-supported, positive-definite kernels with smoothness class s (up to some finite dimen-
sion d), and have been used extensively in scientific computing applications Wendland (2005); Sch-
aback & Wendland (2006); Fasshauer (2007); more recently, Wendland kernels have also been used
in machine learning applications Han et al. (2023). The use of Wendland kernels results in a parsi-
monious parameterization of the KNO, improved training characteristics, spatial sparsity for com-
putational efficiency, and superior accuracy over other choices. Specifically, we used the C4

(
Rd

)
compactly-support radial and isotropic Wendland kernel Wendland (1995; 1998):

ϕϵ(r) = (ReLU (1− ϵr))
6 (

35(ϵr)2 + 18(ϵr) + 3
)
, (4)

where ϵ ∈ R+ is the sole trainable parameter, and d ≤ 3. The parameter ϵ serves to both control the
flatness of ϕ and its region of compact-support: the radius of support ρ is given by ρ = 1

ϵ . Since ϕ
is compactly-supported, a matrix of evaluations of ϕ is sparse.

While Wendland kernels can theoretically be used for all layers of a KNO, we found that using an
expressive globally-supported kernel within the final integral operator resulted in the best accuracy
over a wide range of problems. Specifically, for the last layer we used a spectral mixture kernel
constructed as a trainable mixture of two Gaussians Wilson & Adams (2013): for K(L) as in (3),
we defined

K
(L)
i (x, y) = ψ(x− y), ψ(τ) =

2∑
r=1

λr

d∏
p=1

cos
(
2πτpµ

(p)
r

)
e−2π2τ2

pν
(p)
r , (5)
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where τp is the p-th component of τ , and each Gaussian r = 1, 2 has a trainable parameter µr ∈ Rd

and trainable covariances (shape parameters) ν(1)r , . . . , ν
(dy)
r . As with the other layers, we use latent

kernels to form the diagonal of the matrix-valued kernel such that the kernel K(L)
i has different

trainable parameters from K
(L)
j for i ̸= j.

Why these kernels? Unlike existing methods, such as the FNO, the class of kernels used by
a KNO can be finely controlled. We leveraged this fine control and investigated compactness of
the spectrum of the neural tangent kernel (NTK) matrix of the KNO for different kernel choices.
We then chose the KNO architecture whose NTK spectrum indicated the greatest robustness to
hyperparameter choices. See Appendix A.5 for details.

2.3 SAMPLING AND OUTER DISCRETIZATION

Numerically constructing (2) requires sampling from ν and a discretization of ∥ · ∥Y . To this end,
we trained our KNOs using M independent and identically distributed input samples of functions
f (m) ∼ ν drawn from U and the associated output function data g(m) := G(f (m)), for m ∈ [M ].
We used a training grid, XT = {xj}j∈[NT ] ⊂ Ω, to both discretize the input and output functions
f (m) and g(m) and to approximate the norm ∥ · ∥Y . Hence, during learning we optimized

∥H − G∥2L2
µ(U,Y)

f(m)∼ν
≃ 1

MNT

∑
(m,j)∈[M ]×[NT ]

∥∥∥H(f
(m)
XT

)(xj)− g(m)(xj)
∥∥∥2
2
. (6)

The input function fXT
is defined as a (trainable) kernel interpolant on the training grid:

fXT
=

∑
n∈[NT ]

cnK(x, xn), (7)

where the cn are determined through a size-NT linear system solve that enforces fXT
(xn) = f(xn).

This interpolant allows for evaluation of f off of the training points XT , and in particular, at the
quadrature points to be introduced shortly. We chose the kernel as K(x, y) = ϕ(∥x − y∥) from
(4), which ensured that the linear system was sparse and well-conditioned. We emphasize that our
choice to evaluate the outputs of H at XT was only to enable simple training of our KNOs; for
generalization and super-resolution, one can evaluate the output of H on any desired grid.

2.4 LATENT SPACE DISCRETIZATION: QUADRATURE ON GENERAL DOMAINS

Figure 2: Clustered quadrature points on [0, 1]2 (left) and a reference triangle (right).

In order to propagate fXT
through H in (6), one must discretize all the integral operators; we accom-

plished this with quadrature. This first requires that we evaluate the kernel interpolant (7) at some
set of quadrature points (described further below). This KNO methodology of directly discretizing
the integrals via quadrature is a crucial difference compared to other neural operator approaches.
Consider the discretization of an integral operator

∫
Ω
K(x, y)f(y)dµ(y) that acts on a scalar-valued

function f : Rd → R; the generalization to vector-valued functions is straightforward. Then given
a quadrature rule {wq

i , y
q
i }

NQ

i=1, where wq
i ∈ R are quadrature weights and yqi ∈ Rd are quadrature

points, the quadrature-based discretization of a KNO integral operator is∫
Ω

K(x, y)f(y)dµ(y) ≈
NQ∑
i=1

wq
iK (x, yqi ) f(y

q
i ). (8)

In general, the choice of quadrature rule is dependent on the domain Ω and µ (which is in turn
application dependent) and should consist of quadrature points that allow for stable integration.
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For non-periodic kernels (which we use) this typically implies quadrature points that are clustered
towards the boundary ∂Ω. To accomplish this, we tesselated Ω with a simplicial mesh that divided
Ω into some set of nonoverlapping subdomains Ωℓ, ℓ = 1, . . . , NΩ such that∫

Ω

K(x, y)f(y)dµ(y) =

NΩ∑
ℓ=1

∫
Ωℓ

K(x, y)f(y)dµ(y). (9)

Following standard scientific computing practices Karniadakis & Sherwin (2005); Cantwell et al.
(2015) we discretized (9) using a quadrature rule for each of the subdomains Ωℓ affinely-mapped
from a symmetric quadrature rule on a standard (“reference”) simplex Ωref in Rd Freno et al. (2020);
see Figure 2. This simplified to the Gauss-Legendre rule in 1D. In Section 3.2.3, we also present
results on a 3D problem within the unit ball that utilized a quadrature rule specially tailored for that
domain. We further discuss the computational complexity of quadrature in Appendix A.2.

2.4.1 CROSS-CHANNEL AFFINE TRANSFORMATIONS

As in other neural operators Li et al. (2021), we also augmented each layer of the KNO with a
cross-channel affine transformation (i.e., an MLP dense layer), sometimes called a “pointwise con-
volution”. The output of this operation is added to the output of the integral operator. Formally, we
use the modified integral operators that explicitly act on and output vectors of function evaluations
on XQ := {yqi }i∈[NQ]:(

Ĩp
q

)
ℓ
g̃ℓ = g̃ℓWℓ + 1NQ

(bℓ) +
((

Ip
q

)
ℓ
g̃ℓ

) ∣∣
XQ
, ℓ ∈ [L− 1] (10)(

Ĩp
q

)
L
g̃L =

((
Ip
q

)
L
g̃L

) ∣∣
XT
, (11)

where g̃ℓ ∈ RNQ×p denotes evaluations of the function gℓ : Ω → Rp on XQ, and Wℓ ∈ Rp×p

and bℓ ∈ R1×p are trainable weights. Note that we abuse notation in the term
((

Ip
q

)
ℓ
g̃ℓ

) ∣∣
XQ

by
passing the vector g̃ evaluated at quadrature points to the integral operator (rather than a function).
The final discretized integral operator outputs values on the training grid XT for use in evaluating
the loss. We found that removing these pointwise convolutions entirely was detrimental to accuracy.

2.4.2 LIFTING AND PROJECTION OPERATORS

As with other neural operators, we used standard multilayer perceptrons (MLPs) to parameterize the
lifting and projection operators L and P that act on discretized inputs. Our lifting operator L is given
by Lf = σ

((
f |XQ

⊕XQ

)
W + 1NQ

b
)

, where ⊕ indicates concatenation, W ∈ R(du+dim(Ωu))×p

and b ∈ R1×p are trainable, σ is an activation function, and XQ now represents a matrix of quadra-
ture points. An MLP was also used to parameterize the projection operator P that combines all the
p channels of the hidden layers to produce a single approximation of the output function(s). This
MLP consisted of two consecutive p-width dense layers (A : Rp → Rp) with nonlinear activation
functions and one dense layer with width equal to dy (A : Rp → Rdy ) that did not use an activa-
tion function. We use the GeLU activation function in all cases Hendrycks & Gimpel (2023); see
Appendix A.8 for more details. In summary, the discretized KNO H̃ that we used to numerically
construct H in (2) can be written as a function that takes in fXT

and returns an approximation to the
output function H(f) evaluated at XT :

H̃(fXT
) =

(
P ◦ σ ◦

(
Ĩp
q

)
L
◦ σ ◦

(
Ĩp
q

)
L−1

◦ σ ◦ . . . σ ◦
(
Ĩp
q

)
1
◦ L

)
(fXT

) (12)

3 RESULTS

We now describe our numerical experiments with KNOs and other state-of-the-art neural operators
on benchmark problems obtained from Lu et al. (2022). We present results on both tensor-product
domains (all of which used boundary-anchored equidistant grids) and irregular domains (which
used triangle meshes or point clouds). The KNO models were all trained using the Adam opti-
mizer Kingma & Ba (2017) with a cyclic cosine annealing learning rate schedule. Other technical
details are described in Appendices A.6–A.8; we also defer the description of the Advection (I) prob-
lem to Appendix A.1. We measured the accuracy of our KNOs by computing the mean and standard
deviation of the ℓ2 relative errors of each KNO obtained from nine different training runs: three
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Table 1: Percent ℓ2 relative errors. All non-KNO errors were reported from the literature Lu et al.
(2022); Batlle et al. (2024). The last two rows correspond to irregular domains; these used the
dgFNO+ rather than the FNO.

PDE KM DeepONet POD-DeepONet FNO KNO

Burgers’ Equation 2.15 2.15± 0.09 1.94± 0.07 1.93± 0.04 0.52± 0.08
Advection (I) 2.15e−13 0.22± 0.03 0.04± 0.00 0.66± 0.10 0.015± 0.01
Navier-Stokes – 1.78± 0.02 1.71± 0.03 1.81± 0.02 1.02± 0.15

Darcy (Continuous) – 1.36± 0.12 1.26± 0.07 1.19± 0.05 0.91± 0.05
Darcy (PWC) 2.75 2.91± 0.04 2.32± 0.03 2.41± 0.03 1.57± 0.06

Darcy (triangular) – 0.43± 0.02 0.18± 0.02 1.00± 0.03 0.12± 0.01
Darcy (triangular-notch) – 2.64± 0.02 1.00± 0.00 7.82± 0.03 0.55± 0.04

3D reaction-diffusion – 0.127± 0.03 9.40± 8 0.047± 0.02 0.059± 0.01

separate train/test splits, each with three different random model parameter initializations. These
errors were compared to those of DeepONets, POD-DeepONets, and FNOs all as reported in Lu
et al. (2022), and kernel/GP-based methods (denoted KM) as reported in Batlle et al. (2024). For
the 3D reaction-diffusion problem, we tested DeepONet, POD-DeepONet, and FNO in-house, av-
eraging over five random seeds. See Appendix A.9 for training and architectural details. All errors
are reported in Table 1, and all parameter counts are given in Table 2. We used the normalization
procedure described in (Lu et al., 2022, Section 3.4) in all cases except the KM.

3.1 TENSOR-PRODUCT DOMAINS

3.1.1 BURGERS’ EQUATION

We first considered Burgers’ equation in one dimension with periodic boundary conditions:

∂u

∂t
+ u

∂u

∂x
= ν

∂2u

∂x2
, x ∈ (0, 1), t ∈ (0, 1),

with the viscosity coefficient fixed to ν = 0.1. Specifically, we learned the mapping from the
initial condition u(x, 0) = u0(x) to the solution u(x, t) at t = 1, i.e., G : u0 7→ u(·, 1). The
input functions u0 were generated by sampling u0 ∼ µ, where µ = N (0, 625(−∆+ 25I)−2) with
periodic boundary conditions, and the Laplacian ∆ was numerically approximated on XT . The
solution was generated as described in (Li et al., 2021, Appendix A.3.1). The full spatial resolution
of this dataset was 8192, but the models were trained and evaluated on input-output function pairs
both defined on the same downsampled 128 grid (as were the errors). 1000 examples were used for
training and 200 for testing. The KNO showed the best accuracy of all the models (Table 1) and
achieved roughly a four-fold improvement over the next best model (the FNO), while requiring an
order of magnitude fewer parameters than the FNO (Table 2).

3.1.2 THE INCOMPRESSIBLE NAVIER-STOKES EQUATIONS

Figure 3: Solutions of the Navier-Stokes problem 3.1.2 on a test example. We show the initial
vorticity (left), the solution at t = 20∆t (center), and the prediction at t = 20∆t (right).
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Table 2: Parameter counts for the models in Table 1 provided wherever available. For some we
made conservative estimates (detailed in Appendix A.9.2), which are marked with an asterisk. The
number of KNO parameters is determined by the hyperparameter choices detailed in Table 4.

PDE DeepONet POD-DeepONet FNO KNO
Burgers’ Equation 148,865 53,664 287,425 34,307

Advection (I) – 86,054 – 30,083
Darcy (PWC) 715,777 631,155 1,188,353 6,723

Darcy (Continuous) – – – 26,179
Navier-Stokes Equations – – *414,517 7,011

Darcy (triangular) *88,777 50,208 *532,993 25,731
Darcy (triangular-notch) 88,777 230,796 532,993 25,507

3D reaction-diffusion 645,120 588,928 11,952,673 26,499

In this test, we learned a solution operator for the 2D incompressible Navier-Stokes equations given
in vorticity-velocity form on the spacetime domain [0, 1]2 × [0, T ]:

∂ω

∂t
+ u · ∇ω = ν∆ω + f, ω(x, 0) = ω0(x),

where ω(x, y, t) is the fluid vorticity, u(x, y, t) is the velocity, ν = 0.001 is the viscosity, and
∇ · u = 0; we enforced periodic boundary conditions on ω. The forcing term f was prescribed to
be

f(x, y) = 0.1 sin(2π(x+ y)) + 0.1 cos(2π(x+ y)).

We learned the mapping from the set of functions {ω(x, y, j∆t)}, j = 0, . . . , 9 to the function
ω(x, y, 20∆t) by passing the first ten steps as a vector-valued input to the KNO. The input functions
were generated by sampling as ω0 ∼ N (0, 73/2(−∆ + 49I)−2.5), and a numerical solution was
obtained as in (Li et al., 2021, Section A.3.3). These functions were downsampled from 2562 to
a resolution of 642 for training and evaluation. We used 1000 examples for training and 200 for
testing. Once again, the KNO outperformed all other models (Table 1) while requiring fewer than
10k trainable parameters (Table 2).

3.1.3 DARCY FLOW

We used KNOs to learn two operators G : K 7→ h associated with 2D Darcy flow

−∇ · (K(x, y)∇h(x, y)) = f(x, y), (x, y) ∈ Ω.

on the Ω = [0, 1]2. For case (1), the permeability field was generated via K = ψ(µ), where
µ ∼ N (0, (−∆ + 9I)−2), and ψ is a function that pointwise converts all non-negative values to
12 and all negative values to 3. We henceforth refer to this problem as “Darcy (PWC)”. Case (2)
involved generating continuous permeability fields using a Gaussian process parameterized with a
zero mean and Gaussian covariance kernel; see Li et al. (2021) for details. We refer to this problem
as “Darcy (cont.)”. Both problems used 1000 training functions and 200 test functions. The Darcy
(PWC) training functions were computed on a 4212 grid Lu et al. (2022) and subsampled to a 292

grid. The Darcy (cont.) solutions were obtained using the Matlab PDE Toolbox on an unstructured
mesh with 1,893 elements, with Neumann and Dirchlet boundary conditions were imposed on the
top and bottom boundaries, and the left and right boundaries respectively. The solutions h were
then linearly interpolated from the mesh to the same uniform 202 grid upon which K was originally
defined so that both functions shared the same discretization.

The KNO achieved under 1% error on the Darcy (cont.) problem, once again showing the best
accuracy among all the neural operators tested. Further, in Darcy (PWC), the KNO achieved a 30%
lower error than the second-best model (FNO) while requiring over two orders of magnitude fewer
trainable parameters than FNO and DeepONet and almost two orders of magnitude fewer trainable
parameters than POD-DeepONet.

3.2 IRREGULAR DOMAINS

3.2.1 DARCY (TRIANGULAR)
We also examined two Darcy flow problems where the input and output functions were both dis-
cretized on an irregular spatial domain. Specifically, as in Lu et al. (2022), we learned the mapping

8
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from the Dirichlet boundary condition to the pressure field over the entire domain, i.e., the oper-
ator G : h(x, y)|∂Ω 7→ h(x, y). We report the dgFNO+ variant’s performance under the FNO
column since it can tackle both irregular geometries and different input and output domains. Here
K(x, y) = 0.1 and f = −1. The input functions h(x, y)|∂Ω for both problems were generated as

follows. First, we generated h̃(x) ∼ GP(0,K(x, x′)), K(x, x′) = exp[− (x−x′)2

2l2 ], where l = 0.2

and x, x′ ∈ [0, 1]. We then simply evaluated h̃(x) at the x-coordinates of the boundary points of
each unstructured mesh to obtain h(x, y)

∣∣
∂Ω

. The Matlab PDE Toolbox was used both to generate
unstructured meshes and numerical solutions Lu et al. (2022). Both problems used 1900 training
examples and 100 test examples.

This problem utilized an 861 vertex unstructured mesh with 120 points lying on the boundary; see Lu
et al. (2022) (Figure S2 (c)). Once again, the KNO showed the best accuracy of all neural operators
on this domain, partly illustrating the effectiveness of our quadrature rule (see Section 2.4). As in
the other test cases, the KNO required far fewer trainable parameters than existing neural operators.

3.2.2 DARCY (TRIANGULAR-NOTCH)

This problem involved removing a small notch from the triangular domain Lu et al. (2022) (see
Figure 4). The mesh contained 2,295 vertices with 260 of those on the boundary. Again, the KNO
outperformed the other models; it was almost twice as accurate as the next best model, the POD-
DeepONet, with an order of magnitude fewer parameters than dgFNO+. The results here underscore
KNO’s flexibility, both in handling different input and output spaces and in tackling irregular ge-
ometries.

Figure 4: Solutions of the Darcy (triangular-notch) problem 3.2.2. We show two input functions
(left), solution functions (middle), and the KNO predictions (right).

3.2.3 3D REACTION-VARIABLE-COEFFICIENT-DIFFUSION

Figure 5: The 3D reaction-diffusion problem 3.2.3, where an input function is given (left), the true
output function (center), and a prediction from the KNO (right).

Finally, we investigated a 3D problem reaction-diffusion problem in the unit ball, (i.e., the interior
of the unit sphere) where a chemical with concentration c(y, t) is governed by:

∂c

∂t
= kon (R− c) camb − koff c+∇ · (K(y)∇c) , y ∈ Ω, t ∈ [0, 0.5],

9
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where y = (y1, y2, y3) and K(y) ∂c
∂n = 0 on ∂Ω. Here, R = 2.0 throttles the reaction, and the kon

and koff are discontinuous reaction constants that introduce a sharp solution gradient at y1 = 1.0:

kon =

{
2, y1 ≤ 1.0,

0, otherwise,
koff =

{
0.2, y1 ≤ 1.0,

0, otherwise.

The diffusion coefficient is also a spatially varying function with a steep gradient given by:

K(y) = B +
C

tanh(A)
((A− 3) tanh(8x− 5)− (A− 15) tanh(8x+ 5) +A tanh(A)) ,

where A = 9, B = 0.0215, and C = 0.005. camb = (1 + cos(2πy1) cos(2πy2) sin(2πy3))e
(−πt)

is a background source of chemical accessible for reaction. We set the initial condition to be
c(y, 0) ∼ U(0, 1), and learned the solution operator G : c(y, 0) → c(y, 0.5). The PDE was solved
on 4325 collocation points using a 4th-order accurate RBF-FD solver Shankar & Fogelson (2018)
to generate 1000/200 train and test input/output function pairs, respectively. For the dgFNO+, we
used a 163 uniform grid. The KNO attained twice the accuracy of vanilla DeepONet and two or-
ders of magnitude greater accuracy than the POD-DeepONet, and had comparable accuracy to the
“dgFNO+” method despite using three orders of magnitude fewer parameters.

3.3 RUNTIME COMPARISON

We also present training and inference times for the KNO and FNO in Table 3; for the FNO, we
present timings for test problems where the architecture is known. The KNO was implemented in
Jax while the reference FNO was implemented in PyTorch. The KNO is generally faster than the
FNO, with further potential for speedups through the use of optimized sparse matrix operations.

Table 3: Average training time per epoch and average inference time (both in seconds) on the test
set over 20, 000 epochs measured on a NVIDIA GeForce RTX 4080. Datasets are not mini-batched.

PDE Training time Inference time
FNO KNO FNO KNO

Burgers’ Equation 1.40e–2 5.04e–3 1.38e–3 6.51e–4
Advection (I) – 2.16e–3 – 7.27e–4
Darcy (PWC) 8.72e–2 4.85e–2 4.39e–3 4.36e–3

Darcy (Continuous) – 4.08e–2 – 2.68e–3
Navier-Stokes Equations *2.85e–1 1.42e–1 *2.89e–2 2.17e–2

Darcy (triangular) *4.30e–1 8.52e–2 *5.00e–3 1.44e–3
Darcy (triangular-notch) 4.30e–1 2.00e–1 5.00e–3 4.85e–3

3D reaction-diffusion 6.54e–1 4.79e–1 3.66e-2 4.33e–2

4 CONCLUSION

We presented the kernel neural operator (KNO), a novel, simple, and transparent architecture that
leverages kernel-based deep integral operators discretized by numerical quadrature. The use of ex-
plicit, closed-form, diagonal, matrix-valued kernels allowed the KNO to achieve superior accuracy
with far fewer trainable parameters than other neural operators (on both regular and irregular do-
mains). We found that compactly-supported kernels used throughout (save the final layer) were the
optimal choice to obtain a general purpose architecture well-suited to a wide variety of operator
learning problems. In our view, our results also indicate that it may be possible to achieve similar
parameter counts (and possibly relative errors) with other neural operators such as DeepONet and
the FNO, albeit with architecture tuning, careful training, and problem-specific initializations.

For future work, we will prove the universal approximation capabilities of the KNO and leverage
the closed form kernels to derive rigorous error estimates for the approximation of PDE solution op-
erators. We will also explore interpretable lifting and projection operators, problem-specific archi-
tectures (for instance, for linear operators), novel quadrature schemes, and other types of problem-
dependent kernels not discussed in this work. We anticipate that the KNO will be widely applicable
to a variety of machine learning tasks beyond approximating PDE solution operators. We plan to
explore these in future work as well.
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A APPENDIX

A.1 THE ADVECTION EQUATION

Our results in the main body of the paper also include an operator learning problem associated with
the 1D advection equation, given by

∂u

∂t
+
∂u

∂x
= 0, x ∈ [0, 1], t ∈ [0, 1],

with a periodic boundary condition u(0, t) = u(1, t). We learned the mapping G : u0 7→
u(·, 0.5) (Lu et al., 2022, Case (I), Section 5.4.1). The initial condition was a square wave with
center, width, and height uniformly sampled from [0.3, 0.7], [0.3, 0.6], and [1, 2] respectively. The
spatial resolution for this data was fixed to 40, and we generated 1000 training and testing examples.
The KNO again outperformed all the neural operators (Table 1), but was unable to match the kernel
method (KM), which used a linear kernel to recover the linear operator G. We believe it should
be possible to obtain the same accuracy with the KNO by removing nonlinearities as appropriate;
however, we leave an exploration of problem-specific architectures for future work and focus on the
generalizable and flexible architecture reported here.

A.2 COMPLEXITY OF COMPUTING INTEGRALS VIA QUADRATURE

We now discuss the complexity of evaluating the kernel integrals using quadrature, in contrast with
The FNO’s approach which leverages the FFT and admits O(n log n) per integral (following the
runtime comparisons reported in section 3.3). If n is the size of the input sample grid, the cost of
quadrature is dependent on the number of quadrature points. Our approach, that is, to precompute
a quadrature rule with Nq points and weights incites a cost of O(Nq) per output location; thus,
incites a total cost of O(nNq). Now in practice, Nq < n and also with the KNO, n = Nq for
ℓ ∈ [L − 1] so that the total cost is closer O(Nq) for a given n, which makes this competitive
with the O(n log n) FNO cost. Regardless, both the FNO and the KNO likely suffer from the curse
of dimensionality on their respective grids and their costs are dominated by MLP operations. The
quadrature and polynomial approximation literature contains many approaches to tackle this (sparse
grids, composite quadrature rules, and so forth). We plan to tackle this in future work.

However, it is important to keep sight of the fact that quadrature allows us to tackle problems with
irregular domain geometries and point cloud data, unlike the standard FFT used in the FNO; the
alterative would be to use deformation maps to learn coordinate transforms to regular grids Li et al.
(2023; 2024), but such mappings do not always exist. Further, it may be possible to accelerate
our framework by mapping KNO layers to standard convolutional layers. This could be done by
imposing structure on the feature detector and/or filter to mimic the operation of the kernel in order
to further leverage existing ML toolchains (while losing geometric flexibility as in the FNO). Similar
work was done on the function approximation side in integrated neural networks (INNs) Solodskikh
et al. (2023). It may also be of interest to explore things in the other direction: engineering kernels
and/or loss functions that mimic the effects of certain convolutional layers (say, specific kinds of
filters, stencils/filter sizes, and feature detectors).

A.3 VARYING THE MATRIX-VALUED KERNEL’S STRUCTURE

Our decision to parameterize the KNO’s integral operators with a diagonal matrix-valued kernel was
made with the intention of developing a parameter-efficient neural operator that performed on-par
with or better than existing neural operator on the various benchmark datasets. Nonetheless, the
KNO allows us to adopt other formulations of this matrix-valued kernels, and it is unclear if this is
possible in FNOs. This is particularly relevant in the context of PDEs, where the solution operators
can be expressed in terms of Green’s functions that themselves have inherent structure Boullé &
Townsend (2023).

For completeness, we present some preliminary experiments with a KNO whose integral operators
were parameterized by a diagonal matrix-valued kernel, a tridiagonal matrix-valued kernel, and a
fully dense matrix-valued kernel, respectively, on Burgers’ equation and the Darcy (cont) problem 6
given a fixed training configuration i.e. p = q = 32, L−1 = 3, 30, 000 epochs, and the same number
of quadrature nodes as reported in 4. The results show that the optimal structure of the matrix-valued
kernel may be application dependent; note that the tridiagonal one performed better on the Darcy
(cont) problem and the dense one performed best on the Burgers’ equation. A cautious reader
might be skeptical as to why a diagonal-matrix valued kernel was effective, given it does not couple
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Figure 6: KNO results for two problems with its integral operators parameterized by three different
matrix-valued kernel variants.

information across channels. The answer lies in the pointwise convolutions present in both FNOs
and KNOs, which serves this purpose. In KNOs, we found that the architectural choice of one kernel
per channel (or fewer) combined with pointwise convolution coupling across channels resulted in
high accuracy with a lower parameter count (and a simple architecture). Such a choice in the FNO
is likely to reduce parameter counts but also reduce accuracy, since the FNO implicitly imposes
both periodicity and denseness in its matrix-valued kernels. We hypothesize that the KNO kernels
are learning information "local" to channels, and pointwise convolutions then couple information
across channels in a more global fashion. We plan to explore these details in a follow-up paper.

A.4 ZERO-SHOT SUPER-RESOLUTION

As every layer in the KNO is composed of function-space operations, the KNO can achieve zero-shot
super resolution, i.e., it can produce operator solutions at arbitrary resolutions without retraining,
much like the FNO. This is visualized in Figure 7.

Figure 7: An illustration of zero-shot super-resolution. The KNO was trained on the Darcy (PWC)
dataset using a 29× 29 grid (row a). It was then evaluated at a resolution of 211× 211 (row b). We
show the permeability field input (left), the actual pressure field (middle), and the predicted pressure
(right).

A.5 OTHER KERNEL CHOICES

As mentioned previously, we also explored the use of other kernels, enumerated below, within our
integral operators, however the KNO architecture reported in the main text out-performed all of the
other kernels tested.

1. Gaussians everywhere (overfitting): When isotropic Gaussian kernels ϕ(x, x′) = eϵ
2∥x−y∥2

2

were used throughout the KNO, we found that the resulting architecture tended to achieve
low training error and high test error, while also being highly sensitive to the initial random
seed used to optimize the KNO.

2. Wendland everywhere (higher training and test errors): When we used Wendland kernels
everywhere, we found that the resulting architecture had significantly higher training and
test errors than using Wendland kernels almost everywhere and a spectral mixture kernel
at the end. This experiment revealed to us that using a kernel that was not compactly-
supported for the final integral operator was important for accuracy. This is possibly due to
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Figure 8: Eigenvalues of the neural tangent kernel (NTK) for three choices of kernels: (1) Gaussian
kernels for

(
Ip
q

)
k
, k = 1, . . . , L; (2) C4(R3) Wendland kernels for

(
Ip
q

)
k
, k = 1, . . . , L − 1 and a

Gaussian kernel for
(
Ip
q

)
L

; and (3) C4(R3) Wendland kernels for
(
Ip
q

)
k
, k = 1, . . . , L − 1 and a

Gaussian spectral mixture kernel for
(
Ip
q

)
L

.

the fact that our final integral operator simply did not use a cross-channel affine transfor-
mation (aka pointwise convolution).

3. Wendland almost-everywhere, Gaussian for
(
Ip
q

)
L

: This choice of kernels produced ex-
cellent training and test accuracy and was relatively robust to choices in the other hyperpa-
rameters, but produced higher errors than using the spectral mixture kernel for

(
Ip
q

)
L

.

In order to quantify the differences between these choices, we computed the eigenvalue spectra of
the neural tangent kernel (NTK) matrix for the final KNO architecture, for cases (1) and (3) above;
case (2) produced reasonable spectra but lowered accuracy (not shown). The spectra of these NTK
matrices are shown in Figure 8; in general, more tightly clustered eigenvalues of the NTK matrix are
indicative of fewer local minima and a lower tendency to overfit. We see that the Gaussian results
in a spectrum with a very large range, while the Wendland + Gaussian choice results in a much
tighter spectrum; the Wendland + spectral mixture choice results in the tightest spectrum of all.
It is possible that stable kernel evaluation via a Hilbert-Schmidt decomposition might improve the
Gaussian’s NTK spectra Fasshauer & McCourt (2015), but we save such an exploration for future
work.

We also believe Wendland kernels were vital in the kernel interpolant that transfers data to the
quadrature points as their finite smoothness and corresponding sparse interpolation matrices allowed
us to avoid the exponential ill-conditioning inherent to interpolation on boundary-anchored equis-
paced grids. The Gaussian kernel, on the other hand, is infinitely-smooth and capable of exponential
convergence on infinitely-smooth target functions. Its corresponding linear system hence suffers
from exponential ill-conditioning (much like polynomial Vandermonde matrices); this follows di-
rectly from the impossibility theorem Platte et al. (2011); Adcock et al. (2019).

We also ran another experiment (results not shown) to investigate the impact of limited smoothness
of the Wendland kernels on efficacy. Specifically, we replaced the Wendland kernels with C4(R3)
Matérn kernels, which are finitely-smooth but not compactly-supported. We observed worse errors
in all our experiments using Matérn kernels over Wendland kernels (but still better results than using
the Gaussian everywhere). It may be possible to understand this in terms of the Fourier transforms
of these kernels. In general, in the context of interpolation, the rate of decay of the Fourier transform
of a kernel can affect its approximation power Fasshauer (2007). In this context, we believe it affects
trainability also. Wendland kernels, being compactly-supported, have Fourier transforms with heavy
frequency tails (by the Fourier uncertainty principle), thus carrying more information. In contrast,
Gaussians and even other less smooth Matérn kernels have more concentrated Fourier transforms
with fast decay (exponential in the frequency for Gaussian kernels, algebraic for the Matérn kernels),
which likely results in a loss of information during training. In future work, we plan to apply Fourier
analysis tools to further understand and clarify this intuition.

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

A.6 KNO SPARSITY

We also tracked the learned sparsity in the KNOs, specifically the average number of zeros in each
kernel evaluation matrix formed by the Wendland kernels. This metric roughly converged to 20%,
20%, 26%, 27% and 23% for the tensor-product domain datasets in the order by which they are
listed in Table 1. Interestingly, for the Darcy problems on irregular domains, we observed lower
sparsity percentages, 6% and 4%, for the triangular and triangular-notch problems respectively. It is
possible that this was because the triangular Darcy problems involved mapping boundary conditions
to solutions over the full domain. Lastly, sparsity on the 3D diffusion-reaction problem converged
to approximately 60%. As the solution functions exhibited sharp solution gradients in the center of
the sphere, we speculate that this is due to kernels focusing on this area, where such sharp gradients
need to be more accurately resolved, but we leave a deeper exploration of the connection between
sparsity and the operator learning problem for future work.

A.7 ABLATION STUDIES

Figure 9: Ablation Study for Burgers’ Equation. On the left the number of trainable kernels q per
integration block (for p = 64) was systematically varied with a constant architecture otherwise
(XQ = 30 and L− 1 = 6). The number of Gauss-Legendre quadrature points (center) were scaled
in the same capacity with p and q fixed to 64 and L− 1 = 6. The depth (right) was also scaled with
p, q = 64 and XQ = 30.

To verify the robustness of our results under training, we also conducted ablation studies on Burgers’
equation. We focused on the ratio between the number of trainable kernels q as compared and the
channel lift size p, on the number of Gauss-Legendre quadrature points employed, and on the model
depth; that is, the total number of integration blocks excluding the evaluation block (L − 1). The
results are shown in Figure 9.

Figure 9 (left) shows that while the best results are obtained with q = p, smaller values of q may also
suffice, i.e., one may be able to use fewer trainable parameters than channels, allowing for significant
reductions in computational cost. It is also likely that this can be done with the FNO family of
neural operators. Figure 9 (middle) also shows a relative insensitivity of our results to the number
of quadrature points for the datasets used in this work; however, it is not unreasonable to expect
some relationship between the number of spatial samples of the input and output functions and the
number of quadrature points. We plan to explore this connection in future work. Finally, Figure 9
(right) shows that the depth of the KNO was much more important, especially for generalization.
KNOs with more layers tended to overfit on this 1D problem. However, it is plausible that there is
an optimal depth for a given dataset in a particular spatial dimension. We leave such an exploration
for future work also.

A.8 IMPORTANT ARCHITECTURAL AND TRAINING DETAILS FOR THE KNO

A.8.1 INITIALIZATION AND REGULARIZATION

We initialized all trainable parameters associated with kernels by sampling N (1, 0.01) and applied a
softplus transform to enforce that all kernel shape parameters were positive. We also include a very
mild ℓ2 regularization to the shape parameters in the loss term to encourage sparsity but did not find
this to substantially impact convergence.
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Figure 10: On the right is a quadrature rule for the Darcy (triangular-notch) problem, created
by mapping the reference triangle’s rule 2 defined at

[
(0, 0), (1, 0), (

√
3
2 , 0.5)

]
, to a five tri-

angle Delaunay mesh (left) over the domain. The cut out ‘notch’ is defined by the vertices
[(0.49, 0), (0.51, 0), (0.49, 0.4), (0.51, 0.4)] .

Figure 11: The quadrature rule used for for the 3D reaction-diffusion problem.

A.8.2 QUADRATURE POINTS

We now briefly present details on the quadrature points used in the different operator learning prob-
lems. For the 2D examples, we took the approach of subdividing the domain into some number of
triangles, then mapped the integrals on each triangle back to our reference triangle (as was mentioned
previously).

1. Also mentioned previously, all 1D examples used Gauss-Legendre points defined on
[−1, 1]. We simply transformed the Gauss-Legendre points to the domain of interest in
this case.

2. For the Darcy (PWC) and Navier-Stokes problems, we subdivided the domain [0, 1]2 into
four squares, then further subdivided each square into two triangles, for a total of eight
triangles.

3. For the Darcy (cont.) problem, we simply used two triangles.

4. For the Darcy (triangular-notch) problem, we created a five triangle Delaunay mesh over
the whole domain; see Figure 10.

5. For the Darcy (triangle) problem, the domain matched our reference triangle, and so no
further subdivision or mapping was used.

A.8.3 HYPERPARAMETER CHOICES

The optimal hyperparameters for the KNO on each dataset are shown in Table 4. These hyperpa-
rameters were tuned manually via trial and error. The following are some relevant observations:

(1) Setting the depth L − 1 = 4 was the most reliable choice with a few exceptions, namely the
Advection (1) and Burgers’ equation problems, where the optimal depth increased to 5 and 6 respec-
tively. Usually, increasing the depth resulted in training instability and/or overfitting. However, it is
possible that more complicated residual connections or an addition of batch normalization between
integration layers could allow for deeper models to be more successful. The KNO is well-suited
to such augmentations since it innately possesses a very small number of trainable parameters per
layer.
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Table 4: This table denotes our chosen configuration for KNO on each dataset. An asterisk indicates
a hyperparameter that when increased also increases the total number of trainable parameters. Here
XQ is the total number of quadrature nodes, L − 1 is the ‘depth’ as referred to previously and q is
effectively the number of trainable kernels relative to the channel lift dimension p.

XQ (L− 1)∗ q∗ p∗

Burgers’ Equation 30 6 64 64
Advection (I) 32 5 64 64
Darcy (PWC) 864 4 16 32

Darcy (Continuous) 294 4 64 64
Navier-Stokes 384 4 16 32

Darcy (triangular) 300 4 32 64
Darcy (triangular-notch) 375 4 16 64

3D reaction-diffusion 1000 4 64 64

(2) We found that altering the MLP layer width to a value other than p provided no benefit.

(3) In several instances, we were able to reduce q < p, which not only reduced trainable parameters,
but also provided regularization, slightly improving test accuracy. These problems were: Darcy
(PWC) where q = 16 and p = 32, the Navier-Stokes equations (q = 16 and p = 32), Darcy
(triangular) (q = 32 and p = 64), and Darcy (triangular-notch) (q = 16 and p = 64).

(4) On the 1D problems, we observed optimal performance with ∼ 30 quadrature nodes. In contrast,
this number was ∼ 300 − 400 for the 2D datasets, reflecting the exponential relationship between
the number of quadratures nodes and the spatial dimension. A slight exception to this is the Darcy
(PWC) problem, in which KNO performed optimally with ∼ 900 nodes. This is potentially a result
of the piecewise constant nature of the input function, which necessitates more quadrature nodes
to resolve the discontinuities. Here (and in general) an adaptive, problem specific quadrature rule
could be beneficial and potentially enable us to reduce XQ further. We leave such an exploration for
future work.

A.8.4 TRAINING DETAILS

All models were trained on either an NVIDIA GeForce RTX 2080 Ti or an NVIDIA GeForce RTX
4080. We found that freeze-training (i.e. training kernel-based layers independently back to front)
prior to training the full model hastened its convergence and so used this tactic quite often for the
sake of convenience. More specifically, for a certain number of epochs, we allowed only a single
layer to affect gradient updates, effectively freezing all other layers. We then repeated this process
for each layer. Finally, we trained the model while allowing all pretrained layers to contribute to up-
dates. It is highly likely that such training would be beneficial for the FNO family of neural operators
also. In fact, a version of this training procedure has already proven effective for DeepONets Peyvan
et al. (2024). In Table 5, we report the number of training epochs for each PDE example. The second

Table 5: Number of epochs used in KNO training for different PDE examples.

PDE Number of epochs Number of epochs per layer
Burgers’ Equation 30,000 625

Advection (I) 70,000 2857
Darcy (PWC) 15,000 166

Darcy (Continuous) 30,000 666
Navier-Stokes 20,000 0

Darcy (triangular) 20,000 166
Darcy (triangular-notch) 5,000 83

3D diffusion-reaction 30,000 0

column indicates the number of epochs allocated to each layer during freeze training.
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A.9 DETAILS ON OTHER MODELS

Here, we provide or cite architecture details for other models, as recorded in Lu et al. (2022) and
the accompanying code. Note that in most cases, we did not implement these models; we merely
reported results from Lu et al. (2022) for the neural operators and Batlle et al. (2024) for the kernel
method. In the case of the 3D reaction-diffusion problem, however, we did implement and train
the models ourselves. Specifically we trained the DeepONet models for 150,000 epochs, calculated
over five random seeds, and annealed the learning rates with an inverse-time decay schedule. For the
dgFNO+, we followed the training outlined in Li et al. (2021), but doubled the number of epochs.

A.9.1 ARCHITECTURES

DeepONets We reported results for both standard DeepONets and POD-DeepONets in Table 1
directly using the results reported in Lu et al. (2022). The architectural details of those operators are
given in (Lu et al., 2022, Section S2, Tables S2 and S3). However, those tables do not report the CNN
parameters or architectures for all of their models; we estimated those whenever possible from the
accompanying code in https://github.com/lu-group/deeponet-fno for parameter
counts. For the 3D reaction-diffusion problem, the DeepOnet architecture had 3 layers and 128
nodes in both the branch and trunk net, with p = 100, while the POD-DeepONet had the same size
branch net, but with p = 20 POD bases.

Table 6: FNO/dgFNO+ architecture details.

PDE Channel dimension p Number of Fourier modes retained
Burgers’ 64 16

Darcy (PWC) 32 12
Darcy (triangular notch) 32 8

3D reaction-diffusion 32 9

FNOs Again, we reported results for the FNO and the “dgFNO+” in Table 1 directly using the
numbers from Lu et al. (2022). However, that work unfortunately does not describe the FNO or
“dgFNO+” architecture in detail. Of the examples used in this paper, the FNO or dgFNO+ code
for the Burgers’ problem, the Darcy (PWC) case, and the Darcy (triangular-notch) case was avail-
able in https://github.com/lu-group/deeponet-fno/tree/main/src (under the
appropriate subfolder). The code did allow for easy extraction of the channel dimension p and the
number of Fourier modes retained after truncation. We report these in Table 6 wherever available.

Kernel method (KM) Finally, we also reported results for the KM in Table 1. These were directly
obtained from (Batlle et al., 2024, Table 3) wherever possible: for the Burgers’ equation, the Ad-
vection (I) problem, and the Darcy (PWC) problem. While Batlle et al. (2024) also contains results
for a Navier-Stokes problem, that one was different from ours and so we do not report it here. We
also only selected the highest accuracy results from that work, which corresponded to the following
kernels on the following problems: the Matérn or rational quadratic (RQ) kernel for the Burgers’
equation (both apparently produced similar results); the same kernels for the Darcy (PWC) prob-
lem; and finally the linear kernel for the Advection (I) problem (which involved learning a linear
operator).

A.9.2 PARAMETER ESTIMATES (TABLE 2)
We took our estimate of the parameter count of the FNO on the Navier-Stokes Equations from
the FNO-2D model listed in Table 1 of Li et al. (2021). We believed this was reasonable as that
problem was a small variation on the one tested herein. Our estimate for the parameter count of the
FNO used in the Darcy (triangular) problem, a dgFNO+ variant, was taken by assuming the same
model configuration as in the Darcy (triangular-notch) problem; the latter was reported in Lu et al.
(2022). We estimated the DeepONet parameter count on the same problem by assuming the model
size and output dimension to be equivalent to the Darcy (triangular-notch) problem (Lu et al., 2022,
Table S2)). The KM had the smallest number of trainable parameters: 0 for the linear kernel, and
2 for the Matérn and RQ kernels. These were tuned by cross-validation or log marginal likelihood
maximization over the training data (Batlle et al., 2024, Section 4.1.1). Note however that the KM
required solving large dense linear systems.
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