
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

KERNEL NEURAL OPERATORS (KNOS) FOR SCAL-
ABLE, MEMORY-EFFICIENT, GEOMETRICALLY-
FLEXIBLE OPERATOR LEARNING

Anonymous authors
Paper under double-blind review

ABSTRACT

This paper introduces the Kernel Neural Operator (KNO), a novel operator
learning technique that uses deep kernel-based integral operators in conjunction
with quadrature for function-space approximation of operators (maps from func-
tions to functions). KNOs use parameterized, closed-form, finitely-smooth, and
compactly-supported kernels with trainable sparsity parameters within the integral
operators to significantly reduce the number of parameters that must be learned
relative to existing neural operators. Moreover, the use of quadrature for numer-
ical integration endows the KNO with geometric flexibility that enables operator
learning on irregular geometries. Numerical results demonstrate that on existing
benchmarks the training and test accuracy of KNOs is higher than popular opera-
tor learning techniques while using at least an order of magnitude fewer trainable
parameters. KNOs thus represent a new paradigm of low-memory, geometrically-
flexible, deep operator learning, while retaining the implementation simplicity and
transparency of traditional kernel methods from both scientific computing and ma-
chine learning.

1 INTRODUCTION

Operator learning is a rapidly evolving field that focuses on the approximation of mathematical op-
erators, often those arising from partial differential equations (PDEs). Modern approaches leverage
machine learning (ML) to approximate complex operator mappings between infinite-dimensional
spaces. Recent approaches include the DeepONet family of neural operators Lu et al. (2021; 2022);
Zhang et al. (2023); Jin et al. (2022), the family of Fourier neural operators (FNOs) Li et al. (2021);
Kovachki et al. (2021); Li et al. (2023; 2024), graph neural operators (GNOs) Li, Zongyi and Ko-
vachki, Nikola and Azizzadenesheli, Kamyar and Liu, Burigede and Bhattacharya, Kaushik and Stu-
art, Andrew and Anandkumar, Anima (2020); Li et al. (2020), and kernel/Gaussian-process-based
methods Batlle et al. (2024).

In this paper we propose a new method, the kernel neural operator (KNO), that improves upon
existing operator learning techniques (namely FNOs and GNOs) by leveraging kernel-based deep
integral operators. While numerous works have shown that such methods can produce accurate
approximations of non-linear operators, e.g. Li et al. (2021); Kovachki et al. (2021), this accuracy
comes at the cost of an extremely large model parameterization that induces onerous memory and
training requirements. These challenges arise because existing methods choose specific discretiza-
tions of the aforementioned integral operators without directly learning the kernels; for example, the
FNO uses a fast Fourier transform on an equispaced grid to learn the kernel in spectral space while
the GNO uses a graph parametrization to discretize the integral. This implicit kernel learning also
prevents some desirable properties from being directly encoded into the kernel and enforces other
properties that may not be necessary: e.g., FNOs implicitly restrict the class of learnable kernels to
radial and periodic ones.

In contrast to existing approaches, the KNO directly uses closed-form trainable kernels in con-
junction with quadrature to approximate the action of its integral operators. Our numerical results
show that the ability to utilize specific types of trainable kernels – namely sparse and compactly-
supported kernels – significantly improves the accuracy of the operators learned. Moreover, our
approach comes with many other immediate benefits: (1) the use of quadrature allows us to tackle
operator learning on irregular domains with little to no difficulty; (2) the use of specific closed-form

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

trainable kernels allows us explicit control over the number of trainable parameters; (3) the use of
these explicit kernels allows us to directly operate on point-cloud inputs rather than being tied to a
regular grid; and (4) the use of closed-form trainable kernels improves the transparency of our neural
operator architecture. Additionally, like the FNO family of neural operators, the KNO is formulated
entirely in function space and therefore inherits the associated benefits: e.g., zero-shot super reso-
lution, superior generalization capabilities in both input and output spaces, discretization-invariance
in the input domain, and the ability to evaluate the architecture at arbitrary locations in the domain
of the learned operator.

In addition to the beneficial properties of the KNO outlined above, KNOs obtained state-of-the-
art accuracy on a variety of challenging operator learning benchmark problems involving PDEs,
including those on non-rectangular domains. Moreover, the KNO was able to accomplish this with
1-2 orders of magnitude fewer trainable parameters than reported in the literature for other neural
operators.

1.1 CONNECTIONS TO OTHER METHODS

Other operator learning techniques can handle irregular domains but possess restrictions. For exam-
ple, the DeepONet family of architectures Lu et al. (2022); Peyvan et al. (2024) can handle input and
output functions sampled on irregular domains, but require that all input functions must be sampled
at the same input domain locations. The FNO was generalized to tackle arbitrary domains as well,
first through the “dgFNO+” architecture Lu et al. (2022), then more recently through the geoFNO
architecture Li et al. (2023; 2024). The latter accomplished this by simultaneously learning both the
operator and a mapping from input locations to a regular grid, allowing for the use of the FFT. How-
ever, such mappings may not always exist or be feasible to compute. In contrast, the KNO possesses
none of these limitations, requiring only information transfer to a set of quadrature points through
straightforward function sampling, in a manner similar to Solodskikh et al. (2023) (though the latter
as presented was restricted to regular grids). In summary, the KNO leverages the rich literature on
compactly-supported kernels and the even richer literature on quadrature, resulting in a relatively
simple, parsimonious, and powerful architecture.

More broadly, kernel methods have been in use for decades in machine learning Rasmussen &
Williams (2006); Cortes & Vapnik (1995); Boser et al. (1992); Broomhead & Lowe (1988); Sharma
& Shankar (2022). Kernels have also been designed to fit data McCourt et al. (2018); Fasshauer
& McCourt (2015) and sparsified using partition-of-unity approximation Han et al. (2023). Addi-
tionally, kernel methods based on regression have been applied recently to operator learning prob-
lems Batlle et al. (2024) using an extremely small number of trainable parameters, albeit with gener-
ally lower accuracy than the KNO. The KNO falls on the spectrum between these kernel/GP operator
learning methods and FNOs (which are also kernel-based), being more parameterized than the for-
mer and less than the latter. Kernels have also been heavily leveraged in scientific computing within
(shallow) integral operators Gingold & Monaghan (1977); Peskin (2002); Kassen et al. (2022a;b);
Hsiao & Wendland (2008); Cortez (2001); Shankar & Olson (2015) or as generators of finite differ-
ence methods Wright & Fornberg (2006); Fornberg & Flyer (2015); Bayona et al. (2019); Fasshauer
& McCourt (2015); Shankar et al. (2014); Shankar & Fogelson (2018), and more recently to accel-
erate the training of physics-informed neural networks Sharma & Shankar (2022). Our development
of the KNO was the result of aggregating insights from this very broad body of work on kernel
methods and applying them deep learning and, more specifically, deep operator learning.

Limitations: Much like the FNO and other neural operators, our method is subject to a curse of
dimensionality, in our case for two reasons: first, because the kernel interpolant in our pipeline re-
quires decreasing fill distance of the data sample locations in order to converge; and second, because
the number of quadrature points in most standard quadrature rules grows exponentially with dimen-
sion (the FNO faces the same problem). There are some well-known approaches to ameliorate these
issues Zech & Schwab (2020); L’Ecuyer (2018), but we opt for a general presentation and so do
not use those approaches here. Finally, our results for other methods were based on reported data
from Lu et al. (2022); Batlle et al. (2024), not our own implementations; reported parameter counts
for those methods may hence not be optimal.

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

2 KERNEL NEURAL OPERATORS (KNOS)

Given Euclidean domains Ωu,Ωy and du, dy ∈ N, neural operators learn mappings from a Banach
space U =

(
Ωu;Rdu

)
of Rdu -valued functions to a Banach space Y = Y(Ωy;Rdy ) of Rdy - valued

functions through supervised training on a finite number of input-output measurements. From a
statistical learning point of view, neural operators are learned from measurements of input functions
drawn from a probability measure ν on U

(
Ωu;Rdu

)
. In the following, we present the formulation

of KNOs, which are a special class of neural operators that leverage properties of certain kernel
functions for the benefit of efficiency and accuracy.

2.1 FUNCTION SPACE FORMULATION

Let G be an unknown operator we wish to learn that is an element of the L2-type Bochner space
L2
ν(U ;Y), i.e., G is a mapping from U to Y that is Borel-measurable with respect to the probability

measure ν on U . We are interested in learning a KNO G† that minimizes a loss function Lmeasuring
how well functions predicted by the operator match the training data. For example, the loss function
may be the L2

ν norm on operators,

L(H,G) = ∥H − G∥2L2
ν(U ;Y) = Ef∼ν∥H(f)− G(f)∥2Y ,

which is the loss function we use in our experiments, with the addition of some regularization on the
kernel scale parameters and a scaling term to account for relative error. The corresponding statistical
learning problem is

G† = argmin
H∈KNOs

L(H,G), (1)

where KNOs are operators of the form

H = P ◦ σ ◦ IL ◦ σ ◦ IL−1 ◦ σ ◦ . . . σ ◦ I1 ◦ L. (2)

The operators Iℓ,L,P are all trainable, and an appropriate parameterization of these defines a KNO.
The function σ is a nonlinear activation that operates pointwise: (σ·f)(x) := σ(f(x)). Additionally,
the initial operator L is a lifting operator that takes Rdu -valued functions to Rp0 -valued functions,
where p0 ∈ N. The ultimate operator P is a projection operator that takes RpL -valued functions
and compresses them down to Rdy -valued functions. The dimensions p0, . . . , pL denote the number
of channels in the architecture.

The workhorses of the KNO, containing most of the novelty and impact, are the latent operators Iℓ,
which are linear operator mappings from vector-valued functions to vector-valued functions. These
operators are defined by,

Iℓ(f ℓ) =

∫
Ωℓ−1

K(ℓ)(x, y)f ℓ(y)dy, f ℓ : Ωℓ−1 → Rpℓ−1 , gℓ = Iℓ(f) : Ωℓ → Rpℓ ,

where K(ℓ) : Ωℓ × Ωℓ−1 → Rpℓ×pℓ−1 is a matrix-valued kernel function,

K(ℓ)(x, y) =


K

(ℓ)
1,1(x, y) K

(ℓ)
1,2(x, y) · · · K

(ℓ)
1,pℓ−1

(x, y)

K
(ℓ)
2,1(x, y) K

(ℓ)
2,2(x, y) · · · K

(ℓ)
2,pℓ−1

(x, y)
...

...
. . .

...
K

(ℓ)
pℓ,1

(x, y) K
(ℓ)
pℓ,2

(x, y) · · · K
(ℓ)
pℓ,pℓ−1(x, y)

 ∈ Rpℓ×pℓ−1 , (3)

pℓ is the dimension of the range of the function that is output from Iℓ, and Ωl is its domain. In
contrast to the FNO family of neural operators, the KNO directly discretizes the integral operators I
using quadrature and closed-form trainable kernels. Further, we determined that the KNO obtained
the best accuracy when K(ℓ) was chosen from the class of 2k-smooth compactly-supported positive-
definite functions: i.e., K(ℓ) ∈ C2k

c (Ωℓ × Ωℓ−1;Rpℓ×pℓ−1). However, at a specific stage in our
pipeline, we also leverage a kernel with infinite smoothness. These choices simultaneously provided
model capacity and computational efficiency. We now describe the KNO in further detail; a block
diagram is shown in Figure 1, while mathematical formulations are shown in (2) and (12).

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Figure 1: A schematic of the KNO as defined by (12).

Integral operators FNOs use an implicitly-defined, dense, matrix-valued kernel that couples all
channels of the architecture. In contrast, the KNO enforces sparsity on this global matrix by utilizing
a diagonal matrix-valued kernel. While we briefly experimented with other choices such as tridi-
agonal matrix-valued kernels (see Appendix A.3), we found that the diagonal kernel resulted in the
fewest trainable parameters without degrading accuracy. Choosing a diagonal matrix-valued kernel
amounts to making the simple choices of (i) p0 = p1 = · · · = pL−1 = p and (ii) choosing K(ℓ) as a
diagonal kernel. This has the effect of creating p channels. The diagonal elements of K(ℓ) are fur-
ther compressed by making only q ≤ p of them trainable, resulting in q trainable kernel parameters
per index layer ℓ. We also choose Ωℓ = Ω ⊂ Rd for all ℓ ∈ [L] so that we may use radial kernels. In
particular, for ℓ ∈ [L−1], the functionK(ℓ)

i for each i ∈ [q] is chosen asK(ℓ)
i (x, y) = ϕℓ,i(∥x−y∥),

where ϕℓ,i : R → R is a radial kernel function with a trainable compact support parameter ϵℓ,i to
allow flexibility in sparsity; we explicitly provide our choice of ϕ in (4), and the final layer ℓ = L is
described later. We choose q independently of ℓ, so that these integral operators amount to (L− 1)q
trainable parameters. Notationally, we will refer to our particular parameterization of the general
kernel Iℓ as (Ip

q )ℓ:(
Ip
q

)
ℓ
(f) =

∫
Ω

K(ℓ)(x, y)f(y)dy K(ℓ) as in (3).

As in many neural operator formulations, we augment these kernel operations at the discrete level
with dense cross-channel affine transformations (“pointwise convolutions”) having trainable param-
eters. We describe this later when we introduce our discretization of the latent space.

2.2 CHOOSING KERNELS

Each layer of the KNO contains a set of kernels. In this paper, for all but the last layer, we used
compactly-supported radial kernels of the Wendland type. The Wendland kernels are a family of
compactly-supported, positive-definite kernels with smoothness class s (up to some finite dimen-
sion d), and have been used extensively in scientific computing applications Wendland (2005); Sch-
aback & Wendland (2006); Fasshauer (2007); more recently, Wendland kernels have also been used
in machine learning applications Han et al. (2023). The use of Wendland kernels results in a parsi-
monious parameterization of the KNO, improved training characteristics, spatial sparsity for com-
putational efficiency, and superior accuracy over other choices. Specifically, we used the C4

(
Rd

)
compactly-support radial and isotropic Wendland kernel Wendland (1995; 1998):

ϕϵ(r) = (ReLU (1− ϵr))
6 (

35(ϵr)2 + 18(ϵr) + 3
)
, (4)

where ϵ ∈ R+ is the sole trainable parameter, and d ≤ 3. The parameter ϵ serves to both control the
flatness of ϕ and its region of compact-support: the radius of support ρ is given by ρ = 1

ϵ . Since ϕ
is compactly-supported, a matrix of evaluations of ϕ is sparse.

While Wendland kernels can theoretically be used for all layers of a KNO, we found that using an
expressive globally-supported kernel within the final integral operator resulted in the best accuracy
over a wide range of problems. Specifically, for the last layer we used a spectral mixture kernel
constructed as a trainable mixture of two Gaussians Wilson & Adams (2013): for K(L) as in (3),
we defined

K
(L)
i (x, y) = ψ(x− y), ψ(τ) =

2∑
r=1

λr

d∏
p=1

cos
(
2πτpµ

(p)
r

)
e−2π2τ2

pν
(p)
r , (5)

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

where τp is the p-th component of τ , and each Gaussian r = 1, 2 has a trainable parameter µr ∈ Rd

and trainable covariances (shape parameters) ν(1)r , . . . , ν
(dy)
r . As with the other layers, we use latent

kernels to form the diagonal of the matrix-valued kernel such that the kernel K(L)
i has different

trainable parameters from K
(L)
j for i ̸= j.

Why these kernels? Unlike existing methods, such as the FNO, the class of kernels used by
a KNO can be finely controlled. We leveraged this fine control and investigated compactness of
the spectrum of the neural tangent kernel (NTK) matrix of the KNO for different kernel choices.
We then chose the KNO architecture whose NTK spectrum indicated the greatest robustness to
hyperparameter choices. See Appendix A.5 for details.

2.3 SAMPLING AND OUTER DISCRETIZATION

Numerically constructing (2) requires sampling from ν and a discretization of ∥ · ∥Y . To this end,
we trained our KNOs using M independent and identically distributed input samples of functions
f (m) ∼ ν drawn from U and the associated output function data g(m) := G(f (m)), for m ∈ [M ].
We used a training grid, XT = {xj}j∈[NT ] ⊂ Ω, to both discretize the input and output functions
f (m) and g(m) and to approximate the norm ∥ · ∥Y . Hence, during learning we optimized

∥H − G∥2L2
µ(U,Y)

f(m)∼ν
≃ 1

MNT

∑
(m,j)∈[M ]×[NT ]

∥∥∥H(f
(m)
XT

)(xj)− g(m)(xj)
∥∥∥2
2
. (6)

The input function fXT
is defined as a (trainable) kernel interpolant on the training grid:

fXT
=

∑
n∈[NT ]

cnK(x, xn), (7)

where the cn are determined through a size-NT linear system solve that enforces fXT
(xn) = f(xn).

This interpolant allows for evaluation of f off of the training points XT , and in particular, at the
quadrature points to be introduced shortly. We chose the kernel as K(x, y) = ϕ(∥x − y∥) from
(4), which ensured that the linear system was sparse and well-conditioned. We emphasize that our
choice to evaluate the outputs of H at XT was only to enable simple training of our KNOs; for
generalization and super-resolution, one can evaluate the output of H on any desired grid.

2.4 LATENT SPACE DISCRETIZATION: QUADRATURE ON GENERAL DOMAINS

Figure 2: Clustered quadrature points on [0, 1]2 (left) and a reference triangle (right).

In order to propagate fXT
through H in (6), one must discretize all the integral operators; we accom-

plished this with quadrature. This first requires that we evaluate the kernel interpolant (7) at some
set of quadrature points (described further below). This KNO methodology of directly discretizing
the integrals via quadrature is a crucial difference compared to other neural operator approaches.
Consider the discretization of an integral operator

∫
Ω
K(x, y)f(y)dµ(y) that acts on a scalar-valued

function f : Rd → R; the generalization to vector-valued functions is straightforward. Then given
a quadrature rule {wq

i , y
q
i }

NQ

i=1, where wq
i ∈ R are quadrature weights and yqi ∈ Rd are quadrature

points, the quadrature-based discretization of a KNO integral operator is∫
Ω

K(x, y)f(y)dµ(y) ≈
NQ∑
i=1

wq
iK (x, yqi ) f(y

q
i ). (8)

In general, the choice of quadrature rule is dependent on the domain Ω and µ (which is in turn
application dependent) and should consist of quadrature points that allow for stable integration.

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

For non-periodic kernels (which we use) this typically implies quadrature points that are clustered
towards the boundary ∂Ω. To accomplish this, we tesselated Ω with a simplicial mesh that divided
Ω into some set of nonoverlapping subdomains Ωℓ, ℓ = 1, . . . , NΩ such that∫

Ω

K(x, y)f(y)dµ(y) =

NΩ∑
ℓ=1

∫
Ωℓ

K(x, y)f(y)dµ(y). (9)

Following standard scientific computing practices Karniadakis & Sherwin (2005); Cantwell et al.
(2015) we discretized (9) using a quadrature rule for each of the subdomains Ωℓ affinely-mapped
from a symmetric quadrature rule on a standard (“reference”) simplex Ωref in Rd Freno et al. (2020);
see Figure 2. This simplified to the Gauss-Legendre rule in 1D. In Section 3.2.3, we also present
results on a 3D problem within the unit ball that utilized a quadrature rule specially tailored for that
domain. We further discuss the computational complexity of quadrature in Appendix A.2.

2.4.1 CROSS-CHANNEL AFFINE TRANSFORMATIONS

As in other neural operators Li et al. (2021), we also augmented each layer of the KNO with a
cross-channel affine transformation (i.e., an MLP dense layer), sometimes called a “pointwise con-
volution”. The output of this operation is added to the output of the integral operator. Formally, we
use the modified integral operators that explicitly act on and output vectors of function evaluations
on XQ := {yqi }i∈[NQ]:(

Ĩp
q

)
ℓ
g̃ℓ = g̃ℓWℓ + 1NQ

(bℓ) +
((

Ip
q

)
ℓ
g̃ℓ

) ∣∣
XQ
, ℓ ∈ [L− 1] (10)(

Ĩp
q

)
L
g̃L =

((
Ip
q

)
L
g̃L

) ∣∣
XT
, (11)

where g̃ℓ ∈ RNQ×p denotes evaluations of the function gℓ : Ω → Rp on XQ, and Wℓ ∈ Rp×p

and bℓ ∈ R1×p are trainable weights. Note that we abuse notation in the term
((

Ip
q

)
ℓ
g̃ℓ

) ∣∣
XQ

by
passing the vector g̃ evaluated at quadrature points to the integral operator (rather than a function).
The final discretized integral operator outputs values on the training grid XT for use in evaluating
the loss. We found that removing these pointwise convolutions entirely was detrimental to accuracy.

2.4.2 LIFTING AND PROJECTION OPERATORS

As with other neural operators, we used standard multilayer perceptrons (MLPs) to parameterize the
lifting and projection operators L and P that act on discretized inputs. Our lifting operator L is given
by Lf = σ

((
f |XQ

⊕XQ

)
W + 1NQ

b
)

, where ⊕ indicates concatenation, W ∈ R(du+dim(Ωu))×p

and b ∈ R1×p are trainable, σ is an activation function, and XQ now represents a matrix of quadra-
ture points. An MLP was also used to parameterize the projection operator P that combines all the
p channels of the hidden layers to produce a single approximation of the output function(s). This
MLP consisted of two consecutive p-width dense layers (A : Rp → Rp) with nonlinear activation
functions and one dense layer with width equal to dy (A : Rp → Rdy ) that did not use an activa-
tion function. We use the GeLU activation function in all cases Hendrycks & Gimpel (2023); see
Appendix A.8 for more details. In summary, the discretized KNO H̃ that we used to numerically
construct H in (2) can be written as a function that takes in fXT

and returns an approximation to the
output function H(f) evaluated at XT :

H̃(fXT
) =

(
P ◦ σ ◦

(
Ĩp
q

)
L
◦ σ ◦

(
Ĩp
q

)
L−1

◦ σ ◦ . . . σ ◦
(
Ĩp
q

)
1
◦ L

)
(fXT

) (12)

3 RESULTS

We now describe our numerical experiments with KNOs and other state-of-the-art neural operators
on benchmark problems obtained from Lu et al. (2022). We present results on both tensor-product
domains (all of which used boundary-anchored equidistant grids) and irregular domains (which
used triangle meshes or point clouds). The KNO models were all trained using the Adam opti-
mizer Kingma & Ba (2017) with a cyclic cosine annealing learning rate schedule. Other technical
details are described in Appendices A.6–A.8; we also defer the description of the Advection (I) prob-
lem to Appendix A.1. We measured the accuracy of our KNOs by computing the mean and standard
deviation of the ℓ2 relative errors of each KNO obtained from nine different training runs: three

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Table 1: Percent ℓ2 relative errors. All non-KNO errors were reported from the literature Lu et al.
(2022); Batlle et al. (2024). The last two rows correspond to irregular domains; these used the
dgFNO+ rather than the FNO.

PDE KM DeepONet POD-DeepONet FNO KNO

Burgers’ Equation 2.15 2.15± 0.09 1.94± 0.07 1.93± 0.04 0.52± 0.08
Advection (I) 2.15e−13 0.22± 0.03 0.04± 0.00 0.66± 0.10 0.015± 0.01
Navier-Stokes – 1.78± 0.02 1.71± 0.03 1.81± 0.02 1.02± 0.15

Darcy (Continuous) – 1.36± 0.12 1.26± 0.07 1.19± 0.05 0.91± 0.05
Darcy (PWC) 2.75 2.91± 0.04 2.32± 0.03 2.41± 0.03 1.57± 0.06

Darcy (triangular) – 0.43± 0.02 0.18± 0.02 1.00± 0.03 0.12± 0.01
Darcy (triangular-notch) – 2.64± 0.02 1.00± 0.00 7.82± 0.03 0.55± 0.04

3D reaction-diffusion – 0.127± 0.03 9.40± 8 0.047± 0.02 0.059± 0.01

separate train/test splits, each with three different random model parameter initializations. These
errors were compared to those of DeepONets, POD-DeepONets, and FNOs all as reported in Lu
et al. (2022), and kernel/GP-based methods (denoted KM) as reported in Batlle et al. (2024). For
the 3D reaction-diffusion problem, we tested DeepONet, POD-DeepONet, and FNO in-house, av-
eraging over five random seeds. See Appendix A.9 for training and architectural details. All errors
are reported in Table 1, and all parameter counts are given in Table 2. We used the normalization
procedure described in (Lu et al., 2022, Section 3.4) in all cases except the KM.

3.1 TENSOR-PRODUCT DOMAINS

3.1.1 BURGERS’ EQUATION

We first considered Burgers’ equation in one dimension with periodic boundary conditions:

∂u

∂t
+ u

∂u

∂x
= ν

∂2u

∂x2
, x ∈ (0, 1), t ∈ (0, 1),

with the viscosity coefficient fixed to ν = 0.1. Specifically, we learned the mapping from the
initial condition u(x, 0) = u0(x) to the solution u(x, t) at t = 1, i.e., G : u0 7→ u(·, 1). The
input functions u0 were generated by sampling u0 ∼ µ, where µ = N (0, 625(−∆+ 25I)−2) with
periodic boundary conditions, and the Laplacian ∆ was numerically approximated on XT . The
solution was generated as described in (Li et al., 2021, Appendix A.3.1). The full spatial resolution
of this dataset was 8192, but the models were trained and evaluated on input-output function pairs
both defined on the same downsampled 128 grid (as were the errors). 1000 examples were used for
training and 200 for testing. The KNO showed the best accuracy of all the models (Table 1) and
achieved roughly a four-fold improvement over the next best model (the FNO), while requiring an
order of magnitude fewer parameters than the FNO (Table 2).

3.1.2 THE INCOMPRESSIBLE NAVIER-STOKES EQUATIONS

Figure 3: Solutions of the Navier-Stokes problem 3.1.2 on a test example. We show the initial
vorticity (left), the solution at t = 20∆t (center), and the prediction at t = 20∆t (right).

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Table 2: Parameter counts for the models in Table 1 provided wherever available. For some we
made conservative estimates (detailed in Appendix A.9.2), which are marked with an asterisk. The
number of KNO parameters is determined by the hyperparameter choices detailed in Table 4.

PDE DeepONet POD-DeepONet FNO KNO
Burgers’ Equation 148,865 53,664 287,425 34,307

Advection (I) – 86,054 – 30,083
Darcy (PWC) 715,777 631,155 1,188,353 6,723

Darcy (Continuous) – – – 26,179
Navier-Stokes Equations – – *414,517 7,011

Darcy (triangular) *88,777 50,208 *532,993 25,731
Darcy (triangular-notch) 88,777 230,796 532,993 25,507

3D reaction-diffusion 645,120 588,928 11,952,673 26,499

In this test, we learned a solution operator for the 2D incompressible Navier-Stokes equations given
in vorticity-velocity form on the spacetime domain [0, 1]2 × [0, T ]:

∂ω

∂t
+ u · ∇ω = ν∆ω + f, ω(x, 0) = ω0(x),

where ω(x, y, t) is the fluid vorticity, u(x, y, t) is the velocity, ν = 0.001 is the viscosity, and
∇ · u = 0; we enforced periodic boundary conditions on ω. The forcing term f was prescribed to
be

f(x, y) = 0.1 sin(2π(x+ y)) + 0.1 cos(2π(x+ y)).

We learned the mapping from the set of functions {ω(x, y, j∆t)}, j = 0, . . . , 9 to the function
ω(x, y, 20∆t) by passing the first ten steps as a vector-valued input to the KNO. The input functions
were generated by sampling as ω0 ∼ N (0, 73/2(−∆ + 49I)−2.5), and a numerical solution was
obtained as in (Li et al., 2021, Section A.3.3). These functions were downsampled from 2562 to
a resolution of 642 for training and evaluation. We used 1000 examples for training and 200 for
testing. Once again, the KNO outperformed all other models (Table 1) while requiring fewer than
10k trainable parameters (Table 2).

3.1.3 DARCY FLOW

We used KNOs to learn two operators G : K 7→ h associated with 2D Darcy flow

−∇ · (K(x, y)∇h(x, y)) = f(x, y), (x, y) ∈ Ω.

on the Ω = [0, 1]2. For case (1), the permeability field was generated via K = ψ(µ), where
µ ∼ N (0, (−∆ + 9I)−2), and ψ is a function that pointwise converts all non-negative values to
12 and all negative values to 3. We henceforth refer to this problem as “Darcy (PWC)”. Case (2)
involved generating continuous permeability fields using a Gaussian process parameterized with a
zero mean and Gaussian covariance kernel; see Li et al. (2021) for details. We refer to this problem
as “Darcy (cont.)”. Both problems used 1000 training functions and 200 test functions. The Darcy
(PWC) training functions were computed on a 4212 grid Lu et al. (2022) and subsampled to a 292

grid. The Darcy (cont.) solutions were obtained using the Matlab PDE Toolbox on an unstructured
mesh with 1,893 elements, with Neumann and Dirchlet boundary conditions were imposed on the
top and bottom boundaries, and the left and right boundaries respectively. The solutions h were
then linearly interpolated from the mesh to the same uniform 202 grid upon which K was originally
defined so that both functions shared the same discretization.

The KNO achieved under 1% error on the Darcy (cont.) problem, once again showing the best
accuracy among all the neural operators tested. Further, in Darcy (PWC), the KNO achieved a 30%
lower error than the second-best model (FNO) while requiring over two orders of magnitude fewer
trainable parameters than FNO and DeepONet and almost two orders of magnitude fewer trainable
parameters than POD-DeepONet.

3.2 IRREGULAR DOMAINS

3.2.1 DARCY (TRIANGULAR)
We also examined two Darcy flow problems where the input and output functions were both dis-
cretized on an irregular spatial domain. Specifically, as in Lu et al. (2022), we learned the mapping

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

from the Dirichlet boundary condition to the pressure field over the entire domain, i.e., the oper-
ator G : h(x, y)|∂Ω 7→ h(x, y). We report the dgFNO+ variant’s performance under the FNO
column since it can tackle both irregular geometries and different input and output domains. Here
K(x, y) = 0.1 and f = −1. The input functions h(x, y)|∂Ω for both problems were generated as

follows. First, we generated h̃(x) ∼ GP(0,K(x, x′)), K(x, x′) = exp[− (x−x′)2

2l2 ], where l = 0.2

and x, x′ ∈ [0, 1]. We then simply evaluated h̃(x) at the x-coordinates of the boundary points of
each unstructured mesh to obtain h(x, y)

∣∣
∂Ω

. The Matlab PDE Toolbox was used both to generate
unstructured meshes and numerical solutions Lu et al. (2022). Both problems used 1900 training
examples and 100 test examples.

This problem utilized an 861 vertex unstructured mesh with 120 points lying on the boundary; see Lu
et al. (2022) (Figure S2 (c)). Once again, the KNO showed the best accuracy of all neural operators
on this domain, partly illustrating the effectiveness of our quadrature rule (see Section 2.4). As in
the other test cases, the KNO required far fewer trainable parameters than existing neural operators.

3.2.2 DARCY (TRIANGULAR-NOTCH)

This problem involved removing a small notch from the triangular domain Lu et al. (2022) (see
Figure 4). The mesh contained 2,295 vertices with 260 of those on the boundary. Again, the KNO
outperformed the other models; it was almost twice as accurate as the next best model, the POD-
DeepONet, with an order of magnitude fewer parameters than dgFNO+. The results here underscore
KNO’s flexibility, both in handling different input and output spaces and in tackling irregular ge-
ometries.

Figure 4: Solutions of the Darcy (triangular-notch) problem 3.2.2. We show two input functions
(left), solution functions (middle), and the KNO predictions (right).

3.2.3 3D REACTION-VARIABLE-COEFFICIENT-DIFFUSION

Figure 5: The 3D reaction-diffusion problem 3.2.3, where an input function is given (left), the true
output function (center), and a prediction from the KNO (right).

Finally, we investigated a 3D problem reaction-diffusion problem in the unit ball, (i.e., the interior
of the unit sphere) where a chemical with concentration c(y, t) is governed by:

∂c

∂t
= kon (R− c) camb − koff c+∇ · (K(y)∇c) , y ∈ Ω, t ∈ [0, 0.5],

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

where y = (y1, y2, y3) and K(y) ∂c
∂n = 0 on ∂Ω. Here, R = 2.0 throttles the reaction, and the kon

and koff are discontinuous reaction constants that introduce a sharp solution gradient at y1 = 1.0:

kon =

{
2, y1 ≤ 1.0,

0, otherwise,
koff =

{
0.2, y1 ≤ 1.0,

0, otherwise.

The diffusion coefficient is also a spatially varying function with a steep gradient given by:

K(y) = B +
C

tanh(A)
((A− 3) tanh(8x− 5)− (A− 15) tanh(8x+ 5) +A tanh(A)) ,

where A = 9, B = 0.0215, and C = 0.005. camb = (1 + cos(2πy1) cos(2πy2) sin(2πy3))e
(−πt)

is a background source of chemical accessible for reaction. We set the initial condition to be
c(y, 0) ∼ U(0, 1), and learned the solution operator G : c(y, 0) → c(y, 0.5). The PDE was solved
on 4325 collocation points using a 4th-order accurate RBF-FD solver Shankar & Fogelson (2018)
to generate 1000/200 train and test input/output function pairs, respectively. For the dgFNO+, we
used a 163 uniform grid. The KNO attained twice the accuracy of vanilla DeepONet and two or-
ders of magnitude greater accuracy than the POD-DeepONet, and had comparable accuracy to the
“dgFNO+” method despite using three orders of magnitude fewer parameters.

3.3 RUNTIME COMPARISON

We also present training and inference times for the KNO and FNO in Table 3; for the FNO, we
present timings for test problems where the architecture is known. The KNO was implemented in
Jax while the reference FNO was implemented in PyTorch. The KNO is generally faster than the
FNO, with further potential for speedups through the use of optimized sparse matrix operations.

Table 3: Average training time per epoch and average inference time (both in seconds) on the test
set over 20, 000 epochs measured on a NVIDIA GeForce RTX 4080. Datasets are not mini-batched.

PDE Training time Inference time
FNO KNO FNO KNO

Burgers’ Equation 1.40e–2 5.04e–3 1.38e–3 6.51e–4
Advection (I) – 2.16e–3 – 7.27e–4
Darcy (PWC) 8.72e–2 4.85e–2 4.39e–3 4.36e–3

Darcy (Continuous) – 4.08e–2 – 2.68e–3
Navier-Stokes Equations *2.85e–1 1.42e–1 *2.89e–2 2.17e–2

Darcy (triangular) *4.30e–1 8.52e–2 *5.00e–3 1.44e–3
Darcy (triangular-notch) 4.30e–1 2.00e–1 5.00e–3 4.85e–3

3D reaction-diffusion 6.54e–1 4.79e–1 3.66e-2 4.33e–2

4 CONCLUSION

We presented the kernel neural operator (KNO), a novel, simple, and transparent architecture that
leverages kernel-based deep integral operators discretized by numerical quadrature. The use of ex-
plicit, closed-form, diagonal, matrix-valued kernels allowed the KNO to achieve superior accuracy
with far fewer trainable parameters than other neural operators (on both regular and irregular do-
mains). We found that compactly-supported kernels used throughout (save the final layer) were the
optimal choice to obtain a general purpose architecture well-suited to a wide variety of operator
learning problems. In our view, our results also indicate that it may be possible to achieve similar
parameter counts (and possibly relative errors) with other neural operators such as DeepONet and
the FNO, albeit with architecture tuning, careful training, and problem-specific initializations.

For future work, we will prove the universal approximation capabilities of the KNO and leverage
the closed form kernels to derive rigorous error estimates for the approximation of PDE solution op-
erators. We will also explore interpretable lifting and projection operators, problem-specific archi-
tectures (for instance, for linear operators), novel quadrature schemes, and other types of problem-
dependent kernels not discussed in this work. We anticipate that the KNO will be widely applicable
to a variety of machine learning tasks beyond approximating PDE solution operators. We plan to
explore these in future work as well.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

Ethics Statement: To the best of the authors’ knowledge, there are no negative societal impacts
of our work including potential malicious or unintended uses, environmental impact, security, or
privacy concerns.

Reproducibility Statement: We include all source code, datasets, and run files and instructions to
faithfully reproduce the results of our experiments in the supplementary portion of our submission.
We also include training and architectural details of KNO and other models in appendices A.8.3 and
A.9, respectively.

REFERENCES

Ben Adcock, Rodrigo B Platte, and Alexei Shadrin. Optimal sampling rates for approximating
analytic functions from pointwise samples. IMA Journal of Numerical Analysis, 39(3):1360–
1390, 2019.

Pau Batlle, Matthieu Darcy, Bamdad Hosseini, and Houman Owhadi. Kernel methods are
competitive for operator learning. Journal of Computational Physics, 496:112549, 2024.
ISSN 0021-9991. doi: https://doi.org/10.1016/j.jcp.2023.112549. URL https://www.
sciencedirect.com/science/article/pii/S0021999123006447.

Víctor Bayona, Natasha Flyer, and Bengt Fornberg. On the role of polynomials in RBF-FD approxi-
mations: III. Behavior near domain boundaries. Journal of Computational Physics, 380:378–399,
2019. doi: 10.1016/j.jcp.2018.12.013.

Bernhard E. Boser, Isabelle M. Guyon, and Vladimir N. Vapnik. A training algorithm for optimal
margin classifiers. In Proceedings of the Fifth Annual Workshop on Computational Learning
Theory, pp. 144–152. ACM, 1992.

Nicolas Boullé and Alex Townsend. A mathematical guide to operator learning. arXiv preprint
arXiv:2312.14688, 2023.

David S Broomhead and David Lowe. Multivariable functional interpolation and adaptive networks.
Complex Systems, 2(3):321–355, 1988.

C.D. Cantwell, D. Moxey, A. Comerford, A. Bolis, G. Rocco, G. Mengaldo, D. De Grazia,
S. Yakovlev, J.-E. Lombard, D. Ekelschot, B. Jordi, H. Xu, Y. Mohamied, C. Eskilsson, B. Nel-
son, P. Vos, C. Biotto, R.M. Kirby, and S.J. Sherwin. Nektar++: An open-source spectral/hp
element framework. Computer Physics Communications, 192:205–219, 2015. ISSN 0010-4655.
doi: https://doi.org/10.1016/j.cpc.2015.02.008. URL https://www.sciencedirect.
com/science/article/pii/S0010465515000533.

Corinna Cortes and Vladimir Vapnik. Support-vector networks. Machine learning, 20(3):273–297,
1995.

Ricardo Cortez. The method of regularized stokeslets. SIAM Journal on Scientific Computing, 23
(4):1204–1225, 2001.

Gregory E. Fasshauer. Meshfree Approximation Methods with MATLAB, volume 6 of Inter-
disciplinary Mathematical Sciences. World Scientific, 2007. ISBN 9789812706348. URL
https://www.worldscientific.com/worldscibooks/10.1142/6437.

Gregory E. Fasshauer and Michael J. McCourt. Kernel-based Approximation Methods Using MAT-
LAB, volume 19 of Interdisciplinary Mathematical Sciences. World Scientific, 2015. ISBN
9789814630139. URL https://books.google.com/books?id=QdfjrQEACAAJ.

Bengt Fornberg and Natasha Flyer. Solving PDEs with radial basis functions. Acta Numerica, 24:
215–258, 2015. doi: 10.1017/S0962492914000181.

Brian A. Freno, William A. Johnson, Brian F. Zinser, and Salvatore Campione. Symmetric triangle
quadrature rules for arbitrary functions. Computers & Mathematics with Applications, 79(10):
2885–2896, May 2020. ISSN 0898-1221. doi: 10.1016/j.camwa.2019.12.021. URL http:
//dx.doi.org/10.1016/j.camwa.2019.12.021.

11

https://www.sciencedirect.com/science/article/pii/S0021999123006447
https://www.sciencedirect.com/science/article/pii/S0021999123006447
https://www.sciencedirect.com/science/article/pii/S0010465515000533
https://www.sciencedirect.com/science/article/pii/S0010465515000533
https://www.worldscientific.com/worldscibooks/10.1142/6437
https://books.google.com/books?id=QdfjrQEACAAJ
http://dx.doi.org/10.1016/j.camwa.2019.12.021
http://dx.doi.org/10.1016/j.camwa.2019.12.021


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Robert A Gingold and Joseph J Monaghan. Smoothed particle hydrodynamics: theory and applica-
tion to non-spherical stars. Monthly Notices of the Royal Astronomical Society, 181(3):375–389,
1977.

Mingxuan Han, Varun Shankar, Jeff M. Phillips, and Chenglong Ye. Locally adaptive and differ-
entiable regression. Journal of Machine Learning for Modeling and Computing, 4(4):103–122,
2023. ISSN 2689-3967.

Dan Hendrycks and Kevin Gimpel. Gaussian error linear units (GELUs), 2023.

George C Hsiao and Wolfgang L Wendland. Boundary integral equations, volume 164. Springer,
2008.

Pengzhan Jin, Shuai Meng, and Lu Lu. MIONet: Learning multiple-input operators via tensor
product. SIAM Journal on Scientific Computing, 44(6):A3490–A3514, 2022. doi: 10.1137/
22M1477751. URL https://doi.org/10.1137/22M1477751.

George Em Karniadakis and Spencer J. Sherwin. Spectral/hp Element Methods for Computational
Fluid Dynamics. Oxford University Press, 2nd edition, 2005.

Andrew Kassen, Aaron Barrett, Varun Shankar, and Aaron L. Fogelson. Immersed boundary
simulations of cell-cell interactions in whole blood. Journal of Computational Physics, 469:
111499, 2022a. ISSN 0021-9991. doi: https://doi.org/10.1016/j.jcp.2022.111499. URL https:
//www.sciencedirect.com/science/article/pii/S0021999122005617.

Andrew Kassen, Varun Shankar, and Aaron L Fogelson. A fine-grained parallelization of the im-
mersed boundary method. The International Journal of High Performance Computing Applica-
tions, 36(4):443–458, 2022b. doi: 10.1177/10943420221083572. URL https://doi.org/
10.1177/10943420221083572.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization, 2017.

Nikola B. Kovachki, Zongyi Li, Burigede Liu, Kamyar Azizzadenesheli, Kaushik Bhattacharya,
Andrew M. Stuart, and Anima Anandkumar. Neural operator: Learning maps between function
spaces. CoRR, abs/2108.08481, 2021.

Zongyi Li, Nikola Kovachki, Kamyar Azizzadenesheli, Burigede Liu, Kaushik Bhattacharya, An-
drew Stuart, and Anima Anandkumar. Multipole graph neural operator for parametric partial
differential equations. In Proceedings of the 34th International Conference on Neural Informa-
tion Processing Systems, NIPS ’20, Red Hook, NY, USA, 2020. Curran Associates Inc. ISBN
9781713829546.

Zongyi Li, Nikola Kovachki, Kamyar Azizzadenesheli, Burigede Liu, Kaushik Bhattacharya, An-
drew Stuart, and Anima Anandkumar. Fourier neural operator for parametric partial differential
equations, 2021.

Zongyi Li, Daniel Zhengyu Huang, Burigede Liu, and Anima Anandkumar. Fourier neural oper-
ator with learned deformations for PDEs on general geometries. Journal of Machine Learning
Research, 24(388):1–26, 2023. URL http://jmlr.org/papers/v24/23-0064.html.

Zongyi Li, Nikola Kovachki, Chris Choy, Boyi Li, Jean Kossaifi, Shourya Otta, Mohammad Amin
Nabian, Maximilian Stadler, Christian Hundt, Kamyar Azizzadenesheli, et al. Geometry-
informed neural operator for large-scale 3d PDEs. Advances in Neural Information Processing
Systems, 36, 2024.

Li, Zongyi and Kovachki, Nikola and Azizzadenesheli, Kamyar and Liu, Burigede and Bhat-
tacharya, Kaushik and Stuart, Andrew and Anandkumar, Anima. Neural operator: Graph kernel
network for partial differential equations. arXiv preprint arXiv:2003.03485, 2020.

Lu Lu, Pengzhan Jin, Guofei Pang, Zhongqiang Zhang, and George Em Karniadakis. Learning
nonlinear operators via DeepONet based on the universal approximation theorem of operators.
Nature Machine Intelligence, 3(3):218–229, March 2021. ISSN 2522-5839. doi: 10.1038/
s42256-021-00302-5. URL http://dx.doi.org/10.1038/s42256-021-00302-5.

12

https://doi.org/10.1137/22M1477751
https://www.sciencedirect.com/science/article/pii/S0021999122005617
https://www.sciencedirect.com/science/article/pii/S0021999122005617
https://doi.org/10.1177/10943420221083572
https://doi.org/10.1177/10943420221083572
http://jmlr.org/papers/v24/23-0064.html
http://dx.doi.org/10.1038/s42256-021-00302-5


648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Lu Lu, Xuhui Meng, Shengze Cai, Zhiping Mao, Somdatta Goswami, Zhongqiang Zhang, and
George Em Karniadakis. A comprehensive and fair comparison of two neural operators (with
practical extensions) based on FAIR data. Computer Methods in Applied Mechanics and Engi-
neering, 393:114778, April 2022. ISSN 0045-7825. doi: 10.1016/j.cma.2022.114778. URL
http://dx.doi.org/10.1016/j.cma.2022.114778.

Pierre L’Ecuyer. Randomized quasi-Monte Carlo: An introduction for practitioners. Springer, 2018.

Michael McCourt, Gregory Fasshauer, and David Kozak. A nonstationary designer space-time
kernel. arXiv preprint arXiv:1812.00173, 2018.

Charles S Peskin. The immersed boundary method. Acta Numerica, 11:479–517, 2002. doi: 10.
1017/S0962492902000077.

Ahmad Peyvan, Vivek Oommen, Ameya D Jagtap, and George Em Karniadakis. RiemannONets:
Interpretable neural operators for Riemann problems. arXiv preprint arXiv:2401.08886, 2024.

Rodrigo B Platte, Lloyd N Trefethen, and Arno BJ Kuijlaars. Impossibility of fast stable approxi-
mation of analytic functions from equispaced samples. SIAM review, 53(2):308–318, 2011.

Carl Edward Rasmussen and Christopher KI Williams. Gaussian Processes for Machine Learning.
The MIT Press, 2006.

Robert Schaback and Holger Wendland. Kernel techniques: From machine learning to meshless
methods. Acta Numerica, 15:543–639, 2006.

Varun Shankar and Aaron L. Fogelson. Hyperviscosity-based stabilization for radial basis function-
finite difference (RBF-FD) discretizations of advection-diffusion equations. Journal of Computa-
tional Physics, 372:616–639, 2018. doi: 10.1016/j.jcp.2018.06.042.

Varun Shankar and Sarah D Olson. Radial basis function (RBF)-based parametric models for closed
and open curves within the method of regularized stokeslets. International Journal for Numerical
Methods in Fluids, 79(6):269–289, 2015.

Varun Shankar, Grady B. Wright, Robert M. Kirby, and Aaron L. Fogelson. A radial basis function
(RBF)-finite difference (FD) method for diffusion and reaction-diffusion equations on surfaces.
Journal of Scientific Computing, 60(2):342–368, 2014. doi: 10.1007/s10915-013-9796-7.

Ramansh Sharma and Varun Shankar. Accelerated training of physics-informed neu-
ral networks (PINNs) using meshless discretizations. In Advances in Neural In-
formation Processing Systems, volume 35, pp. 1034–1046. Curran Associates, Inc.,
2022. URL https://proceedings.neurips.cc/paper_files/paper/2022/
file/0764db1151b936aca59249e2c1386101-Paper-Conference.pdf.

Kirill Solodskikh, Azim Kurbanov, Ruslan Aydarkhanov, Irina Zhelavskaya, Yury Parfenov, Dehua
Song, and Stamatios Lefkimmiatis. Integral neural networks. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pp. 16113–16122, 2023.

Holger Wendland. Piecewise polynomial, positive definite and compactly supported radial functions
of minimal degree. Advances in Computational Mathematics, 4:389–396, 1995.

Holger Wendland. Error estimates for interpolation by compactly supported radial basis functions
of minimal degree. Journal of Approximation Theory, 93(2):258–272, 1998.

Holger Wendland. Scattered Data Approximation. Cambridge University Press, 2005.
ISBN 9780521843355. URL https://www.cambridge.org/core/books/
scattered-data-approximation/3A1DE17B4F64DFDEE0530100007F089C.

Andrew Gordon Wilson and Ryan Prescott Adams. Gaussian process kernels for pattern discovery
and extrapolation. In Sanjoy Dasgupta and David McAllester (eds.), Proceedings of the 30th
International Conference on Machine Learning, volume 28 of Proceedings of Machine Learning
Research, pp. 1067–1075, Atlanta, Georgia, USA, 17–19 Jun 2013. PMLR. URL https://
proceedings.mlr.press/v28/wilson13.html.

13

http://dx.doi.org/10.1016/j.cma.2022.114778
https://proceedings.neurips.cc/paper_files/paper/2022/file/0764db1151b936aca59249e2c1386101-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/0764db1151b936aca59249e2c1386101-Paper-Conference.pdf
https://www.cambridge.org/core/books/scattered-data-approximation/3A1DE17B4F64DFDEE0530100007F089C
https://www.cambridge.org/core/books/scattered-data-approximation/3A1DE17B4F64DFDEE0530100007F089C
https://proceedings.mlr.press/v28/wilson13.html
https://proceedings.mlr.press/v28/wilson13.html


702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Grady B. Wright and Bengt Fornberg. Scattered node compact finite difference-type formulas gen-
erated from radial basis functions. Journal of Computational Physics, 212(1):99–123, 2006. doi:
10.1016/j.jcp.2005.06.019.

Jakob Zech and Christoph Schwab. Convergence rates of high dimensional smolyak quadrature.
ESAIM: Mathematical Modelling and Numerical Analysis, 54(4):1259–1307, 2020.

Zecheng Zhang, Leung Wing Tat, and Hayden Schaeffer. BelNet: Basis enhanced learning, a mesh-
free neural operator. Proceedings of the Royal Society A: Mathematical, Physical and Engi-
neering Sciences, 479(2276):20230043, 2023. doi: 10.1098/rspa.2023.0043. URL https:
//royalsocietypublishing.org/doi/abs/10.1098/rspa.2023.0043.

14

https://royalsocietypublishing.org/doi/abs/10.1098/rspa.2023.0043
https://royalsocietypublishing.org/doi/abs/10.1098/rspa.2023.0043


756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

A APPENDIX

A.1 THE ADVECTION EQUATION

Our results in the main body of the paper also include an operator learning problem associated with
the 1D advection equation, given by

∂u

∂t
+
∂u

∂x
= 0, x ∈ [0, 1], t ∈ [0, 1],

with a periodic boundary condition u(0, t) = u(1, t). We learned the mapping G : u0 7→
u(·, 0.5) (Lu et al., 2022, Case (I), Section 5.4.1). The initial condition was a square wave with
center, width, and height uniformly sampled from [0.3, 0.7], [0.3, 0.6], and [1, 2] respectively. The
spatial resolution for this data was fixed to 40, and we generated 1000 training and testing examples.
The KNO again outperformed all the neural operators (Table 1), but was unable to match the kernel
method (KM), which used a linear kernel to recover the linear operator G. We believe it should
be possible to obtain the same accuracy with the KNO by removing nonlinearities as appropriate;
however, we leave an exploration of problem-specific architectures for future work and focus on the
generalizable and flexible architecture reported here.

A.2 COMPLEXITY OF COMPUTING INTEGRALS VIA QUADRATURE

We now discuss the complexity of evaluating the kernel integrals using quadrature, in contrast with
The FNO’s approach which leverages the FFT and admits O(n log n) per integral (following the
runtime comparisons reported in section 3.3). If n is the size of the input sample grid, the cost of
quadrature is dependent on the number of quadrature points. Our approach, that is, to precompute
a quadrature rule with Nq points and weights incites a cost of O(Nq) per output location; thus,
incites a total cost of O(nNq). Now in practice, Nq < n and also with the KNO, n = Nq for
ℓ ∈ [L − 1] so that the total cost is closer O(Nq) for a given n, which makes this competitive
with the O(n log n) FNO cost. Regardless, both the FNO and the KNO likely suffer from the curse
of dimensionality on their respective grids and their costs are dominated by MLP operations. The
quadrature and polynomial approximation literature contains many approaches to tackle this (sparse
grids, composite quadrature rules, and so forth). We plan to tackle this in future work.

However, it is important to keep sight of the fact that quadrature allows us to tackle problems with
irregular domain geometries and point cloud data, unlike the standard FFT used in the FNO; the
alterative would be to use deformation maps to learn coordinate transforms to regular grids Li et al.
(2023; 2024), but such mappings do not always exist. Further, it may be possible to accelerate
our framework by mapping KNO layers to standard convolutional layers. This could be done by
imposing structure on the feature detector and/or filter to mimic the operation of the kernel in order
to further leverage existing ML toolchains (while losing geometric flexibility as in the FNO). Similar
work was done on the function approximation side in integrated neural networks (INNs) Solodskikh
et al. (2023). It may also be of interest to explore things in the other direction: engineering kernels
and/or loss functions that mimic the effects of certain convolutional layers (say, specific kinds of
filters, stencils/filter sizes, and feature detectors).

A.3 VARYING THE MATRIX-VALUED KERNEL’S STRUCTURE

Our decision to parameterize the KNO’s integral operators with a diagonal matrix-valued kernel was
made with the intention of developing a parameter-efficient neural operator that performed on-par
with or better than existing neural operator on the various benchmark datasets. Nonetheless, the
KNO allows us to adopt other formulations of this matrix-valued kernels, and it is unclear if this is
possible in FNOs. This is particularly relevant in the context of PDEs, where the solution operators
can be expressed in terms of Green’s functions that themselves have inherent structure Boullé &
Townsend (2023).

For completeness, we present some preliminary experiments with a KNO whose integral operators
were parameterized by a diagonal matrix-valued kernel, a tridiagonal matrix-valued kernel, and a
fully dense matrix-valued kernel, respectively, on Burgers’ equation and the Darcy (cont) problem 6
given a fixed training configuration i.e. p = q = 32, L−1 = 3, 30, 000 epochs, and the same number
of quadrature nodes as reported in 4. The results show that the optimal structure of the matrix-valued
kernel may be application dependent; note that the tridiagonal one performed better on the Darcy
(cont) problem and the dense one performed best on the Burgers’ equation. A cautious reader
might be skeptical as to why a diagonal-matrix valued kernel was effective, given it does not couple

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Figure 6: KNO results for two problems with its integral operators parameterized by three different
matrix-valued kernel variants.

information across channels. The answer lies in the pointwise convolutions present in both FNOs
and KNOs, which serves this purpose. In KNOs, we found that the architectural choice of one kernel
per channel (or fewer) combined with pointwise convolution coupling across channels resulted in
high accuracy with a lower parameter count (and a simple architecture). Such a choice in the FNO
is likely to reduce parameter counts but also reduce accuracy, since the FNO implicitly imposes
both periodicity and denseness in its matrix-valued kernels. We hypothesize that the KNO kernels
are learning information "local" to channels, and pointwise convolutions then couple information
across channels in a more global fashion. We plan to explore these details in a follow-up paper.

A.4 ZERO-SHOT SUPER-RESOLUTION

As every layer in the KNO is composed of function-space operations, the KNO can achieve zero-shot
super resolution, i.e., it can produce operator solutions at arbitrary resolutions without retraining,
much like the FNO. This is visualized in Figure 7.

Figure 7: An illustration of zero-shot super-resolution. The KNO was trained on the Darcy (PWC)
dataset using a 29× 29 grid (row a). It was then evaluated at a resolution of 211× 211 (row b). We
show the permeability field input (left), the actual pressure field (middle), and the predicted pressure
(right).

A.5 OTHER KERNEL CHOICES

As mentioned previously, we also explored the use of other kernels, enumerated below, within our
integral operators, however the KNO architecture reported in the main text out-performed all of the
other kernels tested.

1. Gaussians everywhere (overfitting): When isotropic Gaussian kernels ϕ(x, x′) = eϵ
2∥x−y∥2

2

were used throughout the KNO, we found that the resulting architecture tended to achieve
low training error and high test error, while also being highly sensitive to the initial random
seed used to optimize the KNO.

2. Wendland everywhere (higher training and test errors): When we used Wendland kernels
everywhere, we found that the resulting architecture had significantly higher training and
test errors than using Wendland kernels almost everywhere and a spectral mixture kernel
at the end. This experiment revealed to us that using a kernel that was not compactly-
supported for the final integral operator was important for accuracy. This is possibly due to

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Figure 8: Eigenvalues of the neural tangent kernel (NTK) for three choices of kernels: (1) Gaussian
kernels for

(
Ip
q

)
k
, k = 1, . . . , L; (2) C4(R3) Wendland kernels for

(
Ip
q

)
k
, k = 1, . . . , L − 1 and a

Gaussian kernel for
(
Ip
q

)
L

; and (3) C4(R3) Wendland kernels for
(
Ip
q

)
k
, k = 1, . . . , L − 1 and a

Gaussian spectral mixture kernel for
(
Ip
q

)
L

.

the fact that our final integral operator simply did not use a cross-channel affine transfor-
mation (aka pointwise convolution).

3. Wendland almost-everywhere, Gaussian for
(
Ip
q

)
L

: This choice of kernels produced ex-
cellent training and test accuracy and was relatively robust to choices in the other hyperpa-
rameters, but produced higher errors than using the spectral mixture kernel for

(
Ip
q

)
L

.

In order to quantify the differences between these choices, we computed the eigenvalue spectra of
the neural tangent kernel (NTK) matrix for the final KNO architecture, for cases (1) and (3) above;
case (2) produced reasonable spectra but lowered accuracy (not shown). The spectra of these NTK
matrices are shown in Figure 8; in general, more tightly clustered eigenvalues of the NTK matrix are
indicative of fewer local minima and a lower tendency to overfit. We see that the Gaussian results
in a spectrum with a very large range, while the Wendland + Gaussian choice results in a much
tighter spectrum; the Wendland + spectral mixture choice results in the tightest spectrum of all.
It is possible that stable kernel evaluation via a Hilbert-Schmidt decomposition might improve the
Gaussian’s NTK spectra Fasshauer & McCourt (2015), but we save such an exploration for future
work.

We also believe Wendland kernels were vital in the kernel interpolant that transfers data to the
quadrature points as their finite smoothness and corresponding sparse interpolation matrices allowed
us to avoid the exponential ill-conditioning inherent to interpolation on boundary-anchored equis-
paced grids. The Gaussian kernel, on the other hand, is infinitely-smooth and capable of exponential
convergence on infinitely-smooth target functions. Its corresponding linear system hence suffers
from exponential ill-conditioning (much like polynomial Vandermonde matrices); this follows di-
rectly from the impossibility theorem Platte et al. (2011); Adcock et al. (2019).

We also ran another experiment (results not shown) to investigate the impact of limited smoothness
of the Wendland kernels on efficacy. Specifically, we replaced the Wendland kernels with C4(R3)
Matérn kernels, which are finitely-smooth but not compactly-supported. We observed worse errors
in all our experiments using Matérn kernels over Wendland kernels (but still better results than using
the Gaussian everywhere). It may be possible to understand this in terms of the Fourier transforms
of these kernels. In general, in the context of interpolation, the rate of decay of the Fourier transform
of a kernel can affect its approximation power Fasshauer (2007). In this context, we believe it affects
trainability also. Wendland kernels, being compactly-supported, have Fourier transforms with heavy
frequency tails (by the Fourier uncertainty principle), thus carrying more information. In contrast,
Gaussians and even other less smooth Matérn kernels have more concentrated Fourier transforms
with fast decay (exponential in the frequency for Gaussian kernels, algebraic for the Matérn kernels),
which likely results in a loss of information during training. In future work, we plan to apply Fourier
analysis tools to further understand and clarify this intuition.

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

A.6 KNO SPARSITY

We also tracked the learned sparsity in the KNOs, specifically the average number of zeros in each
kernel evaluation matrix formed by the Wendland kernels. This metric roughly converged to 20%,
20%, 26%, 27% and 23% for the tensor-product domain datasets in the order by which they are
listed in Table 1. Interestingly, for the Darcy problems on irregular domains, we observed lower
sparsity percentages, 6% and 4%, for the triangular and triangular-notch problems respectively. It is
possible that this was because the triangular Darcy problems involved mapping boundary conditions
to solutions over the full domain. Lastly, sparsity on the 3D diffusion-reaction problem converged
to approximately 60%. As the solution functions exhibited sharp solution gradients in the center of
the sphere, we speculate that this is due to kernels focusing on this area, where such sharp gradients
need to be more accurately resolved, but we leave a deeper exploration of the connection between
sparsity and the operator learning problem for future work.

A.7 ABLATION STUDIES

Figure 9: Ablation Study for Burgers’ Equation. On the left the number of trainable kernels q per
integration block (for p = 64) was systematically varied with a constant architecture otherwise
(XQ = 30 and L− 1 = 6). The number of Gauss-Legendre quadrature points (center) were scaled
in the same capacity with p and q fixed to 64 and L− 1 = 6. The depth (right) was also scaled with
p, q = 64 and XQ = 30.

To verify the robustness of our results under training, we also conducted ablation studies on Burgers’
equation. We focused on the ratio between the number of trainable kernels q as compared and the
channel lift size p, on the number of Gauss-Legendre quadrature points employed, and on the model
depth; that is, the total number of integration blocks excluding the evaluation block (L − 1). The
results are shown in Figure 9.

Figure 9 (left) shows that while the best results are obtained with q = p, smaller values of q may also
suffice, i.e., one may be able to use fewer trainable parameters than channels, allowing for significant
reductions in computational cost. It is also likely that this can be done with the FNO family of
neural operators. Figure 9 (middle) also shows a relative insensitivity of our results to the number
of quadrature points for the datasets used in this work; however, it is not unreasonable to expect
some relationship between the number of spatial samples of the input and output functions and the
number of quadrature points. We plan to explore this connection in future work. Finally, Figure 9
(right) shows that the depth of the KNO was much more important, especially for generalization.
KNOs with more layers tended to overfit on this 1D problem. However, it is plausible that there is
an optimal depth for a given dataset in a particular spatial dimension. We leave such an exploration
for future work also.

A.8 IMPORTANT ARCHITECTURAL AND TRAINING DETAILS FOR THE KNO

A.8.1 INITIALIZATION AND REGULARIZATION

We initialized all trainable parameters associated with kernels by sampling N (1, 0.01) and applied a
softplus transform to enforce that all kernel shape parameters were positive. We also include a very
mild ℓ2 regularization to the shape parameters in the loss term to encourage sparsity but did not find
this to substantially impact convergence.

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

Figure 10: On the right is a quadrature rule for the Darcy (triangular-notch) problem, created
by mapping the reference triangle’s rule 2 defined at

[
(0, 0), (1, 0), (

√
3
2 , 0.5)

]
, to a five tri-

angle Delaunay mesh (left) over the domain. The cut out ‘notch’ is defined by the vertices
[(0.49, 0), (0.51, 0), (0.49, 0.4), (0.51, 0.4)] .

Figure 11: The quadrature rule used for for the 3D reaction-diffusion problem.

A.8.2 QUADRATURE POINTS

We now briefly present details on the quadrature points used in the different operator learning prob-
lems. For the 2D examples, we took the approach of subdividing the domain into some number of
triangles, then mapped the integrals on each triangle back to our reference triangle (as was mentioned
previously).

1. Also mentioned previously, all 1D examples used Gauss-Legendre points defined on
[−1, 1]. We simply transformed the Gauss-Legendre points to the domain of interest in
this case.

2. For the Darcy (PWC) and Navier-Stokes problems, we subdivided the domain [0, 1]2 into
four squares, then further subdivided each square into two triangles, for a total of eight
triangles.

3. For the Darcy (cont.) problem, we simply used two triangles.

4. For the Darcy (triangular-notch) problem, we created a five triangle Delaunay mesh over
the whole domain; see Figure 10.

5. For the Darcy (triangle) problem, the domain matched our reference triangle, and so no
further subdivision or mapping was used.

A.8.3 HYPERPARAMETER CHOICES

The optimal hyperparameters for the KNO on each dataset are shown in Table 4. These hyperpa-
rameters were tuned manually via trial and error. The following are some relevant observations:

(1) Setting the depth L − 1 = 4 was the most reliable choice with a few exceptions, namely the
Advection (1) and Burgers’ equation problems, where the optimal depth increased to 5 and 6 respec-
tively. Usually, increasing the depth resulted in training instability and/or overfitting. However, it is
possible that more complicated residual connections or an addition of batch normalization between
integration layers could allow for deeper models to be more successful. The KNO is well-suited
to such augmentations since it innately possesses a very small number of trainable parameters per
layer.

19



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

Table 4: This table denotes our chosen configuration for KNO on each dataset. An asterisk indicates
a hyperparameter that when increased also increases the total number of trainable parameters. Here
XQ is the total number of quadrature nodes, L − 1 is the ‘depth’ as referred to previously and q is
effectively the number of trainable kernels relative to the channel lift dimension p.

XQ (L− 1)∗ q∗ p∗

Burgers’ Equation 30 6 64 64
Advection (I) 32 5 64 64
Darcy (PWC) 864 4 16 32

Darcy (Continuous) 294 4 64 64
Navier-Stokes 384 4 16 32

Darcy (triangular) 300 4 32 64
Darcy (triangular-notch) 375 4 16 64

3D reaction-diffusion 1000 4 64 64

(2) We found that altering the MLP layer width to a value other than p provided no benefit.

(3) In several instances, we were able to reduce q < p, which not only reduced trainable parameters,
but also provided regularization, slightly improving test accuracy. These problems were: Darcy
(PWC) where q = 16 and p = 32, the Navier-Stokes equations (q = 16 and p = 32), Darcy
(triangular) (q = 32 and p = 64), and Darcy (triangular-notch) (q = 16 and p = 64).

(4) On the 1D problems, we observed optimal performance with ∼ 30 quadrature nodes. In contrast,
this number was ∼ 300 − 400 for the 2D datasets, reflecting the exponential relationship between
the number of quadratures nodes and the spatial dimension. A slight exception to this is the Darcy
(PWC) problem, in which KNO performed optimally with ∼ 900 nodes. This is potentially a result
of the piecewise constant nature of the input function, which necessitates more quadrature nodes
to resolve the discontinuities. Here (and in general) an adaptive, problem specific quadrature rule
could be beneficial and potentially enable us to reduce XQ further. We leave such an exploration for
future work.

A.8.4 TRAINING DETAILS

All models were trained on either an NVIDIA GeForce RTX 2080 Ti or an NVIDIA GeForce RTX
4080. We found that freeze-training (i.e. training kernel-based layers independently back to front)
prior to training the full model hastened its convergence and so used this tactic quite often for the
sake of convenience. More specifically, for a certain number of epochs, we allowed only a single
layer to affect gradient updates, effectively freezing all other layers. We then repeated this process
for each layer. Finally, we trained the model while allowing all pretrained layers to contribute to up-
dates. It is highly likely that such training would be beneficial for the FNO family of neural operators
also. In fact, a version of this training procedure has already proven effective for DeepONets Peyvan
et al. (2024). In Table 5, we report the number of training epochs for each PDE example. The second

Table 5: Number of epochs used in KNO training for different PDE examples.

PDE Number of epochs Number of epochs per layer
Burgers’ Equation 30,000 625

Advection (I) 70,000 2857
Darcy (PWC) 15,000 166

Darcy (Continuous) 30,000 666
Navier-Stokes 20,000 0

Darcy (triangular) 20,000 166
Darcy (triangular-notch) 5,000 83

3D diffusion-reaction 30,000 0

column indicates the number of epochs allocated to each layer during freeze training.

20



1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

A.9 DETAILS ON OTHER MODELS

Here, we provide or cite architecture details for other models, as recorded in Lu et al. (2022) and
the accompanying code. Note that in most cases, we did not implement these models; we merely
reported results from Lu et al. (2022) for the neural operators and Batlle et al. (2024) for the kernel
method. In the case of the 3D reaction-diffusion problem, however, we did implement and train
the models ourselves. Specifically we trained the DeepONet models for 150,000 epochs, calculated
over five random seeds, and annealed the learning rates with an inverse-time decay schedule. For the
dgFNO+, we followed the training outlined in Li et al. (2021), but doubled the number of epochs.

A.9.1 ARCHITECTURES

DeepONets We reported results for both standard DeepONets and POD-DeepONets in Table 1
directly using the results reported in Lu et al. (2022). The architectural details of those operators are
given in (Lu et al., 2022, Section S2, Tables S2 and S3). However, those tables do not report the CNN
parameters or architectures for all of their models; we estimated those whenever possible from the
accompanying code in https://github.com/lu-group/deeponet-fno for parameter
counts. For the 3D reaction-diffusion problem, the DeepOnet architecture had 3 layers and 128
nodes in both the branch and trunk net, with p = 100, while the POD-DeepONet had the same size
branch net, but with p = 20 POD bases.

Table 6: FNO/dgFNO+ architecture details.

PDE Channel dimension p Number of Fourier modes retained
Burgers’ 64 16

Darcy (PWC) 32 12
Darcy (triangular notch) 32 8

3D reaction-diffusion 32 9

FNOs Again, we reported results for the FNO and the “dgFNO+” in Table 1 directly using the
numbers from Lu et al. (2022). However, that work unfortunately does not describe the FNO or
“dgFNO+” architecture in detail. Of the examples used in this paper, the FNO or dgFNO+ code
for the Burgers’ problem, the Darcy (PWC) case, and the Darcy (triangular-notch) case was avail-
able in https://github.com/lu-group/deeponet-fno/tree/main/src (under the
appropriate subfolder). The code did allow for easy extraction of the channel dimension p and the
number of Fourier modes retained after truncation. We report these in Table 6 wherever available.

Kernel method (KM) Finally, we also reported results for the KM in Table 1. These were directly
obtained from (Batlle et al., 2024, Table 3) wherever possible: for the Burgers’ equation, the Ad-
vection (I) problem, and the Darcy (PWC) problem. While Batlle et al. (2024) also contains results
for a Navier-Stokes problem, that one was different from ours and so we do not report it here. We
also only selected the highest accuracy results from that work, which corresponded to the following
kernels on the following problems: the Matérn or rational quadratic (RQ) kernel for the Burgers’
equation (both apparently produced similar results); the same kernels for the Darcy (PWC) prob-
lem; and finally the linear kernel for the Advection (I) problem (which involved learning a linear
operator).

A.9.2 PARAMETER ESTIMATES (TABLE 2)
We took our estimate of the parameter count of the FNO on the Navier-Stokes Equations from
the FNO-2D model listed in Table 1 of Li et al. (2021). We believed this was reasonable as that
problem was a small variation on the one tested herein. Our estimate for the parameter count of the
FNO used in the Darcy (triangular) problem, a dgFNO+ variant, was taken by assuming the same
model configuration as in the Darcy (triangular-notch) problem; the latter was reported in Lu et al.
(2022). We estimated the DeepONet parameter count on the same problem by assuming the model
size and output dimension to be equivalent to the Darcy (triangular-notch) problem (Lu et al., 2022,
Table S2)). The KM had the smallest number of trainable parameters: 0 for the linear kernel, and
2 for the Matérn and RQ kernels. These were tuned by cross-validation or log marginal likelihood
maximization over the training data (Batlle et al., 2024, Section 4.1.1). Note however that the KM
required solving large dense linear systems.

21

https://github.com/lu-group/deeponet-fno
https://github.com/lu-group/deeponet-fno/tree/main/src

	Introduction
	Connections to other methods

	Kernel Neural Operators (KNOs)
	Function Space Formulation
	Choosing kernels
	Sampling and outer discretization
	Latent space discretization: Quadrature on general domains
	Cross-channel affine transformations
	Lifting and projection operators


	Results
	Tensor-Product Domains
	Burgers' Equation
	The Incompressible Navier-Stokes Equations
	Darcy Flow

	Irregular Domains
	Darcy (triangular)
	Darcy (triangular-notch)
	3D Reaction-Variable-Coefficient-Diffusion

	Runtime Comparison

	Conclusion
	Appendix
	The Advection Equation
	Complexity of Computing Integrals via Quadrature
	Varying the matrix-valued kernel's structure
	Zero-shot super-resolution
	Other kernel choices
	KNO sparsity
	Ablation studies
	Important architectural and training details for the KNO
	Initialization and regularization
	Quadrature points
	Hyperparameter choices
	Training details

	Details on other models
	Architectures
	Parameter estimates (Table 2)



