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Abstract

Open-vocabulary semantic segmentation assigns every pixel a label drawn from an
open-ended, text-defined space. Vision–language models such as CLIP excel at
zero-shot recognition, yet their image-level pre-training hinders dense prediction.
Current approaches either fine-tune CLIP—at high computational cost—or adopt
training-free attention refinements that favor local smoothness while overlooking
global semantics. In this paper, we present OPMapper, a lightweight, plug-and-
play module that injects both local compactness and global connectivity into
attention maps of CLIP. It combines Context-aware Attention Injection, which
embeds spatial and semantic correlations, and Semantic Attention Alignment,
which iteratively aligns the enriched weights with textual prompts. By jointly
modeling token dependencies and leveraging textual guidance, OPMapper enhances
visual understanding. OPMapper is highly flexible and can be seamlessly integrated
into both training-based and training-free paradigms with minimal computational
overhead. Extensive experiments demonstrate its effectiveness, yielding significant
improvements across 8 open-vocabulary segmentation benchmarks.

1 Introduction

Open-vocabulary semantic segmentation (OVSS) aims to assign every pixel in an image to any
category rather than to a fixed, closed set of labels. In real-world applications, exhaustively annotating
all possible classes is infeasible. Hence, OVSS has become a touch-stone for measuring a model’s
ability to generalize beyond its training categories. Large-scale vision–language pre-trained models
(VLMs) [35, 1, 7, 38], epitomised by Contrastive Language-Image Pre-training (CLIP) [40], have
unlocked promising avenues for OVSS [14, 20, 51, 33, 48, 50, 52]. However, leveraging CLIP for
dense prediction is far from straightforward. Because CLIP is optimised under image-level super-
vision, its training paradigm is intrinsically misaligned with the pixel-wise granularity demanded
by open-vocabulary detection [21, 54, 30, 31] and segmentation [28, 15, 45]. Consequently, naïve
adaptations typically yield noisy, spatially inconsistent masks and unsatisfactory performance, un-
derscoring the need for principled strategies that bridge the supervision gap between image-level
pre-training and pixel-level inference.

A seemingly direct remedy is to finetune the entire CLIP backbone or the mask generator [10, 49], as
shown in Figure 1(a)(c). Although this strategy can inject task-specific inductive bias, it comes at a
steep cost: (i) it demands large-scale pixel-level annotations and significant GPU hours; (ii) gradient
updates inevitably distort CLIP’s carefully calibrated image–text embedding space, diminishing the
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Figure 1: Different approaches for achieving open-set segmentation using CLIP. (a) illustrates the
training-based paradigm, where all or part of CLIP’s and mask generator’s parameters are finetuned.
(b) demonstrates the training-free manner, where the key idea is directly enhancing the query-key
attention to boost performance. (c) illustrates a scheme where an additional trainable module is
inserted and jointly trained with the mask generator to achieve better performance. (d) highlights the
versatility of our mapper, which are trained offline and can be applied across (a), (b), and (c), or their
hybrid paradigms. For simplicity, we illustrate its application only in training-free methods here.

open-vocabulary generalization it was prized for. To sidestep these drawbacks, a parallel line of
training-free methods, as shown in Figure 1(b), has emerged [45, 28, 15]. Their key insight is to re-
engineer the self-attention computation rather than alter model parameters. Concretely, they impose
matrix transformations on the query–key similarity matrix—e.g., introducing spatial priors—to craft
task-aware attention weights, which in turn remix the unmodified value embeddings into pixel-
discriminative features. Because the underlying value embeddings (and all learned parameters)
remain unchanged—only their aggregation is reweighted—the original image–text alignment is
preserved, and no additional training or labelled data are required [28, 15, 45]. Nevertheless, most
existing designs hinge on the heuristic of locality compactness—assuming that neighbouring tokens
possess the strongest semantic affinity—while undervaluing global connectivity, the broader relational
dependencies among distant tokens that underpin high-level semantic structures. This limitation
compromises a holistic understanding of image context; for example, recognizing a small patch of
knitted fabric alone may be insufficient to distinguish whether it belongs to a coat or a towel.

The foregoing analysis naturally prompts a question: Can we avoid redesigning the entire attention
pipeline or updating millions of parameters? In this paper, we answer this question by proposing
OPMapper (Object-to-Pixel Mapper) that re-calibrates only the frozen last-layer query–key pair to
produce dense-aware attention weights, as shown in Figure 1(d). This mapper shifts CLIP’s focus
from objects to pixels while balancing local compactness and global connectivity. To construct the
OPMapper, we design one operative module and one training-only auxiliary module: Context-aware
Attention Injection (CAI), which processes the query and key from the frozen last-layer of CLIP and
injects local and global cues into them to predict attention weights; Semantic Attention Alignment
(SAA), which nudges the enriched attention produced by CAI to stay aligned with textual prompts,
allowing effective use of textual information to refine the representation of attention. Specifically, in
the CAI module, we manually design an idealized set of attention weights guided by two principles:
(1) tokens in close proximity receive higher attention, reinforcing local compactness; (2) tokens within
the same semantic category also receive higher attention, promoting global connectivity. Aligning the
predicted attention weights from CAI with this prior distribution effectively integrates both local and
global dependencies into the attention mechanism. The SAA module, implemented as an iterative
cross-modal fusion network, refines these CAI-enhanced attention weights by aligning them with
textual features, thus facilitating a better text-image alignment. Once training is complete, the SAA
module can be discarded, leaving CAI as the sole component of OPMapper.

Since OPMapper can convert CLIP’s native outputs into dense-aware representations without altering
parameters of the CLIP, it is highly flexible and can be seamlessly integrated into existing methods
with minimal computational overhead, as shown in Figure 1(d), serving as a modular enhancement
to improve both training-based/free approaches. Extensive experiments demonstrate its ability to
significantly enhance the performance of existing baselines. Our contributions are as follows:

• We design a lightweight OPMapper that transforms CLIP’s object-level attention into pixel-level
attention, without modifying any of its parameters.

• To train the mapper, we devise two novel modules that inject both local compactness and global
connectivity while preserving CLIP’s inherent cross-modal alignment.

• Our OPMapper was integrated into 11 CLIP-based models and consistently delivered significant
performance improvements across 8 benchmarks.
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2 Related works

2.1 Vision-language foundation model

Vision-language models [40, 35, 1, 7, 38] have greatly advanced the ability to address open-set
visual tasks. As a representative contrastive learning-based approach, CLIP [40] is widely employed
in open-set recognition for its effective alignment of visual and linguistic representations. CLIP
establishes the relationship between vision and language by leveraging large-scale image-text pairs,
resulting in two parallel encoders: one for encoding textual descriptions into text embeddings and
the other for encoding images into context-aware global visual embeddings, thus enabling zero-shot
recognition capabilities for various visual tasks.

2.2 Open vocabulary semantic segmentation

Open-vocabulary semantic segmentation [28, 15, 45, 14, 20, 29], also referred to as zero-shot semantic
segmentation, aims to segment images into arbitrary categories defined by textual descriptions.
This task has gained significant attention due to its potential to generalize beyond fixed class sets,
leveraging the capabilities of VLMs such as CLIP. However, the pretraining objective of CLIP, which
focuses on image-level alignment between visual and textual features, makes it inherently unsuitable
for dense prediction tasks [14, 20, 33, 48, 50, 52]. To address this limitation, various methods
have been proposed to extend CLIP for dense segmentation, which can be broadly categorized into
training-based approaches and training-free approaches

Training-based methods typically involve optimizing all parameters of CLIP. CAT-Seg [9] and
SED [46] employ cost aggregation to refine the pixel-text cost volume and generate per-pixel
classification predictions. SAN [49] enhances CLIP with an adapter, enabling both mask proposal
generation and recognition. Meanwhile, FC-CLIP [53] leverages CLIP as a shared backbone for
unified mask generation and classification. Mask-Adapter [32] extracts semantic activation maps from
proposal masks, enriching contextual information and enhancing the alignment. SCAN [17] integrates
CLIP’s generalized semantic prior into the proposal embedding, preventing it from collapsing onto
known categories. While these approaches achieve promising results, the substantial computational
resources required for CLIP training pose significant challenges for practical deployment.

Training-free methods effectively address the aforementioned resource constraints by keeping CLIP’s
parameters fixed. Instead of fine-tuning the model, these approaches focus on designing more
effective attention weights—specifically, optimizing the interaction between queries and keys within
the attention mechanism to guide the aggregation of value tokens, thereby enhancing the final output.
Specifically, SCLIP [45] reformulates the q-k attention weight as a combination of q-q weight and
k-k weight to better capture local semantic coherence. ProxyCLIP [28] leverages the output features
from other vision foundation models, such as DINO [3] and MAE [23], to generate attention weightss.
MaskCLIP [15], on the other hand, enforces the q-k attention weights to be an identity matrix, thereby
directly guiding visual feature aggregation. However, as discussed in the introduction, these methods
predominantly focus on token-level local compactness while overlooking global connectivity, leading
to an incomplete understanding of the image. To address this limitation, in the following section, we
introduce a novel approach that effectively leverages both local compactness and global connectivity,
enhancing the overall comprehension of visual content.

3 Preliminary on CLIP

The CLIP model comprises an image encoder, denoted as Encv , and a text encoder, denoted as Enct.
Given an input image I and a series of textual descriptions D = {a photo of a {class} } ∈ RL,
where class represents the categories present in the image and L is the number of classes, the visual
feature F ∈ RH×W×C and the text embeddings T ∈ RL×C are obtained as follows:

CLS,F =Encv(I), T = Enct(D), (1)

where CLS ∈ RC represents the class token with C representing the channel. It aggregates global
contextual information and is used for classifying the entire image.

For semantic segmentation, given an input image, we first utilize CLIP to extract the corresponding
text embedding and the query, key, and value features from the final layer of its visual encoder,
then process the query and key to generate a q-k attention weights, which combined with the value
to produce the final visual features. The output of the final layer of Encv is employed to perform
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Figure 2: Overall framework of our proposed model. (a) illustrates the architecture of our
OPMapper, which consists of two modules. (b) depicts the Context-aware Attention Injection (CAI)
module with detailed network structure provided in the supplementary materials. (c) represents our
Semantic Attention Alignment (SAA) module, where the yellow-green gradient indicates the fusion
of visual and textual information. Note that after training, the SAA module will be dropout.

element-wise classification. This is achieved by leveraging the given text embedding T to generate a
segmentation mask M ∈ RH×W×L:

M = h(FTT ) = h(Attn(Q,K,V)TT ), (2)

where h is the argmax function and Attn is the attention mechanism. Q, K, and V denote the
query, key, and value, respectively. These representations are obtained by applying linear mappings
to the previous layer’s outputs, transforming input features for the attention mechanism. The text
embedding T is typically kept fixed during training to preserve their semantic richness, effectively
functioning as a comprehensive set of classifiers.

4 Methodology

As illustrated in Figure 2, OPMapper consists of two key modules: (1) Context-aware Attention
Injection (CAI), which injects an idealized attention weight distribution that encodes both locality
and global semantic coherence, effectively guiding the attention mechanism to capture meaningful
token interactions. CAI is the sole element appended to the frozen CLIP stream, thus constituting
the entire OPMapper proposed in this work. (2) The auxiliary Semantic Attention Alignment (SAA)
module, which further refines the enriched attention by aligning it with textual prompts through an
iterative fusion strategy, ensuring a more comprehensive integration of visual and textual information.
We will elaborate the overall loss functions that jointly optimize these modules and details about
integration with other methods in Sec 4.3.

4.1 Context-aware attention injection

4.1.1 Manually designed attention weights

Firstly, local compactness ensures that features at adjacent spatial locations exhibit smooth transitions,
which is crucial for fine-grained tasks such as object boundary delineation. Meanwhile, global
connectivity captures long-range semantic relationships, enabling the model to recognize holistic
object structures even when parts of an object are spatially distant. We argue that a prior attention
weight matrix should simultaneously account for both local compactness and global connectivity to
achieve a well-balanced representation. However, in a training-free setting, it is nearly impossible for
the model to naturally incorporate both aspects using only existing supervision signals and standard
computational mechanisms. To address this limitation, we introduce an idealized attention weight
matrix that explicitly encodes both local and global relationships. This matrix serves as a guiding

4



reference for the attention mechanism, providing an inductive bias that encourages a more structured
and semantically coherent attention distribution.

Given a ground truth label map L ∈ RH×W , where each pixel is assigned to one of C semantic
classes, we first down-sample it to align with the output resolution of the CLIP image encoder:

L̂ = fd(L,α) ∈ RĤ×Ŵ , (3)

where α is the scaling factor, ensuring that the segmentation label map is compatible with the feature
grid of CLIP. fd represents the down-sampling function, and Ĥ, Ŵ = H

α , W
α represent the size of the

down-sampled label map. Next, we construct the prior attention weights based on two key principles:
(1) spatially adjacent tokens should receive higher attention scores to preserve local compactness,
ensuring smooth feature transitions, and (2) tokens that share the same semantic category should be
more strongly connected, reinforcing global connectivity and capturing long-range dependencies.

Local Compactness. To preserve local compactness, we define the local attention matrix Wl ∈
RĤŴ×ĤŴ , which assigns higher scores to spatially closer tokens within the same semantic category.
The attention score between two positions i and j is computed as:

Wl[i, j] =

{
exp(−d(i, j)), if L̂i = L̂j , i ̸= j

0, otherwise.
(4)

where d(i, j) represents the Euclidean distance between positions i and j in the 2D spatial domain.
This ensures that nearby tokens receive higher attention weights while distant tokens within the same
class still maintain a meaningful connection. To prevent self-loops, diagonal elements (i.e., i = j) are
set to zero. The matrix is then row-wise normalized using a softmax function, similar to q-k attention
computation in standard self-attention mechanisms.

Global Connectivity. To capture global connectivity, we construct a global attention matrix Wg ∈
RĤŴ×ĤŴ , where each entry (i, j) represents the semantic similarity between two spatial positions:

Wg[i, j] =

{
1, if L̂i = L̂j ,

0, otherwise.
(5)

This binary mask ensures that only tokens belonging to the same semantic category are connected,
even they are far from each other. We then normalize each row by a mean operation to obtain a
probabilistic attention distribution, giving all related tokens an equal share of attention.

4.1.2 Unified attention weight construction
To achieve a balanced integration of local and global dependencies, we combine the two attention
matrices into a unified attention weight matrix as shown in Figure 3:

Wqk = λWl + (1− λ)Wg, (6)

where λ is an empirically determined scaling factor (set to 0.3) to adjust the relative contribution
of local and global attention components. This fused attention weight matrix serves as a reference
target for OPMapper, guiding the model to learn an optimal attention distribution that balances spatial
smoothness and semantic coherence.

4.1.3 Supervising attention learning
OPMapper is integrated into the q-k attention computation of CLIP’s vision encoder. Specifically,
given the final layer’s query Q and key K, OPMapper transforms them into enhanced representations:

Q′ = Mapperq(Q), K′ = Mapperk(K), (7)

where Mapperq and Mapperk are two mapper modules, each consisting of two cross-attention blocks
identical to those used in CLIP. The refined attention weights Wp = Q′K

′T are then computed using
these transformed queries and keys.

To ensure OPMapper effectively learns to align with the designed local-global balanced attention, we
employ KL divergence loss between the predicted weights Wp and the reference weights Wqk:

LKL =
∑
i,j

Wp[i, j] log
Wp[i, j]

Wqk[i, j]
. (8)
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Figure 3: Illustration of attention map construction. The left column shows how attention weights
are assigned between patches, while the right column visualizes the resulting attention map. Red
dots mark the selected tokens, and blue dots indicate the tokens whose similarity is computed. For
simplicity, distances are represented by numerical values, with smaller distances implying higher
weights. The example uses the bear category, visualizing attention relationships among all tokens.

By minimizing this loss, OPMapper learns to adjust the attention mechanism to better integrate
local compactness and global connectivity, ultimately enhancing segmentation performance while
maintaining computational efficiency.

4.2 Semantic attention alignment

While the CAI module injects local and global token relationships into the attention mechanism, it
does not explicitly ensure alignment with textual prompts, which are crucial for open-vocabulary
segmentation. Without proper alignment, the refined attention may fail to fully leverage semantic
cues from language supervision, limiting its effectiveness in distinguishing visually similar objects
belonging to different categories. To address this, we introduce the Semantic Attention Alignment
(SAA) module, which further refines the enriched attention representation by aligning it with textual
features. By iteratively fusing visual attention with text embeddings, SAA enhances the semantic
consistency of attention weights, ensuring that object regions are not only spatially and globally
coherent but also correctly associated with the corresponding textual descriptions.

As shown in Figure 2(c), SAA operates in a three-stage process:

1. Text-Guided Visual Enhancement: Text embeddings refine visual attention to enhance
semantic consistency.

2. Visual-Guided Text Refinement: The enriched visual features reciprocally influence textual
embeddings for better alignment.

3. Cross-Modal Attention Refinement: A final fusion step iterates between the two modalities,
ensuring deep semantic integration.

4.2.1 Text-guided visual enhancement

To inject textual cues into visual features, we use text embeddings as keys and values in a cross-
attention layer, with visual features as queries. This enables the model to reweight visual features
based on their semantic proximity to textual categories. The operation is formulated as

F1 = CA(q = F, k = T, v = T) ∈ RĤŴ×C , (9)

where F1 represents the text-refined visual features, F represents the visual representation obtained
using Wp as the attention weights, i.e., the result of applying this attention to the value embeddings.
T denotes the feature generated by the text encoder from the encoded text prompt, and CA represents
the cross attention mechanisms.

To further suppress the influence of irrelevant categories, we compute the cosine similarity between
the CLS token and text embeddings, and between visual features and text embeddings, determining
the relevance of each visual token to different categories:

SCLS−T = CosSim(CLS,T) ∈ RL,

SV−T = CosSim(F1,T) ∈ RĤŴ×L.
(10)

From these similarity scores, we select the top-k categories for each visual token by identifying the
highest similarity values in SCLS−T and SV−T. The final category selection is obtained by taking the
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union of the top-k categories from both scores:

Cselected = Topk(SCLS−T) ∪ Topk(SV−T). (11)

Using this selected category set, we construct an attention mask Mattn ∈ RĤŴ×L, where each
column determines the valid textual categories for the corresponding visual token. Specifically, if
the j-th category is present in Cselected, we assign M[:, j] = 1, otherwise, it remains zero. Finally, we
apply the computed mask to restrict attention weights only to the selected textual categories:

F1 = CA(q = F, k = T, v = T,mask = Mattn). (12)

This process ensures that visual features are selectively enriched with relevant textual context rather
than being influenced by unrelated categories.

4.2.2 Visual-guided text refinement

To establish bidirectional alignment, the roles of visual and textual features are reversed. Instead of
text refining vision, updated visual features F1 now serve as keys and values, while text embeddings
act as queries. This enables the textual features to dynamically adjust based on the enriched visual
information:

T1 = CA(q = T, k = F1, v = F1). (13)

It ensures that textual embeddings incorporate relevant spatial and semantic cues, reinforcing visual-
text consistency.

4.2.3 Cross-modal attention refinement

Finally, we establish a cross-modal feedback loop, integrating the refined textual representation T1

back into the visual feature space through another cross-attention layer:

F2 = CA(q = F1, k = T1, v = T1). (14)

The resulting feature F2 represents the final semantically-aligned visual representation, where
each token effectively captures both local-global dependencies and textual associations. The final
segmentation prediction is computed via:

Mpred = Sigmoid(F2T
T ). (15)

This iterative fusion strategy ensures that object regions are not only structurally coherent but also
correctly mapped to textual descriptions, improving segmentation accuracy in an open-vocabulary
setting. Since we continue to use the CLIP text encoder’s original text embeddings T without
incorporating the refined textual features T1 from the visual refinement process, SAA is only applied
during training. During inference, the model relies solely on the CAI module, making OPMapper a
lightweight, plug-and-play enhancement that imposes minimal computational overhead. This design
ensures that OPMapper can be seamlessly integrated into existing segmentation frameworks.

4.3 Loss function and adaptation details

Loss function. In addition to LKL, the loss function for OPMapper combines the DICE loss, to
address class imbalance, and the binary cross-entropy (BCE) loss, to improve foreground-background
discrimination. The overall loss function is:

L = wKLLKL + wDICELDICE + wBCELBCE, (16)

where wKL, wDICE, and wBCE are hyper-parameters set to balance the contributions of each term.

Adaptation details. Applying OPMapper to other methods is straightforward. Since the SAA module
is discarded after training, OPMapper effectively reduces to the CAI module at inference time. To
integrate it into other methods, we only need feed the output query and key embeddings from the
final layer of the CLIP visual encoder of the method into OPMapper, which maps them to attention
weights suitable for dense prediction tasks. These attention weights are then used in the original
computation flow to interact with the value representations, yielding the final visual features.
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Table 1: Quantitative comparison on 8 benchmarks. Gains over the base model are shown in green.
“Avg.” indicates the mean performance across 8 datasets. †: Results refined with a post-processing
toolkit such as DenseCRF. ‡: Models trained from scratch under identical batch sizes for fairness. All
implementations are based on official codes.

Model Image Encoder VOC-21 VOC-20 Context-60 Context-59 Object-171 Stuff-171 ADE-150 CityScapes Avg.

▼ Training based
GroupViT [47]* VIT-B/16 52.3 74.1 22.4 23.4 24.3 - 10.6 - -
TCL [5]* VIT-B/16 51.2 77.5 30.3 24.3 30.4 - 14.9 - -
ZegFormer [14]* VIT-B/16 65.5 89.5 - 45.5 - - 18.0 - -
OVSeg [34]* VIT-B/16 - 92.6 - 53.3 - - 24.8 - -
SAN [49]‡ VIT-B/16 - 92.7 - 51.8 - 40.2 29.9 - -
+OPMapper‡ VIT-B/16 - 93.2 (+0.5) - 52.7 (+0.9) - 41.3 (+1.1) 30.1 (+0.2) - -
CAT-Seg [10]‡ VIT-B/16 75.2 93.2 - 55.1 - 43.8 30.7 - -
+ OPMapper‡ VIT-B/16 74.8(-0.4) 94.0 (+0.8) - 56.2 (+1.1) - 43.9 (+0.1) 31.3 (+0.6) - -
SCAN [17]‡ VIT-B/16 - 94.9 - 56.8 - 44.1 30.5 - -
+OPMapper‡ VIT-B/16 - 96.0 (+1.1) - 58.3 (+1.5) - 44.8 (+0.7) 31.0 (+0.5) - -

▼ Training free
Vanilla CLIP [40] VIT-B/16 16.4 41.9 8.4 9.2 5.6 4.4 2.9 5.0 11.7
MaskCLIP [15] VIT-B/16 38.8 74.9 23.6 26.4 20.6 16.4 9.8 12.6 27.89
+OPMapper VIT-B/16 50.7 (+11.9) 79.1 (+4.2) 32.5 (+8.9) 35.8 (+9.4) 31.8 (+11.2) 23.2 (+6.8) 16.8 (+7.0) 31.5 (+18.9) 37.68 (+9.79)
SCLIP [45] VIT-B/16 52.5 78.2 30.4 35.5 33.2 23.6 16.8 31.0 37.65
+OPMapper VIT-B/16 56.2 (+3.7) 84.1 (+5.9) 35.2 (+4.8) 38.8 (+5.6) 36.8 (+3.6) 25.9 (+2.3) 18.3 (+1.5) 33.6 (+2.6) 41.11 (+3.46)
ClearCLIP [27] VIT-B/16 51.9 80.9 32.4 35.9 33.2 23.9 16.7 30.0 38.11
+OPMapper VIT-B/16 55.6 (+3.7) 84.7 (+3.8) 34.8 (+2.4) 38.6 (+2.7) 36.5 (+3.3) 25.9 (+2.0) 18.1 (+1.4) 32.9 (+2.9) 40.89 (+2.78)
ProxyCLIP [28] VIT-B/16 61.3 80.3 35.3 39.1 37.5 26.5 20.2 38.1 42.29
+OPMapper VIT-B/16 62.8 (+1.5) 84.3 (+4.0) 36.0 (+0.7) 40.1 (+1.0) 38.7 (+1.2) 27.1 (+0.6) 20.3 (+0.1) 37.2 (-0.9) 43.33 (+1.04)
LPOSS [42] VIT-B/16 60.2 80.2 35.0 36.9 34.7 25.3 21.2 37.6 41.39
+OPMapper VIT-B/16 63.7 (+3.5) 84.9 (+4.7) 35.7 (+0.7) 37.9 (+1.0) 35.2 (+0.5) 26.4 (+1.1) 22.1 (+0.9) 40.0 (+2.4) 43.24 (+1.85)
CASS [26] VIT-B/16 64.3 88.3 36.9 39.6 38.1 26.2 20.1 39.8 44.16
+OPMapper VIT-B/16 67.0 (+2.7) 90.0 (+1.7) 38.2 (+1.3) 40.1 (+0.5) 38.8 (+0.7) 27.1 (+0.9) 20.8 (+0.7) 41.0 (+1.2) 45.37 (+1.21)

Vanilla CLIP [40] VIT-L/14 8.2 15.6 4.1 4.4 2.7 2.4 1.7 2.5 5.2
CaR [43]† VIT-L/14&ViT-B/16 67.6 91.4 30.5 39.5 36.6 - 17.7 - -
MaskCLIP [15] VIT-L/14 41 65.1 24.5 26.5 26.4 17.6 15.1 21.2 29.68
+OPMapper VIT-L/14 50.9 (+9.9) 81.9 (+16.8) 30.6 (+6.1) 33.7 (+7.2) 33.5 (+7.1) 22.3 (+4.7) 18.3 (+3.2) 29.7 (+8.5) 37.61 (+7.94)
SCLIP [45] VIT-L/14 47.4 79.3 27.8 30.6 30.1 20.5 15.6 27.8 34.89
+OPMapper VIT-L/14 50.4 (+3.0) 81.6 (+2.3) 29.6 (+1.8) 32.6 (+2.0) 33.5 (+3.4) 21.8 (+1.3) 16.5 (+0.9) 30.3 (+2.5) 37.03 (+2.14)
ClearCLIP [27] VIT-L/14 46.1 80 26.8 29.6 30.1 19.9 15 27.9 34.43
+OPMapper VIT-L/14 49.2 (+3.1) 81.5 (+1.5) 28.7 (+1.9) 31.7 (+2.1) 33.1 (+3.0) 21.3 (+1.4) 16.1 (+1.1) 29.8 (+1.9) 36.43 (+2.00)
ProxyCLIP [28] VIT-L/14 59.3 82.6 33.1 35.7 38.2 24.2 20.8 36.3 41.28
+OPMapper VIT-L/14 59.2(-0.1) 84.4 (+1.8) 33.7(+0.6) 36.9 (+1.2) 39.1 (+0.9) 25.1 (+0.9) 21.7 (+0.9) 37.8 (+1.5) 42.24(+0.96)

Table 2: Ablation study on CAI and SAA.
Method ADE City Context59 Object VOC Avg.

CLIP 2.9 5.0 9.2 5.6 41.9 12.9
w/o SAA. 17.8 32.0 37.9 35.2 83.5 41.3
w/o CAI. 18.3 31.3 37.5 35 83.7 41.2

OPMapper 18.1 32.9 38.6 36.5 84.7 42.2

Table 3: Ablation study on the construction of
local and global attention weights.

Settings ADE City Context-59 Object VOC Avg.

w/o Wg 17.6 30.9 36.9 32.2 79.6 39.4
w/o Wl 17.5 32.4 38.3 35.1 83.8 41.4

OPMapper 18.1 32.9 38.6 36.5 84.7 42.2

5 Experiments
5.1 Datasets and baselines

We evaluate our method on 8 widely used semantic segmentation benchmarks, ensuring a compre-
hensive assessment. The datasets include PASCAL VOC20 (VOC21, with one additional background
class) [18], PASCAL Context59 (Context60, with background) [39], COCO Object (Object) [2],
COCO-Stuff (Stuff) [2], Cityscapes (City) [13], and ADE20K (ADE) [55]. Mean Intersection-over-
Union (mIoU) is used as the evaluation metric across all datasets. Our mapper is trained on the
COCO-Stuff dataset, which contains 118k densely annotated images spanning 171 categories. We
then integrate our lightweight mapper into two types of existing methods: training-based methods,
including SAN [49], SCAN [17] and CAT-Seg [10], and training-free methods, including Proxy-
CLIP [28], ClearCLIP [27], SCLIP [45], LPOSS [42], CASS [26] and MaskCLIP [15]. We replace
the standard attention operation with our mapper to construct the attention weights.

5.2 Implementation details
All experiments were conducted using MMSegmentation [11]. During training, COCO-Stuff images
were resized to have a 384-pixel short edge, followed by proportional scaling and random cropping
to 384× 384. Data augmentation strategies aligned with CAT-Seg, including random flipping and
patterned noise injection. We used the AdamW optimizer with learning rates of 5×10−4 for the SAA
and 5× 10−5 for the CAI. Our mapper is highly memory-efficient, requiring ≤ 2GB of GPU memory
per batch, and was trained on four NVIDIA A100 GPUs (batch size: 8 per GPU) for 80,000 iterations,

8



(a) Image (b) GroundTruth (c) CLIP (d) ClearCLIP (e) CLIP+OPMapper

Figure 4: Some visualization results evaluated on COCO-Stuff dataset. When equipped with our
OPMapper, CLIP can obtain incredible performance. We provide more results in Appendix.

completing in 3–4 hours. Notably, OPMapper is trained entirely on the officially pre-trained CLIP
model, keeping all CLIP parameters frozen. wKL, wDICE, and wBCE are set to 10, 5, 10, respectively.
Further details are provided in the Appendix C.

5.3 Main results

The main results are presented in Table 1, demonstrating the effectiveness of our lightweight OPMap-
per across various benchmarks. In particular, when combined with CASS, OPMapper achieves
superior performance across most benchmarks while substantially improving computational effi-
ciency. By directly refining attention weights and integrating them with the feature maps from the
vision-language model, OPMapper enhances segmentation quality in a training-free paradigm. Fur-
thermore, when applied to trainable methods, OPMapper still yields notable gains, albeit with a less
pronounced effect. This is likely because fine-tuning inherently optimizes attention weights for dense
prediction, reducing the extent of additional improvements brought by our mapper. OPMapper consis-
tently delivers significant performance improvements while maintaining exceptional efficiency, with
a parameter size of only 0.8M. By eliminating redundant computations, OPMapper also facilitates
faster inference, reinforcing its scalability and adaptability for diverse segmentation architectures.

To further illustrate OPMapper’s effectiveness, we provide qualitative results in Figure 4, showcasing
its ability to enhance segmentation through improved attention alignment. More experimental results
can be referred to Appendix A.

5.4 Further analysis

To efficiently validate the effectiveness of each component, we conduct a series of ablation studies,
primarily employing CLIP with the ViT-B/16 image encoder as the baseline, unless otherwise
specified. This choice ensures that the evaluation remains unbiased and is unaffected by potential
performance enhancements introduced by other CLIP variants.

Due to space limitations, we sincerely encourage readers to refer to the Appendix A / B for more
detailed analyses, including more ablation studies, the visualization of the learned attention weights,
the motivation behind our design, the evidence for our claim.

Ablation on different modules Table 2 present the ablation study of OPMapper. It is obvious
that both CAI and SAA demonstrate substantial improvements over the baseline, with the average
performance improving from 12.92 mIoU (baseline) to 41.28 mIoU (CAI) and 41.16 mIoU (SAA),
respectively. Finally, by combining both modules, the average performance is further enhanced to
42.16 mIoU. These results confirm the complementary nature of the two modules.

Ablation on local and global attention weights To validate the effectiveness of the Local and Global
Attention Weights (Wl and Wg) constructed in the CAI module, we conduct ablation experiments
where each component is used independently. The results, presented in Table 3, clearly demonstrate
that the most substantial performance gains are achieved when both global and local attention weights
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are jointly considered. This highlights the necessity of balancing local and global dependencies for
optimal segmentation performance. To validate the rationale behind our attention weights design, we
visualize the predicted attention weights and compare them with those from fully trained models in
the supplementary materials. The results indicate that the attention weights generated by OPMapper
closely resemble those from fully trained models, highlighting its effectiveness.

Table 4: Ablation on mixing coefficient (λ).

Settings ADE City Context59 Object VOC Avg.

λ = 0.1 17.8 32.5 38.2 35.9 83.8 41.6
λ = 0.3 18.1 32.9 38.6 36.5 84.7 42.2
λ = 0.5 18.0 32.6 38.1 36.0 83.7 41.7
λ = 0.7 17.7 32.3 38.0 36.0 83.4 41.5
λ = 0.9 17.0 31.7 37.3 35.6 82.6 40.8

Ablation on mixing coefficient (λ). We conduct an
ablation study on the choice of λ in Equation 6 of our
paper, which serves to balance the relative contribu-
tions of local compactness and global connectivity
when manually constructing the prior weight map. As
shown in Table 4, the best performance is achieved
when λ = 0.3. As λ increases beyond this point,
performance gradually deteriorates, suggesting that the current fusion strategy between local and
global cues is optimal for generating pixel-level weight maps. In contrast, relying solely on either
local compactness or global connectivity leads to a noticeable drop in performance.

Table 5: Ablation on the weight of three loss
functions. Here, the setting (5, 5, 5) indicates
that the wKL, wDICE and wBCE are 5, 5,
and 5, respectively. Other settings follow the
same convention.

Settings ADE City Context59 Object VOC Avg.

(5,5,5) 16.2 30.7 36.2 34.5 81.6 39.8
(5,5,10) 17.4 31.7 38.1 35.7 83.5 41.3
(5,10,5) 15.7 30.2 35.4 34.1 80.9 39.3

(5,10,10) 16.7 31.3 37.6 35.3 83.3 40.8
(10,5,5) 17.7 31.9 38.4 35.9 83.9 41.6

(10,5,10) 18.1 32.9 38.6 36.5 84.7 42.2
(10,10,5) 16.5 31.1 38.0 35.2 82.6 40.7

(10,10,10) 17.6 31.7 38.1 35.7 83.5 41.3

Ablation on the weight of three loss functions. To
investigate the impact of the three losses used dur-
ing OPMapper training—KL/DICE/BCE losses—we
explore various weight combinations within a prede-
fined range of 5 to 10, chosen to match the learning
rate of the whole model. As shown in Table 5, the
best performance is achieved when the weights are
set to wKL = 10, wDICE = 5, and wBCE = 10.
Reducing the weights of both wKL and wBCE to 5
results in a noticeable performance drop. Interest-
ingly, increasing the wDICE to 10 also leads to a
decline in performance, suggesting that an overem-
phasis on DICE loss may amplify its role in handling
class imbalance to an extent that disrupts the CAI module’s ability to properly transform the object-
aware query and key embeddings from the final layer of the CLIP’s vision encoder into pixel-aware.

6 Conclusion
In this paper, we introduced OPMapper, a lightweight and flexible plug-and-play module designed to
enhance open-vocabulary segmentation by integrating local compactness and global connectivity into
the attention mechanism. OPMapper introduces Context-aware Attention Injection (CAI) to explicitly
encode both spatial proximity and semantic coherence, and Semantic Attention Alignment (SAA)
to iteratively refine attention by aligning it with textual features. Our approach is computationally
efficient and requires no additional training of CLIP parameters, making it seamlessly compatible
with both training-based and training-free paradigms. Extensive experiments demonstrate that
OPMapper significantly improves segmentation performance across multiple benchmarks while
maintaining minimal computational overhead. By effectively balancing local and global information
within the attention mechanism, OPMapper offers a scalable and adaptable solution for advancing
open-vocabulary segmentation.

Limitations. OPMapper’s benefit diminishes when the CLIP vision encoder has been heavily fine-
tuned (its parameter distribution drifts markedly from the original model). Currently, OPMapper
excels only when this shift is moderate. We think (i) quantify the distributional gap between the
fine-tuned and base encoders, then correct it to better accommodate OPMapper, and (ii) explicitly tie
OPMapper’s parameters to the statistics of the fine-tuned model are promising directions.

Broader impacts. Our method targets object segmentation beyond the training distribution, enabling
more generalizable perception in robotics, autonomous driving, and related domains, ultimately
advancing socially beneficial technologies.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The main claims in the abstract and introduction accurately demonstrate our
model’s contributions in open-vocabulary semantic segmentation.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We discuss potential limitations in the section of Conclusion.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]
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Justification: This study does not present theoretical results that necessitate formal deriva-
tions.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: All of experimental details can be referred to the section of Experiments and
the Supplementary Materials.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [No]
Justification: We do not use any additional proprietary data; all datasets employed in this
work are publicly available and can be accessed freely. Our code will be released on GitHub
upon acceptance of the paper (if accepted).
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: All of experimental details can be referred to the section of Experiments and
the Supplementary Materials.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [No]
Justification: Our method is a plug-in approach designed to enhance the performance of
existing models. We conducted experiments across 88 combinations involving 11 different
models and 8 distinct benchmarks—a scale that is substantial. Repeating all experiments
multiple times would be prohibitively expensive for us. We believe the experiments con-
ducted on a wide range of models and datasets can provide strong empirical evidence of the
generalizability and effectiveness of our approach.
Guidelines:

• The answer NA means that the paper does not include experiments.
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• The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: All of experimental compute resources can be referred to the section of
Experiments and the Supplementary Materials.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: We conduct our code based on public available code toolbox. Our code will be
released on GitHub upon acceptance of the paper (if accepted).
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: We provide broader impacts in the section of Conclusion.
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Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: Our paper poses no such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We have cited all necessary resources.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
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• For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: Our paper does not release new assets

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: Our paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: This paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.
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• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The core method development in this research does not791 involve LLMs as
any important, original, or non-standard components.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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Technical Appendices

A More experiments

A.1 Qualitative results

As shown in Figure 5, we provide additional segmentation results for different datasets, including
ADE20K [56], Cityscapes [12], VOC [18] as well as Pascal Context [19]. As illustrated in the
Figure 5, inserting our OPMapper into ClearCLIP[27] leads to more coherent segmentation results
by connecting semantically related regions and reducing fragmented or noisy mis-segmentations.

COCO-Stuff 171

(a) Image (b) GroundTruth (c) CLIP (d) ClearCLIP (e) CLIP+ODAdapter

Pascal VOC 21

Pascal Context 59

ADE 150

Cityscape 19

Figure 5: Visualization results on different datasets.
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A.2 Additional ablations

Ablation on the choice of top k within SAA. In our SAA module, the parameter k of topk operation
(Equation 11) controls how many of the most relevant text embeddings are allowed to interact with
the visual features and subsequently influence the textual features through feedback. As shown
in Table 6, when k is set greater than or equal to the total number of categories, the mechanism
degenerates into standard cross-attention, allowing all textual features to interact with the visual
features. Conversely, when k is set to the minimum value of 1, the interaction is limited to the single
textual token corresponding to CLIP’s global classification output. As shown in Table 6, setting k
too small (e.g., k = 16) or too large (e.g., k = 128) leads to performance degradation—likely due to
the omission of relevant categories or the inclusion of redundant ones, respectively. These results
highlight that a properly chosen k value enhances the predicted attention map of CAI by improving
pixel-level text-image alignment.

Table 6: Ablation on the choice of top k of SAA.
Settings ADE City Context59 Object VOC Avg.

k=16 16.9 31.7 37.2 35.3 83.2 40.9
k=32 17.6 32.4 38.2 36.2 83.6 41.6
k=64 18.1 32.9 38.6 36.5 84.7 42.2
k=96 17.7 32.5 38.4 36.3 84.1 41.8

k=128 17.1 32.2 37.9 35.8 83.7 41.3

Ablation on the components of SAA. We also conduct an ablation study on the three key steps of
the SAA module. For convenience, we refer to Text-Guided Visual Enhancement, Visual-Guided
Text Refinement, and Cross-Modal Attention Refinement as TGV, VGT, and CMA, respectively.
As shown in Table 7, both the text-to-image and image-to-text fusion steps contribute to improved
alignment between modalities. This bidirectional interaction enables the injection of more accurate
dense representations into CAI while preserving the original open-vocabulary capability of CLIP.

Table 7: Ablation on the components of SAA. TGV = Text-Guided Visual Enhancement, VGT =
Visual-Guided Text Refinement, CMA = Cross-Modal Attention Refinement.

Settings ADE City Context59 Object VOC Avg.

TGV 17.5 32.2 37.8 36.0 83.3 41.4
TGV+ CMA 17.6 32.6 38.1 36.2 83.8 41.7
TGV + VGT + CMA 18.1 32.9 38.6 36.5 84.7 42.2

Ablation on the choice of training dataset for OPMapper. In addition to training OPMapper on
COCO-Stuff, we also explore the use of other datasets commonly employed in dense prediction
tasks. Specifically, we replace the original COCO-Stuff segmentation annotations with a mixture
of annotations from Object365 Detection [41] and LVIS Segmentation [22]. This modification
necessitates some adjustments to the training pipeline: 1). When constructing the prior attention
maps for CAI, we treat all pixels within each bounding box in the detection datasets as belonging
to a single class, and proceed to compute the prior attention maps in the same manner as with
segmentation data. 2) During training, the SAA module is supervised using both segmentation and
detection annotations. In contrast to supervision derived solely from segmentation, we additionally
introduce a parallel detection head to predict bounding boxes. As shown in Table 8, even when
using the mixture data, the model is still capable of effectively learning a mapper that transforms
object-level query-key representations into pixel-level ones. These results suggest that training a
standalone mapper appended to CLIP outputs is a viable strategy for enhancing its compatibility with
open-vocabulary dense prediction tasks.

Table 8: Ablation on the choice of training dataset for OPMapper.
Training Data ADE City Context59 Object VOC Avg.

COCO-Stuff 18.1 32.9 38.6 36.5 84.7 42.2
LVIS + O365 18.9 33.5 39.2 37.1 85.5 42.8
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(a) Image (b) Designed q-k attnention (c) DINO v-v attention
(f) q-k attention w/All(e) q-k attention w/ CAI(d) q-k attention w/ SAA

(a) Image (b) Designed q-k attnention (c) DINO v-v attention
(f) q-k attention w/All(e) q-k attention w/ CAI(d) q-k attention w/ SAA

Figure 6: The visualizations of different types of q-k attention weights. We applied normalization to
the designed q-k attention (Figure 6 b) and DINO v-v attention weights (Figure 6 c), which enhances
the brightness of the visualization and makes the patterns easier to observe (with the sum of each row
exceeding 1). In contrast, the results produced by our OPMapper retain their original form, where the
sum of each row equals 1. This design choice aims to clearly reflect the magnitude of the original
values. For better clarity, it is recommended to view the corresponding figures in an enlarged format.
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A.3 Visualization Results of attention weights

In this section, we present visualizations of the predicted q-k attention map from CAI, the corre-
sponding designed attention map, and the prediction results, as illustrated in Figure 6. Specifically,
we examine the following scenarios:

• Only CAI is applied (w/CAI).

• Only SAA is applied (w/SAA).

• Both CAI and SAA are applied (w/All), alongside a comparison with the v-v attention map
generated by DINO [4].

From these visualizations, it is obvious that the predicted attention weights under the supervision
of CAI closely resemble the learned attention weights indicating their alignment. Our OPMapper
produces attention maps that closely mirror those of the vision foundation model, such as DINO,
further substantiating our approach and supporting our claims.

B Further analysis

B.1 In-depth analysis of the motivation

The motivation of OPMapper: existing methods for computing attention weights mainly emphasize
local compactness (q–q, k–k, or q–q & k–k) while neglecting or down-weighting global connectivity.
To overcome this, we propose the CAI module, which explicitly combines local compactness and
global connectivity to produce pixel-aware attention maps. In parallel, the SAA module guides CAI
in preserving CLIP’s cross-modal alignment, thereby enabling open-vocabulary segmentation.

To validate the limitations of existing methods regarding global connectivity and to demonstrate that
our approach better addresses this aspect, we conducted an experiment on 50 randomly selected
images. Using the attention matrices from training-free methods such as MaskCLIP, we measured the
attention between each token and same-category tokens at different spatial distances. Tokens were
defined as “long-range” if their distance exceeded the average distance to all same-category tokens.
For each image, we summed the attention values of these long-range tokens and then averaged across
the image to obtain the mean long-range attention value. A higher value indicates greater emphasis
on global connectivity.

Table 9: Long-range attention values for different models.
Model Mean long-range attention value

MaskCLIP [15] 0.084
SCLIP [44] 0.142

ClearCLIP [27] 0.117
ProxyCLIP [28] 0.289

CDAM [24] 0.231
OPMapper 0.373

As shown in Table 9, our method achieves the highest mean long-range attention strength (0.373),
while most other methods fall between 0.08 and 0.15, with the maximum only 0.289 (when in-
corporating external models such as DINO). These results indicate that our method captures more
information from same-category but distant tokens, ensuring stronger global connectivity. This
supports our argument that existing methods emphasize local compactness while underrepresenting
global connectivity, whereas our CAI module explicitly strengthens global connectivity to construct
more effective attention relationships. In addition, we visualize both our designed attention weights
and the v–v attention produced by DINO in Figure 6. For clearer comparison, we applied brightness
enhancement (so the sum of each row is not equal to 1). The visualization shows that in DINO’s
v–v attention, brighter values mainly appear near the diagonal of the matrix, indicating that local
compactness dominates when merging information from other tokens, even though DINO’s training
emphasizes global connectivity more than other training-free methods.
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B.2 Deeper analysis of the prior attention weight

We clarify that our prior attention matrix design is not a simple intuition but fundamentally grounded
on two well-established theoretical principles widely recognized in semantic segmentation literature:

Local Compactness: Fundamentally, semantic segmentation can be conceptualized as a problem
of spatially continuous local clustering, wherein adjacent pixels are not independent but instead
exhibit strong categorical coherence due to the inherent spatial smoothness of natural images. This
property underscores the expectation that meaningful segmentation should leverage local contextual
regularities, thereby reinforcing the robustness and consistency of the learned representations. This
is commonly agreed in classical segmentation literature [37, 6]. In the main paper, Equation 4
explicitly incorporates the Euclidean distance into the attention computation to reinforce local
semantic smoothness.

Global Connectivity: High-quality semantic segmentation fundamentally relies on the capacity to
capture long-range semantic dependencies, beyond local contextual cues. This capability ensures
that spatially distant pixels of the same semantic category—such as occluded regions of an identical
object—are jointly recognized and consistently segmented [25]. Without modeling such non-local
associations, segmentation results risk fragmenting semantically coherent regions, thereby undermin-
ing both accuracy and robustness. Vision transformers [36, 16] have also demonstrated this principle
in modeling semantic relations between distant tokens and our Equation 5 precisely formulates a
semantic-aware global connectivity pattern that aligns perfectly with this principle.

To further provide rigorous empirical evidence, we conducted the following experiment: we randomly
selected 50 images containing open-set categories. For each image, we generated three attention maps
using our proposed construction method, Cat-Seg (which was trained on other close-set categories but
not trained on these open-set categories), and Mask2Former [8] (which was trained on both close-set
and open-set categories, and thus its attention map is treated as the "optimal" one), respectivlly. We
then computed both the average cosine similarity and average Structural Similarity Index (SSIM) to
measure the similarity between two attention map. As shown in the Table 10, ours (prior attention
matrix), average cosine similarity = 0.834 and average SSIM = 0.808, shows a consistently high
similarity compared to Cat-Seg, rigorously demonstrating that our prior attention construction is
much more similar to the fully-supervised attention structure.

Table 10: Comparison on cosine similarity and SSIM.
Setting Cosine Similarity SSIM

Ours vs Mask2Former 0.834 0.808
Cat-Seg vs Mask2Former 0.785 0.771

B.3 Discussion on the difference with related works

In general, the originality of OPMapper and its distinctions from other related methods are reflected
in the following aspects:

• We propose an explicitly designed local–global composite attention weight construction
that directly maps q–k to obtain pixel-aware attention weights. In contrast, other methods
compute attention either by incorporating external modules or by relying on self–self
attention that primarily enhances local compactness. These two categories of approaches
only achieve pixel-aware features indirectly or approximately.

• We introduce the cross-modal semantic alignment module (SAA), which leverages alternat-
ing text–image fusion as an implicit supervision signal to guide the learning of the mapping
module (i.e., CAI), while preserving CLIP’s original vision–language alignment. Other
methods, however, neglect maintaining this alignment and disregard the utilization of the
CLIP text encoder.

• Our method is modular, lightweight, and incurs no additional overhead during inference,
making it adaptable to a wide range of approaches. In contrast, other methods lack such
flexibility and generalizability, limiting their applicability across diverse settings.
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One similar solution as a plug-and-play modular for other open-vocabulary semantic segmentation
method is CDAM [24]. It leverages the category distribution correlations in the image–text similarity
map to construct attention better suited for precise localization, and it achieves strong results in
experiments. However, our method and CDAM differ significantly in terms of motivation and
innovations, model framework, adaptation process, and experimental characteristics. In the tableX,
we summarize the approaches of both methods across these dimensions and highlight the key
differences.

Table 11: Comparison between OPMapper and CDAM.
Dimension OPMapper CDAM

Motivation &
innovations

We observe that frozen CLIP features are
inherently object-aware. Under consistent
value representations, transforming the at-
tention into pixel-aware form facilitates
direct transfer to dense tasks. The learn-
ing of the mapper, however, must balance
local compactness and global connectiv-
ity, while preserving CLIP’s inherent vi-
sion–language alignment.

They observe that for each token (corre-
sponding to a patch), its classification vec-
tor distribution exhibits category depen-
dency. Leveraging this distributional
property allows them to compute more
robust inter-token correlations, ultimately
yielding an attention mechanism better
suited for segmentation tasks.

Architecture A Plugin Mechanism. CAI is trained with
manually designed ground-truth attention
and guided by the SAA module to learn how
to map q and k. In inference, the q and
k from the final CLIP layer are mapped
into q′ and k′, which yield pixel-aware
attention. Together with the frozen v, these
form the image features, which are then
integrated with text features to produce the
final mask.

A Rewriting Mechanism. Using the frozen
v from the final CLIP layer and the en-
hanced text, CDAM derives a category
distribution vector for each token. At-
tention is then computed by measuring
the differences among these token-level
distributions. With this attention, v is
recalculated to obtain a new v′, which is
subsequently combined with the original
(non-enhanced) text features to generate the
mask.

Image-Text
Alignment

SAA performs iterative alignment of im-
age and text features, implicitly guiding
OPMapper and ultimately influencing q and
k.

CDAM lacks both explicit and implicit vi-
sion–language alignment mechanisms. As a
result, the attention generated from category
distribution similarity, when used together
with the value features to compute v′, may
not be compatible with the frozen text fea-
tures.

Adaptation
process

Adapt OPMapper to q and k of the final
CLIP layer to obtain new q′ and k′, and
then calculate image features through con-
ventional dot-product attention with frozen
v.

Compute similarity between text and image
features, and then calculate attention by ap-
plying JS divergence to the similarity map.
Finally, use the attention map and frozen v
to calculate the final image features.

Threshold
sensitivity
in complex
scenes

OPMapper requires no threshold or heuris-
tic hyperparameter and learns attention
weights in a fully end-to-end manner.

CDAM relies on a manually selected
entropy-based threshold to filter category
distributions. As acknowledged by the au-
thors, this threshold is difficult to determine
in complex scenes.

Differences in
global seman-
tic modeling

OPMapper, by design, assigns high atten-
tion weights explicitly to distant same-
category tokens, ensuring more consis-
tent global connectivity.

CDAM enhances correlations among
nearby same-category patches using JS
divergence, but its handling of long-range
same-category tokens still depends on
thresholding.

Applicability
scope

OPMapper is compatible with both training-
free and training-based segmentation frame-
works, showing broader versatility.

CDAM is currently only applicable to
training-free methods.
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C Details of Mapper

We provide a detailed description of the Mapper’s architecture in Figure 7. As shown in Figure 2(b),
the CAI consists of two parallel components, Mapper A and Mapper B, which share the same
structure but operate with independent parameters. Taking Mapper A as an example, it incorporates
two modified ResAttn blocks compared to the original CLIP [40] architecture. These modifications
are designed to enhance the mapper’s functionality while maintaining computational efficiency.

Linear, C!"=768 C#$%=96

Layer Norm, C!"/C#$%=96

Attn Layer, C!"/C#$%=96

Linear, C!"=96 C#$%=768

Layer Norm, C!"/C#$%=768

Low-rank MLP, C!"/C#$%=768

Linear, C!"=2 C#$%=768

Linear, C!"=3072 C#$%=2

GeLU

Linear, C!"=2 C#$%=3072

Linear, C!"=768 C#$%=2

Input features

Output features

Figure 7: The detailed architecture of the modified ResAttnBlock used in our CAI is illustrated.
The components highlighted in red indicate the differences compared to the original ResAttnBlock.
Additionally, the green Linear represents a low-rank linear transformation with a rank of r = 2.
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