
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

SIMLAYERKV: A SIMPLE FRAMEWORK FOR LAYER-
LEVEL KV CACHE REDUCTION

Anonymous authors
Paper under double-blind review

ABSTRACT

Recent advancements in large language models (LLMs) have extended their capa-
bilities to handle long contexts. However, increasing the number of model layers
and the length of input sequences significantly escalates the memory required to
store key-value (KV) cache, posing challenges for efficient inference. To mitigate
this issue, we present SimLayerKV, a simple yet effective method that reduces
inter-layer KV cache redundancies by selectively dropping cache in identified lazy
layers. Our approach is based on the observation that certain layers in long-context
LLMs exhibit “lazy” behavior, contributing less to modeling long-range depen-
dencies compared to non-lazy layers. By analyzing attention weight patterns, we
find that the behavior of these lazy layers is consistent across tokens during gener-
ation for a given input. This insight motivates our SimLayerKV, which identifies
lazy layers and reduces their KV cache accordingly. SimLayerKV is training-
free, generalizable, and can be implemented with only seven lines of code. We
conduct extensive experiments on three representative LLMs, e.g., LLaMA2-7B,
LLaMA3-8B, and Mistral-7B across 16 tasks from the LongBench benchmark.
The results demonstrate that SimLayerKV achieves a KV cache compression ratio
of 5× with only a 1.2% performance drop when combined with 4-bit quantization.

1 INTRODUCTION

Transformer-based autoregressive large language models (LLMs) have demonstrated exceptional
performance across a wide range of tasks, such as question answering and arithmetic reasoning (Wei
et al., 2022; Wang et al., 2022; Zhou et al., 2022; Yao et al., 2023). Recent advancements have ex-
tended their capabilities to handle long contexts, with models like Llama-3.1 supporting context
lengths up to 128K tokens (Dubey et al., 2024) and Gemini-Pro-1.5 handling up to 1 million to-
kens (Reid et al., 2024). A critical component of these models during inference is the key-value
(KV) cache, which stores precomputed key and value tensors for each token in the language se-
quence to avoid recomputing them for each attention layer. However, as the number of model layers
and input lengths increases, the memory required for storing the KV cache grows significantly, pos-
ing challenges for inference efficiency (Zhang et al., 2024b; Wang et al., 2024a; Li et al., 2024). For
example, with an input sequence length of 128K tokens, the memory required for the KV cache in
Llama2-7B amounts to approximately 62.5 GB GPU memory, which is significantly larger than the
13.2 GB needed for the model parameters.

To address the challenge, various methods have recently been introduced to reduce the KV cache
storage (Zhang et al., 2024b; Li et al., 2024; Hooper et al., 2024; Dong et al., 2024a; Yang et al.,
2024c). One approach is quantization (Hooper et al., 2024; Dong et al., 2024a; Yang et al., 2024c;
Dong et al., 2024b; Kang et al., 2024; Liu et al., 2024c; Sheng et al., 2023), which stores the KV
cache in low-bit formats. Another approach resorts to eviction (Zhang et al., 2024b; Li et al., 2024;
Zhang et al., 2024a; Yang et al., 2024b), which only preserves the most important tokens selected
based on carefully crafted metrics. However, these works predominantly address intra-layer re-
dundancies, neglecting the potential savings from inter-layer redundancies (Liu et al., 2024a), as
illustrated in Figure 1.

Recent studies (Rajput et al., 2024; Brandon et al., 2024; Wu & Tu, 2024; Liao & Vargas, 2024; Wu
& Tu, 2024; Liu et al., 2024a) have begun to explore inter-layer KV cache condense, leveraging re-
dundancies across layers to reduce KV cache at the layer level. For example, Cross-Layer Attention

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

(a) Intra-layer methods

Layer 𝑙

KV Cache Compression

𝑁 X

via Pruning / Quantization

Input

Output

Layer 𝑙

……

Layer 𝑙+1

……
KV Cache

Cross Layer
Merging

(b) Inter-layer method: MiniCache

Inter-
polation

Output

Input

Layer 𝑙

……

Layer 𝑚

……

(c) Inter-layer method: SimLayerKV

Trim KV Cache
according to

Layer
 Function

Non-Lazy layer

Lazy layer

……

Input

Output

Figure 1: Comparison of intra-layer techniques (e.g., pruning and quantization) with two inter-layer
methods: MinCache and our proposed SimLayerKV. (a) Intra-layer methods target KV redundancy
within individual layers, applying compression independently to each layer; (b) MinCache reduces
KV cache by merging adjacent layers through interpolation; (c) Our SimLayerKV selectively trims
KV cache by identifying the functional role of each layer, reducing cache only in lazy layers.

(CLA) (Brandon et al., 2024) reuses the KV cache from the n-th layer for the subsequent n+1-th
layer. While these methods are effective, they require additional training on existing LLMs (Rajput
et al., 2024; Brandon et al., 2024; Wu & Tu, 2024; Liao & Vargas, 2024; Wu & Tu, 2024), which
hinders seamless plug-and-play integration. Our focus lies in methods that do not require retraining,
with MiniCache (Liu et al., 2024a) serving as a representative approach. By taking advantage of the
similarity between the KV pairs across layers, MiniCache combines the cache of every two layers
through spherical interpolation, effectively compressing KV cache across layers(see Figure 1(b)).
However, MiniCache operates under the implicit assumption that all layers within the merged set
contribute equally, which may not always hold true. In fact, research on layer sparsity (Gromov
et al., 2024) shows that importance levels vary across layers within the same model, indicating that
their contributions may differ.

To investigate this character for the attention layer, we conducte preliminary experiments (Section 4)
and identified three key findings: (1) Certain layers in long-context LLMs exhibit “lazy” behavior,
primarily focusing on semantically unimportant tokens (e.g., the initial few tokens) and the most
recent ones during answer generation. (2) Lazy layers are less important than non-lazy layers w.r.t.
long-context capability: trimming KV cache in non-lazy layers significantly degrades model per-
formance, whereas trimming KV cache in lazy layers has relatively little impact; and (3) After
analyzing attention weight patterns, we find that layer behavior is consistent across tokens for a
given input, and lazy layers can be easily identified.

The appearance of lazy layers suggests that we can directly reduce the KV cache for these layers
without altering the cache of non-lazy layers or merging cache across layers. Building on this in-
sight, we propose SimLayerKV, a simple yet effective method for inter-layer KV cache reduction.
This dynamic, selective reduction in KV cache decreases the number of layers requiring cache reten-
tion, thereby enhancing computational efficiency. Specifically, we analyze the attention allocation
patterns in each layer to determine whether it qualifies as a lazy layer. We then trim the KV cache
in lazy layers while retaining the full KV cache in non-lazy layers (see Figure 1(c)). We conduct
extensive experiments on three representative LLMs (i.e., LLama2-7B-chat (Touvron et al., 2023),
LLama3-8B-Instruct (Dubey et al., 2024), and Mistral-7B-Instruct (Jiang et al., 2023)) across 16
tasks from LongBench (Bai et al., 2023). The results demonstrate that SimLayerKV achieves a KV
cache compression ratio of 5× with only a 1.2% drop in performance when combined with a 4-bit
quantization (Liu et al., 2024c). Meanwhile, it integrates seamlessly into popular inference frame-
works with just seven lines of code. Additionally, we evaluate SimLayerKV on the Ruler (Hsieh
et al., 2024) datasets using Mistral-7B-Instruct, focusing on tasks like Needle-in-a-Haystack (NIAH)
and scaling the context length from 4K to 32K, where it performed strongly. Even with input texts at
32K, performance only dropped by 4.4%. The contributions of this work are summarized as follows:

• We observe the phenomenon of lazy layers in long-context LLMs and propose two strategies for
identifying them at either the prefilling or decoding stage.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

• We introduce SimLayerKV, a simple yet effective method for reducing inter-layer KV cache re-
dundancies that can be implemented with only seven lines of code.

• Our SimLayerKV achieves a KV cache compression ratio of 5× with only a 1.2% drop in perfor-
mance on the LongBench benchmark on three representative LLMs.

2 RELATED WORK

Due to the autoregressive architectures of transformer-based LLMs, the key and value states of
previously generated tokens can be stored as the KV cache, which facilitates the generation of sub-
sequent tokens without redundant computations. However, despite its benefits, caching introduces
a significant bottleneck during inference as it must reside in GPU memory. Several works (Prabhu
et al., 2024; Kwon et al., 2023; Lin et al., 2024; Ye et al., 2024) have focused on optimizing KV
cache memory at the system level. Other research has investigated reducing KV cache memory re-
quirements by modifying model architectures (Shazeer, 2019; Brandon et al., 2024; Goldstein et al.,
2024; Nawrot et al., 2024; Wang et al., 2024a; Yu et al., 2024). For example, grouped-query attention
(GQA) (Ainslie et al., 2023) divides the query heads into multiple groups, with each sharing its own
set of keys and values. However, these techniques typically need to be applied during pre-training,
which can be resource-intensive.

A different line of research focuses on reducing the KV cache memory usage post pre-training.
Some techniques (Xiao et al., 2023; Li et al., 2024; Wang et al., 2024a; Zhang et al., 2024b; Liu et al.,
2024b; Yang et al., 2024b; Zhang et al., 2024a) identify redundant tokens within each attention layer
and evict their associated KV cache, thereby effectively lowering memory usage. Other methods
(Hooper et al., 2024; Dong et al., 2024a; Yang et al., 2024c; Dong et al., 2024b; Kang et al., 2024;
Sheng et al., 2023) reduce memory consumption by quantizing KV cache from full precision to
lower bit values. However, these methods primarily exploit intra-layer KV cache redundancies
while overlooking those across layers. These techniques are orthogonal to our approach and can
potentially be combined for further improvements.

A distinct line of research (Rajput et al., 2024; Brandon et al., 2024; Wu & Tu, 2024; Liao & Vargas,
2024; Wu & Tu, 2024; Liu et al., 2024a), more closely aligned with our focus, explores the inter-
layer KV cache redundancies. For instance, CLA (Brandon et al., 2024) reduces overall KV cache
storage by reusing the KV cache from the current layer in subsequent layers. Mix Attention (Rajput
et al., 2024) integrates cross-layer cache sharing with sliding window attention, which retains only
a small subset of recent tokens in the KV cache, thereby further reducing memory usage. However,
these methods require additional training, which is computationally demanding. In contrast, Mini-
Cache (Reid et al., 2024) offers a tuning-free solution by merging every two adjacent layers through
spherical interpolation, assuming equal contribution from all layers within the merged set. Our Sim-
LayerKV approach differs by selectively trimming lazy layers, based on the observation that not all
layers contribute equally to the overall generation.

3 PRELIMINARY

Before introducing SimLayerKV, we formalize our notation and provide a brief overview of the gen-
erative inference in autoregressive LLMs, which is the key background knowledge for our method.
We denote the input prompt X = {x0, · · · , xm−1}, representing a sequence of tokens, where m
is the number of tokens in the input prompt, indicating the sequence length. The total number of
tokens, including both the input prompt and the generated responses, is denoted as n. The key and
value cache for token xi are represented by Kxi and Vxi , respectively.

Inference stages. The typical generative LLM inference process involves two stages: (1) Prefilling:
the autoregressive LLM processes the input prompt X by parallel computing, and also saves the KV
cache of each token xi ∈ X , where i = 0, 1, · · · ,m − 1. The output of the last token in this stage
is the first token xm of the response. (2) Decoding: after the prefilling stage is completed, the LLM
generates output tokens xj one by one, where j = m+ 1,m+ 2, · · · , and saves their KV cache. In
each decoding step, a new token xj is generated based on the current token xj−1 and the KV Cache
stored from earlier steps, continuing until a stop criterion is met.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

(a) Layer 0 (b) Layer 10 (c) Layer 20 (d) Layer 30

Decoding

Prefilling

Figure 2: Attention patterns during long-context generation in layers 0, 10, 20, and 30 of the
LLaMA3-8B-Instruct model. The green dashed box outlines the decoding stage. Notably, in certain
layers (e.g., 20), the model predominantly focuses its attention on initial tokens and recent tokens
during the decoding stage, a behavior we identify as characteristic of lazy layers.

Pe
rf

or
m

an
ce

 (%
)

0

25

50

Qasper Musique DuReader GovReport MF-en HotpotQA

Lazy layers only Non-lazy layers only Full

Figure 3: Comparison of the importance of KV cache in lazy and non-lazy layers using LLama3-
8B-Instruct. Performance is evaluated across three settings: 1) lazy layers only: trimming KV cache
in non-lazy layers, 2) non-lazy layers only: trimming KV cache in lazy layers, and 3) full: using the
full KV cache for generation.

4 OBSERVATIONS

In this section, we analyze the attention patterns during the prefilling and decoding phase in long-
context LLMs, providing insights that motivate our approach to reducing KV cache based on the
layer-specific roles in attention allocation. The study is conducted on the LLaMA3-8B-Instruct
model (Dubey et al., 2024) using random samples from the LongBench (Bai et al., 2023) benchmark.
Our key findings are as follows:

Layer behavior in long context LLMs during decoding. Previous research (Xiao et al., 2023) has
shown that a large portion of attention in LLMs tends to focus on semantically unimportant tokens
(e.g., the first few tokens) and the most recent tokens. We refer to this pattern as lazy behavior,
where the model “takes shortcuts” by primarily attending to the beginning and end of the sequence,
similar to someone skimming a paper by only reading the first few words in the abstract and the
conclusion. Although this phenomenon is also known as “attention sink” (Xiao et al., 2023), we
choose to call it “lazy behavior” in our context to better highlight the model’s tendency to overlook
the middle portions of the sequence, emphasizing the shortcut nature. However, in our experiments
(See Table 1 and Table 3), we find that when KV cache are retained for only these tokens across all
layers, the long-context capabilities of LLMs degrade sharply. This raises an important question:
does this lazy behavior disappear when processing long texts?

Through our analysis, we observe that even when handling long texts, many layers continue to
exhibit this lazy behavior during decoding (e.g., about 55% in LLama3-8B-Instruct in LongBench
benchmark). Figure 2 presents the attention patterns across four different layers (0, 10, 20, and
30). We observe that some layers (e.g., layer 0) do not follow a clear pattern in attention weight
distribution, while others (e.g., 20) show a clear lazy behavior pattern. Based on this observation,
we define a lazy layer as one that primarily attends to a limited subset of tokens, including both
the initial tokens Xinitial = {x0, x1, x2, x3} and recent w tokens Xrecent, while allocating minimal
attention to the rest of the tokens in the sequence during decoding stage. Intuitively, this suggests
that in these lazy layers, most of the KV cache can be dropped, retaining only the portions the model
relies on during its “shortcut” behavior, i.e., Xinitial and Xrecent.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Prefilling stage Decoding stage

Figure 4: Visualization of attention weights for each token (x-axis) with respect to the initial tokens
and the most recent 1024 tokens during the prefilling and decoding stages on LLama3-8B-Instruct,
across all layers (y-axis), using a randomly selected sample. Layers with predominantly higher
attention on the initial and recent tokens {Xinitial, Xrecent} (indicated by red areas) are referred to as
lazy layers. The brown dashed box outlines one such lazy layer.

Lazy layer is less important than non-lazy layer. Although attention scores in lazy layers are
concentrated on certain tokens, this does not necessarily indicate that these layers are unimportant
for long-context capability. To investigate this further, we conduct experiments on 6 random se-
lected tasks from the LongBench benchmark (Bai et al., 2023), including Qasper (Dasigi et al.,
2021), Dureader (He et al., 2017), Musique (Trivedi et al., 2022), GovReport (Huang et al., 2021),
MultiFieldQA-en (Bai et al., 2023), and HotpotQA (Yang et al., 2018). We test the effect of trim-
ming most of the KV cache, retaining only the cache for {Xinitial, Xrecent} in two scenarios: (1) lazy
layers, and (2) non-lazy layers. For a fair comparison, the number of trimmed layers is kept similar
in both settings. We also evaluate the vanilla setting, which uses a complete KV cache, for reference.

As shown in Figure 3, trimming the KV cache in non-lazy layers lead to a significant performance
drop, with an average decrease of 7.4%. Interestingly, trimming the KV cache in lazy layers results
in only an average 1.5% decrease. These results suggest that lazy layers contribute less to the
model’s overall performance compared to non-lazy layers.

Layer behavior remains consistent for a given input. To further explore whether a layer
consistently functions as a lazy layer during generation, we visualize the attention weights for
{Xinitial, Xrecent} across all layers for all generated tokens in Figure 4, using a randomly selected
sample (additional examples are provided in Figure 7). Notably, for a given input prompt, layers
that exhibit lazy behavior maintain this pattern relatively consistently across tokens. This suggests a
certain degree of stability in attention dynamics throughout the generation process.

5 METHODOLOGY: SIMLAYERKV

In this section, we introduce our method SimLayerKV for reducing inter-layer KV cache usage
in LLMs by leveraging the concept of lazy layers to optimize memory efficiency across layers.
Empirical observations in Section 4 reveal that in certain layers, LLMs tend to take shortcuts by
predominantly allocating attention weights to the initial and most recent tokens, denoted as Xinitial
and Xrecent, respectively. We refer to these layers as lazy layers because they contribute less to
modeling long-range dependencies compared to non-lazy layers. Notably, whether a layer functions
as lazy remains relatively consistent given a specific input sequence. This consistency suggests that
attention patterns can be predicted from the allocation during the generation of previous tokens,
enabling early identification of lazy layers in the generation process.

Based on our observations of lazy layers, we aim to optimize memory usage by trimming the KV
cache in these layers. Some existing approaches have attempted to optimize attention mechanisms
at different layers. For instance, Gemma 2 (Team et al., 2024) employs a predefined mixture of full
attention and sliding window attention across different layers during training, treating certain layers
as lazy layers. However, this approach relies on a fixed, predefined structure and lacks adaptability

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

to the input data. In contrast, our method dynamically identifies lazy layers based on their attention
allocation patterns, without the need for additional tuning or predefined settings. This dynamic
identification allows our model to more flexibly optimize KV cache usage, adapting to different
input data more efficiently. Our approach consists of two components: identifying the function of
each layer (i.e., whether a layer is lazy) and trimming the KV cache in those identified lazy layers.

5.1 IDENTIFYING THE LAYER FUNCTION

To apply SimLayerKV, the first step is to identify which layers function as lazy layers based on
their attention allocation patterns. Once these layers are identified, we can proceed to trim their KV
cache to optimize memory usage. In the following, we detail our strategies for identifying the layer
function. Corresponding to the two stages of the inference process (i.e., prefilling and decoding),
we propose two different identification strategies.

1) Last tokens in prefilling: We analyze the attention weight allocation when processing the last
wlast processed tokens Xlast = {xm−wlast+1, · · · , xm} to identify lazy layers during prefilling. For
each layer l, we calculate the average attention weights directed toward the Xinitial and Xrecent for
all tokens in Xlast. If this average exceeds a predefined threshold δ, we classify the layer l as lazy;
otherwise, it is considered non-lazy. This can be formalized as:

Function[l] =

{
lazy layer, if 1

wlast

(∑
x̂∈Xlast

(∑
x∈{Xinitial,Xrecent} Al(x̂, x)

))
> δ,

non-lazy layer, otherwise,
(1)

where Al(x̂, x) represents the attention weight from token x̂ to token x in layer l and the threshold
δ is a predefined hyper-parameter.

2) First token in decoding: We assess the attention weight distribution when generating the first
token xm+1 during the decoding phase to identify lazy layers. Specifically, for each layer l, if the
attention weights directed toward {Xinitial, Xrecent} when generating xm+1 exceed δ, we classify the
layer as lazy; otherwise, it is not considered lazy. This can be formalized as:

Function[l] =

{
lazy layer, if

∑
x∈{Xinitial,Xrecent} Al(xm+1, x) > δ,

non-lazy layer, otherwise.
(2)

Remark. During the prefilling stage, flash attention (Dao, 2023) is commonly used to acceler-
ate computations. However, flash attention does not return explicit attention weights, making it
challenging to apply the lazy layer identification strategy without recomputing the attention scores,
which would introduce additional computational overhead. In contrast, during the decoding stage,
tokens are generated one at a time without using flash attention, so the attention weights are read-
ily available. This allows us to apply our identification strategy without extra computation. In our
experiment (See Table 6), we find the performance of the two strategies is comparable, with no
significant differences.

5.2 CACHE STRATEGY

Once lazy layers have been identified, we proceed to trim the KV cache for these specific layers.
Lazy layers are characterized by their significant attention allocation to a limited subset of tokens,
namely {Xinitial, Xrecent}. Thus we retain only the KV cache corresponding to these tokens within
lazy layers. This selective retention strategy is similar to approaches used in methods like Gemma
2 (Team et al., 2024), which also retain KV cache for recent tokens in predefined layers.

Specifically, for any lazy layer l, we trim its KV cache by retaining only those of tokens in
{Xinitial, Xrecent}. Otherwise, we retain the full cache. This process can be expressed as:

Cache[l] =
{
{Kinitial, Vinitial,Krecent, Vrecent}, if Function[l] = lazy layer,
full KV, otherwise,

(3)

where Cache[l] represents the KV cache for layer l.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Table 1: Performance comparison of SimLayerKV and baseline methods on LLaMA-2-7B-chat,
LLaMA-3-8B-Instruct, and Mistral-7B-Intruct using LongBench. Bold denotes the best method,
and the second best if the top method is Full KV.

Single-Doc. QA Muti.-Doc. QA Summary Few-shot Syn. Code

Av
er

ag
e

N
rt

vQ
A

Q
as

pe
r

M
F-

en

H
ot

po
tQ

A

M
us

iq
ue

D
uR

ea
de

r

G
ov

R
ep

or
t

Q
M

Su
m

M
ul

tiN
ew

s

T
R

E
C

Tr
iv

ia
Q

A

SA
M

Su
m

PC
ou

nt

PR
e

L
C

C

R
B

-P

LLaMA2-7B-chat
Full 18.5 18.3 36.4 26.3 7.6 7.9 26.9 21.0 26.0 64.0 83.2 41.1 4.5 7.0 59.9 54.7 31.5
Str. 13.0 12.6 26.7 23.5 4.5 4.4 21.1 19.9 24.2 61.0 82.8 38.9 3.5 3.5 59.0 52.2 28.2
Mini. 13.1 13.3 27.5 14.9 4.1 9.8 21.5 20.9 24.3 63.0 83.1 35.1 3.8 3.5 53.4 46.5 27.4

+Q. 16.4 13.9 29.4 14.1 3.9 9.7 21.4 20.5 24.4 61.5 79.1 31.1 2.3 1.0 53.1 46.2 26.7
Ours 18.4 17.3 30.9 27.3 7.7 7.2 26.3 20.4 26.3 64.0 83.5 40.7 2.5 2.0 60.3 54.9 30.6

+Q. 17.3 16.5 31.5 27.7 8.5 6.9 26.6 20.5 26.3 62.5 81.8 39.8 4.0 2.5 57.5 51.9 30.1

LlaMA-3-8B-Instruct
Full 23.4 36.9 45.2 47.0 23.1 20.1 28.8 23.3 27.0 73.5 90.6 42.0 3.5 72.0 58.1 51.3 41.6
Str. 19.5 23.8 28.5 40.5 16.8 12.1 22.8 21.4 25.4 66.0 86.6 40.2 3.5 72.0 59.7 54.2 37.1
Mini. 18.8 30.3 31.6 36.2 18.6 15.9 23.8 20.1 25.5 74.5 84.5 37.4 4.9 64.8 48.5 45.3 36.3

+Q. 17.5 28.3 30.8 35.9 19.0 15.9 23.9 19.6 25.8 73.5 84.2 36.8 4.5 65.3 49.1 45.3 35.9
Ours 23.6 34.7 43.9 48.0 22.5 17.0 26.2 22.5 26.2 73.5 89.3 40.6 3.5 72.5 58.0 50.7 40.8

+Q. 23.6 33.6 42.5 45.4 21.8 17.3 25.8 23.0 26.0 72.4 89.6 40.3 3.2 70.6 60.0 49.8 40.3

Mistral-7B-Instruct
Full 29.3 41.1 54.8 43.8 26.8 32.3 33.8 24.3 28.0 74.0 88.4 47.2 3.5 63.0 61.4 61.8 44.6
Str. 21.3 27.5 31.7 39.5 17.9 17.7 24.3 20.5 25.6 67.5 87.0 45.5 3.5 54.0 61.8 58.9 37.8
Mini. 22.2 32.1 44.8 41.7 23.0 20.3 24.8 21.3 26.0 65.0 86.7 40.4 3.5 46.0 52.8 47.9 37.4

+Q. 22.2 31.4 42.8 41.0 22.8 20.1 24.4 21.6 25.9 66.0 86.3 40.2 3.5 47.0 52.4 47.4 37.2
Ours 25.0 37.7 56.4 43.7 26.4 33.5 33.1 23.4 27.4 74.0 88.1 47.1 3.5 64.5 62.3 61.3 44.2

+Q. 25.1 38.7 56.5 44.4 27.2 31.0 31.6 23.7 27.1 73.9 88.4 46.4 3.5 61.0 60.3 60.0 43.7

6 EXPERIMENTS

In this section, we empirically validate that SimLayerKV can accelerate decoding while maintaining
long-text capabilities and uncover several insightful findings.

6.1 SETTINGS

Baselines. To evaluate the effectiveness of our proposed SimLayerKV, we compare it against the
following baselines: 1) Full KV (Full): A method that retains KV cache for all tokens at each layer
during generation. 2) Streaming LLM (Str.) (Xiao et al., 2023): An intra-layer KV cache reduction
technique that keeps only the KV cache for the first four tokens and the most recent w tokens at each
attention layer during generation. 3) MiniCache (Mini.) (Liu et al., 2024a): An inter-layer KV cache
reduction method that merges KV cache of every two adjacent layers after the model’s midpoint
using spherical interpolation while retaining important tokens to reduce cache storage. Additionally,
for both MiniCache and our SimLayerKV, we evaluate their performance when combined with 4-bit
quantization (Liu et al., 2024c) to assess their compatibility with quantization techniques.

Datastes and evaluation metrics. To evaluate SimLayerKV’s performance on tasks with long-
context inputs, we test it on the LongBench benchmark (Bai et al., 2023) and compare the re-
sults with baseline methods. LongBench is a multi-task benchmark designed to assess the long-
context capabilities of LLMs, consisting of datasets that span various tasks such as single-document
QA (Kočiskỳ et al., 2018; Dasigi et al., 2021), multi-document QA (Yang et al., 2018; Ho et al.,
2020; Trivedi et al., 2022; He et al., 2017), summarization (Huang et al., 2021; Zhong et al., 2021;
Fabbri et al., 2019; Wu et al., 2023), few-shot learning (Joshi et al., 2017; Gliwa et al., 2019; Joshi
et al., 2017; NLPCC, 2014), synthetic tasks (Raffel et al., 2020), and code generation (Guo et al.,
2023; Liu et al., 2023). For evaluation, we use the metrics recommended by LongBench. Addi-
tionally, we provide the compression ratios for both the number of layers and memory usage of the
KV cache. For layers, the ratio is calculated as the total number of layers divided by the number of

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

layers with reduced KV cache. For the KV cache, the ratio is the original memory usage divided by
the memory usage after compression. Due to space constraints, we only include the performance of
16 randomly selected tasks out of the 21 LongBench tasks in the main text. The performance on the
remaining 5 tasks is provided in Appendix A.3 Table 9.

We also evaluate whether SimLayerKV can preserve in-context retrieval capabilities while trim-
ming KV cache in lazy layers. The evaluation is conducted on the Needle-In-A-Haystack (NIAH)
benchmark (Kamradt, 2023) including various types and quantities of needles, along with tasks such
as aggregation for common/frequent words, question answering (QA), and multi-hop variable trac-
ing (VT), all provided by the Ruler benchmark (Hsieh et al., 2024). We report the performance of
Mistral-7B-Instruct with input context lengths of 4K, 8K, 16K, and 32K. The evaluation is conducted
using the metrics recommended by Ruler.

Implementation details. Our experiments are based on widely used LLMs, specifically LLaMa2-
7B-chat (Touvron et al., 2023), LLaMa3-8B-Instruct (Dubey et al., 2024), and Mistral-7B-
Instruct (Jiang et al., 2023). The input context window sizes are 4K, 8K, and 32K, with average
tokenized sequence lengths of approximately 13K, 10K, and 12K in LongBench. It is worth noting
that we do not use different thresholds for each task. Instead, we search for the optimal threshold
based on the synthetic Need-in-a-Haystack task and apply the same threshold across all tasks in dif-
ferent benchmarks. The thresholds (δ) for the models are 0.65, 0.9, and 0.8 respectively. We adopt a
generative format where answers are produced using greedy decoding for all tasks. We chose the first
token identification strategy during the decoding stage in our experiments. For MiniCache, as the
code was not open-sourced before our submission, we reimplemented it based on the original paper
and the SLERP (Shoemake, 1985) code it references. We followed all the hyper-parameters outlined
in the paper, except for the number of retention tokens. To ensure a fair comparison, we set the num-
ber of retention tokens to 1024, matching the window size w used in our SimLayerKV method. Note
that even with the same retention window size, MiniCache’s compression ratio is still lower than that
of our SimLayerKV as shown in Table 2. All the experiments are conducted using NVIDIA A100.

6.2 EXPERIMENTS ON LONGBENCH

Table 2: Comparison Ratio of layer and KV cache memory on
LongBench. The higher the ratio, the better the performance
in terms of compression efficiency. Bold denotes the method
with the highest compression ratio.

LLaMA2-7B LLaMA-3-8B Mistral-7B
Layers KV Layers KV Layers KV

MiniCache 1.33× 1.27× 1.33× 1.25× 1.33× 1.26×
+ 4bit Q. 1.33× 3.95× 1.33× 3.88× 1.33× 3.92×

SLKV(ours) 1.39× 1.35× 2.04× 1.85× 1.83× 1.71×
+ 4bit Q. 1.35× 4.11× 1.96× 5.57× 1.81× 5.26×

Table 1 summarizes the perfor-
mance across various tasks in
the LongBench (Bai et al., 2023)
benchmark, and Table 2 shows the
corresponding compression ratio.
We have the following findings:

LLMs exhibit redundancy
across layers. Table 2 demon-
strates that MiniCache and our
SimLayerKV achieve average
layer compression ratios of 1.33×
and 1.75×, respectively. Our
SimLayerKV demonstrates notably higher compression ratios in models with strong long-context
capabilities (i.e., LLaMA-3-8B-Instruct and Mistral-7B-Instruct) than in those with weaker ones
(i.e., LLaMA-2-7B-chat). Meanwhile, as indicated in Table 1, while MiniCache shows some
limitations, our SimLayerKV allows the model to continue effectively managing long-text tasks
with minimal loss in performance (i.e., an average drop of 0.7%). After integrating 4-bit quanti-
zation, our SimLayerKV achieves a remarkable compression rate of 4.98× on average, while still
maintaining robust performance. Compared to SimLayerKV without quantization, the average
performance drop is only 0.5%.

SimLayerKV outperforms MiniCache on average. Unlike MiniCache, our approach does not rely
on complex interpolation and retention strategies to merge KV cache from different layers. Instead,
we simply identify lazy layers based on the attention weight patterns and trim the KV cache in those
layers. Additionally, our method seamlessly integrates reduction into the decoding process. More
importantly, as shown in Table 1 and Table 2, our results show a clear advantage over MiniCache,
whether or not combined with quantization, achieving 4.8% higher performance and a 1.29× greater
KV cache compression ratio, further emphasizing the efficiency and effectiveness of our approach.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Table 3: Performance comparison of SimLayerKV and baseline methods on Ruler benchmark using
Mistral-7B-Instruct. NIAH: Needle-In-A-Haystack, S: Single Key, MK: Multi-Keys, MV: Multi-
Values, MQ: Multi-Queries, CWE: Common Words Extraction, FWE: Frequent Words Extraction,
QA: Question Answering, VT: Variable Tracking. Bold denotes the best method, and the second
best if the top method is Full KV.

Context
Length Method Retrieval: NIAH Aggregation QA VT Avg.

S MK MV MQ CWE FWE

4096

Full 99.9 99.4 87.2 99.3 99.5 85.9 64.1 99.4 91.8
MiniCache 37.2 18.1 20.6 30.9 77.3 77.4 55.8 77.8 49.4
SimLayerKV 99.7 99.4 87.6 84.0 98.9 86.9 63.6 98.5 89.8

8192
Full 99.9 98.5 79.5 97.9 95.4 76.1 61.8 98.3 88.4
MiniCache 21.6 5.3 7.9 12.4 31.0 53.8 46.0 55.0 29.1
SimLayerKV 99.8 98.6 79.0 89.1 87.8 76.1 60.4 95.0 85.7

16384
Full 99.9 95.1 81.8 96.3 89.4 96.9 58.8 94.1 89.0
MiniCache 14.0 1.2 3.1 3.1 15.9 49.3 38.3 34.0 19.9
SimLayerKV 99.8 94.8 81.8 90.5 73.4 89.3 57.4 90.5 84.7

32768
Full 96.6 78.9 87.0 93.9 75.1 93.3 51.2 92.4 83.5
MiniCache 5.5 0.7 0.5 0.8 7.5 20.3 30.5 22.1 11.0
SimLayerKV 96.7 78.2 86.2 91.1 48.6 88.5 52.1 91.7 79.1

NarrativeQA

R
ou
ge
-L

19.0

22.0

25.0

Threshold

0 0.2 0.4 0.6 0.8 1

23.423.6

22.822.622.522.5

19.5 Stream

Multifieldqa_En

F1

25.0

37.5

50.0

Threshold

0 0.2 0.4 0.6 0.8 1

45.2
43.9

40.7

35.034.734.7

28.5 Stream

HotpotQA

F1

38.0

44.0

50.0

Threshold

0 0.2 0.4 0.6 0.8 1

47.0
48.0

44.2

42.2
41.741.7

40.5

Stream

MuSiQue

F1

15.0

20.0

25.0

Threshold

0 0.2 0.4 0.6 0.8 1

23.1
22.5

21.3

19.519.119.1

16.8
Stream

Figure 5: Effect of threshold δ on lazy layer identification using LLama3-8B-Instruct: Increasing
the threshold results in more layers being identified as non-lazy rather than lazy.

6.3 EXPERIMENTS ON RULER

Table 3 summarizes the performance across various tasks in the Ruler (Hsieh et al., 2024) bench-
mark, with the context length ranging from 4K to 32K. We find that SimLayerKV maintains strong
performance on the Single Key, Multiple Keys, and Multiple Values Needle-In-A-Haystack (NIAH)
tasks, exhibiting minimal to no degradation. For example, even with a 32K input context, SimLay-
erKV results in only a slight performance drop of 0.47% compared to the full KV cache. Our method
also performs well on the Question Answering and Variable Tracking tasks, which involve long con-
text capabilities similar to NIAH. However, we observe a performance drop (8.2% on average) on
the Mutliple Queries NIAH with SimLayerKV. This may be due to the data-dependent nature of lazy
layer identification in our approach. Ideally, varying the number of queries should lead to different
layers being identified as lazy and reduced accordingly, but currently, the same layers are reduced
regardless of the query count. We also observe a similar phenomenon in aggregation tasks. Although
the Common Words Extraction (CWE) and Frequent Words Extraction (FWE) tasks are quite simi-
lar, both aiming to return the top-K frequent words in the context, our method shows a significantly
more pronounced decline in performance on CWE. One possible reason is that, in the FWE task, the
value of K is consistently fixed at 3, while in the CWE task, K increases with the context length,
making the task progressively more challenging for our method. In addition, we measure throughput
under the maximum batch size for input sequence lengths of 4K, 8K, 16K, and 32K using LLaMA-
3-8B. The throughput (tokens/s) for SimLayerKV relative to the Full method was 1.44×, 1.78×,
2.17×, and 1.75×, respectively, suggesting our method can increase the throughput effectively.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

(d) SimLayerKV (ours)

lazy

lazy

Layer 0

Layer N

…
…

Layer 16

…
…

(a) Full (b) Pyramid (c) Random

Pe
rf

or
m

an
ce

 (%
)

17

21.5

26

MuSiQue NarrativeQA

Pyramid Random [0,16) Random [16,32)
Random [0,32) SLKV-prefill SLKV-decoding
Full

(e)
Pe

rf
or

m
an

ce
 (%

)

25

41

57

Multifieldqa_En HotpotQA

Pyramid Random [0,16) Random [16,32)
Random [0,32) SLKV-prefill SLKV-decode
Full

(f)

Figure 6: Different strategies for dropping KV cache at the layer level and their performance
on LLama3-8B-Instruct: 1) Full: Use full KV cache for all layers. 2) Pyramid: KV cache are
progressively reduced as the layers increase, forming a pyramid-like structure. 3) Random: Drop the
KV cache in randomly selected layers within the ranges [0, 16), [16, 32), and [0, 32). 4) Our Sim-
LayerKV (SLKV): Identify lazy layers during either the prefilling or decoding stages, and trim the
KV cache accordingly. We keep a same number of dropped KV cache for all strategies, except Full.

6.4 ABLATION STUDIES & ANALYSIS

Impact of threshold on lazy layer identification. To assess the impact of the threshold δ in iden-
tifying lazy layers, we conduct an ablation analysis using the LLama3-8B-Instruct model, varying δ
from 0, 0.2, up to 1. As illustrated in Figure 5, we observe that as the threshold increases, the model’s
performance shows little to no change or only slow improvement initially. However, after exceeding
0.6, the performance improves rapidly, and by 0.9, it approaches the performance seen when the
threshold equals 1 in most tasks. This indicates that as the threshold increases, the likelihood of
accurately identifying and trimming truly lazy layers increases, allowing the model to maintain high
performance while reducing unnecessary computations.

Effect of different strategies for dropping KV cache at layer level. As shown in Figure 6 (a-d),
we experiment with four different strategies. We ensured the same number of dropped KV cache
for each strategy, except for Full. The results shown in Figure 6 (e-f) indicate significant reductions
for Pyramid and Random strategies, suggesting that the predefined expectations about each layer’s
function may not fully align with their actual roles. Moreover, the performance difference between
SLKV-prefill and SLKV-decode strategies is minimal, with only slight reductions compared to the
full KV cache (0.20% and 0.28% on average, respectively). This indicates that both approaches are
effective in reducing cache usage while maintaining performance, regardless of whether lazy layers
are identified during the prefilling or decoding stages.

7 CONCLUSION

In this work, we introduced SimLayerKV, a simple yet effective method for compressing the KV
cache in LLMs. By identifying lazy layers and trimming their KV cache, SimLayerKV effectively
reduced inter-layer KV cache redundancies. Experiments on three different LLMs across 16 datasets
from the LongBench benchmark demonstrated that SimLayerKV, with only seven lines of code,
achieves a KV cache compression ratio of 5× with only a 1.2% drop in performance when combined
with 4-bit quantization. For future work, we aim to combine our inter-layer KV cache compression
method, SimLayerKV, with other powerful intra-layer compression methods like H2O (Zhang et al.,
2024b) to further enhance performance and efficiency.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REPRODUCIBILITY STATEMENT

We have taken several steps to ensure the reproducibility of our results. Detailed descriptions of
the experimental setup, including hyper-parameters, base models, and datasets, are provided in Sec-
tion 6.1. Meanwhile, both the datasets and base models used in our experiments are open-sourced
and readily available. Additionally, we provide an anonymous source code in the supplemental
materials.

REFERENCES

Joshua Ainslie, James Lee-Thorp, Michiel de Jong, Yury Zemlyanskiy, Federico Lebrón, and Sumit
Sanghai. Gqa: Training generalized multi-query transformer models from multi-head check-
points. arXiv preprint arXiv:2305.13245, 2023.

Yushi Bai, Xin Lv, Jiajie Zhang, Hongchang Lyu, Jiankai Tang, Zhidian Huang, Zhengxiao Du,
Xiao Liu, Aohan Zeng, Lei Hou, et al. Longbench: A bilingual, multitask benchmark for long
context understanding. arXiv preprint arXiv:2308.14508, 2023.

William Brandon, Mayank Mishra, Aniruddha Nrusimha, Rameswar Panda, and Jonathan Ragan
Kelly. Reducing transformer key-value cache size with cross-layer attention. arXiv preprint
arXiv:2405.12981, 2024.

Tri Dao. Flashattention-2: Faster attention with better parallelism and work partitioning. arXiv
preprint arXiv:2307.08691, 2023.

Pradeep Dasigi, Kyle Lo, Iz Beltagy, Arman Cohan, Noah A Smith, and Matt Gardner. A dataset
of information-seeking questions and answers anchored in research papers. arXiv preprint
arXiv:2105.03011, 2021.

Harry Dong, Xinyu Yang, Zhenyu Zhang, Zhangyang Wang, Yuejie Chi, and Beidi Chen. Get more
with less: Synthesizing recurrence with kv cache compression for efficient llm inference. arXiv
preprint arXiv:2402.09398, 2024a.

Shichen Dong, Wen Cheng, Jiayu Qin, and Wei Wang. Qaq: Quality adaptive quantization for llm
kv cache. arXiv preprint arXiv:2403.04643, 2024b.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd of models.
arXiv preprint arXiv:2407.21783, 2024.

Alexander R Fabbri, Irene Li, Tianwei She, Suyi Li, and Dragomir R Radev. Multi-news: A large-
scale multi-document summarization dataset and abstractive hierarchical model. arXiv preprint
arXiv:1906.01749, 2019.

Bogdan Gliwa, Iwona Mochol, Maciej Biesek, and Aleksander Wawer. Samsum corpus: A human-
annotated dialogue dataset for abstractive summarization. arXiv preprint arXiv:1911.12237,
2019.

Daniel Goldstein, Fares Obeid, Eric Alcaide, Guangyu Song, and Eugene Cheah. Goldfinch: High
performance rwkv/transformer hybrid with linear pre-fill and extreme kv-cache compression.
arXiv preprint arXiv:2407.12077, 2024.

Andrey Gromov, Kushal Tirumala, Hassan Shapourian, Paolo Glorioso, and Daniel A Roberts. The
unreasonable ineffectiveness of the deeper layers. arXiv preprint arXiv:2403.17887, 2024.

Daya Guo, Canwen Xu, Nan Duan, Jian Yin, and Julian McAuley. Longcoder: A long-range pre-
trained language model for code completion. In International Conference on Machine Learning,
pp. 12098–12107. PMLR, 2023.

Wei He, Kai Liu, Jing Liu, Yajuan Lyu, Shiqi Zhao, Xinyan Xiao, Yuan Liu, Yizhong Wang, Hua
Wu, Qiaoqiao She, et al. Dureader: a chinese machine reading comprehension dataset from real-
world applications. arXiv preprint arXiv:1711.05073, 2017.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Xanh Ho, Anh-Khoa Duong Nguyen, Saku Sugawara, and Akiko Aizawa. Constructing a multi-hop
qa dataset for comprehensive evaluation of reasoning steps. arXiv preprint arXiv:2011.01060,
2020.

Coleman Hooper, Sehoon Kim, Hiva Mohammadzadeh, Michael W Mahoney, Yakun Sophia Shao,
Kurt Keutzer, and Amir Gholami. Kvquant: Towards 10 million context length llm inference with
kv cache quantization. arXiv preprint arXiv:2401.18079, 2024.

Cheng-Ping Hsieh, Simeng Sun, Samuel Kriman, Shantanu Acharya, Dima Rekesh, Fei Jia, and
Boris Ginsburg. Ruler: What’s the real context size of your long-context language models? arXiv
preprint arXiv:2404.06654, 2024.

Luyang Huang, Shuyang Cao, Nikolaus Parulian, Heng Ji, and Lu Wang. Efficient attentions for
long document summarization. arXiv preprint arXiv:2104.02112, 2021.

Albert Q Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh Chaplot,
Diego de las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lucile Saulnier, et al.
Mistral 7b. arXiv preprint arXiv:2310.06825, 2023.

Mandar Joshi, Eunsol Choi, Daniel S Weld, and Luke Zettlemoyer. Triviaqa: A large scale distantly
supervised challenge dataset for reading comprehension. arXiv preprint arXiv:1705.03551, 2017.

Gregory Kamradt. Needle in a haystack - pressure testing llms. https://github.com/gkamradt/
LLMTestNeedleInAHaystack/tree/main, 2023. GitHub repository.

Hao Kang, Qingru Zhang, Souvik Kundu, Geonhwa Jeong, Zaoxing Liu, Tushar Krishna, and Tuo
Zhao. Gear: An efficient kv cache compression recipefor near-lossless generative inference of
llm. arXiv preprint arXiv:2403.05527, 2024.

Tomáš Kočiskỳ, Jonathan Schwarz, Phil Blunsom, Chris Dyer, Karl Moritz Hermann, Gábor Melis,
and Edward Grefenstette. The narrativeqa reading comprehension challenge. Transactions of the
Association for Computational Linguistics, 6:317–328, 2018.

Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying Sheng, Lianmin Zheng, Cody Hao Yu, Joseph
Gonzalez, Hao Zhang, and Ion Stoica. Efficient memory management for large language model
serving with pagedattention. In Proceedings of the 29th Symposium on Operating Systems Prin-
ciples, pp. 611–626, 2023.

Yuhong Li, Yingbing Huang, Bowen Yang, Bharat Venkitesh, Acyr Locatelli, Hanchen Ye, Tianle
Cai, Patrick Lewis, and Deming Chen. Snapkv: Llm knows what you are looking for before
generation. arXiv preprint arXiv:2404.14469, 2024.

Bingli Liao and Danilo Vasconcellos Vargas. Beyond kv caching: Shared attention for efficient llms.
arXiv preprint arXiv:2407.12866, 2024.

Bin Lin, Tao Peng, Chen Zhang, Minmin Sun, Lanbo Li, Hanyu Zhao, Wencong Xiao, Qi Xu,
Xiafei Qiu, Shen Li, et al. Infinite-llm: Efficient llm service for long context with distattention
and distributed kvcache. arXiv preprint arXiv:2401.02669, 2024.

Akide Liu, Jing Liu, Zizheng Pan, Yefei He, Gholamreza Haffari, and Bohan Zhuang. Minicache:
Kv cache compression in depth dimension for large language models. NeurIPS, 2024a.

Tianyang Liu, Canwen Xu, and Julian McAuley. Repobench: Benchmarking repository-level code
auto-completion systems. arXiv preprint arXiv:2306.03091, 2023.

Zichang Liu, Aditya Desai, Fangshuo Liao, Weitao Wang, Victor Xie, Zhaozhuo Xu, Anastasios
Kyrillidis, and Anshumali Shrivastava. Scissorhands: Exploiting the persistence of importance
hypothesis for llm kv cache compression at test time. Advances in Neural Information Processing
Systems, 36, 2024b.

Zirui Liu, Jiayi Yuan, Hongye Jin, Shaochen Zhong, Zhaozhuo Xu, Vladimir Braverman, Beidi
Chen, and Xia Hu. Kivi: A tuning-free asymmetric 2bit quantization for kv cache. arXiv preprint
arXiv:2402.02750, 2024c.

12

https://github.com/gkamradt/LLMTestNeedleInAHaystack/tree/main
https://github.com/gkamradt/LLMTestNeedleInAHaystack/tree/main

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Piotr Nawrot, Adrian Łańcucki, Marcin Chochowski, David Tarjan, and Edoardo M Ponti. Dy-
namic memory compression: Retrofitting llms for accelerated inference. arXiv preprint
arXiv:2403.09636, 2024.

NLPCC. Task definition for large scale text categorization at nlpcc 2014. http://tcci.ccf.org.
cn/conference/2014/dldoc/evatask6.pdf, 2014.

Ramya Prabhu, Ajay Nayak, Jayashree Mohan, Ramachandran Ramjee, and Ashish Panwar. vat-
tention: Dynamic memory management for serving llms without pagedattention. arXiv preprint
arXiv:2405.04437, 2024.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J Liu. Exploring the limits of transfer learning with a unified text-to-text
transformer. Journal of machine learning research, 21(140):1–67, 2020.

Shashank Rajput, Ying Sheng, Sean Owen, and Vitaliy Chiley. Inference-friendly models with
mixattention. arXiv preprint arXiv:2409.15012, 2024.

Machel Reid, Nikolay Savinov, Denis Teplyashin, Dmitry Lepikhin, Timothy Lillicrap, Jean-
baptiste Alayrac, Radu Soricut, Angeliki Lazaridou, Orhan Firat, Julian Schrittwieser, et al. Gem-
ini 1.5: Unlocking multimodal understanding across millions of tokens of context. arXiv preprint
arXiv:2403.05530, 2024.

Noam Shazeer. Fast transformer decoding: One write-head is all you need. arXiv preprint
arXiv:1911.02150, 2019.

Ying Sheng, Lianmin Zheng, Binhang Yuan, Zhuohan Li, Max Ryabinin, Beidi Chen, Percy Liang,
Christopher Ré, Ion Stoica, and Ce Zhang. Flexgen: High-throughput generative inference of
large language models with a single gpu. In International Conference on Machine Learning, pp.
31094–31116. PMLR, 2023.

Ken Shoemake. Animating rotation with quaternion curves. In Proceedings of the 12th annual
conference on Computer graphics and interactive techniques, pp. 245–254, 1985.

Gemma Team, Morgane Riviere, Shreya Pathak, Pier Giuseppe Sessa, Cassidy Hardin, Surya Bhu-
patiraju, Léonard Hussenot, Thomas Mesnard, Bobak Shahriari, Alexandre Ramé, et al. Gemma
2: Improving open language models at a practical size. arXiv preprint arXiv:2408.00118, 2024.

Qwen Team. Qwen2.5: A party of foundation models, September 2024. URL https://qwenlm.
github.io/blog/qwen2.5/.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Niko-
lay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open founda-
tion and fine-tuned chat models. arXiv preprint arXiv:2307.09288, 2023.

Harsh Trivedi, Niranjan Balasubramanian, Tushar Khot, and Ashish Sabharwal. Musique: Multihop
questions via single-hop question composition. Transactions of the Association for Computational
Linguistics, 10:539–554, 2022.

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc V Le, Ed H Chi, Sharan Narang, Aakanksha
Chowdhery, and Denny Zhou. Self-consistency improves chain of thought reasoning in language
models. In ICLR, 2022.

Zheng Wang, Boxiao Jin, Zhongzhi Yu, and Minjia Zhang. Model tells you where to merge: Adap-
tive kv cache merging for llms on long-context tasks. arXiv preprint arXiv:2407.08454, 2024a.

Zihao Wang, Bin Cui, and Shaoduo Gan. Squeezeattention: 2d management of kv-cache in llm
inference via layer-wise optimal budget. arXiv preprint arXiv:2404.04793, 2024b.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny
Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. NeurIPS, 35:
24824–24837, 2022.

13

http://tcci.ccf.org.cn/conference/2014/dldoc/evatask6.pdf
http://tcci.ccf.org.cn/conference/2014/dldoc/evatask6.pdf
https://qwenlm.github.io/blog/qwen2.5/
https://qwenlm.github.io/blog/qwen2.5/

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Han Wu, Mingjie Zhan, Haochen Tan, Zhaohui Hou, Ding Liang, and Linqi Song. Vcsum: A
versatile chinese meeting summarization dataset. arXiv preprint arXiv:2305.05280, 2023.

Haoyi Wu and Kewei Tu. Layer-condensed kv cache for efficient inference of large language models.
arXiv preprint arXiv:2405.10637, 2024.

Guangxuan Xiao, Yuandong Tian, Beidi Chen, Song Han, and Mike Lewis. Efficient streaming
language models with attention sinks. arXiv preprint arXiv:2309.17453, 2023.

An Yang, Baosong Yang, Binyuan Hui, Bo Zheng, Bowen Yu, Chang Zhou, Chengpeng Li,
Chengyuan Li, Dayiheng Liu, Fei Huang, et al. Qwen2 technical report. arXiv preprint
arXiv:2407.10671, 2024a.

Dongjie Yang, XiaoDong Han, Yan Gao, Yao Hu, Shilin Zhang, and Hai Zhao. Pyramidinfer: Pyra-
mid kv cache compression for high-throughput llm inference. arXiv preprint arXiv:2405.12532,
2024b.

June Yong Yang, Byeongwook Kim, Jeongin Bae, Beomseok Kwon, Gunho Park, Eunho Yang,
Se Jung Kwon, and Dongsoo Lee. No token left behind: Reliable kv cache compression via
importance-aware mixed precision quantization. arXiv preprint arXiv:2402.18096, 2024c.

Zhilin Yang, Peng Qi, Saizheng Zhang, Yoshua Bengio, William W Cohen, Ruslan Salakhutdinov,
and Christopher D Manning. Hotpotqa: A dataset for diverse, explainable multi-hop question
answering. arXiv preprint arXiv:1809.09600, 2018.

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik Narasimhan, and Yuan Cao.
ReAct: Synergizing reasoning and acting in language models. In ICLR, 2023.

Lu Ye, Ze Tao, Yong Huang, and Yang Li. Chunkattention: Efficient self-attention with prefix-aware
kv cache and two-phase partition. arXiv preprint arXiv:2402.15220, 2024.

Alex Young, Bei Chen, Chao Li, Chengen Huang, Ge Zhang, Guanwei Zhang, Heng Li, Jiangcheng
Zhu, Jianqun Chen, Jing Chang, et al. Yi: Open foundation models by 01. ai. arXiv preprint
arXiv:2403.04652, 2024.

Hao Yu, Zelan Yang, Shen Li, Yong Li, and Jianxin Wu. Effectively compress kv heads for llm.
arXiv preprint arXiv:2406.07056, 2024.

Yichi Zhang, Bofei Gao, Tianyu Liu, Keming Lu, Wayne Xiong, Yue Dong, Baobao Chang, Junjie
Hu, Wen Xiao, et al. Pyramidkv: Dynamic kv cache compression based on pyramidal information
funneling. arXiv preprint arXiv:2406.02069, 2024a.

Zhenyu Zhang, Ying Sheng, Tianyi Zhou, Tianlong Chen, Lianmin Zheng, Ruisi Cai, Zhao Song,
Yuandong Tian, Christopher Ré, Clark Barrett, et al. H2o: Heavy-hitter oracle for efficient gen-
erative inference of large language models. Advances in Neural Information Processing Systems,
36, 2024b.

Ming Zhong, Da Yin, Tao Yu, Ahmad Zaidi, Mutethia Mutuma, Rahul Jha, Ahmed Hassan Awadal-
lah, Asli Celikyilmaz, Yang Liu, Xipeng Qiu, et al. Qmsum: A new benchmark for query-based
multi-domain meeting summarization. arXiv preprint arXiv:2104.05938, 2021.

Denny Zhou, Nathanael Schärli, Le Hou, Jason Wei, Nathan Scales, Xuezhi Wang, Dale Schuur-
mans, Claire Cui, Olivier Bousquet, Quoc V Le, et al. Least-to-most prompting enables complex
reasoning in large language models. In ICLR, 2022.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

A APPENDIX

A.1 LIMITATION

While our SimLayerKV has demonstrated significant advantages in inter-layer KV cache compres-
sion, we have primarily focused on combining it with quantization, as quantization is one of the
most widely used techniques. However, there are many other KV cache optimization methods, such
as intra-layer eviction, which are orthogonal to our approach. In this study, we have not explored
the potential of integrating our method with these techniques. In the future, we aim to combine
our method with other optimization strategies, to further improve performance and efficiency. This
will help validate the effectiveness of our method in a broader framework and potentially lead to
even greater performance gains. Meanwhile, for simplicity, we have only explored KV cache re-
dundancies across layers in this work. In the future, we plan to extend our approach to consider
redundancies across attention heads as well.

A.2 PSEUDO CODE

The pseudo-code for SimLayerKV-prefill and SimLayerKV-decoding are in Table 4 and Table 6 re-
spectively. In addition, we also provide the pseudo-code for SimLayerKV-prefill with flash attention
in Table 5. In our experiments, the reduction in throughput compared to the original (assumed to
be 1) is neglectable — between 0.0058 and 0.0014, depending on the sequence length (with longer
sequences experiencing smaller reductions, in the range of 4K to 32K tokens).

Table 4: Pseudo code in torch style for our SimLayerKV-prefilling.
def SLKV prefilling(
query states, # batch size ∗ num heads ∗ seq len ∗ head dim
key states, # batch size ∗ num heads ∗ seq len ∗ head dim
value states, # batch size ∗ num heads ∗ seq len ∗ head dim
window size,
threshold,
):
attn weights = compute attn(query states, key states, attention mask)
lazy weights = compute lazy weights(attn weights)
if lazy weights ≥ threshold:
key states = torch.cat([key states[:,:,0:4],

key states[:,:,-window size:]],dim=-2)
value states = torch.cat([value states[:,:,0:4],

value states[:,:,-window size:]],dim=-2)
return key states, value states

A.3 ADDITIONAL EXPERIMENTS

Comparision with intra-layer KV cache compression methods & Additional LLMs We also
compare SimLayerKV with the intra-layer KV cache compression method SnapKV (Li et al., 2024),
which compresses the KV cache into a fixed length by selecting clustered important KV positions
for each attention head based on attention scores. We use two additional LLMs, i.e., Qwen2.5-3B-
Instruct (Yang et al., 2024a; Team, 2024) and Yi-1.5-9B-Chat (Young et al., 2024). Note that our
SimLayerKV focuses on intra-layer KV cache redundancies while they study inter-layer redundan-
cies, and our approach is orthogonal to them. For the SnapKV method, due to its head-wise KV
eviction mechanism, it necessitates storing KV cache for nq heads instead of the conventional nkv,
where nq is the number of heads for query and nkv is the number of heads for key and value. For
models using the GQA technique, nq = g∗nkv and g is the group number. For example, in Qwen2.5-
3B-Instruct and Yi-1.5-9B-Chat, g is equal to 8. To ensure a fair comparison and create relatively
similar conditions for each method, we standardize the size of recent windows w for SnapKV and
our SimLayerKV to 768 and 1024 respectively. As shown in Table 7, we can see that our Sim-

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Table 5: Pseudo code in torch style for our SimLayerKV-prefilling with flash attention. lse: logsum-
exp. The additional computation introduced by our SimLayerKV is highlighted in blue box .

def SLKV prefilling with flash attn
query states,# batch size ∗ num heads ∗ seq len ∗ head dim
key states, # batch size ∗ num heads ∗ seq len ∗ head dim
value states,# batch size ∗ num heads ∗ seq len ∗ head dim
window size,
threshold,
w last,
w recent,
):
attn out, lse = flash attn(query states, key states, value states,

causal=True, return lse=True)
q last = query states[:, -w last:].permute(0, 2, 1, 3)
k comb = torch.cat([key states[:, 0:w sink], key states[:, -w recent:]],

dim=1).permute(0, 2, 3, 1)
log lazy weight = torch.matmul(q last, k comb).logsumexp(dim=-1) - lse
if log lazy weights ≥ log(threshold):
key states = torch.cat([key states[:,:,0:4],

key states[:,:,-window size:]],dim=-2)
value states = torch.cat([value states[:,:,0:4],

value states[:,:,-window size:]],dim=-2)
return key states, value states

Table 6: Pseudo code in torch style for our SimLayerKV-decoding.
def SLKV decoding(
query states, # batch size ∗ num heads ∗ 1 ∗ head dim
key states, # batch size ∗ num heads ∗ seq len ∗ head dim
value states, # batch size ∗ num heads ∗ seq len ∗ head dim
window size,
threshold,
):
attn weights = compute attn(query states, key states, attention mask)
lazy weights = (attn weight[:,:,:,0:4]

+attn weight[:,:,:,-window size:]).sum(dim=-1).mean(dim=1)
if lazy weights ≥ threshold:
key states = torch.cat([key states[:,:,0:4],

key states[:,:,-window size:]],dim=-2)
value states = torch.cat([value states[:,:,0:4],

value states[:,:,-window size:]],dim=-2)
return key states, value states

LayerKV achieves comparable performance with SnapKV with a slightly higher compression ratio.

Combination with SimLayerKV and intra-layer method SnapKV. To illustrate the orthogo-
nality between inter-layer and intra-layer KV cache compression methods, we provide additional
experiments combining SimLayerKV with SnapKV. In these experiments, SnapKV is applied to
compress the KV cache for non-lazy layers, while SimLayerKV operations are retained for lazy lay-
ers. To maintain consistency with Table 7, we use Qwen2.5-3B-chat-32K in this analysis. As shown
in Table 8, our SimLayerKV can be combined with the intra-layer KV cache compression method
to reduce the KV cache further while maintaining performance. This suggests that SimLayerKV is
orthogonal to existing methods that focus on reducing intra-layer KV cache redundancies.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Table 7: Performance comparison of SimLayerKV and intra-layer KV cache compression models
on Yi-9B-chat-16K and Qwen2.5-3B-chat-32K using LongBench. SKV: snapKV.

Yi-9B-chat-16K Qwen2.5-3B-chat-32K
Full Str. SKV Ours Full Str SKV Ours

Single-Document QA
NrtvQA 26.1 21.3 23.0 26.0 22.6 21.8 21.6 22.1
Qasper 39.7 27.4 38.7 38.2 34.1 24.4 32.9 30.9
MF-en 43.3 28.0 41.5 42.1 44.0 27.1 42.4 43.8
MF-zh 55.8 35.1 55.3 52.4 51.6 32.1 49.9 52.6

Multi-Document QA
HotpotQA 48.2 42.3 47.9 47.0 40.4 35.4 40.5 40.1
2WikiMQA 39.6 35.4 40.0 39.8 38.2 36.5 38.7 37.0
Musique 26.4 21.9 25.0 25.6 16.1 12.0 16.0 16.8
DuReader 26.4 14.9 19.6 25.4 33.7 15.5 24.1 30.2

Summarization
GovReport 33.1 14.7 27.1 32.7 31.8 22.5 22.0 28.7
QMSum 21.7 19.6 22.2 21.6 22.9 20.6 23.0 22.8
MultiNews 25.5 19.5 23.6 25.1 24.7 22.9 22.5 23.8
VCSUM 14.3 13.1 13.1 13.7 15.3 15.0 13.2 14.8

Few-shot Learning
TREC 71.0 67.0 70.4 71.5 66.5 61.0 63.0 67.0
TriviaQA 87.7 85.7 87.3 88.0 87.2 88.0 88.1 88.2
SAMSum 42.8 40.5 40.1 41.1 44.0 42.7 43.5 44.0
LSHT 34.5 22.0 37.0 33.3 34.0 25.5 34.0 34.0

Synthetic Task
PCount 4.0 4.5 2.0 4.5 2.5 4.0 3.5 4.0
PRe 56.0 14.8 62.0 54.3 41.5 37.5 45.0 42.0
PRz 92.5 26.0 89.4 90.5 34.3 14.1 34.3 36.1

Code Completion
LCC 63.4 62.9 64.5 64.0 56.9 55.4 55.1 56.8
RB-P 60.8 57.9 60.2 60.2 56.3 52.8 53.9 55.9

Average 43.5 32.1 42.2 42.7 37.9 35.6 36.5 37.7
Compress. Ratio 1× 13.5× 1.7× 1.8× 1× 9.9× 1.2× 1.7×

Experiment results on other datasets on LongBench datasets Due to space constraints, we only
included the performance of 16 out of the 21 LongBench tasks in the main text. Experiments result
on additional 5 tasks in LongBench datasets can be found in Table 9.

Comparison with additional baselines. We added the comparison with SqueezeAttention (Wang
et al., 2024b) in the LongBench benchmark using LLaMA3-8B-Instruct. The results in Table 10
indicate that SimLayerKV preserves long-context capabilities better than SqueezeAttention under
similar compression ratios. Additionally, SqueezeAttention can not reduce peak memory usage
during prefilling.

Performance on larger models and compression ratio across different datasets. We conduct
additional experiments with LLaMA3-70B-Instruct, and evaluate the compression ratio and corre-
sponding performance of our SimLayerKV (w/o quantization) in tasks from the LongBench bench-
mark. The results in Table 11 show that lazy layers are more noticeably present in larger models,
and our method successfully compresses KV caches while maintaining performance. Furthermore,
we observe that the phenomenon of lazy layers is consistent across different datasets.

Additional ablation studies. We adopt hyperparameters either directly from StreamingLLM (i.e.,
wsink and wrecent), ensuring consistency with established practices in the field, or through preliminary

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Table 8: Experiment results on combining SimLayerKV and intra-layer KV cache compression
method SnapKV using Qwen2.5-3B-chat on LongBench.

Single-Doc. QA Muti.-Doc. QA Summary

N
rt

vQ
A

Q
as

pe
r

M
F-

en

M
F-

zh

H
ot

po
tQ

A

2W
ik

iM
Q

A

M
us

iq
ue

D
uR

ea
de

r

G
ov

R
ep

or
t

Q
M

Su
m

M
ul

tiN
ew

s

V
C

SU
M

Qwen2.5-3B-chat
SnapKV 21.6 32.9 42.4 49.9 40.5 38.7 16.0 24.1 22.0 23.0 22.5 13.2
SnapKV+SimlayerKV 20.2 32.3 43.0 50.0 48.8 37.6 20.7 22.7 21.9 22.8 22.4 12.8

Few-shot Syn. Code

Av
er

ag
e

C
om

p.
R

at
io

T
R

E
C

Tr
iv

ia
Q

A

SA
M

Su
m

L
SH

T

PC
ou

nt

PR
e

PR
z

L
C

C

R
B

-P

Qwen2.5-3B-chat
SnapKV 63.0 88.1 43.5 34.0 3.5 45.0 34.3 55.1 53.9 36.5 1.2×
SnapKV+SimlayerKV 65.5 87.8 43.4 39.0 4.0 43.0 41.0 57.4 53.8 37.6 1.7×

Table 9: Performance comparison of SimLayerKV and baseline methods on LLaMA-2-7B-chat,
LLaMA-3-8B-Instruct, and Mistral-7B-Intruct on additional tasks of LongBench.

MF-zh 2Wiki. VCSum LSHT PRz
LLaMA2-7B-chat
Full 11.3 31.4 0.2 17.3 5.0
Str. 6.7 23.1 0.2 14.8 1.0
Mini. 8.7 19.8 4.4 15.0 0.5

+Q. 8.0 18.6 3.8 13.0 0.5
Ours 9.1 31.6 0.2 17.8 4.5

+Q. 9.3 27.6 0.2 16.0 7.0

LlaMA-3-8B-Instruct
Full 56.1 35.3 14.7 23.5 94.0
Str. 35.2 29.1 12.6 20.0 23.0
Mini. 50.3 30.1 14.7 22.5 80.4

+Q. 51.6 27.9 13.9 23.0 83.4
Ours 55.0 31.8 11.6 23.3 87.0

+Q. 56.1 33.7 13.5 24.0 89.5

Mistral-7B-Instruct
Full 56.7 39.1 15.7 31.3 92.5
Str. 27.2 32.4 14.0 20.5 15.0
Mini. 33.3 35.5 13.5 21.8 23.1

+Q. 31.5 35.1 13.7 21.8 23.1
Ours 57.0 38.6 15.4 31.8 85.5

+Q. 55.7 39.8 15.5 30.0 81.0

experiments (i.e., wlast). We conduct additional experiments to analyze the impact of hyperparam-
eters on model performance. As shown in Table 12, we find the impact of the hyperparameters is
generally within 1 point.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

Table 10: Performance comparison of SimLayerKV and SqueezeAttention under similar compres-
sion ratio with LLaMA3-8B-Instruct on LongBench.

Single-Doc. QA Muti.-Doc. QA Summary Few-shot Syn. Code

Av
er

ag
e

N
rt

vQ
A

Q
as

pe
r

M
F-

en

H
ot

po
tQ

A

M
us

iq
ue

D
uR

ea
de

r

G
ov

R
ep

or
t

Q
M

Su
m

M
ul

tiN
ew

s

T
R

E
C

Tr
iv

ia
Q

A

SA
M

Su
m

PC
ou

nt

PR
e

L
C

C

R
B

-P

LLaMA3-8B-Instruct
SqueezeAttention 20.4 26.9 31.2 41.3 19.5 13.4 24.2 22.4 23.9 73.0 90.8 41.6 3.7 67.0 56.7 51.7 38.0
SimLayerKV 23.6 34.7 43.9 48.0 22.5 17.0 26.2 22.5 26.2 73.5 89.3 40.6 3.5 72.5 58.0 50.7 40.8

Table 11: Performance on larger models (LLaMA3-70B-Instruct), and compression ratio across
different datasets in Longbench benchmark.

NrtvQA VCSUM LCC Average
Full 25.6 15.4 41.6 28.7
SimLayerKV 25.5 13.7 43.5 27.3
Compression Ratio 5.50× 7.16× 5.21× 5.96×

Table 12: Effect of hyperparameters on lazy layer identification using LLama3-8B-Instruct.
NrtvQA VCSUM LCC Average

wsink

2 23.0 47.1 25.8 32.0
4 23.6 48.0 26.2 32.6
8 22.8 47.8 24.7 31.8

wrecent

252 22.6 48.7 24.2 31.8
508 23.9 48.1 25.0 32.3
1020 23.6 48.0 26.2 32.6
2044 22.8 49.8 23.8 32.1

wlast

16 22.3 47.0 25.6 31.6
32 23.6 48.0 26.2 32.6
64 24.0 49.3 24.7 32.7

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

A.4 EXAMPLES ABOUT LAYER BEHAVIOR ACROSS TOKENS

Additional examples of layer behavior across tokens for a given input can be found in Figure 7.
The examples are randomly chosen from LongBench benchmarks. The analysis is conducted using
LLama3-8B-Instruct.

(a) Example 0

(b) Example 1

(c) Example 2

Figure 7: Additional examples about layer behavior across tokens.

20

	Introduction
	Related work
	Preliminary
	Observations
	Methodology: SimLayerKV
	Identifying the layer function
	Cache strategy

	Experiments
	Settings
	Experiments on LongBench
	Experiments on Ruler
	Ablation studies & analysis

	Conclusion
	Appendix
	Limitation
	Pseudo code
	Additional Experiments
	Examples about layer behavior across tokens

