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ABSTRACT

Recent generative pre-trained vision—language (GPTv) models have achieved re-
markable success in multi-modal understanding, inspiring their adaptation to
medical imaging tasks such as disease diagnosis and visual question answering
(VQA). However, current instruction-tuned GPTv models suffer from two key
challenges: (1) medical attributes (e.g., disease names, severity grades) are en-
coded as plain text tokens, collapsing semantically distinct concepts into nearly
identical textual sequences; and (2) inadequate textual supervision weakens vi-
sual representation learning, leading to severe inter-attribute confusion and mis-
aligned vision—language embeddings. To address these limitations, we introduce
attribute tokens (AttTok), a set of pre-defined special tokens that uniquely encode
clinical attributes (e.g., imaging modality, diagnosis, severity) within a structured
token space. Complemented by attribute-centric embedding books, AttTok serves
as anchor points for aligning both visual and textual modalities into a shared, dis-
criminative representation space. Building on this foundation, we design two key
components: an attribute-centric cross attention (ACC) adapter, which breaks the
vision-to-text information-flow bottleneck and enriches the visual encoder with
discriminative attribute knowledge, and an attribute-centric matching (ACM) loss,
which enforces robust multi-modal alignment centered on the attribute tokens.
Extensive experiments on five medical classification benchmarks and three VQA
datasets demonstrate that AttTok substantially improves both discriminative accu-
racy and medical knowledge reasoning, establishing a new paradigm for medical
GPTv models with clinically discriminative understanding.

1 INTRODUCTION

Recent advances in generative pre-trained vision—language (GPTv) models, such as GPT-40 (Hurst
et al., 2024) and Qwen2.5-VL (Bai et al.l [2025), have demonstrated remarkable progress across a
wide range of universal visual understanding tasks (Peng et al.l 2023} |Liu et al., 2024aib). These
achievements have spurred growing interest in developing unified medical GPTv models, resulting in
systems such as LLaVA-Med (Li et al., 2023)), HealthGPT (Lin et al.|[2025), and Lingshu (Xu et al.,
2025). Despite their general capabilities, current medical GPTv models still fall short in disease
diagnosis and classification tasks, particularly when required to deliver precise decision-making on
extensive clinical attributes (e.g., disease names and lesion types) across diverse medical imaging
modalities, as evidenced by the limited zero-shot performance reported in Table[I]

Instruction tuning (Liu et al.,[2023b)) provides a feasible solution by representing medical attributes
as specialized textual terms within instruction-tuning datasets. GPTv models learn to predict the
textual sequence in a generative manner, i.e., next-token prediction paradigm (Radford et al.,[2018]).
Despite offering flexibility in representing diverse clinical concepts through word combinations, this
paradigm is a double-edged sword, exposing two critical limitations:

(1) Encoding medical attributes as simple word combinations fails to reflect their underlying clinical
semantics and inter-attribute distinctions. For instance, conditions such as mild diabetic retinopathy
(DR) and severe diabetic retinopathy are represented by nearly identical textual sequences (Figure|[T]
(al)) rather than as clinically meaningful categories with distinct pathological characteristics. As
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Figure 1: Comparison between (al) vanilla medical GPTv with only textual response tokens and
(b1) our proposed GPTv model with discriminative attribute tokens. (al) The vanilla model pro-
duces plain textual answers (e.g., “mild DR”, “severe DR”), which may lack explicit contextual or
clinical meanings. (b1) By introducing attribute tokens and multi-modal token books, our model
augments responses with discriminative features. (a2) and (b2) exhibit the embeddings of disease-
level visual tokens (e with different colors) and disease tokens (¥ with different colors) from two
GPTv models instruction-tuned on DR grading dataset. The embeddings are projected into 2D space
via t-SNE (Maaten & Hinton, 2008). The disease tokens are the textual disease names for vanilla
GPTv models, and attribute tokens for GPTv models with AttTok.

illustrated by the DR grading example in Figure |1| (a2), the token visualization reveals substantial
confusion among textual tokens corresponding to different diseases, (marked via % with different
colors and zoomed out here for clearer display) for the instruction-tuned medical GPTv model.

(2) More critically, owing to the causal information flow (Radford et al.,[2018) in GPTv models (vi-
sion — text), inadequate textual encoding of medical attributes provides only weak supervision back
to the visual modality. Consequently, the model fails to acquire discriminative visual representations
required to capture clinically salient features. This shortcoming results in pronounced inter-attribute
confusion within visual features and vision-text dis-alignment, as illustrated in Figure|[I] (a2).

In essence, the generative paradigm provides flexibility but at the expense of reducing the discrim-
inative power of tokens. As a result, it produces ambiguous representations of clinical attributes,
entangled visual features, and weakened vision—language alignment. This raises a natural question:

Can discriminative medical attributes be explicitly and precisely incorporated into the
generative paradigm of GPTv models?

Motivated by this, we introduce a novel concept, Attribute Tokens (AttTok), a set of special tokens
that uniquely convey the pre-defined clinical attributes. For instance, the token < | fundus_sdr| >
specifies the imaging modality (fundus imaging) and the diagnostic finding (severe DR). Further-
more, attribute-centric embedding banks are constructed to provide representative features, using
attributes as anchors to facilitate the alignment of multi-modal information.

On top of the attribute tokens and embedding books, (1) an attribute-centric cross attention (ACC)
adapter is introduced to infuse clinical attribute knowledge from the embedding books into the visual
encoder. ACC enhances visual saliency to perceive corresponding clinical attributes while eliminat-
ing the vision-to-text unidirectional bottleneck inherent in GPTv models. (2) an attribute-centric
matching (ACM) loss is designed to enhance GPTv models by aligned and discriminative feature
learning through intra-attribute consistency and inter-attribute separability.

To evaluate the effectiveness of our AttTok, we establish a comprehensive evaluation framework
that systematically assesses both discriminative and generative capabilities of instruction-tuned
GPTv models. The evaluation covers five publicly available datasets spanning diverse medical
imaging modalities, including dermatology (Derma), fundus photography (Fundus), optical coher-
ence tomography (OCT), radiography (X-ray), and pathology (Path), addressing discriminative dis-
ease/lesion diagnosis and classification tasks. Furthermore, three commonly used medical VQA
benchmarks, encompassing diverse medical knowledge, are employed to evaluate performance on
medical knowledge understanding.

In summary, our contributions are:
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Conceptual: We introduce attribute tokens and attribute-centric embedding books as explicit carri-
ers of domain-specific attributes. These constructs provide GPTv models with structured access to
discriminative medical semantics, thereby moving beyond surface-level word memorization.

Technical: We develop an attribute-centric cross attention adapter to highlight attribute-relevant
visual embeddings, and an attribute-centric matching loss to align multi-modality information into
a unified embedding space. These components jointly enable GPTv models to explicitly integrate
discriminative medical knowledge into the generative paradigm, enhancing both semantic grounding
and discriminative capacity.

2 RELATED WORK

2.1 GENERAL GPTV MODELS

The development of generative pre-trained vision—language (GPTv) models has drawn increasing
attention in both computer vision and natural language processing communities. Broadly, prior
efforts can be grouped into three threads.

Large multimodal transformers. Recent large-scale models such as GPT-4o0 (Hurst et al.| [2024)
and Qwen2.5-VL (Bai et al., 2025) integrate visual and textual streams within unified transformer
architectures. These systems leverage massive web-scale corpora and joint optimization strategies
to acquire strong perception, reasoning, and generation abilities across diverse modalities. A related
line of work, such as Flamingo (Alayrac et al.,2022), Kosmos-1 (Huang et al., [2023), and PaLLM-
E (Driess et al.l [2023)), explores cross-modal fusion with frozen backbones, auxiliary adapters, or
joint pretraining strategies, further demonstrating the scalability of multimodal LLMs.

Instruction-tuned VL models. Instruction tuning has proven to be an important technique for
aligning multimodal models with user-centric tasks. Representative models include LLaVA (Liu
et al.,|2023a)) and InstructBLIP (Dai et al.,[2023)), which adapt pretrained VL backbones with natural
language instructions to support multi-turn dialogue, visual reasoning, and open-ended question
answering. These approaches highlight the effectiveness of aligning general-purpose GPTv models
with task-specific instructions while maintaining generalization capabilities.

Task-specific extensions. Beyond general reasoning, several models target structured multimodal
tasks such as captioning, retrieval, or visual grounding. For example, PaLI (Chen et all [2022)
demonstrates unified performance on captioning and translation, whereas specialized models extend
GPTv with external memory, retrieval-augmented features, or multi-granularity embeddings to im-
prove interpretability or robustness. While successful in natural image understanding, these methods
emphasize linguistic fluency and broad coverage rather than fine-grained attribute discrimination.

2.2 MEDICAL GPTvV MODELS

The success of GPTv models in general domains has motivated their extension into medical appli-
cations, where multimodal reasoning is essential. This body of work can be divided into text-only
and vision—language branches.

Medical language models. Early efforts such as BioGPT (Luo et al., |2022)), PubMedGPT (Bolton
et al.,[2022), and PMC-LLaMA (Wu et al.,|2024) focus on text-only corpora, capturing biomedical
terminology and clinical reasoning through large-scale language modeling. More recently, Med-
PalLM (Tu et al., [2024) and Med-PaLM 2 (Singhal et al.| 2025) incorporate instruction tuning on
curated QA datasets, yielding LLMs capable of expert-level responses in complex medical contexts.

Multimodal medical GPTv models. To further integrate visual signals, recent works such as Hu-
aTuo (Wang et al.} 2023), HealthGPT (Lin et al.,|2025)), and Lingshu (Xu et al., [2025) adapt multi-
modal instruction tuning pipelines to train GPTv variants on medical image—text pairs. These sys-
tems enable models to answer clinical visual questions, identify diseases, and provide textual expla-
nations. In another direction, models such as ChatCAD (Tang et al.,|2025)) and Med-Flamingo (Moor,
et al.l 2023) incorporate conversational interactions, retrieval mechanisms, or large-scale clinical
datasets to improve alignment with radiology or pathology domains. These advances mark signifi-
cant progress toward general-purpose medical GPTv assistants.
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Limitations. Despite these efforts, most medical GPTv models inherit the training paradigm from
general GPTv models, representing medical attributes (e.g., disease names, severity scales, anatom-
ical structures) as plain text tokens. This introduces two fundamental limitations: (1) semantically
distinct medical concepts are encoded as highly similar textual sequences, weakening discrimina-
tive capacity; and (2) the causal prediction objective offers weak supervision to the visual encoder,
resulting in entangled features and ambiguous cross-modal alignment. Addressing these issues re-
quires attribute-aware representations that explicitly capture clinical semantics while strengthening
visual-textual alignment.

3 PRELIMINARY

The canonical generative pre-trained vision-language (GPTv) model is typically composed of three
key components.

(1) Vision encoder. A vision encoder &, (typically instantiated as a ViT |Dosovitskiy et al.| (2020))
maps an input image I into a sequence of visual token embeddings:

FY = &,(I) e RM, (1)
where N, denotes the number of visual tokens and d is the embedding dimension.

(2) Text tokenizer and embedding. A tokenizer 7 converts input text into a sequence of discrete
token indices, which are subsequently projected into the embedding space by a token embedding
layer &. The embedding layer maintains a set of token weights {e;}}£,, with each e; € R*?
corresponding to the i-th entry in the vocabulary and M indicating the total number of cadidate
tokens. Given a word token ¢ from the textual questions @ or answer response R, its index and
embedding are computed as:

y="TI([),
e @
.f - t(y) - eya
where y € {1,..., M} is the token index and f € R**9 is the corresponding textual embedding, in
terms of the word ¢ from @ and R.

(3) Decoder-only language model. A decoder-only large language model D; consumes a concate-
nated sequence of visual embeddings F'” (totally IV, tokens), question embeddings F'? (totally IV,
answer token, calculated in Eqn[2)), and previously generated response embeddings F'; (tokens be-
fore the i-th token, calculated in Eqn[2). It predicts the probability distribution of the next answer
token y! as:

(|1, Q, Re;) = Di(F"; F FZ;), i€[1,N,] 3)
where y; is the ground-truth index of the i-th token in the response sequence with totally NV, tokens.

Training objective. Training follows the next-token prediction paradigm, where the model is opti-
mized with a cross-entropy loss over the answer sequence:

N,
-
Lxre(R) ==+ logp(y |1, Q, Res). @)
Ti=1

Inference. At test time, the sequence of the input image and question prompt is provided, and
the model autoregressively generates the response tokens y” using the next-token prediction. This
unified training-inference formulation ensures coherent answer generation.

4 ATTRIBUTE TOKENS FOR GPTV MODELS

In this section, we introduce our framework for incorporating clinical attribute tokens into GPTv
models. For each attribute token, we construct an embedding book that optimizes and stores dis-
criminative visual, attribute and textual representations.

Building upon these token books, we further design two key modules: (1) Attribute-Centric Cross
Attention (ACC) adapter, which enriches visual encoders with attribute-aware perception; and (2)
Attribute-Centric Matching (ACM) loss, which enforces cross-modal alignment among visual,
attribute, and textual tokens to better capture inter-attribute clinical salience and distinctions. The
overall pipeline is illustrated in Figure
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Figure 2: The architecture of AttTok. (a) The workflow integrates visual, textual, and attribute
embeddings, processed through ViT, textual tokenizers, and embedding layers, and optimized with
Next Token Prediction Loss and attribute-centric matching loss. (b) The updating strategy for the
attribute-centric embedding books of pre-defined attributes. (c) The attribute-centric cross attention
module enhances visual embeddings via discriminative embeddings from medical attributes. (d) The
attribute-centric matching loss enforces alignment between positive attribute-centric embeddings
while separating negative ones.

4.1 INITIALIZING AND UPDATING ATTRIBUTE TOKENS AND TOKEN BOOKS

Initializing Attributes. Here, we formally define an attribute token as a new pre-defined token
used to represent a specialized clinical concept. For example, < | fundus_sdr| > denotes that the
input modality is fundus imaging and the associated clinical concept is severe diabetic retinopathy
(DR). In general, such concepts can correspond to a disease, a lesion, or an anatomic site.

These attribute tokens are generated alongside the instruction-tuning datasets. For classification-
based datasets, the attributes are naturally determined by the category labels. In contrast, for VQA
datasets, the relevant attributes are pre-processed and extracted directly from the question—answer
texts. Specifically, we employ open-source GPT models to summarize keywords from all ques-
tion—answer pairs. Once the keywords are determined, we further use GPT to assign them to each
question—answer pair, which serves as the ground-truth keyword annotation. These keywords are
then organized into tokens following the format < |modality_concept| >. For example, keyword
is “severe DR” and attribute token is < |fundus_sdr| > as aforementioned. A detailed workflow
is provided in Appendix[A.2}

Initializing and Updating Attribute Token Books. To incorporate attribute information into
GPTv models, we expand the embedding layer to {e;}M; U {a;}/,, where a; is the token em-
bedding of the ¢-th attribute token, with totally K attribute tokens.

For each attribute token, we construct a multi-modal discriminative embedding book used each at-
tribute as anchor. The embedding book for the k-th attribute is centered on its corresponding attribute
token and contains: (1) the attribute token itself, ay; (2) the textual token, €j,q(x), corresponding to
the attribute’s keyword (where ind(k) denotes the index of the textual tokens associated with at-
tribute k); and (3) the visual prototype token, £, derived from the average visual tokens belonging

to attribute k. Formally, By, = {ay, €inar), fi }-
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To smoothly estimate the visual prototype for each attribute, we employ an exponential moving
average (EMA) to iteratively update the prototype f}'. Given all visual embeddings associated with
attribute k in the current training batch, the visual prototype token is updated as

- ~ 1
.flg,new:/*éflg}old—i_(l_u)ﬁ Z fjv7 (5)
Y jEN,
where N, denotes the number of visual embeddings belonging to attribute %k in the batch. p is
typically set as a value close to 1, Here we set it as 0.99. If no samples of attribute k are present in
current batch, the corresponding visual prototype remains unchanged. Since both a; and ejnqx)
are learnable parameters, they are jointly optimized during the training of the GPTv model.

4.2 ATTRIBUTE-CENTRIC CROSS ATTENTION

In GPTv models, the causal information flow proceeds from vision to text, preventing the vision
encoder from directly accessing textual information. However, pure textual tokens lack discrimina-
tive signals to effectively backpropagate supervision to the vision encoder. This limitation results in
poor visual-text alignment.

To address this weakness, we propose an Attribute-Centric Cross Attention (ACC) adapter, which
explicitly injects discriminative attribute knowledge into visual token representations. Essentially,
the ACC module establishes a skip route that delivers attribute signals directly to the vision encoder.

Given the visual embeddings F'¥ of the visual encoder, we enhance it via cross-attention over the
attribute embedding books B = {B;}X_| of all K attribute. Formally, the total 3K tokens from B
serve as the key and value embeddings and the visual embeddings F™ is treated as query tokens, the

adapted visual embeddings F are calculated as:

v T
Att(F’,B) = Softmax((F Wo)(BWi) ) (BWy), (6)
Vd
Fv = F' + yAtt(F*, B)Wo, (7)

where Wg, Wy, Wy and Wy are learnable projection matrices. -y is a weighting factor that
controls the strength of the ACC adapter. Here we set v = 0.1. Since direct access to ground-truth
responses is unavailable in visual feature learning, all attributes are employed as both keys and
values, enabling ACC to adaptively learn the correct activations.

The enhanced representation F inherits discriminative guidance from both textual attributes and
visual prototype tokens. This design enables the model to learn attribute-aware perception, strength-
ening the alignment between medical concepts and visual structures, and effectively breaks the
vision-to-text bottleneck inherent in standard GPTv models.

4.3 ATTRIBUTE-CENTRIC MATCHING LOSS

While the cross-attention mechanism enriches visual tokens with attribute-aware information, it is
still essential to explicitly enforce the alignment among visual representations, the corresponding
attribute tokens and their textual counterparts. To this end, we introduce an Attribute-Centric
Matching (ACM) loss that leverages the attribute token books as anchors to drive discriminative
and modality-aligned representation learning.

Positive and Negative Sets. Given an image, the GPTv model predicts the embedding vector f¢
corresponding to the attribute &, The positive embedding book B;, provides three forms of positive
supervision: (1) the attribute embedding, (2) the textual embedding of the attribute keywords, and
(3) the visual prototype. Conversely, negatives are drawn from all other books B;, j # k.

Similarity Measurement. To quantify alignment, we employ a Linear layer, 6() (R'*¢ — R*d),
to project embeddings into a unified space to measure the cosine similarity:
0(a) 0(b)
s(a,b) = ——————. )
10(a)[[[[0(®)]
This symmetric metric encourages tokens from the same attribute (regardless of modality) to lie
close in the embedding space, while pushing tokens from different attributes apart.
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Multi-modality Matching Objective. Building on this definition, we construct a matching loss
that promotes alignment of the predicted attribute embedding f¢ with all positives while contrasting
it against negatives:

5 eXp(sw:,p))

PEB

> eXp(*s(f:’p)) + > exp(is(f:’n))’

pEBy, neB;;j#k

Lacu(f*) = —log )

where 7 is a temperature parameter controlling concentration. Intuitively, this formulation performs
soft classification of f¢ with respect to the anchors in the attribute book. ACM loss integrates multi-
modal (visual, textual, and attribute) supervision, thereby producing a richer and more discriminative
signal for embedding alignment. Importantly, attribute books serve as consistent anchors across
modalities, ensuring robust cross-modal coupling and disentanglement of distinct attributes.

Finally, the ACM loss is combined with the standard Next Token Prediction (NTP) loss to jointly
optimize the model given an input sample (I, QQ, R). The total loss objective is Lnyrp + ALacwss
where A is a hyperparameter balancing the contribution of the attribute-centric matching loss. The
NTP loss ensures faithful generation of responses, while the ACM loss enforces discriminative
attribute-aware representations, enabling the model to achieve both accurate medical understand-
ing and coherent textual generation.

5 EXPERIMENT

5.1 EXPERIMENTAL DETAILS

Baselines. To comprehensively evaluate the performance of our AttTok on various medical bench-
marks, we compare it against a diverse set of baseline models, encompassing both proprietary mod-
els and open-source GPTv models from both general and medical domains. For medical classi-
fication and diagnosis tasks, we further compare AttTok with CLIP-based models, the discrimi-
native models. Specifically, our evaluation includes the following models. (1) Medical GPTv
models include Med-R1 (Lai et al., 2025), MedVLM-R1 (Pan et al.| [2025), HuatuoGPT-V (Wang
et al., 2023), HealthGPT (Lin et al.l 2025), LLaVA-Med (Li et al., [2023)) and Lingshu (Xu et al.,
2025). (2) General-purpose GPTv models consist of GPT-4.1 version |[Hurst et al.| (2024) and
Gemini-2.5-Flash (Comanici et al.| 2025)), which are the most representative proprietary models
available with strong general visual understanding capabilities. Qwen2.5-VL-Instruct (Bai et al.,
2025)) and InternVL3 (Zhu et al, [2025), which are two state-of-the-art open-source models. (3)
CLIP-based models include CLIP (Radford et al., 2021), SigLIP2 (Tschannen et al., |2025) and
PubMedCLIP (Eslami et al., 2023). These discriminative vision-language models are used to give
the comparision reference on medical classification tasks.

Instruction tuning. For all models, the default technique is LoRA with rank 16 due to the common-
used in adaptation of GPTv models for the parameter efficiency. Besides we also compare AttTok
with different alignment techniques such as vision-text alignment CCL (Jiang et al.l [2025) and
visual-only alignment. The training dataset used for baselines are the original. For training data
of AttTok, all attribute tokens are placed in front of the original text and serve as prepended discrim-
inative guidance. All other training configurations are kept identical across models.

Benchmarks. To validate the effectiveness of our proposed AttTok in enhancing medical image
understanding tasks, we conduct experiments on two kinds of benchmarks.

(1) Medical image diagnosis and classification tasks are selected from five common medical imag-
ing modalities, including ISIC-2018 (Milton) 2019) for seven-class skin lesion diagnosis. Optical
coherence tomography (OCT) images (Kermany et al., [2018)) for retinal diseases comprises of 4
diagnosis categories. NCT-CRC-HE-100K of histological images (Chen & Krishnan| 2022}, com-
prises of 9 types of tissues. MessiDR (Lepetit-Aimon et al., 2024)) is used to conduct DR grading
task. X-Ray dataset (Yang et al.,|2023)) for pneumonia classifications is also employed.

(2) Medical VQA tasks include Rad-VQA (Lau et al.l 2018), SLAKE (Liu et al., 2021), and
PathVQA (He et al., 2020). These datasets cover CT, MRI, Chest-Xray, and Pathology modalities
on questions involved location, modality and normal/abnormal judgment.
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Table 1: Performance comparison of our methods with other GPTv models and fine-tuning methods
on medical disease diagnosis and classification tasks across five modalities. The reported metrics
are close-end and open-end accuracies. “—” presents the unanswerable or extremely low per-
formance on open-end zero-shot inference for precise disease diagnosis. Note that “zero-shot”
indicates no instruction training on the training set of the evaluated datasets. & indicates std.

Models Derma. Fundus OCT X-ray Path. Avg.
open close open close open close open close open close open close
CLIP-based Discriminative Models

CLIP 68.4 62.6 89.8 93.5 89.8 80.8
SigLIP2 64.1 65.3 88.7 92.9 89.1 80.0
PubMedCLIP 65.1 59.8 89.6 90.2 88.2 78.6
Zero-shot GPTv Models
HealthGPT-L - 13.9 - 28.4 - 29.1 - 65.9 - 34.7 - 34.4
HuaTuoGPT-35B - 65.3 - 41.0 - 64.7 - 78.3 - 47.5 - 59.4
Qwen2.5-VL-7B - 14.2 - 25.7 - 24.2 - 51.9 - 30.8 - 29.4
Lingshu-7B - 41.9 - 332 - 25.5 - 85.0 - 56.8 - 48.5

Instruction-Tuned GPTv Models

Qwen2.5-VL-7B 658 712 550 615 59.1 73.0 769 8.3 724 817 658 749
696 746 576 660  63.1 767 827 905 752 844 696 784

+ Ours
+0.34  £0.41 4048  +0.29  £0.45  +0.22  40.31  £0.15  +0.36  +0.19
" Lingshu-7B~ ~ 663 728 563 637 60.8 747 789 ~ 89.1 735 843 672 769
+Ours 71.2 75.5 61.4 69.1 63.8 79.7 85.3 92.1 77.5 88.0 71.8 80.9

+0.32 +0.38 +0.47 +0.29 +0.44 +0.31 +0.35 +0.26 +0.33 +0.28

Evaluation. (1) Diagnosis/Classification. Datasets are organized as two formats including the
open-ended questions (without refereed category candidates in questions), and close-ended ques-
tions (with refereed category candidates in questions).

(2) VQA. For open-ended questions, we first apply a strict, rule-based evaluation to check for
exact matches (i.e., accuracy) between the model prediction and the ground-truth answer (including
simple normalization such as lowercasing, punctuation handling, etc.) When the rule-based method
does not find an exact match, an LLM-as-a-judge strategy is used to judge whether the prediction is
semantically equivalent to the ground truth (e.g., “no abnormality” vs. “normal”), similar evaluation
workflow as Lingshu (Xu et al.||2025)). For close-ended question, the rule-based accuracy is reported.

5.2 PERFORMANCE COMPARISON

Medical Classification and Diagnosis. Table
Table 2: Performance comparison of our Teports the results of medical classification across
methods with other GPTv models and fine- five modalities. We observe that: (1) The Necessity

tuning methods on medical VQA tasks. of instruction tuning for precise medical imag-
ing classification and diagnosis. It is witnessed
Model Rad-VQA SLAKE PahvQa Avg Dy the notably low zero-shot performance of GPTv
Zero-shot GPTy Models models in this domain. (2) Consistent and signif-
GPT-4.1 65.0 722 555 642  icant gains across general-purpose and medical-
Semini 25 Flash 685 18 34 %0 specific GPTv models. This is evidenced by Att-
MedVLM-RI-2B 486 56.0 325 457  Tok’s consistent improvements across five modali-
LLaVA-Med-7B — 53.7 480 388 468 fieg on both types of GPTv models, yielding at least

HuatwoGPT-V-7B 67.0 678 480 609 X . °
InternVL3-8B 65.4 72.8 486 623  a 2% increase in accuracy. (3) Comparable to dis-
Sx;gﬁ%‘m Ay o oy 2% criminative vision-language models. Benefiting
- from the multi-modal discriminative capacity intro-

Instruction-Tuned GPTv Models d d by AttTok. GPT del bl hi
Qwen2.5VL-7B 69.5 83.1 623 716 uced by Attlok, v models are able to achieve
+ Ours 70.1 84.0 635 725  performance comparable to, and in skin lesion, DR
Lingshu-7B 709 84.6 641 732 grading and X-ray normal/abnormal status classifi-
+Ours 714 85.8 647 740

cation tasks surpassing, CLIP-based models, while
still operating within a generative framework.




Under review as a conference paper at ICLR 2026

Medical VQA. The results on multi-modal VQA benchmarks are given in Table 2} The improve-
ments from instruction tuning on Lingshu-7B (Xu et al.} [2025) are relatively modest (compared to
zero-shot version), this can be explained by the fact that Lingshu has already undergone extensive
pretraining on large-scale medical data, including multiple rounds of VQA and report generation
tasks, which leaves limited room for further gains. Nevertheless, even under this circumstance, our
AttTok still achieves accuracy improvements via 0.5%, 1.2% and 0.6% accuracy improvement. This
is particularly notable given that the attribute definitions and initializations (details in Appendix[A-2)
in VQA datasets are relatively coarse compared to the more explicit labels used in diagnostic and
classification tasks.

5.3 ABLATION STUDY
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Figure 3: The effectiveness of ACC and ACM modules on five modality medical imagings.

Effectiveness of ACC and ACM Modules. Figure [3 reveals the effectiveness of the proposed
components. (1) The attribute-centric cross attention adapter (ACC) breaks the bottleneck of exist-
ing GPT-v models, where information typically flows only from vision to text. By injecting attribute
information into ViT, ACC enables richer cross-modal interaction and consistently boosts perfor-
mance. (2) The attribute-centric matching loss (ACM) explicitly unifies clinical attributes in both
visual and textual spaces, aligning them into a shared representation that captures domain-specific
semantics. This design achieves substantially higher gains than using ACC alone. (3) When jointly
applying ACC and ACM, the model achieves the strongest results, showing their complementary
benefits and further validating the superiority of our attribute-centric alignment framework.

Effectiveness on Different Token Alignment

Strategies. As shown in Table[5] both v.—t. align-  Taple 3: Performance on different token
ment (directly aligning vision and text tokens, meth-  ajjgnment strategies.

ods from (Jiang et al.,2025))) and v. alignment (clus-

tering visual tokens) bring limited or unstable gains Method Derma. Fundus  OCT X-Ray Path.
compared with the baseline. In particular, v. align-  Lingshu7B(-=16) 728 637 747 891 843

; . +v.t. align. 736 652 763 909 858
ment even degrades perfqrmgnce; on certalp quah- Cevalign 730 632 742 889 846
ties (e.g., Fundus, OCT), indicating that naive visual '+ Ours 761 684 790 924 872

token clustering loses critical fine-grained informa-

tion. In contrast, our proposed strategy consistently outperforms all alternatives across five bench-
marks, achieving the top accuracy on every modality (e.g., +3.3 on Dermatoscopy, +3.2 on Fundus,
and +2.7 on OCT over the best baseline).

Additional experiments, including feature visualization analyses and extensions to imbalanced learn-
ing problems, are presented in Appendix [A3] A discussion of the limitations of our work and
potential directions for future research can be found in Appendix [A23]

5.4 SCALING AND COMPUTATIONAL ANALYSIS ON MORE COMPLEX TASKS

Here, we further provide results on more challenging settings with more fine-grained or complex
disease spaces: the Fitzpatrickl17k (F17K) dataset with 113 fine-grained skin conditions, and the
RFMiD dataset with 28 retinal conditions including comorbid combinations (diseases with less than
10 images are merged as other diseases). Note that for RFMiD, each image can be associated with
multiple attribute tokens due to disease co-occurrence. We demonstrate the feasibility and necessity
from two perspectives: (1) performance gains and (2) computational overhead.
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To be specific, as the number of fine-grained diseases and Table 4: Performance on F17K and
comorbid combinations increases, the task becomes sub- RFMiD.
stantially more challenging, especially for GPT-v models,

which are not inherently strong discriminative learners.  Models Acc (FI7K) mAP (RFMiD)
Even the medically specialized ngshL!—7B model con- T pETs 040 045
tinues to struggle on these large, fine-grained label spaces  BioMedCLIP 0.34 047

after fine-tuning. In contrast, when augmented with our =~ PMC-CLIP 0.45 0.49
AttTok strategy, its performance improves substantially, _ Lingshu-7B 027 025
from 27% to 41% accuracy on F17K and from 25% to ﬁ;gr?)l;e " 8‘11411 8??

36% mAP on RFMIiD, indicating that AttTok is particu-  New Flops 25% 1.4%

larly beneficial in precisely the regime of more complex
disease diagnosis tasks. More importantly, with about 1-
3% additional FLOPs introduced, the above performance improvements are obtained at nearly zero
computational overhead.

For tasks with more than 1K diseases or concepts, assuming an input resolution of (224 x 224),
the vision encoder (VE) of Lingshu-7B/Qwen2.5-VL-7B requires approximately 340 GFLOPs. The
LLM computation (which remains almost identical with and without AttTok) already exceeds 900
GFLOPs solely for encoding the visual tokens. The additional cost of the ACC module with (K)
attributes is approximately ((13 + 0.16K)) GFLOPs. Thus, even when scaling to 1000 attributes, the
computational overhead remains at merely 14% additional FLOPs.

Overall, these analyses support two key conclusions. (1) Scalability: AttTok remains computation-
ally feasible as the attribute/class space grows. (2) Necessity at scale: As the number and granularity
of disease attributes increase, AttTok becomes increasingly important for GPTv models to acquire
promising performance.

5.5 SENSITIVITY ANALYSIS OF ATTRIBUTE KEYWORD QUALITY

The generation pipeline. For classification tasks, attributes are

strictly defined as the unit of imaging modality and disease names. Taple 5: Performance on dif-
For VQA tasks, we construct attribute keywords in a way that min-  ferent LLM. The experiments
imizes label noise and semantic ambiguity. For each VQA sam- ,re conducted in SLAKE
ple, we feed the exact question, the ground-truth answer, and struc-  VQA dataset.

tured auxiliary information (e.g., anatomy, imaging modality, which

are directly added as attribute words) into the LLM. We explicitly “Mewic Qwen  InternlM  GPT
use LLM as a keyword selection and filtering operator. LLM is — === 5.9 357
prompted to select all and only the conclusive keywords from the  gd 0.24 027 0.8
provided textual information, including disease/abnormal names,
lesion/disease locations or organ names. Consequently, each QA
pair is associated with multiple attribute tokens that are all grounded in the annotated information.

Robustness across different LLMs. To assess the robustness of this process and the impact of
potential keyword noise, we conduct an ablation in which three different LLMs (Qwen-3, InternL.M,
and GPTS5) are independently used to derive the attribute book. The very small variance across LLMs
indicates that the keyword extraction process is stable and not sensitive to the specific LLM used.
And any residual label noise in the attribute keywords does not propagate in a way that meaningfully
degrades the final VQA performance.

6 CONCLUSION

In this work, we identified two major limitations of instruction-tuned GPTv models for medical
imaging: the inadequate encoding of clinical attributes as plain text tokens and the resulting inaccu-
racies in vision—language alignment. To overcome these challenges, we proposed AttTok, a unified
framework that introduces structured attribute tokens, attribute-centric embeddings, and alignment
mechanisms tailored for clinical concepts. Comprehensive evaluations across diverse benchmarks
confirm its effectiveness, demonstrating consistent accuracy gains and improved medical reasoning.
Our study highlights AttTok as a promising step toward bridging the gap between discriminative
ability required by medical tasks and generative learning pargdim of GPTv models.

10
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7 ETHICS STATEMENT

This work complies with the ICLR Code of Ethics. The study did not involve human participants
or animal experiments. All datasets employed were obtained in accordance with their respective
licensing and usage policies, ensuring compliance with privacy and ethical standards. No personally
identifiable information was used, and we took care to minimize potential biases or discriminatory
outcomes in both data handling and analysis. The research was conducted with a commitment to
transparency, fairness, and scientific integrity.

8 REPRODUCIBILITY STATEMENT

We have taken concrete steps to ensure the reproducibility of our results. All source code and
datasets will be provided in a public repository after acceptance, enabling others to replicate and
verify our findings. Detailed descriptions of the experimental setup, including model architectures,
training procedures are included in the paper.

Furthermore, the datasets used in this work are publicly available, ensuring standardized and re-
producible evaluation. These measures have been implemented to facilitate rigorous independent
verification and to encourage further research built upon our work.
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A APPENDIX

A.1 EXPERIMENTAL DETAILS

For instruction tuning, we adopt LoRA (Hu et al.| [2022) as the default adaptation technique with
rank r = 16. The model is optimized using AdamW with a learning rate of 1 x 104, weight decay
of 1 x 10™*, a cosine learning rate schedule, and a warmup phase over the first 10% of training
iterations. We train with a batch size of 32 on 2 NVIDIA A800 GPUs for 3 epochs. The weight of
the ACM loss is initially set to 1 and gradually decays to 0 during training. The 7 in Eqn[J]is set as 1.

By default, both the vision tower and the LLM tower are frozen, and LoRA is only applied to linear
layers. To preserve the original encoding space of GPT-v, we keep the embedding and classifier
weights for all tokens except the newly introduced attribute tokens unchanged by zeroing their
gradients. This is implemented via PyTorch hook functions

The ablation study is conducted on Lingshu-7B by default, and the performance is evaluated
on open-ended diagnosis and classification tasks.

A.2  WORKFLOWS FOR DATA PROCESSING AND ATTRIBUTE DEFINITION

Dataset processing. Given the complexity of GPTv training pipelines (especially built on the
highly integrated Transformers (Wolf et al.|[2020) and Llama-Factory (Zheng et al.|[2024)) libraries),
it is impractical to perform online image augmentation as commonly used in conventional training
for CLIP-based discriminative models (Radford et al.| [2021). To address this, we adopt an offline
augmentation strategy tailored for disease diagnosis/classification tasks. Specifically, we apply
class-balanced sampling together with random cropping and horizontal flipping to generate aug-
mented samples. Each augmented instance is stored as a new image, ensuring both diversity and
balance in the training set while remaining compatible with the discriminative models.

Attribute definition and assignment for VQA
datasets. Given a VQA dataset, we first input
each sample’s question, answer, and auxiliary | q are e iover ung iees

normal?

information into Qwen-3 (Yang et al.l 2025), |4

Additional Info:
Modality: X-Ray

and instruct it to reformulate the QA pair into a e
declarative sentence and extract key concepts as
candidate keywords. After aggregating all can-
didates, we filter out non-discriminative terms

(e.g., spatial positions, shapes, colors, sizes), Figure 4: The workflow to generate the attribute
redundant concepts, and low-frequency words.  words for samples from VQA datasets.
In other word, we only focus on words present-

ing discriminative concepts, i.e., modality, dis-

ease status (normal/abnormal, disease names), anatomical site. Given that we explicitly define the
clinical concepts of interest, the scope of extracted keywords is constrained to a dozen categories.
These keywords are restricted to conclusive terms, ensuring that the assigned keywords focus on
diagnostically meaningful semantic.

Current Keyword
X-Ray, Lung, Abnormal

Ixray_lungl>
Checked keyword 4

Collections <|xray_abnormall>

i

The resulting refined keyword set is then used as a prompt, and Qwen-3 is further applied to assign
appropriate keywords back to each sample. For PathVQA, since the dataset is exclusively composed
of pathological images, the modality keyword attribute is omitted in this process.

A.3 ADDITIONAL EXPERIMENTAL ANALYSIS

The importance of attribute-centric alignment. The Figure[5|presents the visualization of visual
and attribute tokens across multiple datasets, demonstrating that the proposed AftTok substantially
improves the discriminability of learned feature representations. We further examine two comple-
mentary settings: (1) image generation using the AttTok-augmented Lingshu-7B model, and (2)

1https ://docs.pytorch.org/docs/stable/generated/torch.Tensor.register_
hook.html
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Figure 5: The feature visualization for five modalities, tuned via AttTok. Visual tokens (e with
different colors) and attribute tokens (3 with different colors) are projected into 2D space via t-
SNE (Maaten & Hinton, |2008). AttTok achieves clear attribute-centric multi-modality alignment.

feature retrieval with attribute tokens employed as classifier weights. As summarized in Table [6]
attribute tokens provide a more accurate characterization of class-centered semantics. Leveraging
this property, AttTok can be utilized as a ‘““teacher’ module to distill discriminative capability
into “student” GPTv models, thereby facilitating more robust multimodal alignment.

Cls Acc. Derma. Fundus OCT X-Ray Path.
Retrieval via AttTok 825 70.6 902 958 933
GPTv with AttTok 76.1 68.4 790 924 872

Table 6: Performance comparison between direct retrieval using attribute tokens as classifier weights
and generative results from the fine-tuned GPTv model.

Model ~ MEL (1113) NV (6705) BCC (514) AKIEC (327) BKL (1099) DF(115) VASC (142)
wlo AttTok 35.8 82.2 69.2 25.4 254 11.8 48.7
w/ AttTok 53.3 85.4 70.4 354 354 31.4 52.2

Table 7: Lesion-wise classification performance (F1-score) on the ISIC-2018 (Milton} |2019) dataset.
The numbers in parentheses denote the number of original training samples per category.

Towards more discriminative diagnosis/classification tasks. Here, we extend AttTok to tackle
more complex and challenging discriminative diagnosis and classification tasks, imbalanced data
problems which are commonly encountered in real-world clinical practice. As described in the
dataset processing stage, we employ offline augmentation strategies to balance the training data. In
this analysis, however, we do not use pre-processing in order to expose the inherent imbalance
of the skin lesion classification dataset, ISIC-2018 (Milton, 2019). We report the class-wise F1 as
Table[7] Except for the NV category, which dominates the dataset with an overwhelming number
of training samples, most classes suffer from severe data scarcity. Under this highly imbalanced
setting, the discriminative features introduced by A#7Tok substantially improve the F1 scores of all
low-sample categories. This observation highlights the potential of A#Tok for handling the
imbalanced data distributions that are commonly encountered in medical datasets.

Ablation on key hyper-parameters. Here, we provide the abla-
tion study on the scale of v and ), testing on open-ended DR grad- =~ . Ao
ing tasks. As shown in Table [§] larger ~ leads to over-fit on extra ’\6:0_;0 A e
knowledge from attribute books, the empirical suitable values are

in the range of [0.1, 0.5]. Similarly, larger A will hinder the learn-

ing of NTP and smaller one will shrink the impact of discriminative

feature learning. A weight decay is needed.

Table 8: Ablation on « and .
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Original Image w/o ACC Original Image w/o ACC w/ ACC

w/ ACC

Figure 6: Visualization of ACC module’s effectiveness. Left: ACC directs attention to correct visual
cues (e.g., hemorrhage, exudates). Right: ACC mitigates erroneous background focus, despite not
fully capturing foreground cues.

A.4 VISUALIZATION ANALYSIS ON ACC AND ACM

To illustrate the effectiveness of the proposed ACC module, a visualization analysis was conducted
in Figure [6] which demonstrates the class activation maps for features from visual encoder trained
on DR grading tasks. This module utilizes prototype embeddings from attribute books to guide the
visual encoder toward learning discriminative features. The left side of the visualization exhibits
examples where the ACC module successfully directs the model’s attention to appropriate visual
cues, such as abnormal signals like hemorrhage and exudates. The right side demonstrates three
cases where the ACC module effectively clears erroneous focus on the background, despite not yet
achieving full concentration on correct foreground cues.

Furthermore, we analyze the feature correlations of the model trained without AttTok. When only
textual features are used as guidance together with a purely causal information flow strategy, the
visual and textual signals for each pair of diseases become highly correlated and indistinguish-
able. In contrast, training with AttTok explicitly guides the model through attribute tokens, which
substantially enhances feature discriminability. At the classification level, this manifests as a clear
reduction in confusion between different grading categories. To test class-wise metrics, we sample
100 testing images for each grading via data augmentation strategies.

A.5 DISCUSSION OF LIMITATIONS AND FUTURE EXPLORATIONS

Text fluency, interpretability, and controllability. As illustrated in Figure[T]and [2]and described
in Section 4.1, all attribute tokens (multiple for VQA and multi-label classification tasks) are in-
serted in the front of the textual input sequence. In other words, the attribute tokens form a short,
structured prefix that naturally transitions into the subsequent free-form text, without disrupting lin-
guistic fluency or changing the conversational style. This design also makes the behavior of the
model controllable: by learning attribute tokens firstly, we can explicitly steer the model’s focus
before it generates its response.

From an interpretability perspective, this setup leverages the causal information flow in GPT-v:
tokens that appear earlier in the sequence causally influence the hidden states and attention distribu-
tions that determine all later tokens. Consequently, the attribute tokens act as explicit, discriminative
guidance signals for the downstream text response. This is a core contribution of our work.
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Figure 7: From left to right: The feature similarities for average visual features and textual features
among five DR grading; the feature similarities for average visual features and attribute features
among five DR grading; the confusion matrices for models trained w/o AttTok; the confusion ma-
trices for models trained w/ AttTok.

Compositional attribute management. Because one image can correspond to multiple questions,
a single image may be associated with multiple attribute tokens. We treat these in a multi-label man-
ner, allowing attributes to be combined orthogonally (e.g., organs, findings, and modalities together),
which enables scaling to more attributes without conflict while preserving semantic completeness
and flexible expression. This design ensures that our attribute space is both scalable and composi-
tional, aligning with the multi-faceted nature of medical images.

Limitations. Although integrating discriminative attributes into GPTv models has been shown
to enhance performance in diagnostic, classification, and VQA tasks, where short, conclusive an-
swers are expected, the extension and validation of AttTok in long-text generation and fine-grained
chain-of-thought reasoning tasks remain largely unexplored. Addressing these challenges will likely
require not only the construction of AttTok but also more sophisticated attribute relations and even
knowledge graph—based modeling, enabling AttTok to better handle longer and more complex tex-
tual scenarios.

Future work. In this study, we demonstrated the value of discriminative attributes for medical
image diagnosis, thereby opening new research exploration on hybrid discriminative and generative
representations on GPTv models.

Specifically, our findings point to the potential of GPTv models in a broader range of discrim-
inative tasks, including (but not limited to) multi-label classification, few-shot learning, and long-
tail problems. In parallel, they highlight promising opportunities to explore AttTok-based unified
frameworks in segmentation, detection, and other discriminative low-level tasks.

Moreover, following the standard evolution route of GPTv models (Hurst et al.| 2024; Bai et al.,
2025 Xu et al., 2025)), the stage after instruction tuning typically involves reinforcement learn-
ing—driven preference optimization and logical reasoning. Within this pathway, the AttTok frame-
work presents promising opportunities for integration with online preference alignment strategies
and the design of AttTok-informed reward models such as GRPO (Shao et al., [2024), paving the
way for deeper explorations in task alignment and reasoning optimization. A feasible direction is to
explore sentence-level modeling, extending AttTok from token-level discriminative representations
to long-form representations. For example, reasoning-specific tokens could be introduced to guide
a clearer chain-of-thought, enabling GPTv models to generate more structured and interpretable
reasoning paths.

B LLM USAGE

Large Language Models (LLMs) were employed exclusively to assist with manuscript preparation.
Their role was limited to refining language and improving readability. Specifically, the LLM
contributed to tasks such as rephrasing sentences, correcting grammar, and smoothing the overall
flow of the text.

The LLM played no part in formulating research questions, designing methodologies, conducting
experiments, or analyzing results. All scientific ideas, experimental designs, and analyses were
conceived and executed entirely by the authors. The authors accept full responsibility for the
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manuscript’s content, including any text edited with LLM assistance. Care was taken to ensure that
LLM-derived text complies with ethical standards and does not introduce plagiarism or scientific
misconduct.
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