
A graph-based visualization for monitoring of high-performance
computing system

Figure 1: The main components of JobViewer: (a) timeline, (b) main visualization, (c) control panel, (d) table of jobs’ information.

ABSTRACT

Visualization aims to strengthen data exploration and analysis, es-
pecially for complex and high dimensional data. High-performance
computing (HPC) systems are typically large and complicated in-
struments that generate massive performance and operation data.
Monitoring the performance and operation of HPC systems is a
daunting task for HPC admins and researchers due to their dynamic
natures. This work proposes a visual design using the idea of the
bipartite graph to visualize the monitoring the structural and met-
rics data of HPC clusters. We build a web-based prototype, called
JobViewer, that integrates advanced methods in visualization and
human-computer interaction (HCI) to demonstrate the benefits of
visualization in real-time monitoring an HPC at a university. We
also show real use cases and a user study to validate the efficiency
and highlight the drawbacks of the current approach.

Index Terms: Human-centered computing—Visualization—Visu-
alization application domains—Visual analytics;

1 INTRODUCTION

High-performance computing (HPC) systems can provide powerful
computing resources for many scientific fields, such as quantum
chemistry, bioinformatics, high energy physics, and many others.
TheESE typically complex research instruments ranging from hun-
dreds to thorusand of computing nodes require substantial efforts
in monitoring to ensure the trade off of cost versus performance.
One approach that can strengthen monitoring efficiency is to apply
visualization and human-computer interaction (HCI) to the opera-
tional data. The HCI theory relies on cognitive principles to design
the user interface and interactive activities [11], so it allows HPC
administrators to gain necessary information quickly and intuitively.
This work aims to apply the advantages of HCI to monitoring data

at an HPC center [22] to demonstrate the benefits of visualization in
monitoring activities.

Monitoring tasks vary significantly for different administrators
and their purposes, but the usual activities are to look at the current
states of the system or analyze the historical data for the overview of
long-term trends [1]. The administrators often consider the compute
node health because they can know what happens with the system
by analyzing memory usage, CPU usage, temperature, etc... They
may also put their attention into job state information to assess the
operation of the system. It is interesting to analyze both users’ jobs
information and the compute node health because the combined view
can help the administrators understand how these jobs utilize the
set of resources in the system and know the relations between users’
activities and the system’s state. Moreover, the knowledge about
regular users or jobs’ behaviors can encourage the administrators
to improve their HPC performance. Therefore, we target the users’
jobs and the compute node health for developing an interactive web-
based prototype, called JobViewer, to provide a novel monitoring
aspect for an HPC system.

The main contribution of this work is three folds.

• We apply HCI’s advantages to visualize users’ jobs and node
health monitoring of an HPC system by building a web-based
prototype, namely JobViewer, for this purpose.

• We illustrate the benefits of monitoring both the above aspects
in their relations with some real use cases.

• We carry out a user study to verify whether the approach and
designs are suitable for practical uses.

This paper’s structure is as the following. The next section covers
some related works, and then, section 3 will consider the designs
of the proposed web-based prototype. Section 4 discuss real use
cases of the visualizations, while section 5 mentions user study for
the approach. Finally, section 6 discuss all results of this work and
section 7 summarizes the work.



2 RELATED WORKS

2.1 HPC performance monitoring
HPC monitoring is not a new problem, so there are several well-
known performance analysis tools, both commercial and open-
source ones. Ganglia is an open-source distributed monitoring sys-
tem for clusters and grids. Ganglia’s strength is the scalability, with
some measurements showing that Ganglia can scale on clusters of
up to 2000 nodes and federations of up to 42 sites [14]. This tool
uses RRDtool [19] to store and visualize time series data. Nagios [8]
is another tool that many organizations utilize. It can be suitable for
monitoring a variety of servers and operating systems with industrial
standards. The tool has two versions: one commercial (Nagios XI)
and open-source (Nagios Core). The commercial version has web
interface and performance graphing [3]. However, there are some
issues with traditional Nagios including:

• Nagios requires human intervention for the definition and main-
tenance of remote hosts configurations in Nagios Core.

• Nagios requires Nagios Remote Plugin Executor on Nagios
Server and each monitored remote host.

• Nagios mandates Nagios Service Check Acceptor (NSCA) on
each monitored remote host.

• Nagios also requires to check specific agents (e.g. SNMP) on
each monitored remote host.

Besides, CHReME [16] provides a web-based interface for moni-
toring HPC resources that took non-expert away from conventional
command lines. This tool, however, focuses on basic tasks which
can also be found on Nagios engine. Splunk [5] is another software
platform for mining and investigating log data for system analysts.
Its most significant advantages are the capability to work with multi-
ple data types (e.g., csv, json or other formats) in real-time. It has
been used and shown consistent performance in the study [21, 26].
However, Greenberg and Debardeleben [12] pointed out that Splunk
was not feasible for searching a vast amount of data generated every
day (e.g., hundreds of gigabytes of data) due to slow performance.
Grafana [9] provides a vibrant interactive visualization dashboard
which enables users to view metrics via a set of widgets (e.g., text,
table, temporal data). Grafana defines a place holder (i.e., arrays)
that automatically generates widgets based on its values. This also
a limitation of Grafana: customized visualizations (such as parallel
coordinates [20] and scatterplot matrices [24] for analyzing high-
dimensional data) are not supported. This visualization package
has been used in [4, 12] due to its multiple data stores features.
Windows Azure Diagnostic or Amazon cloud watch [13], are also
common tools for performance monitoring purposes. The survey of
these tools [3] can give more details of interest.

2.2 Time Series Visualizations
One crucial factor that we need to consider if we want to do vi-
sualizations is the data structure. This work investigates a high
dimensional temporal dataset with four dimensions: 1) User and job,
2) Compute node, 3) Health metrics, and 4) Time. In other words,
we consider the data of 467 compute nodes at an HPC system [22].
Each compute node has nine health metrics, including two CPU
temperatures, inlet temperature, four fans’ speed, memory usage,
and power consumption. Each metric of a compute node is recorded
every 5 minutes to form a time series. Moreover, users utilize the
compute nodes to run their jobs. If we ignore the user and job, this
data becomes the panel data, and there are various ways to visualize
it. One example is TimeSeer [6], which transforms the panel data
into time series of Scagnostics. The Scagnostics are measures for
scoring point distribution in scatterplots [25]. The main idea of
TimeSeer is to use these measures as a sign to quickly identify time

steps with rare events. Another method is the use of connected scat-
terplots for displaying the dynamic evolution of pairwise relations
between variables in the data [18]. Besides, parallel coordinates
can also be extended for the panel data [2, 7, 23]. However, these
common projections’ extensions cannot visualize the relationships
between users’ jobs with the compute nodes. It is the reason why
we propose a novel design of visualization for the dataset with four
dimensions, and the detailed discussions are in the next section.

3 DESIGN DESCRIPTIONS

Based on our weekly discussions with the domain experts, the HPC
visualization requirements are expanded on the following dimen-
sions: HPC spatial layout, temporal domain, resource allocations
and usages, and system health metrics such as CPU temperature,
memory usage, and power consumption. We therefore focus the fol-
lowing design goals on: (D1) Provides spatial and temporal overview
across hosts and racks, (D2) Provides the holistics overview of the
system on a health metrics at a selected timestamp. (D3) Highlights
the correlation of system health services and resource allocation
information within a single view, and (D4) Allows system admin-
istrators to drill down a particular user/job/compute to investigate
the raw time series data for system debugging purposes. Figure 1
depicts four main components of the JobViewer, including the time-
line, main visualization, control panel, and the job table. Let first
consider the timeline in Figure 1(a) We use animation to illustrate
the temporal flow of the dataset. Animation has positive impacts on
cognitive aspects such as interpreting, comparing, or focusing [17].
Although this method cannot grasp the whole temporal information,
it is convenient for both uses: analyzing historical data and visual-
izing the system lively. The timeline has another benefit in quickly
investigating time steps of interest.

Figure 1(b) shows the main visualization at a particular time step.
The design bases on the idea of the bipartite graph with two disjoint
sets of vertices. One set contains users, and another consists of
the compute nodes. The link between a user with a compute node
implies that the node is running at least one job of the user (Design
goal D3). We design this graph with all users in the central list, and
all compute nodes surrounding it. The compute nodes are divided
into ten racks as their actual spatial locations. A benefit of graph-
based visualization is that it is easy to highlight the link between a
user and a compute node. For instance, we implement the mouse
over the user or the compute node to highlight the corresponding
vertex’s links. The graph-based design also allows us to apply a
simple visual method for illustrating the compute nodes’ health
metrics. JobViewer uses color to display the value of a chosen
metric. The map from color to value is depicted by the color scale
on the control panel tab, as can be seen in Figure 1(c). We use these
simple visual presentations to display all four dimensions of the
dataset mentioned in the previous section.

Besides the above designs, we also implement others to give re-
lated information and improve the cognitions. It is easy to recognize
a new user appearing on the central list; however, if a current user,
who has some jobs running somewhere in the system, run a new
job, it is difficult to identify. If this case happens, we highlight the
user at the corresponding time step by its outline and the color of
links to compute nodes allocated the new jobs. About the compute
nodes, one may wonder how many jobs a compute node is running.
We visualize the number of jobs running on a compute node by the
thick of its outline. Additionally, if the chosen metric’s value on a
compute node varies significantly over two consecutive time steps,
we use the blur effect to highlight the sudden change.

Figure 1(c) shows the control panel and all options of the drop-
down menus. There are two options for displaying on the central
list: one offers the user, and another gives the job name. The next
function is ranking that sorts all users on the list by a chosen option.
Three options for the ranking are the number of jobs, the number of



compute nodes utilized by the user or job, and the selected health
metric. We can also select one of the nine metrics to visualize by
the compute nodes’ color in the visualizing tab. Two more options
beyond health metrics in the visualizing tab are user/job name and
radar view [15]. If we select the user/job option, all compute nodes
are colored according to their users/jobs. If we select the radar
view, JobViewer visualizes every compute node by a radar chart
representing all its health metrics.

However, if we observe the compute nodes by their radar chart,
it is difficult to recognize the shapes because their size is relatively
small. We found that the use of color is more effective for cognitive
activities. It is the reason why we apply some clustering algorithm
to cluster the compute nodes based on their health metrics. Then, we
color each cluster a different color. Every radar chart representing a
compute node has the color of its group. This method also improves
the analyzing process because it reduces 467 compute nodes to a
much smaller number of patterns of health states. We can quickly
gain characteristics of the system states or detect strange behaviors
of some compute nodes. Two clustering algorithms integrated into
JobViewer are k-means and leader algorithm [10].

Another interaction with the main visualization is the mouse
click to show the corresponding table of jobs’ information, as seen
in figure 1.d. On the table, we can find all information related to
the jobs, such as the job’s identity, job name, users, number of
cores the job is using, etc. (Design goal D4). Moreover, we also
display the time series of the selected health metric on the clicked
compute node, and we highlight the period when the job runs on
that compute node by the grey area. This visualization helps us
understand what happens with compute nodes when particular users
are using them. As we will show in the next section, this feature may
give information about relations between jobs or users with compute
nodes’ health states.

To sum up, JobViewer designs the visualization using the idea
of a bipartite graph. It also integrates some simple visual methods
and clustering algorithms to improve cognitions for the analyzing
process. The next sections demonstrate how we can use JobViewer
in monitoring an HPC system.

4 USE CASES

4.1 Job allocation

The first use case focuses on how JobViewer provides information
about job allocations. Figure 2.a shows a snapshot of the main
visualization on 08/14/2020 at 5:50 PM. The color distinguishes
between different users, along with their related compute nodes.
If a compute node runs several jobs of multiple users, it has all
corresponding colors. If a compute node is white, no user’s job is
running on it. At 5:50 PM, there are nine white compute nodes that
locate in six different racks. Ten minutes later, user0’s job starts,
as highlighted by the black outline and links in figure 2.b. It takes
1080 cores, or 30 compute nodes (each compute node has 36 cores).
The system allocates seven out of nine white compute nodes to this
job, and there are still two white compute nodes at 6:00 PM. One
is on rack 2, and another is on rack 9. Figure 2.c highlights all 30
compute nodes running the user0’s job. From these 30 compute
nodes, 18 ones run two jobs, and 12 others run only one job. We
have checked and found that most of the 18 compute nodes’ former
jobs consume all 36 cores at 5:55 PM. It means some of the compute
nodes utilize up to 72 cores, including virtual cores, at 6:00 PM.
These figures show information about job scheduling. Although
there are two unused compute nodes, and the job requires so many
cores to run, the system reuses the compute nodes running another
job and does not allocate the two unused ones to the job. This use
case is an example that can illustrate how efficient JobViewer can
help HPC administrators to monitor job scheduling.

Figure 2: Snapshots of the main visualization at (a) 5:50 PM and (b)
6:00 PM on 08/14/2020. (c) If we click on user0, the highlight of all its
links and related compute nodes appears.



4.2 Clustering of health states
This use case investigates the health monitoring aspect of the Job-
Viewer. As mentioned in section 3, we use color to depict values
of a selected health metric from the list of nine. Another option to
observe all nine health metrics in a single view is to display each
compute node by a radar chart. The radar charts can illustrate all
health metrics; however, their size is relatively small for users to
recognize quickly. The clustering algorithm can overcome this issue
because it clusters all compute nodes to a small number of groups.

Figure 3: (a) Result of leader algorithm for all 467 compute nodes
on 08/18/2020 at 11:30 AM. (b) Visualization of the compute nodes
in rack 4 with radar charts representing the compute nodes. The
color of these radar charts depicts its group in the result of the leader
algorithm.

Figure 3.a gives the result of the leader algorithm for the system
on 08/18/2020 at 11:30 AM. This algorithm clusters 467 compute
nodes to 5 groups with different patterns of their health states. The
blue group has 450 compute nodes, with medium values of two
CPU temperature, four fans’ speed, and power consumption. All
compute nodes have low inlet temperature, and five of them have
high memory usage. We can also see that 13 compute nodes do not
have fan speed information, while only four lack information about
CPU temperature. The red group has four compute nodes with a
common state of high fan speed and CPU2 temperature. Figure 3.b
shows these four red compute nodes in rack 4. We have investigated
their CPU2 temperature and found that only the compute node 4.33
got heat in its CPU2. Figure 4.b verifies this statement, as the color
of compute node 4.33 is red while that of the other three are light
green. We can also get the CPU1 temperature of these four compute
nodes from figure 4.a. Their CPU1 temperatures are all low due to
their corresponding colors. One possible explanation for this event is
their location. They may locate near each other, so the three compute
nodes (4.34, 4.35, and 4.36) can feel the heat from the compute node
4.33. Then, their fan must work harder to cool the CPUs.

4.3 Relation between job and health state
This use case clarifies the relations between jobs and the health
states of compute nodes. We firstly look at the time series of CPU2
temperature of the compute node 4.33 in figure 5. The unit of
temperature is degree Celcius, and the time takes place in August
2020. The vertical dash line indicates the time step at which we
stop the timeline to get the time series. It is 08/18/2020 at 11:30
AM when we investigate the previous use case. The colorful areas
highlight periods when a job is running on the compute node. We
use text notations, which have similar colors to the corresponding

Figure 4: The visualization of all compute nodes in rack 4. The color
indicates (a) CPU1 temperature and (b) CPU2 temperature. Red color
means high value, yellow depicts a medium temperature, and green
represents low value.

Figure 5: The time series of CPU2 temperature of compute node 4.33.
The colorful areas highlight the period when the user with similar color
runs his/her job. The vertical dash line indicates the time step at which
we take the figure. It is 08/18/2020 at 11:30 AM.

areas, to denote users and their jobs. There are five long jobs on
compute node 4.33 over the whole temporal period. None of them
overlaps each other. The CPU2 temperature has a high value when
user1 runs his/her job, but the value suddenly reduces when user10
starts his/her job. The same jump or drop happens when there is a
switch of users. Therefore, it is reasonable to state that the CPU2
temperature of compute node 4.33 depends on the job running on
it. If we look at the CPU1 temperature of compute node 2.60 in
figure 6, we can observe a similar behavior of the relation. Some
jobs are responsible for high CPU temperature, while some jobs do
not cause hot CPUs.

Can we use these relations to investigate the reason for the irregu-
lar hot CPU2 temperature of compute node 4.33, as mentioned in
the previous use case? If we compare the user and job running on
the compute nodes, namely 4.33 and 2.60, on 08/18/2020 at 11:30
AM, they run only one job of precisely one user. The value of CPU2
temperature of the compute node 4.33 is also higher than other users,
such as user1 and user13. This job is suspicious. However, it is
impossible to make a strong conclusion about whether this job is the
cause of the heat in CPU2 of compute node 4.33 or this compute
node has a problem itself. What JobViewer can show to the adminis-
trators is the monitoring information. If they want to find the correct
reasons for any irregular event, they should do other investigations
to see the real causes.



Figure 6: The time series of CPU1 temperature of compute node 2.60.
The colorful areas highlight the period when the user with similar color
runs his/her job. The vertical dash line indicates the time step at which
we take the figure. It is 08/18/2020 at 11:30 AM.

5 USER STUDY

5.1 Overview
We contact three volunteers, who have experience working with
the HPC system (in both academia and industry), and carry out
the user study through video calls. The user study begins with an
introduction to the JobViewer. The introduction covers all features
and functions of four main components. After that, we ask whether
the volunteers have questions or any confusion about the application.
If they are still not clear about our web-based prototype, we explain
carefully again to ensure they fully understand what they can achieve
from the JobViewer. The next step is to ask them to answer some
questions and record their actions while finding the answers. Finally,
we ask whether they have feedbacks on the application or not.

We divide the questions into five tasks as the following:

• Health metrics: This task aims to check whether volunteers
can gain information about the compute nodes’ health states.
We require volunteers to select a health metric and name one
compute node with a high value of the chosen metric. Also,
the volunteers need to point out users linked to that compute
node.

• Job information: This task checks whether the volunteers
know how to get information about a job. We ask them which
user’s job starts at a particular time step and some compute
nodes allocated for the job.

• Clustering: This task requires the volunteers to understand
how to use the clustering algorithms for detecting the compute
nodes with irregular health states. The volunteers need to
identify and name all compute nodes with a given pattern of
health metrics.

• Metric vs. Job relation: This task asks the volunteers to
use the time series of a selected metric of a specific compute
node to comment on the dependency between the job and the
selected metric.

• General comments: This task gets the volunteers’ feeling
when using JobViewer to answer questions in the above tasks.
We want to know whether the application is easy for them to
find answers to the above questions. Also, we ask whether they
think this application is helpful for monitoring activities.

For the task Clustering and Metric vs. Job relation, we aim to
ask the volunteers question related to the use case of compute node
4.33, as mentioned in section 4.2. We hope they can see the benefits
of our approach through these questions. One user recognizes some
issues with compute node 4.33 and spends time investigating it.

Figure 7: It is difficult to read time information and reach a particular
time step in the timeline’s old design, so we implement a new compo-
nent for the timeline. The HPC administrators can click on the right/left
button to move toward the time step of interest or type it directly.

5.2 Results
Overall, two volunteers can quickly go over the questions and use
the application quite correctly, while a volunteer fails almost all the
tasks. The first volunteer moves smoothly to all the questions, except
reaching a particular time step. It is difficult for him to observe the
time on the timeline because it is too small. Also, he takes some
issues when trying to reach a specific time step as required by the
questions. This volunteer is the only one that spends lots of time on
task 4 because he thinks it is interesting to find the reason behind
the irregular hot in CPU2 of compute node 4.33, as mentioned in
section 4.2. He moves the timeline to look at jobs at different periods
and switch to various health metrics to understand the situation.
He finally ends up with an assumption about the positions of the
four compute nodes. The second volunteer also does well with
the tasks, except for the first one. He says that red compute nodes
correspond to high values of the selected metric, but he decides to
pick up a yellow one to answer the questions. For the task Metric
vs. Job relation, he replies that the job consuming high CPU usage
will cause high CPU temperature. Regarding their opinions about
whether JobViewer is helpful for monitoring activities, these two
volunteers have common comments. Although JobViewer has a
good design and is useful for a human to build up investigations,
the monitoring administrators may not spend too much time on any
irregular event step by step. What they want is to catch the problems
quickly, so they prefer a large monitor with all information and data.
About the last volunteer, his only correct answer for the question is
to find the node with a high value of Memory usage. He comments
that the application is hard for him to use because it is challenging
to navigate the activities. He also does not understand the use of
time series and other stuff.

The first two volunteers also give feedback on how to improve
the JobViewer. One is the design of the timeline. Because the
whole time interval is long, reaching a particular time step may be
a challenging activity. Besides, the text on the timeline may be
too small for some application’s users to read. It is the reason why
we improve our design with a new component above the timeline
to make it more useful, as depicted in figure 7. We can directly
type the time of interest in this component. Another possible action
to get a certain time step is to move near it and use the right/left
button to move toward the correct position. Moreover, the second
volunteer mentions the scalability of the JobViewer because some
HPC clusters may have thousands of compute nodes. Regarding this
idea, we believe the graph-based design is suitable for scaling up to
a number that is much larger than the current 467 compute nodes.
Two reasons that support this argument are as the following.

1. We use color as the primary visual signal to inform the health
states of compute nodes. We can select individual HPC users
or compute nodes to observe further details and time series.
The color helps improve the cognitions if there are too many
compute nodes in the system.

2. If we have more rack and compute nodes, we can expend the
main visualization because it uses a graph-based design. For
example, we can use multiple layers of racks. In this case,
the links may look cluttered and crowded. However, it can be
overcome by simple highlights.



6 DISCUSSION

The strength of JobViewer is its ability to display both system health
states and resource allocation information in a single view. It is
easy to gain job allocation information in the main visualization,
as depicted in section 4.1. The clustering algorithm integrated into
the application can quickly show the characteristics of the system
health states. From these characteristics, we can point out any
compute node with an irregular health state pattern to investigate
the problems behind it. Section 4.2 describes a use case for this
benefit. Moreover, JobViewer can allow us to observe the relations
between jobs and compute node health, as illustrating in section 4.3.
This feature highlights jobs and users’ behaviors to understand them
better for improving or finding suspicious causes of any problem.
One volunteer in the user study also finds it interesting to use this
feature to investigate the irregular heat in CPU2 of compute node
4.33.

To use JobViewer efficiently, we need the training to know inter-
actions and activities to get desirable information. One volunteer out
of three comments on the difficulty of using the application, while
the other two can easily go through the tasks. Besides, the timeline’s
original design is not optimal, so we improve it, as shown in figure 7
and mentioned in section 5.2. Another issue related to JobViewer
is that it is not a complete tool for HPC monitoring. We focus on
the four design goals rather than an efficient and comprehensive tool
for commercial purposes. The JobViewer is an application that can
show the advantages of visualization and human-centered computing
in a complex task of HPC monitoring.

7 CONCLUSION

We have presented an application of human-centered computing in
the case of HPC monitoring data. The visualization design bases
on the idea of the bipartite graph that has prominence in scalability.
The visualization can intuitively show an HPC system with resource
allocation information and the system health states. We have demon-
strated three use cases of historical data of an HPC cluster with
467 compute nodes to illustrate the proposed approach’s usability.
Besides, we have carried out a user study with three experienced
experts in HPC monitoring. The results point out the strength of
JobViewer and its weakness for further improvement in the future.

REFERENCES

[1] W. Allcock, E. Felix, M. Lowe, R. Rheinheimer, and J. Fullop. Chal-
lenges of hpc monitoring. In SC’11: Proceedings of 2011 International
Conference for High Performance Computing, Networking, Storage
and Analysis, pp. 1–6. IEEE, 2011.

[2] N. Barlow and L. J. Stuart. Animator: A tool for the animation of
parallel coordinates. In Proceedings. Eighth International Conference
on Information Visualisation, 2004. IV 2004., pp. 725–730. IEEE,
2004.

[3] S. Benedict. Performance issues and performance analysis tools for
hpc cloud applications: a survey. Computing, 95(2):89–108, 2013.

[4] E. Betke and J. Kunkel. Real-time i/o-monitoring of hpc applications
with siox, elasticsearch, grafana and fuse. In International Conference
on High Performance Computing, pp. 174–186. Springer, 2017.

[5] D. Carasso. Exploring splunk. CITO Research New York, USA, 2012.
[6] T. N. Dang, A. Anand, and L. Wilkinson. Timeseer: Scagnostics for

high-dimensional time series. IEEE Transactions on Visualization and
Computer Graphics, 19(3):470–483, 2012.

[7] A. Dasgupta, R. Kosara, and L. Gosink. Meta parallel coordinates for
visualizing features in large, high-dimensional, time-varying data. In
IEEE Symposium on Large Data Analysis and Visualization (LDAV),
pp. 85–89. IEEE, 2012.

[8] N. Enterprises. Nagios. website.
[9] Grafana. The open platform for beautiful analytics and monitoring,

2019. https://grafana.com/.
[10] J. A. Hartigan. Clustering Algorithms. John Wiley & Sons, Inc., New

York, NY, USA, 99th ed., 1975.

[11] H. R. Hartson. Human–computer interaction: Interdisciplinary roots
and trends. Journal of systems and software, 43(2):103–118, 1998.

[12] N. D. Hugh Greenberg. Tivan: A scalable data collection and analytics
cluster. 2018. The 2nd Industry/University Joint International Work-
shop on Data Center Automation, Analytics, and Control (DAAC).

[13] A. Inc. Amazon cloudwatch, 2012. http://aws.amazon.com/
cloudwatch/..

[14] M. L. Massie, B. N. Chun, and D. E. Culler. The ganglia distributed
monitoring system: design, implementation, and experience. Parallel
Computing, 30(7):817–840, 2004.

[15] M. Meyer, T. Munzner, and H. Pfister. Mizbee: A multiscale synteny
browser. IEEE Transactions on Visualization and Computer Graphics,
15(6):897–904, Nov. 2009. doi: 10.1109/TVCG.2009.167

[16] G. Misra, S. Agrawal, N. Kurkure, S. Pawar, and K. Mathur. Chreme:
A web based application execution tool for using hpc resources. In
International Conference on High Performance Computing, pp. 12–14,
2011.

[17] K. Nakakoji, A. Takashima, and Y. Yamamoto. Cognitive effects of
animated visualization in exploratory visual data analysis. In Proceed-
ings Fifth International Conference on Information Visualisation, pp.
77–84. IEEE, 2001.

[18] B. Nguyen, R. Hewett, and T. Dang. Congnostics: Visual features for
doubly time series plots. 2020.

[19] T. Oetiker. Rrdtool. website, February 2017. Retrieved December 14,
2020 from https://oss.oetiker.ch/rrdtool/index.en.html.

[20] G. Palmas, M. Bachynskyi, A. Oulasvirta, H. P. Seidel, and T. Weinkauf.
An edge-bundling layout for interactive parallel coordinates. In 2014
IEEE Pacific Visualization Symposium, pp. 57–64, March 2014. doi:
10.1109/PacificVis.2014.40

[21] J. Stearley, S. Corwell, and K. Lord. Bridging the gaps: Joining
information sources with splunk. In SLAML, 2010.

[22] TTU. High performance computing center (hpcc) at texas tech
university. website, January 2020. Retrieved July 6, 2020 from
http://www.depts.ttu.edu/hpcc/.

[23] R. Wegenkittl, H. Loffelmann, and E. Groller. Visualizing the be-
haviour of higher dimensional dynamical systems. In Proceedings.
Visualization’97 (Cat. No. 97CB36155), pp. 119–125. IEEE, 1997.

[24] L. Wilkinson, A. Anand, and R. Grossman. Graph-theoretic scagnostics.
In Proceedings of the IEEE Information Visualization 2005, pp. 157–
164. IEEE Computer Society Press, 2005.

[25] L. Wilkinson, A. Anand, and R. Grossman. Graph-theoretic scagnostics.
In IEEE Symposium on Information Visualization, 2005. INFOVIS
2005., pp. 157–164. IEEE, 2005.

[26] P. Zadrozny and R. Kodali. Big data analytics using Splunk: Deriving
operational intelligence from social media, machine data, existing data
warehouses, and other real-time streaming sources. Apress, 2013.

https://grafana.com/
 http://aws.amazon.com/cloudwatch/. 
 http://aws.amazon.com/cloudwatch/. 
https://oss.oetiker.ch/rrdtool/index.en.html
http://www.depts.ttu.edu/hpcc/

	Introduction
	Related works
	HPC performance monitoring
	Time Series Visualizations

	Design descriptions
	Use cases
	Job allocation
	Clustering of health states
	Relation between job and health state

	User study
	Overview
	Results

	Discussion
	Conclusion

