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Abstract

Aspect sentiment triplet extraction (ASTE) is001
a sentiment analysis task that aims to extract002
views’ sentiment polarity, expression, and tar-003
get (aspect). While the zero-shot scenario004
for the sentence or aspect-level sentiment has005
made much progress in recent years, zero-shot006
ASTE remains unstudied because of its far007
more complex data structure. This paper chal-008
lenges this remaining problem and proposes the009
first unsupervised method for aspect sentiment010
triplet extraction, which even does not require011
any training on human-annotated data. Based012
on the previous discovery of the pre-trained013
language model (PLM)’s awareness of senti-014
ment, we further leverage the masked language015
model (MLM) to prompt an ASTE dataset with016
automatically annotated labels. Our method,017
PromptASTE, fills in a series of prompts to018
generate a dataset for related aspects and views.019
The dataset is then used to train an ASTE model020
for prediction. Training on PromptASTE re-021
sults in models with an outstanding capability022
in discerning sentiment polarities and targeted023
aspects. Our model sets the first and strong024
baseline on unsupervised ASTE.025

1 Introduction026

Aspect sentiment triplet extraction (ASTE) is a type027

of sentiment analysis task. While conventional sen-028

timent analysis either classifies the sentiment po-029

larity of a sentence or extracts aspect span with030

polarity, ASTE is interested in aspect-based sen-031

timent and extracts the expression (view) and tar-032

get (aspect) of sentiments, making it a challenging033

problem with the complex data structure.034

Some instances of ASTE are shown in Fig-035

ure 1, the view and aspect are represented by spans.036

Paired spans are labeled as the sentiment polarity037

of the view on its targeted aspect. While many038

previous works have been done for the supervised039

ASTE system, unsupervised ASTE remains a blank.040

Also, some tries have been made for zero-shot041

Burger   Queen   – just   brought   a    delicious   hamburger

Positive

View Aspect

The   ice   cream   is   disgusting   .   #   Covensky Ice

Negative

ViewAspect

Figure 1: Instances for the ASTE task.

sentence-level and aspect-level sentiment analy- 042

sis (Sarkar et al., 2019; Wang and Ji, 2022; Phan 043

et al., 2021), but the rather complex data structure 044

of ASTE block these methods from stepping fur- 045

ther. As sentiment is a universal and cross-language 046

phenomenon, unsupervised ASTE is appealing to 047

reduce the burden for annotation, especially for 048

low-resource language with a limited number of 049

skilled annotators. 050

However, unsupervised ASTE is challenging as 051

ASTE data are structured in a complex form. The 052

unsupervised system faces several essential prob- 053

lems for relationship understanding. a) Polarity 054

How does the model understand the sentiment po- 055

larity with no annotated knowledge? b) Relation- 056

ship How does the model learns paired feature that 057

does not exist in sequential natural language with 058

no annotation for relationships? c) Boundary How 059

does the model determine the span boundaries an- 060

notated by a human when testing? 061

The challenges above hinder the application of 062

conventional unsupervised methods, like clustering. 063

Moreover, clustering requires collecting unanno- 064

tated data for unsupervised training, which is still 065

unfriendly for low-resource languages. We aim 066

to step even further towards a method that is free 067

from any ASTE-related data, no matter annotated 068

or unannotated. 069

Thus, we cast our attention to pre-train language 070

models (PLMs) (Radford et al., 2018; Devlin et al., 071

2019; Liu et al., 2019; Yang et al., 2019), which 072

are competitive zero-shot learners (Radford et al., 073
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2018) with strong scalability. PLMs, like RoBERTa074

(Liu et al., 2019), are trained on upstream masked075

language model (MLM) tasks that require the lan-076

guage model to fill in masked words in context.077

Recent studies have shown that pre-training en-078

dows PLMs with sentiment awareness to solve079

conventional sentiment analysis problems, suggest-080

ing the PLM is an admirable choice for unsuper-081

vised ASTE. By utilizing the MLM task, we fill082

in prompts to create an ASTE dataset from PLMs.083

A prompt combination is used to sample kernel084

spans, which are spans consisting of aspect senti-085

ment triplets, from PLMs.086

The annotating system comprises three prompts087

for domain specification, aspect generation, and088

view generation. We also propose a contrastive089

prompt to prompt better sentiment expressions090

by contrasting positive and negative expressions.091

Based on the kernel span, PLMs are again used to092

supplement the contextual background via mask093

filling. The supplemented data finally form the094

PromptASTE dataset.095

After the dataset is created, PromptASTE is used096

to train ASTE models following a supervised sce-097

nario. Spans and their relationships are annotated098

in graphs to train an extractor for graphic pattern099

capturing. We test the trained extractor on several100

ASTE datasets and compare the results with su-101

pervised results. Our method shows competitive102

performance on unsupervised ASTE and sets the103

first and strong baseline.104

The contributions from our work are summa-105

rized as follows:106

• We propose the first unsupervised method for107

ASTE and set a strong baseline for the task.108

• We verify the plausibility of prompting a109

dataset for a task with a complex data struc-110

ture.111

• We implement a novel contrastive prompting112

procedure to generate sentiment expressions113

better.114

2 Background and Related Work115

Triplets in ASTE are formalized in (V,A, P ) where116

V , A, P refer to view (expression) span, aspect117

(target) span, and sentiment polarity respectively.118

ASTE models are trained to determine the bound-119

ary of spans and label the polarity held by the view120

towards the aspect.121

Since the annotation of a variety of ASTE 122

datasets (Peng et al., 2020; Xu et al., 2020) based 123

on aspect based sentiment analysis (ABSA) data 124

(Pontiki et al., 2014, 2015, 2016), many supervised 125

methods have been proposed for ASTE. (Peng et al., 126

2020) tests a wide range of previous triplet extract- 127

ing method on ASTE and propose a tag-and-pair 128

pipeline to set the first supervised baseline. Spans 129

are extracted by finding segments and their rep- 130

resentations are fed into a pair classifier to find 131

whether a relationship exists between them. (Xu 132

et al., 2020) incorporates position information and 133

CRF inference into the tagging system to boost 134

performance. (Wu et al., 2020) formalizes ASTE 135

in a grid tagging scheme. The tagged grid is de- 136

coded by first finding terms in the diagnosis and 137

then searching for grids indicating relationships be- 138

tween terms. Though supervised ASTE has been 139

under heated discussion since the task’s proposal, 140

so far no attention has been cast to solve ASTE 141

with no supervision. 142

However, unsupervised ASTE is a fairly chal- 143

lenging task. Besides its complex structured nature, 144

the difficulty also comes from the incapability of 145

existing unsupervised systems to build a complete 146

pipeline, from span extraction to relationship la- 147

beling. For unsupervised relation extraction, cur- 148

rent models have only limited capability to label 149

the relationships between paired already extracted 150

spans (Tran et al., 2020; Yuan and Eldardiry, 2021). 151

These methods use the conventional unsupervised 152

method like clustering to assign closely distributed 153

span pairs to the same labels. Thus, the prerequi- 154

site of annotated spans makes these unsupervised 155

methods unfriendly to real zero-shot learning. 156

Thus, we abandon the conventional unsupervised 157

methods and turn towards leveraging PLMs, which 158

are powerful zero-shot learners via training on 159

super-large corpora. The long training procedure 160

endows PLMs with the understanding of seman- 161

tic relationships between tokens, which makes the 162

PLM a desirable tool for unsupervised downstream 163

tasks. Also, mask filling on prompts has been veri- 164

fied to be a powerful way to extract commonsense 165

knowledge (Petroni et al., 2019), relationship un- 166

derstanding (Goswami et al., 2020), and sentiment 167

awareness (Wu et al., 2019) of the PLM. Our work 168

further leverages the endowed sentiment awareness 169

in PLMs to build a complete unsupervised pipeline 170

for ASTE. 171
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3 Prompting ASTE Dataset172

3.1 The Pipeline173

We first give a rough description of our method and174

how it deals with the challenges in unsupervised175

ASTE before introducing the specific implementa-176

tion. The pipeline comprises two main procedures:177

kernel span generation and context supplement.178

Kernel span refers to the span that consists of179

the aspect sentiment triplet. To obtain kernel spans,180

our prompt involves masked view spans (v-mask)181

and masked aspect spans (a-mask). V-masks and182

a-masks are both common mask tokens used in183

the upstream MLM pre-training, and their only184

difference is representing views or aspects. The185

PLM fills the masked spans, and the kernel span is186

seized from the span for context supplement.187

Polarity We add hints for polarity to the prompt188

in order to generate view expressions with the cor-189

responding sentiment polarity.190

Relationship The relationships are pre-defined191

between views and aspects in the prompt.192

Boundary Words near the span boundaries help193

control the generated span to have boundaries as194

pre-defined in the prompt.195

196

Based on the kernel spans, we again use the197

PLM to supplement the contextual background for198

the sentiment via mask filling. The supplemented199

results are the final PromptASTE dataset.200

3.2 Domain Prefix Prompt201

The domain prefix prompt is used to specify the202

domain for kernel span generation. As in the green203

frame in Figure 2, the domain prefix prompt deter-204

mines the contextual environment for the prompt-205

ing generation. As the testing datasets are in dif-206

ferent domains, the domain prefix prompt will help207

generate more relevant training data to improve the208

performance of trained models.209

3.3 Aspect Prompt210

The aspect prompt is the blue frame in Figure 2,211

which is responsible for polarity selection and as-212

pect generation. The prompt contains a-masks and213

a polarity token <pol> that provides hints for the214

later generation.215

After the polarity of triplets in the kernel span216

is selected, the polarity token is substituted by a217

token with sentiment information. In the instances218

in Figure 2, the word good substitutes <pos> and 219

indicates the positive sentiment in the kernel span. 220

Then we fill in the a-masks via a beam search. 221

Notice that the masked aspect span might consist 222

of multiple mask tokens. 223

X = [x1:i−1,<mask>, · · · ,<mask>, xj+1:n]

p(xi:j |X) =

j∏
t=i

p(xt|X,xi:t−1)

p(xt|X,xi:t−1) = softmax(Rt/T )

R = PLM(xt|X,xi:t−1)

224

where X is a sentence with n words and Xi:j 225

denotes the span from the i-th word to the j-th 226

word. T refers to the temperature for sampling. 227

R ∈ Rn×o is the output representation from the 228

PLM, and o refers to the dictionary size. We sum- 229

marize the beam searching procedure as Beam(·). 230

After we get the existing probability of each beam, 231

we sample an aspect span following the predicted 232

distribution. 233

3.4 Contrastive View Prompt 234

After generating the aspect span, we also fill in the 235

coreference masked aspect span in the view prompt. 236

Then we introduced our contrastive generation for 237

view span. 238

For the prompt in this step Xself , we shift the 239

word in the position of the polarity token to create 240

an opposite prompt Xoppo. We first use Xself to 241

sample k view span beams by prompting and then 242

calculate the probability distribution of the view 243

span in Xoppo. 244

P self = Beam(Xself ), P oppo = Beam(Xoppo) 245

Finally, the log probability of P self is subtracted 246

by the weighted log probability of P self and passed 247

through a softmax function for the contrastive dis- 248

tribution. 249

P contrast = softmax(log(P self )− w log(P oppo)) 250

Here w is a factor that controls the degree of con- 251

trast during the generation. The view span is likely 252

sampled following the predicted distribution as the 253

aspect span. 254

After aspect and view spans are completely filled, 255

we seize the kernel span and build the triplets using 256

pre-defined relationships. 257
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In   the   restaurant   ,   I   think   <a-mask>   is   <pol>   :   “   It   is   a   <v-mask>   <a-mask>   .   ”

Domain Prompt Aspect Prompt View Prompt

In   the   restaurant   ,   I   think   <a-mask>   is   good :   “   It   is   a   <v-mask>   <a-mask>   .   ”

In   the   restaurant   ,   I   think   hamburger is   good   :   “   It   is   a   <v-mask>   hamburger .   ”
Coreference

In   the   restaurant   ,   I   think   hamburger   is   good   :   “   It   is   a   <v-mask>   hamburger   .   ”

In   the   restaurant   ,   I   think   hamburger   is   bad :   “   It   is   a   <v-mask>   hamburger   .   ”

Contrast

hamburger

delicious

In   the   restaurant   ,   I   think   hamburger   is   good   :   “   It   is   a   delicious hamburger   .   ”

Kernel Span

Polarity

Positive

Positive

Positive

Positive

Positive

Figure 2: Prompting steps for the generation of PromptASTE.

Positive

View Aspect

Negative

ViewAspect

delicious   hamburger <mask>   <mask>    ice   cream   is   disgusting

<mask>   <mask>   <mask>   delicious   hamburger

Positive

View Aspect

Prefix Filling

Merging

Figure 3: Supplement procedures that transform kernels
into training data.

3.5 Context Supplement258

Based on the collected kernel spans, we supplement259

the contextual background for them by continuing260

to utilize mask filling. We use two supplement261

scenarios in our experiments: prefix filling and262

kernel merging as in Figure 3.263

Prefix filling is to attach several mask tokens to264

the beginning of the sentence. Then the PLM fills265

in the masks following a greedy strategy.266

Kernel merging is to merge multiple kernel267

spans together. We insert several mask tokens268

between two collected kernels and use the PLM to269

fill in the mask, still following the greedy strategy.270

271

We avoid adding mask tokens after the kernel272

span since the generated contents are more likely to273

break the aspect boundary and generate data with274

low quality. As a result, we do not apply suffix275

filling for the context supplement.276

<v-mask>   <a-mask> satisfying service
Polarity

<a-mask>   is   <v-mask> screen is fuzzy
Polarity

<a-mask>   is   <v-mask>   and   <v-mask> atmosphere is warm and welcoming
Polarity Polarity

<a-mask>   and   <a-mask>   are   <v-mask> smell and taste are good
Polarity

<v-mask>   <a-mask>   and   <v-mask> <a-mask> nice product and helpful staff
PolarityPolarity

<v-mask>   the   <a-mask> love the rose
Polarity

Kernel Example

Figure 4: Kernel spans used in our experiments.

4 Experiment 277

4.1 Testing Data and Metric 278

We use the ASTE datasets annotated in (Xu et al., 279

2020) for testing. The datasets include three restau- 280

rant review datasets and a laptop review dataset. To 281

compare with previous supervised methods, we use 282

the test datasets for evaluation. Besides, we also 283

create a subset without boundary determination and 284

neutral views to test the model’s understanding of 285

relationship and polarity. We first drop all triplets 286

with neutral sentiment polarity. Then, we remove 287

triplets that consist of spans with more than one 288

gram. 289

For evaluation, we use the F1 score that consid- 290

ers the exact matching of triplets as applied to pre- 291

vious supervised ASTE models. A triplet matches 292

the golden triplet only when their views, aspects, 293

and sentiment polarities are all matched. 294
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Method 14res 14lap 15res 16res

P. R. F1 P. R. F1 P. R. F1 P. R. F1

(supervised)
CMLA+ 39.18 47.13 42.79 30.09 36.92 33.16 34.56 39.84 37.01 41.34 42.10 41.72
RINANTE+ 31.42 39.38 34.95 21.71 18.66 20.07 29.88 30.06 29.97 25.68 22.30 23.87
Li-unified-R 41.04 67.35 51.00 40.56 44.28 42.34 44.72 51.39 47.82 37.33 54.51 44.31
(Peng et al., 2020) 43.24 63.66 51.46 37.38 50.38 42.87 48.07 57.51 52.32 46.96 64.24 54.21
OTE-MTL 63.07 58.25 60.56 54.26 41.07 46.75 60.88 42.68 50.18 65.65 54.28 59.42
JETt 63.44 54.12 58.41 53.53 43.28 47.86 68.20 42.89 52.66 65.28 51.95 57.85
JETo 70.56 55.94 62.40 55.39 47.33 51.04 64.45 51.96 57.53 70.42 58.37 63.83
GTS 71.76 59.09 64.81 57.12 53.42 55.21 54.71 55.05 54.88 65.89 66.27 66.08
(Huang et al., 2021) 63.59 73.44 68.16 57.84 59.33 58.58 54.53 63.30 58.59 63.57 71.98 67.52
(Jing et al., 2021) 67.95 71.23 69.55 62.12 56.38 58.55 60.00 59.27 59.11 70.65 70.23 70.44

(unsupervised)
MVNA-CT 26.96 32.64 29.53 17.68 22.02 19.61 24.54 27.67 26.01 24.71 30.60 27.34
MVNA-TAG 34.41 41.66 37.69 19.71 24.65 21.90 28.04 30.56 29.25 35.21 42.19 38.29
PromptASTE (res) 63.80 35.81 45.88 38.71 15.53 22.16 55.05 41.15 47.09 60.06 41.25 48.90
PromptASTE (lap) 53.48 35.51 42.68 40.65 27.73 32.97 46.47 40.34 43.19 56.41 36.72 44.49
PromptASTE (res+lap) 44.69 42.76 43.70 36.70 29.57 32.75 40.77 43.71 42.19 50.16 46.68 48.36

Table 1: Main results from our experiments on PromptASTE

4.2 Dataset Configuration295

To build the PromptASTE dataset, we design six296

kernel spans as shown in Figure 4. The whole297

prompts for kernel construction are shown in Ap-298

pendix A. Considering the domain variation in299

the testing dataset, we create two PromptASTE300

datasets with two different domain prefix prompts301

as follows.302

303

In the restaurant, ...304

For the laptop, ...305

306

The contrastive prompting for a neutral view span307

is a little different from a positive and negative308

view. The neutral sentiment does not have a309

semantically opposite sentiment. Thus, we set310

both the positive and negative sentiments as the311

opposite to eliminate the view’s polarity. The312

formula for contrastive generation is rewritten for313

the neutral view as follows.314

P contrast = softmax(log(P self )

− w

2
log(P pos))− w

2
log(Pneg))

315

For the generation, we use RoBERTa-large as316

the PLM. Compared to BERT, RoBERTa is pre-317

trained only with the MLM objective, which sug-318

gests RoBERTa is able to fully show the potential319

of a mask-filling-based generation. The beam size320

is set to 256 to cover a wide range of candidates.321

Tokens good, bad, and average are used to substi-322

tute the polarity token to indicate positive, negative323

and neutral sentiment polarities. We set tempera- 324

ture T to 1.0 for aspect span generation and 2.5 for 325

context supplement. The temperature for view span 326

generation varies from kernel to kernel to balance 327

the generation’s diversity and correctness. The spe- 328

cific setup for these temperatures is included in 329

Appendix B. The weight w for contrastive prompt- 330

ing is 0.6. The max length of the mask token series 331

for context supplement is 6. 332

4.3 Model and Baseline 333

Model We take the current state-of-the-art, (Jing 334

et al., 2021) as the learner on our prompt-annotated 335

dataset. (Jing et al., 2021) borrows a combina- 336

tion between table encoder and sequential encoder 337

with interaction from (Wang and Lu, 2020) to build 338

a strong extractor for aspect-view relationships. 339

We completely follow the configuration in the pa- 340

per to make a direct comparison between models 341

trained on human-annotated and prompt-annotated 342

datasets. We train the model on datasets in the 343

restaurant domain (res), laptop domain (lap), and a 344

combination of two domains (res+lap). 345

Baseline Because of the lack of unsupervised 346

methods for comparison, we build a simple base- 347

line, matched view, and nearest aspect (MVNA). 348

We use a sentiment dictionary containing positive 349

and negative words from NLTK to match spans in 350

sentiments. The matched spans are taken as view 351

spans with corresponding labels and their nearest 352

noun phrase are extracted as their aspects. We im- 353

plement two ways to get the noun phrases, using 354
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Method 14res 14lap 15res 16res

P. R. F1 P. R. F1 P. R. F1 P. R. F1

Supervised 85.97 79.85 82.80 73.18 72.25 72.72 77.62 72.32 74.88 82.08 79.15 80.59

MVNA-CT 38.96 47.10 42.65 22.27 30.63 25.79 33.33 40.11 36.41 34.18 44.13 38.52
MVNA-TAG 54.79 58.71 56.68 34.55 40.86 37.44 43.56 46.01 44.75 51.64 57.49 54.41
PromptASTE (res) 76.06 53.37 62.72 54.76 46.97 50.57 67.74 54.91 60.66 69.37 67.12 68.23
PromptASTE (lap) 61.39 52.27 56.47 52.94 45.25 48.80 60.03 48.17 53.45 64.51 57.85 61.00
PromptASTE (res+lap) 75.81 47.33 58.27 62.64 40.99 49.55 74.19 48.89 58.94 74.19 56.47 64.13

Table 2: Experiment results on the testing data in sampled subsets.

constituency tree (MVNA-CT) or part-of-speech355

tagger (MVNA) 1. For MVNA-CT, we sample all356

noun phrases with no subtree and delete the stop357

words on each side of the span. For MVNA-TAG,358

we just sample all continuous NOUN-tagged words.359

To follow up with previous works, we also report360

the performance of supervised methods to show361

the remaining gap for zero-shot methods to reach362

supervised performance.363

4.4 Experiment Result364

The results from our experiments are presented in365

Tables 1 and 2. We report the highest results in the366

experiment. As no unsupervised baseline has been367

built before, we retrieve results from supervised368

baselines to evaluate our method’s effectiveness.369

Main result As in Table 1, we train and test370

extractor on PromptASTE datasets constructed371

in different domains. In comparison to unsuper-372

vised methods, PromptASTE outperforms the best373

MVNA generally by 10 F1 scores, verifying its374

effectiveness as an unsupervised method. Promp-375

tASTE achieves precision comparable to recent376

supervised methods, while recall is the weakness377

of PromptASTE. This weakness results from the378

trade-off between generality and simplicity and can379

be overcome by involving more patterns during380

prompting. But we want to propose a more general381

paradigm to prompt unsupervised datasets. Though382

there still exists a gap between PromptASTE and383

the highest supervised baseline, the outstanding384

performance establishes our method as a strong385

unsupervised baseline.386

Domain analysis The main results also show387

how domain specification in dataset prompting af-388

fects the training result. In terms of the F1 score,389

the extractor performs better when they are trained390

on prompted data in the same domain as the test391

1We use the tagger and extractor provided by NLTK to get
the lexical information.

data, which is consistent with the research empiric. 392

According to the comparison between extractors 393

trained on datasets with a different domain, and pre- 394

fix prompts, extractors perform better on in-domain 395

test datasets. Training on data in another generally 396

leads to a drop in both precision and recall, which 397

reflects the penalty from domain difference. The 398

mixture of data from the different domains can 399

improve the recall in the sacrifice of precision by 400

providing various data, which are out-of-domain. 401

Subset result Table 2 presents the results tested 402

on the sampled datasets. PromptASTE achieves 403

much higher results on the subset due to the dif- 404

ficulty of the unsupervised method to determine 405

boundaries annotated by humans. Free from bound- 406

ary determination, the gap between PromptASTE 407

and the supervised method is narrowed down in the 408

subset, which better reflects the potential of PLMs 409

for sentiment understanding. 410

5 Further Analysis 411

5.1 Few-shot Version 412

The zero-shot performance of PromptASTE con- 413

vinces it to be a reasonable method to understand 414

no (annotated) resource circumstance. Here we 415

also consider a less constrained circumstance that 416

we can use a few annotated data as the prompt tem- 417

plate for Prompt. We conduct experiments on the 418

14res dataset by sampling 50 instances. 419

We set two series of baselines. One is to di- 420

rectly train an extractor based on the few anno- 421

tated data. The other is to use mask filling (MF) 422

(Kumar et al., 2020) for data augmentation, which 423

is a more straightforward prompting method than 424

PromptASTE. MFview and MFaspect mask-and-fill 425

only the view or aspect span. MFspan mask-and-fill 426

both spans and +aug means sampling other 20% 427

words for extra mask-and-filling. When we mask 428

view spans, we attach the label (positive, negative) 429

of the triplet to the beginning of the sentence with a 430
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Dataset P. R. F1 Ninst 1-gram(↑) 3-gram(↑) SBLEU2(↓) SBLEU4(↓)

14res 67.95 71.23 69.55 2071 14.08 64.20 5.74 2.88
prompted res 66.93 55.21 60.51 7570 19.56 82.30 3.85 1.85

14lap 62.12 56.38 58.55 1456 11.95 56.66 5.58 2.62
prompted lap 65.72 45.22 53.58 3234 17.42 77.90 4.01 1.91

Table 3: Semantic fidelity and diversity of generated data.

Method P. R. F1

(Jing et al., 2021) 48.04 52.99 49.98

MFview 52.32 57.35 54.72
MFaspect 58.17 57.11 57.64
MFspan 48.91 63.39 56.88
MFview+aug 55.99 56.74 56.36
MFaspect+aug 54.72 65.87 59.78
MFspan+aug 56.23 59.88 58.00

PromptASTEz 63.80 35.81 45.88

PromptASTEf 69.05 59.88 64.14
PromptASTEf+z 67.30 64.13 65.68

Table 4: Performance of few-shot PromptASTE.

[SEP] token. We sample 16 times for each instance431

and apply RoBERTa-large for mask filling towards432

a fair comparison.433

Table 4 presents the performance of different434

few-shot methods. z, f refer to zero-shot and435

few-shot The state-of-the-art supervised method436

drops about 20 F1 scores on the few-shot condi-437

tion, nearly to our zero-shot results. Among the438

MF methods, mask-and-filling only the aspect span439

outperforms other methods, indicating generating440

view span with sentiment polarity. With extra mask-441

and-filling, the few-shot performance can be fur-442

ther improved as proposed by (Kumar et al., 2020).443

PromptASTE significantly outperforms the best444

MF by 4.36 F1 score, verifying its capacity to gen-445

erate data with better quality. The combination446

between few-shot and zero-shot PromptASTE fur-447

ther boosts the performance to very close to the448

supervised performance, showing the potential of449

PromptASTE in generating human-like annotation.450

5.2 Generation Quality451

Towards a more comprehensive analysis of our452

PromptASTE, we also evaluate the quality of in-453

stances generated from PromptASTE as we use a454

generate-and-train strategy. We borrow the evalu-455

ating process in (Kumar et al., 2020) for data aug- 456

mentation, which includes two stages: semantic 457

integrity and diversity. 458

For semantic integrity, we follow (Kumar et al., 459

2020) to train an extractor based on the original 460

training dataset and test it on our prompted dataset. 461

We report precision, recall, and F1 score instead 462

of accuracy scores considering the task difference. 463

For diversity, we use the ratio of distinct n-gram 464

(denoted as n-gram) while also including the self 465

BLEU (SBLEU) (Tevet and Berant, 2021) score 466

to provide a broader analysis. The ratio of distinct 467

n-gram is literally the number of distinct n-gram 468

spans divided by the total number of n-gram spans 469

in the dataset. For SBLEU, we sample 1000 sen- 470

tences from the dataset twice, pair them and then 471

calculate the BLEU scores of the paired sentences. 472

We avoid pairing a sentence to itself and report 473

the average BLEU scores of sentence pairs. For 474

semantic fidelity, we take the results on the test 475

dataset for comparison. For diversity, we use the 476

whole dataset for comparison. The results from our 477

analyses are presented in Table 3. 478

Semantic Integrity On the prompted dataset, the 479

trained extractor shows a close performance to the 480

original test dataset in precision, while the recall 481

drops by from 10 to 15. The close precision reflects 482

PromptASTE generating data in reliable quality 483

but the relatively low recall discloses the still exist- 484

ing domain difference between the annotated and 485

prompted data. This domain difference also ex- 486

plains why the extractor trained on the prompted 487

dataset achieves lower recall than precision. 488

Diversity The comparison on diversity shows 489

our prompted data enjoys a higher ratio of dis- 490

tinct n-gram and a lower SBLEU than the human- 491

annotated dataset, indicating the prompted dataset 492

has better diversity in word usage. Thus, the wider 493

coverage of vocabulary is an underlying factor 494

that supports the strong performance of Promp- 495

tASTE. The reason behind this counter-intuitive 496
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ViewAspect

Negative

View

Negative

ViewAspect

Negative

View Aspect

Negative

ViewAspect

Positive

ViewAspect

Positive

AspectView

Positive Negative

ViewAspect

ViewAspect

Negative

Great food but the service was dreadful !

The   fajita   we   tried   was   tasteless   and   burned   .

The   food   is   good   ,   the   teriyaki   I   recommend   . 

I   complained   to   the   waiter   ,   but   rudeness   from   him   went   up   . 

Figure 5: Case Study for the capability boundary of PromptASTE. Grey arrow: Missing triplet (negative false). Red
arrow: Incorrect triplet (negative true).

Method P. R. F1

PromptASTE 76.06 53.37 62.72
w/o Domain Prefix 57.65 47.10 51.85
w/o Contrastive Prompting 61.05 53.16 56.83
w/ Suffix Filling 71.21 51.31 59.64

Table 5: Ablation Study on PromptASTE. The subset
of res14 is selected as the test dataset.

phenomenon is pre-trained language model learns497

about various expressions during its training on498

large-scale corpora while the annotated data only499

covers a small subset of them. Still, the prompted500

dataset lacks aspect-view relationship expressions501

due to constant kernel span forms, but in terms of502

the lexical level, we conclude prompted data to be503

more diversified than human-annotated data.504

5.3 Ablation Study505

To better understand the effects of different mod-506

ules in our PromptASTE pipeline, we launch an507

ablation study on them. From the results in Ta-508

ble 5, we can see that domain prefixes and con-509

trastive prompting contribute a lot to the Promp-510

tASTE pipeline. Furthermore, We test a pipeline511

with suffix filling, which fills in mask tokens at-512

tached after the kernel span. The performance drop513

in the ablation study suggests suffix filling is not514

a beneficial context supplement method. Based515

on the distribution of kernel spans, the backfire is516

probably caused by the rather low chance for kernel517

spans to exist at the beginning of the sentence.518

5.4 Case Study519

We enumerate and analyze several cases in Figure 5520

to specifically show the strength and limitations of521

PromptASTE.522

In the first case, the instance pattern is covered by523

our prompting pipeline. The instance can be gener-524

ated by the prompt via kernel merging between two525

defined kernel spans. As a result, the instance is 526

easily solved by the extractor trained with Promp- 527

tASTE. The second case shows the scalability of 528

PromptASTE as the pattern of the instance is not 529

covered by prompting. The extractor stays robust 530

against the noise from the adjective component we 531

tried. Thus, the triplets are successfully extracted 532

from the sentence. The limitation of PromptASTE 533

is presented in the third case. While the extractor 534

correctly extracts the first triplet, the recommend- 535

teriyaki relationship is ignored. As the relationship 536

is in a casual pattern that is very different from our 537

pre-defined ones, the extractor fails to capture it. 538

Incorporating this casual pattern into kernel spans 539

might well solve the problem. The last case in- 540

cludes inference based on coreference, a thorny 541

problem for our parse trained on data with fixed 542

patterns. The case also shows our method to suf- 543

fer from shortcut learning (Geirhos et al., 2020). 544

The word complained is directly recognized as a 545

negative view of the word waiter, without under- 546

standing the semantic relationships between them. 547

Solving these problems might require pre-trained 548

models for a stronger inference capability. 549

From the cases, we conclude that our method 550

has some basic understanding of ASTE and enjoys 551

some scalability from the PLM. However, hyper- 552

linguistic phenomena like coreference still remain 553

a problem for us to solve in future studies. 554

6 Conclusion 555

We propose a novel method, PromptASTE, for 556

ASTE, which is also the first unsupervised method. 557

We utilize the PLM’s understanding of sentiment 558

and apply a series of prompts to construct a training 559

dataset from the PLM. Various prompting mecha- 560

nisms guarantee the quality of the generated dataset 561

and trained extractor to set a strong baseline for un- 562

supervised ASTE. 563
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A Whole Prompt for Kernel Building739

We present the whole prompts used in our exper-740

iments in Figure 6. Some special tokens are in741

the prompts. <prefix> refers to the domain prefix742

prompt. <det> refers to the determinative compo-743

nent. <adv> refers to the adverb component. <be>744

refers to words with the be lemma.745

B Prompting Configuration746

<v-mask>   <a-mask> 3.00
Polarity

<a-mask>   is   <v-mask> 1.50
Polarity

<a-mask>   is   <v-mask>   and   <v-mask> 1.50
Polarity Polarity

<a-mask>   and   <a-mask>   are   <v-mask> 1.50
Polarity

<v-mask>   <a-mask>   and   <v-mask> <a-mask> 3.00
PolarityPolarity

<v-mask>   the   <a-mask> 6.00
Polarity

Kernel Temperature

Figure 7: The configuration for the temperature to gen-
erate view spans.

The temperature configuration for prompting is747

shown in Figure 7.748

C Statistical Properties of Datasets749

Prop. 14res 15res 16res 14lap

Sent. Num. 2.1k 1.1k 1.4k 1.5k
Sent. Len. 16.9 15.0 14.9 18.4
Span. Num. 6.8k 3.1k 4.0k 4.1k
Span. Len. 1.3 1.3 1.3 1.4
Rel. Num. 4.0k 1.7k 2.2k 2.4k

Table 6: Statistical properties of the triplet parsing
datasets used in our experiments.

The statistical properties of the triplet parsing750

datasets in our experiments are presented in Ta-751

ble 6.752
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<s>   <prefix>   ,   the   <a-mask>   is   <pol>   :   “   <det>   <adv>   <v-mask>   <a-mask>   .”   </s>

<s>   <prefix>   ,   the   <a-mask>   is   <pol>   :   “   <det>   <a-mask>   <be>   <adv>   <v-mask>   .”   </s>

<s>   <prefix>   ,   the   <a-mask>   is   <pol>   :   “   <det>   <a-mask>   <be>   <adv>   <v-mask>   and   <v-mask>   .”   </s>

<s>   <prefix>   ,   the   <a-mask>   and   <a-mask>   are   <pol>   :   “   <det>   <a-mask>   and   <a-mask>   <be>   <adv>   <v-mask>   .”   </s>

<s>   <prefix>   ,   the   <a-mask>   and   <a-mask>   are   <pol>   :   “   <det>   <adv>   <v-mask>   <a-mask>   and   <v-mask>   <a-mask>   .”   </s>

<s>   <prefix>   ,   the   <a-mask>   is   <pol>   :   “   I   <v-mask>   <det>   <a-mask>   .”   </s>

Coreference Polarity

PolarityCoreference

Polarity PolarityCoreference

PolarityCoreference Coreference

PolarityCoreference Coreference Polarity

Coreference Polarity

Kernel Span

Kernel Span

Kernel Span

Kernel Span

Kernel Span

Kernel Span

Figure 6: The whole format of prompts used in our experiments.

12


