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Abstract

Aspect sentiment triplet extraction (ASTE) is
a sentiment analysis task that aims to extract
views’ sentiment polarity, expression, and tar-
get (aspect). While the zero-shot scenario
for the sentence or aspect-level sentiment has
made much progress in recent years, zero-shot
ASTE remains unstudied because of its far
more complex data structure. This paper chal-
lenges this remaining problem and proposes the
first unsupervised method for aspect sentiment
triplet extraction, which even does not require
any training on human-annotated data. Based
on the previous discovery of the pre-trained
language model (PLM)’s awareness of senti-
ment, we further leverage the masked language
model (MLM) to prompt an ASTE dataset with
automatically annotated labels. Our method,
PromptASTE, fills in a series of prompts to
generate a dataset for related aspects and views.
The dataset is then used to train an ASTE model
for prediction. Training on PromptASTE re-
sults in models with an outstanding capability
in discerning sentiment polarities and targeted
aspects. Our model sets the first and strong
baseline on unsupervised ASTE.

1 Introduction

Aspect sentiment triplet extraction (ASTE) is a type
of sentiment analysis task. While conventional sen-
timent analysis either classifies the sentiment po-
larity of a sentence or extracts aspect span with
polarity, ASTE is interested in aspect-based sen-
timent and extracts the expression (view) and tar-
get (aspect) of sentiments, making it a challenging
problem with the complex data structure.

Some instances of ASTE are shown in Fig-
ure 1, the view and aspect are represented by spans.
Paired spans are labeled as the sentiment polarity
of the view on its targeted aspect. While many
previous works have been done for the supervised
ASTE system, unsupervised ASTE remains a blank.
Also, some tries have been made for zero-shot
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Figure 1: Instances for the ASTE task.

sentence-level and aspect-level sentiment analy-
sis (Sarkar et al., 2019; Wang and Ji, 2022; Phan
et al., 2021), but the rather complex data structure
of ASTE block these methods from stepping fur-
ther. As sentiment is a universal and cross-language
phenomenon, unsupervised ASTE is appealing to
reduce the burden for annotation, especially for
low-resource language with a limited number of
skilled annotators.

However, unsupervised ASTE is challenging as
ASTE data are structured in a complex form. The
unsupervised system faces several essential prob-
lems for relationship understanding. a) Polarity
How does the model understand the sentiment po-
larity with no annotated knowledge? b) Relation-
ship How does the model learns paired feature that
does not exist in sequential natural language with
no annotation for relationships? ¢) Boundary How
does the model determine the span boundaries an-
notated by a human when testing?

The challenges above hinder the application of
conventional unsupervised methods, like clustering.
Moreover, clustering requires collecting unanno-
tated data for unsupervised training, which is still
unfriendly for low-resource languages. We aim
to step even further towards a method that is free
from any ASTE-related data, no matter annotated
or unannotated.

Thus, we cast our attention to pre-train language
models (PLMs) (Radford et al., 2018; Devlin et al.,
2019; Liu et al., 2019; Yang et al., 2019), which
are competitive zero-shot learners (Radford et al.,



2018) with strong scalability. PLMs, like RoBERTa
(Liu et al., 2019), are trained on upstream masked
language model (MLM) tasks that require the lan-
guage model to fill in masked words in context.
Recent studies have shown that pre-training en-
dows PLMs with sentiment awareness to solve
conventional sentiment analysis problems, suggest-
ing the PLM is an admirable choice for unsuper-
vised ASTE. By utilizing the MLM task, we fill
in prompts to create an ASTE dataset from PLMs.
A prompt combination is used to sample kernel
spans, which are spans consisting of aspect senti-
ment triplets, from PLMs.

The annotating system comprises three prompts
for domain specification, aspect generation, and
view generation. We also propose a contrastive
prompt to prompt better sentiment expressions
by contrasting positive and negative expressions.
Based on the kernel span, PLMs are again used to
supplement the contextual background via mask
filling. The supplemented data finally form the
PromptASTE dataset.

After the dataset is created, PromptASTE is used
to train ASTE models following a supervised sce-
nario. Spans and their relationships are annotated
in graphs to train an extractor for graphic pattern
capturing. We test the trained extractor on several
ASTE datasets and compare the results with su-
pervised results. Our method shows competitive
performance on unsupervised ASTE and sets the
first and strong baseline.

The contributions from our work are summa-
rized as follows:

* We propose the first unsupervised method for
ASTE and set a strong baseline for the task.

* We verify the plausibility of prompting a
dataset for a task with a complex data struc-
ture.

* We implement a novel contrastive prompting
procedure to generate sentiment expressions
better.

2 Background and Related Work

Triplets in ASTE are formalized in (V, A, P) where
V, A, P refer to view (expression) span, aspect
(target) span, and sentiment polarity respectively.
ASTE models are trained to determine the bound-
ary of spans and label the polarity held by the view
towards the aspect.

Since the annotation of a variety of ASTE
datasets (Peng et al., 2020; Xu et al., 2020) based
on aspect based sentiment analysis (ABSA) data
(Pontiki et al., 2014, 2015, 2016), many supervised
methods have been proposed for ASTE. (Peng et al.,
2020) tests a wide range of previous triplet extract-
ing method on ASTE and propose a tag-and-pair
pipeline to set the first supervised baseline. Spans
are extracted by finding segments and their rep-
resentations are fed into a pair classifier to find
whether a relationship exists between them. (Xu
et al., 2020) incorporates position information and
CREF inference into the tagging system to boost
performance. (Wu et al., 2020) formalizes ASTE
in a grid tagging scheme. The tagged grid is de-
coded by first finding terms in the diagnosis and
then searching for grids indicating relationships be-
tween terms. Though supervised ASTE has been
under heated discussion since the task’s proposal,
so far no attention has been cast to solve ASTE
with no supervision.

However, unsupervised ASTE is a fairly chal-
lenging task. Besides its complex structured nature,
the difficulty also comes from the incapability of
existing unsupervised systems to build a complete
pipeline, from span extraction to relationship la-
beling. For unsupervised relation extraction, cur-
rent models have only limited capability to label
the relationships between paired already extracted
spans (Tran et al., 2020; Yuan and Eldardiry, 2021).
These methods use the conventional unsupervised
method like clustering to assign closely distributed
span pairs to the same labels. Thus, the prerequi-
site of annotated spans makes these unsupervised
methods unfriendly to real zero-shot learning.

Thus, we abandon the conventional unsupervised
methods and turn towards leveraging PLMs, which
are powerful zero-shot learners via training on
super-large corpora. The long training procedure
endows PLMs with the understanding of seman-
tic relationships between tokens, which makes the
PLM a desirable tool for unsupervised downstream
tasks. Also, mask filling on prompts has been veri-
fied to be a powerful way to extract commonsense
knowledge (Petroni et al., 2019), relationship un-
derstanding (Goswami et al., 2020), and sentiment
awareness (Wu et al., 2019) of the PLM. Our work
further leverages the endowed sentiment awareness
in PLMs to build a complete unsupervised pipeline
for ASTE.



3 Prompting ASTE Dataset
3.1 The Pipeline

We first give a rough description of our method and
how it deals with the challenges in unsupervised
ASTE before introducing the specific implementa-
tion. The pipeline comprises two main procedures:
kernel span generation and context supplement.
Kernel span refers to the span that consists of
the aspect sentiment triplet. To obtain kernel spans,
our prompt involves masked view spans (v-mask)
and masked aspect spans (a-mask). V-masks and
a-masks are both common mask tokens used in
the upstream MLM pre-training, and their only
difference is representing views or aspects. The
PLM fills the masked spans, and the kernel span is
seized from the span for context supplement.

Polarity We add hints for polarity to the prompt
in order to generate view expressions with the cor-
responding sentiment polarity.

Relationship The relationships are pre-defined
between views and aspects in the prompt.

Boundary Words near the span boundaries help
control the generated span to have boundaries as
pre-defined in the prompt.

Based on the kernel spans, we again use the
PLM to supplement the contextual background for
the sentiment via mask filling. The supplemented
results are the final PromptASTE dataset.

3.2 Domain Prefix Prompt

The domain prefix prompt is used to specify the
domain for kernel span generation. As in the green
frame in Figure 2, the domain prefix prompt deter-
mines the contextual environment for the prompt-
ing generation. As the testing datasets are in dif-
ferent domains, the domain prefix prompt will help
generate more relevant training data to improve the
performance of trained models.

3.3 Aspect Prompt

The aspect prompt is the blue frame in Figure 2,
which is responsible for polarity selection and as-
pect generation. The prompt contains a-masks and
a polarity token <po/> that provides hints for the
later generation.

After the polarity of triplets in the kernel span
is selected, the polarity token is substituted by a
token with sentiment information. In the instances

in Figure 2, the word good substitutes <pos> and
indicates the positive sentiment in the kernel span.

Then we fill in the a-masks via a beam search.
Notice that the masked aspect span might consist
of multiple mask tokens.

X = [z1:4-1, <mask>,- - -, <mask>, z{1.n]

J

p(xij]|X) = HP($t|X, Ti—1)
t=i

(x| X, 25:4—1) = softmax(R;/T)

R = PLM($t|X, CL‘Z':t,1)

where X is a sentence with n words and X;.;
denotes the span from the i-th word to the j-th
word. T refers to the temperature for sampling.
R € R™° is the output representation from the
PLM, and o refers to the dictionary size. We sum-
marize the beam searching procedure as Beam(-).
After we get the existing probability of each beam,
we sample an aspect span following the predicted
distribution.

3.4 Contrastive View Prompt

After generating the aspect span, we also fill in the
coreference masked aspect span in the view prompt.
Then we introduced our contrastive generation for
view span.

For the prompt in this step X ¢!/, we shift the
word in the position of the polarity token to create
an opposite prompt X °PP°. We first use X*¢!/ to
sample £ view span beams by prompting and then
calculate the probability distribution of the view
span in X °PP°,

pself — Beam(Xself), PePPe = Beam(X PP?)

Finally, the log probability of P*¢!f is subtracted
by the weighted log probability of P*¢!/ and passed
through a softmax function for the contrastive dis-
tribution.

peontrast — softmax (log(P*) — wlog(PPP°))

Here w is a factor that controls the degree of con-
trast during the generation. The view span is likely
sampled following the predicted distribution as the
aspect span.

After aspect and view spans are completely filled,
we seize the kernel span and build the triplets using
pre-defined relationships.
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Figure 3: Supplement procedures that transform kernels
into training data.

3.5 Context Supplement

Based on the collected kernel spans, we supplement
the contextual background for them by continuing
to utilize mask filling. We use two supplement
scenarios in our experiments: prefix filling and
kernel merging as in Figure 3.

Prefix filling is to attach several mask tokens to
the beginning of the sentence. Then the PLM fills
in the masks following a greedy strategy.

Kernel merging is to merge multiple kernel
spans together. We insert several mask tokens
between two collected kernels and use the PLM to
fill in the mask, still following the greedy strategy.

We avoid adding mask tokens after the kernel
span since the generated contents are more likely to
break the aspect boundary and generate data with
low quality. As a result, we do not apply suffix
filling for the context supplement.

smell and taste are good

Pnlaruy B {Polarity H

<v-mask> <a- mask> and <v-mask> <a-mask>  nice product and helpful staff

PU'E"[Y I

<v-mask> the <a- mask> love the rose

Figure 4: Kernel spans used in our experiments.

4 Experiment

4.1 Testing Data and Metric

We use the ASTE datasets annotated in (Xu et al.,
2020) for testing. The datasets include three restau-
rant review datasets and a laptop review dataset. To
compare with previous supervised methods, we use
the test datasets for evaluation. Besides, we also
create a subset without boundary determination and
neutral views to test the model’s understanding of
relationship and polarity. We first drop all triplets
with neutral sentiment polarity. Then, we remove
triplets that consist of spans with more than one
gram.

For evaluation, we use the F1 score that consid-
ers the exact matching of triplets as applied to pre-
vious supervised ASTE models. A triplet matches
the golden triplet only when their views, aspects,
and sentiment polarities are all matched.



Method 14res 14lap 15res 16res

P. R. Fl1 P. R. F1 P. R. Fl1 P. R. F1
(supervised)
CMLA+ 39.18 47.13 4279 | 30.09 36.92 33.16 | 3456 39.84 37.01 | 41.34 42,10 41.72
RINANTE+ 3142 3938 3495 | 21.71 18.66 20.07 | 29.88 30.06 29.97 | 25.68 2230 23.87
Li-unified-R 41.04 6735 51.00 | 40.56 4428 4234 | 4472 5139 47.82 | 3733 5451 4431
(Peng et al., 2020) 4324 63.66 51.46 | 37.38 50.38 42.87 | 48.07 57.51 5232 | 4696 6424 5421
OTE-MTL 63.07 5825 60.56 | 5426 41.07 46.75 | 60.88 42.68 50.18 | 65.65 54.28 59.42
JET' 63.44 54.12 5841 | 53.53 43.28 47.86 | 68.20 42.89 52.66 | 6528 5195 57.85
JET® 70.56 5594 6240 | 55.39 4733 51.04 | 6445 5196 57.53 | 70.42 5837 63.83
GTS 7176 59.09 64.81 | 57.12 5342 5521 | 5471 55.05 5488 | 6589 6627 66.08
(Huang et al., 2021) 63.59 73.44 68.16 | 57.84 5933 58.58 | 5453 6330 58.59 | 63.57 7198 67.52
(Jing et al., 2021) 6795 7123 69.55 | 62.12 5638 5855 | 60.00 59.27 59.11 | 70.65 70.23 70.44
(unsupervised)
MVNA-CT 26.96 32.64 29.53 | 17.68 22.02 19.61 | 2454 27.67 26.01 | 2471 30.60 27.34
MVNA-TAG 3441 41.66 37.69 | 19.71 24.65 2190 | 28.04 30.56 29.25 | 3521 42.19 38.29
PromptASTE (res) 63.80 3581 45.88 | 38.71 1553 22.16 | 55.05 41.15 47.09 | 60.06 41.25 48.90
PromptASTE (lap) 5348 3551 42.68 | 40.65 27.73 3297 | 4647 4034 43.19 | 56.41 36.72 4449
PromptASTE (res+lap) 44.69 42.76 43.70 | 36.70 29.57 32.75 | 40.77 43.71 42.19 | 50.16 46.68 48.36

Table 1: Main results from our experiments on PromptASTE

4.2 Dataset Configuration

To build the PromptASTE dataset, we design six
kernel spans as shown in Figure 4. The whole
prompts for kernel construction are shown in Ap-
pendix A. Considering the domain variation in
the testing dataset, we create two PromptASTE
datasets with two different domain prefix prompts
as follows.

In the restaurant, ...
For the laptop, ...

The contrastive prompting for a neutral view span
is a little different from a positive and negative
view. The neutral sentiment does not have a
semantically opposite sentiment. Thus, we set
both the positive and negative sentiments as the
opposite to eliminate the view’s polarity. The
formula for contrastive generation is rewritten for
the neutral view as follows.

peentrast — goftmax (log(P*eV)
— 5 log(P™) =  log(P"*"))

For the generation, we use RoBERTa-large as
the PLM. Compared to BERT, RoBERTa is pre-
trained only with the MLLM objective, which sug-
gests ROBERTa is able to fully show the potential
of a mask-filling-based generation. The beam size
is set to 256 to cover a wide range of candidates.
Tokens good, bad, and average are used to substi-
tute the polarity token to indicate positive, negative

and neutral sentiment polarities. We set tempera-
ture T" to 1.0 for aspect span generation and 2.5 for
context supplement. The temperature for view span
generation varies from kernel to kernel to balance
the generation’s diversity and correctness. The spe-
cific setup for these temperatures is included in
Appendix B. The weight w for contrastive prompt-
ing is 0.6. The max length of the mask token series
for context supplement is 6.

4.3 Model and Baseline

Model We take the current state-of-the-art, (Jing
et al., 2021) as the learner on our prompt-annotated
dataset. (Jing et al., 2021) borrows a combina-
tion between table encoder and sequential encoder
with interaction from (Wang and Lu, 2020) to build
a strong extractor for aspect-view relationships.
We completely follow the configuration in the pa-
per to make a direct comparison between models
trained on human-annotated and prompt-annotated
datasets. We train the model on datasets in the
restaurant domain (res), laptop domain (lap), and a
combination of two domains (res+lap).

Baseline Because of the lack of unsupervised
methods for comparison, we build a simple base-
line, matched view, and nearest aspect (MVNA).
We use a sentiment dictionary containing positive
and negative words from NLTK to match spans in
sentiments. The matched spans are taken as view
spans with corresponding labels and their nearest
noun phrase are extracted as their aspects. We im-
plement two ways to get the noun phrases, using



Method 14res 14lap 15res 16res
P. R. F1 P. R. F1 P. R. F1 P. R. F1

Supervised 8597 79.85 82.80 | 73.18 7225 7272 | 77.62 7232 74.88 | 82.08 79.15 80.59
MVNA-CT 38.96 47.10 4265 | 2227 30.63 2579 | 33.33 40.11 3641 | 34.18 44.13 38.52
MVNA-TAG 5479 5871 56.68 | 34.55 40.86 37.44 | 4356 46.01 4475 | 51.64 5749 5441
PromptASTE (res) 76.06 5337 62.72 | 54776 4697 50.57 | 67.74 5491 60.66 | 69.37 67.12 68.23
PromptASTE (lap) 61.39 5227 5647 | 5294 4525 4880 | 60.03 48.17 5345 | 64.51 57.85 61.00
PromptASTE (res+lap) 75.81 47.33 5827 | 62.64 40.99 49.55 | 7419 48.89 58.94 | 74.19 5647 64.13

Table 2: Experiment results on the testing data in sampled subsets.

constituency tree (MVNA-CT) or part-of-speech
tagger (MVNA) !. For MVNA-CT, we sample all
noun phrases with no subtree and delete the stop
words on each side of the span. For MVNA-TAG,
we just sample all continuous NOUN-tagged words.
To follow up with previous works, we also report
the performance of supervised methods to show
the remaining gap for zero-shot methods to reach
supervised performance.

4.4 Experiment Result

The results from our experiments are presented in
Tables 1 and 2. We report the highest results in the
experiment. As no unsupervised baseline has been
built before, we retrieve results from supervised
baselines to evaluate our method’s effectiveness.

Main result As in Table 1, we train and test
extractor on PromptASTE datasets constructed
in different domains. In comparison to unsuper-
vised methods, PromptASTE outperforms the best
MVNA generally by 10 F1 scores, verifying its
effectiveness as an unsupervised method. Promp-
tASTE achieves precision comparable to recent
supervised methods, while recall is the weakness
of PromptASTE. This weakness results from the
trade-off between generality and simplicity and can
be overcome by involving more patterns during
prompting. But we want to propose a more general
paradigm to prompt unsupervised datasets. Though
there still exists a gap between PromptASTE and
the highest supervised baseline, the outstanding
performance establishes our method as a strong
unsupervised baseline.

Domain analysis The main results also show
how domain specification in dataset prompting af-
fects the training result. In terms of the F1 score,
the extractor performs better when they are trained
on prompted data in the same domain as the test

'We use the tagger and extractor provided by NLTK to get
the lexical information.

data, which is consistent with the research empiric.
According to the comparison between extractors
trained on datasets with a different domain, and pre-
fix prompts, extractors perform better on in-domain
test datasets. Training on data in another generally
leads to a drop in both precision and recall, which
reflects the penalty from domain difference. The
mixture of data from the different domains can
improve the recall in the sacrifice of precision by
providing various data, which are out-of-domain.

Subset result Table 2 presents the results tested
on the sampled datasets. PromptASTE achieves
much higher results on the subset due to the dif-
ficulty of the unsupervised method to determine
boundaries annotated by humans. Free from bound-
ary determination, the gap between PromptASTE
and the supervised method is narrowed down in the
subset, which better reflects the potential of PLMs
for sentiment understanding.

5 Further Analysis

5.1 Few-shot Version

The zero-shot performance of PromptASTE con-
vinces it to be a reasonable method to understand
no (annotated) resource circumstance. Here we
also consider a less constrained circumstance that
we can use a few annotated data as the prompt tem-
plate for Prompt. We conduct experiments on the
14res dataset by sampling 50 instances.

We set two series of baselines. One is to di-
rectly train an extractor based on the few anno-
tated data. The other is to use mask filling (MF)
(Kumar et al., 2020) for data augmentation, which
is a more straightforward prompting method than
PromptASTE. MF;¢,, and MF s mask-and-fill
only the view or aspect span. MF,,,, mask-and-fill
both spans and +aug means sampling other 20%
words for extra mask-and-filling. When we mask
view spans, we attach the label (positive, negative)
of the triplet to the beginning of the sentence with a



Dataset P. R. F1  Njust 1l-gram(1) 3-gram(1) SBLEU2()) SBLEU4(!)
14res 67.95 71.23 69.55 2071 14.08 64.20 5.74 2.88
promptedres 66.93 55.21 60.51 7570 19.56 82.30 3.85 1.85
14lap 62.12 56.38 58.55 1456 11.95 56.66 5.58 2.62
prompted lap 65.72 4522 53.58 3234 17.42 77.90 4.01 1.91

Table 3: Semantic fidelity and diversity of generated data.

Method P. R. F1

(Jing etal., 2021) 48.04 52.99 49.98
MF e 5232 5735 5472
MF yspect 58.17 57.11 57.64
MF;pan 4891 63.39 56.88
MFyicw+aug 55.99 56.74 56.36
MF uspect+aug 5472 65.87 59.78
MFpan+aug 56.23 59.88 58.00
PromptASTE, 63.80 35.81 45.88
PromptASTE, 69.05 59.88 64.14
PromptASTE,, . 67.30 64.13 65.68

Table 4: Performance of few-shot PromptASTE.

[SEP] token. We sample 16 times for each instance
and apply RoBERTa-large for mask filling towards
a fair comparison.

Table 4 presents the performance of different
few-shot methods. z, f refer to zero-shot and
few-shot The state-of-the-art supervised method
drops about 20 F1 scores on the few-shot condi-
tion, nearly to our zero-shot results. Among the
MF methods, mask-and-filling only the aspect span
outperforms other methods, indicating generating
view span with sentiment polarity. With extra mask-
and-filling, the few-shot performance can be fur-
ther improved as proposed by (Kumar et al., 2020).
PromptASTE significantly outperforms the best
MF by 4.36 F1 score, verifying its capacity to gen-
erate data with better quality. The combination
between few-shot and zero-shot PromptASTE fur-
ther boosts the performance to very close to the
supervised performance, showing the potential of
PromptASTE in generating human-like annotation.

5.2 Generation Quality

Towards a more comprehensive analysis of our
PromptASTE, we also evaluate the quality of in-
stances generated from PromptASTE as we use a
generate-and-train strategy. We borrow the evalu-

ating process in (Kumar et al., 2020) for data aug-
mentation, which includes two stages: semantic
integrity and diversity.

For semantic integrity, we follow (Kumar et al.,
2020) to train an extractor based on the original
training dataset and test it on our prompted dataset.
We report precision, recall, and F1 score instead
of accuracy scores considering the task difference.
For diversity, we use the ratio of distinct n-gram
(denoted as n-gram) while also including the self
BLEU (SBLEU) (Tevet and Berant, 2021) score
to provide a broader analysis. The ratio of distinct
n-gram is literally the number of distinct n-gram
spans divided by the total number of n-gram spans
in the dataset. For SBLEU, we sample 1000 sen-
tences from the dataset twice, pair them and then
calculate the BLEU scores of the paired sentences.
We avoid pairing a sentence to itself and report
the average BLEU scores of sentence pairs. For
semantic fidelity, we take the results on the test
dataset for comparison. For diversity, we use the
whole dataset for comparison. The results from our
analyses are presented in Table 3.

Semantic Integrity On the prompted dataset, the
trained extractor shows a close performance to the
original test dataset in precision, while the recall
drops by from 10 to 15. The close precision reflects
PromptASTE generating data in reliable quality
but the relatively low recall discloses the still exist-
ing domain difference between the annotated and
prompted data. This domain difference also ex-
plains why the extractor trained on the prompted
dataset achieves lower recall than precision.

Diversity The comparison on diversity shows
our prompted data enjoys a higher ratio of dis-
tinct n-gram and a lower SBLEU than the human-
annotated dataset, indicating the prompted dataset
has better diversity in word usage. Thus, the wider
coverage of vocabulary is an underlying factor
that supports the strong performance of Promp-
tASTE. The reason behind this counter-intuitive
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Figure 5: Case Study for the capability boundary of PromptASTE. Grey arrow: Missing triplet (negative false). Red

arrow: Incorrect triplet (negative true).

Method P. R. F1

PromptASTE 76.06 53.37 62.72
w/o Domain Prefix 57.65 47.10 51.85
w/o Contrastive Prompting  61.05 53.16  56.83
w/ Suffix Filling 7121 5131 59.64

Table 5: Ablation Study on PromptASTE. The subset
of res14 is selected as the test dataset.

phenomenon is pre-trained language model learns
about various expressions during its training on
large-scale corpora while the annotated data only
covers a small subset of them. Still, the prompted
dataset lacks aspect-view relationship expressions
due to constant kernel span forms, but in terms of
the lexical level, we conclude prompted data to be
more diversified than human-annotated data.

5.3 Ablation Study

To better understand the effects of different mod-
ules in our PromptASTE pipeline, we launch an
ablation study on them. From the results in Ta-
ble 5, we can see that domain prefixes and con-
trastive prompting contribute a lot to the Promp-
tASTE pipeline. Furthermore, We test a pipeline
with suffix filling, which fills in mask tokens at-
tached after the kernel span. The performance drop
in the ablation study suggests suffix filling is not
a beneficial context supplement method. Based
on the distribution of kernel spans, the backfire is
probably caused by the rather low chance for kernel
spans to exist at the beginning of the sentence.

5.4 Case Study

We enumerate and analyze several cases in Figure 5
to specifically show the strength and limitations of
PromptASTE.

In the first case, the instance pattern is covered by
our prompting pipeline. The instance can be gener-
ated by the prompt via kernel merging between two

defined kernel spans. As a result, the instance is
easily solved by the extractor trained with Promp-
tASTE. The second case shows the scalability of
PromptASTE as the pattern of the instance is not
covered by prompting. The extractor stays robust
against the noise from the adjective component we
tried. Thus, the triplets are successfully extracted
from the sentence. The limitation of PromptASTE
is presented in the third case. While the extractor
correctly extracts the first triplet, the recommend-
teriyaki relationship is ignored. As the relationship
is in a casual pattern that is very different from our
pre-defined ones, the extractor fails to capture it.
Incorporating this casual pattern into kernel spans
might well solve the problem. The last case in-
cludes inference based on coreference, a thorny
problem for our parse trained on data with fixed
patterns. The case also shows our method to suf-
fer from shortcut learning (Geirhos et al., 2020).
The word complained is directly recognized as a
negative view of the word waiter, without under-
standing the semantic relationships between them.
Solving these problems might require pre-trained
models for a stronger inference capability.

From the cases, we conclude that our method
has some basic understanding of ASTE and enjoys
some scalability from the PLM. However, hyper-
linguistic phenomena like coreference still remain
a problem for us to solve in future studies.

6 Conclusion

We propose a novel method, PromptASTE, for
ASTE, which is also the first unsupervised method.
We utilize the PLM’s understanding of sentiment
and apply a series of prompts to construct a training
dataset from the PLM. Various prompting mecha-
nisms guarantee the quality of the generated dataset
and trained extractor to set a strong baseline for un-
supervised ASTE.
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A Whole Prompt for Kernel Building

We present the whole prompts used in our exper-
iments in Figure 6. Some special tokens are in
the prompts. <prefix> refers to the domain prefix
prompt. <det> refers to the determinative compo-
nent. <adv> refers to the adverb component. <be>
refers to words with the be lemma.

B Prompting Configuration

Kernel Temperature
{Polarity H

<v-mask> <a-mask> 3.00
H " Polarity }

<a-mask> is <v-mask> 1.50
,*Polarlty PolarityE

<a-mask> is <v-mask> and <v-mask> 1.50
! T Bolarity | |

<a-mask> and <a-mask> are <v-mask> 1.50
{Polarity . B {Polariy 7

<v-mask> <a-mask> and <v-mask> <a-mask> 3.00

v

<v-mask> the <a-mask> 6.00

Figure 7: The configuration for the temperature to gen-
erate view spans.

The temperature configuration for prompting is
shown in Figure 7.

C Statistical Properties of Datasets

Prop. 14res  15res lé6res 14lap

Sent. Num. 2.1k 1.1k 1.4k 1.5k
Sent. Len. 16.9 15.0 14.9 18.4
Span. Num. 6.8k 3.1k 4.0k 4.1k
Span. Len. 1.3 1.3 1.3 1.4
Rel. Num. 4.0k 1.7k 2.2k 24k

Table 6: Statistical properties of the triplet parsing
datasets used in our experiments.

The statistical properties of the triplet parsing
datasets in our experiments are presented in Ta-
ble 6.
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Figure 6: The whole format of prompts used in our experiments.
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