
Under review as a conference paper at ICLR 2024

EVALUATING GRAPH GENERATIVE MODELS WITH
GRAPH KERNELS: WHAT STRUCTURAL CHARACTERIS-
TICS ARE CAPTURED?

Anonymous authors
Paper under double-blind review

ABSTRACT

For a number of practical problems, it is important to measure the similarity be-
tween graphs. In particular, it is essential for assessing the quality of graph gener-
ative models. In evaluation measures for graph generative models, graph kernels
are often used to measure the similarity of graphs. Recently, it has been shown that
the choice of a graph kernel may drastically affect research outcomes in this area.
Therefore, it is essential to choose a kernel that is suitable for the task at hand. In
this paper, we propose a framework for comparing graph kernels in terms of which
high-level structural properties they are sensitive to. For this, we choose several
pairs of random graph models that are different in one particular property: hetero-
geneity of degree distribution, the presence of community structure, the presence
or particular type of latent geometry, and others. Then, we design continuous
transitions between these models and measure which graph kernel is sensitive to
the corresponding change. We show that using such diverse graph modifications
is crucial for evaluation: many kernels can successfully capture some properties
and fail on others. One of our conclusions is that simple and long-known Shortest
Path and Graphlet kernels are able to successfully capture all graph properties that
we consider in this work.

1 INTRODUCTION

Many real-world objects can be represented as graphs: social and citation networks, molecules, the
Internet, transportation networks, and so on. For a number of practical problems, it is important to
measure the similarity or distance between graphs: it can be helpful for graph classification, graph
clustering, or evaluating graph generative models.

A number of graph kernels have been proposed in the literature to evaluate the similarity between
graphs (Kriege et al., 2020; Nikolentzos et al., 2021). Graph kernels are often based on some graph
statistics like node degrees, shortest path lengths, small subgraph counts, and so on. Thus, different
kernels capture different graph properties. However, it is not obvious which properties are captured
by a given kernel. This makes it challenging to choose a suitable kernel for a particular problem.

In this paper, we are particularly motivated by the problem of evaluating the performance of graph
generative models. To evaluate such a model, one needs a measure that compares a generated set of
graphs with a reference set. A standard approach is to first convert all graphs to their vector repre-
sentations or to compute similarities for pairs of graphs and then to compare the obtained representa-
tions or similarity sets. If similarity is measured via a graph kernel, then maximum mean discrepancy
(MMD) is typically used in the second step of this procedure. The problem of choosing the right
measure for graph generative model evaluation has gained significant attention recently (O’Bray
et al., 2022; Thompson et al., 2022; Shirzad et al., 2022). In particular, it was shown that the choice
of a kernel or even a particular parameter for a given kernel may drastically affect the outcome of
the model comparison (O’Bray et al., 2022).

We propose a framework for comparing graph kernels in terms of their sensitivities to different graph
properties. For this, we choose several pairs of random graph models that are different in a particular
graph property — the presence of community structure, degree distribution, latent geometry, etc.
Then, we design continuous transitions between the models: in each transition, the presence of a

1

Under review as a conference paper at ICLR 2024

given property gradually increases. To evaluate whether a particular kernel is sensitive to a particular
type of change, we generate several sets of graphs at different points of the transition and check
whether the kernel is able to distinguish these different sets. As a result, we provide a detailed
comparison of graph kernels that can help practitioners in choosing the best one for their application.
Our framework aligns well with how the performance of graph generative models is evaluated and
thus can help in the development of better measures for this task.

One of our main observations is that many kernels are sensitive to some of the properties while
being insensitive to others. For example, our experiments show that the popular Weisfeiler-Leman
kernel is insensitive to geometry, which makes it insuitable for tasks like molecular modeling, where
the nodes (atoms) have spatial locations. This shows the importance of using different structural
properties for assessing which characteristics a kernel is sensitive to. Among the best-performing
kernels are the long-known Shortest Path and Graphlet kernels. Another kernel that performs well
on all the properties is a more complicated Pyramid Match kernel.

We hope that our investigation will be helpful for researchers and practitioners for choosing suitable
kernels for evaluating graph generative models.

2 PRELIMINARIES

In this paper, we analyze graph kernels and focus on undirected graphs G = (V,E) with no
node/edge attributes since most of the known kernels can be applied to such graphs.

2.1 MEASURING GRAPH SIMILARITY

Various approaches can be used to measure similarity or dissimilarity between graphs. Two major
research directions are concentrated on graph distances and graph kernels.

Graph distances measure dissimilarity between graphs and are supposed to satisfy the axioms of
a metric space. However, the positivity axiom is usually violated since the distance between two
different graphs can be equal to zero. Indeed, if we guarantee that D(G,G′) = 0 if and only if
G and G′ are isomorphic, then computing such distance is at least as hard as graph isomorphism
testing, which is infeasible for most applications.

In turn, a graph kernel is a symmetric, positive semidefinite function defined on the space of graphs.
This function can be expressed as an inner product in some Hilbert space. A survey of many graph
kernels can be found in, e.g., Kriege et al. (2020); Nikolentzos et al. (2021).

In this paper, we conduct a comparative analysis of graph kernels. Let us note that any kernel
K(·, ·) can be transformed to a distance measure (up to the positivity axiom) as, e.g., D(G1, G2) =√
K(G1, G1) +K(G2, G2)− 2K(G1, G2). Similarly, there are multiple ways to transform a

graph distance to a graph kernel.

A typical approach to define a kernel or distance for graphs is to describe each graph based on its
characteristics: degree distribution, substructure counts, shortest path lengths, spectral properties,
and so on. The obtained descriptors can then be used to obtain a graph kernel or graph distance.
Some kernels are defined for graphs with discrete node labels. However, they can be applied to
unlabeled graphs as well. For this, we assume that all node labels are equal.

Let us now define two popular and long-known graph kernels. In Appendix A, we define other graph
kernels used in our study.

The Shortest Path (SP) kernel was introduced in Borgwardt & Kriegel (2005). Each shortest
path is described by the following triplet: its length and labels of starting and ending nodes. Then,
the graph is represented by a vector fG, where each coordinate is the frequency of a particular triplet
in a graph. Then, the kernel is a scalar product of fG and fG′ . In our setting, where each node has
the same label, the SP kernel compares the shortest-path histograms. Thus, the vector fG can be
interpreted as a signature of the topology described by the network.

The Graphlet kernel was proposed in Pržulj (2007). Graphlets are small connected subgraphs of
a graph. Consider graphlets of size k. We assign an index to each graphlet and let fG be a vector

2

Under review as a conference paper at ICLR 2024

such that its i-th entry is equal to the frequency of occurrence of i-th graphlet in G. Then, the kernel
can be computed as the scalar product of fG and fG′ .

2.2 GRAPH KERNELS FOR EVALUATING GRAPH GENERATIVE MODELS

One important application of graph kernels is measuring the performance of graph generative mod-
els. In this section, we briefly review this research area and relevant literature.

To evaluate a graph generative model, one usually needs to compare a set of graphs produced by the
model with some reference set of graphs (not available to the model during training). Typically, the
comparison consists of two steps. First, each graph is described as a point in a vector space, or for
each pair of graphs their similarity is defined. Then, two sets of points or two sets of similarity values
are compared. Arguably the most widely-used approach is to define a kernel K(·, ·) for measuring
the similarity of graphs and then use maximum mean discrepancy (MMD) to measure the distance
between two sets of graphs G1 and G2:

MMD2(G1,G2) =
1

|G1|2
∑

G1,G2∈G1

K(G1, G2)+
1

|G2|2
∑

G1,G2∈G2

K(G1, G2)−
2

|G1||G2|
∑

G1∈G1

∑
G2∈G2

K(G1, G2).

If K(G1, G2) is a kernel, then it can be expressed as K(G1, G2) = ⟨f(G1), f(G2)⟩ for some vector
representation f(G). Then, MMD = ∥µ1 − µ2∥2, where µi = 1

|Gi|
∑

G∈Gi
f(G). Thus, MMD

is indeed a distance. Besides MMD, there are other approaches to compare distributions: Fréchet
Distance (Heusel et al., 2017), Improved Precision & Recall (Kynkäänniemi et al., 2019), Density
& Coverage (Naeem et al., 2020). Overall, there are many ways to compare two distributions of
graphs.

O’Bray et al. (2022) compare some of the options and, similarly to our work, consider graphs without
node features and labels. The authors compare MMD-based measures. To define a kernel, O’Bray
et al. (2022) describe each graph by a vector via simple structural characteristics: a histogram of
the degree distribution, a histogram of local clustering coefficients, or eigenvalues of the Laplacian.
Then, different transformations for obtaining a kernel are considered: the first Wasserstein distance
(EMD), total variation distance (TV), and the radial basis function kernel (RBF). Each transforma-
tion has a parameter that needs to be specified. The important conclusion of the paper is that for
different kernels and their hyperparameters, the outcome of the models’ comparison may drastically
differ. This supports the importance of the problem we consider in this paper. Another contribution
of O’Bray et al. (2022) is their approach to comparing measures: it is proposed to make pertur-
bations to a given set of graphs and measure whether MMD correlates with the degree of change.
The considered modifications are the following: random edge insertions, random edge deletions,
random rewiring operations, and random node additions. The key distinction of our paper is that we
design specific graph distribution changes that target particular graph properties and allow us to give
a much more detailed understanding of what can be captured by a particular kernel.

Thompson et al. (2022) also compares evaluation measures for graph generative models and assumes
that graphs may have features of nodes and edges. They consider two types of measures: classic
(as in O’Bray et al. (2022)) and based on neural representations. Thompson et al. (2022) suggest
adopting the widely used measures from image generation literature (Fréchet Distance, Improved
Precision & Recall, Density & Coverage). But for graphs (in contrast to images), this would require
training a neural network for each dataset. Instead, the authors suggest using representations ob-
tained via a randomly initialized GIN model; see Appendix A for the details. In the experiments,
Thompson et al. (2022) measure the rank correlation between the degree of perturbation and the
measure and show that the proposed randomly initialized GNNs work well. Several aspects are
tested: fidelity (whether a measure can detect random graphs added to a set of graphs or detect
randomly rewired edges); diversity (a measure should be sensitive to mode dropping and mode col-
lapse); sensitivity to node and edge features; sample efficiency (the minimum number of samples
to discriminate a set of random graphs from real samples). However, in terms of graph structure,
only random rewiring and the Erdős–Rényi random graph model are considered. Finally, Shirzad
et al. (2022) propose replacing a randomly initialized GIN model with a contrastively trained GNN
model, which makes the obtained evaluation measure dataset-dependent.

3

Under review as a conference paper at ICLR 2024

3 COMPARING GRAPH KERNELS

The main question that we aim to answer in this paper is ‘What structural characteristics are captured
by what kernel?’. With ‘captured’, we mean that the kernel can distinguish two sets of graphs if they
differ in that particular aspect. In this section, we describe the setup that we propose to answer this
question.

To measure the sensitivity of a kernel to a graph characteristic, we will consider a sequence of graph
generators where, at each step, the considered graph characteristic is more present. To that end, we
consider graph generators that include a step parameter θ which we vary between 0 and 1, such that
the characteristic is absent at θ = 0, and strongly present at θ = 1. We describe below which graph
generators we consider and how we interpolate between them.

In all of our generators, we keep the number of nodes n constant, and we also preserve the expected
number of edges m. We use the Erdős-Rényi (ER) random graph model as baseline generator, where
each of the considered graph characteristics is absent. In the Erdős-Rényi model, all edges are added
independently with probability p = m/

(
n
2

)
.

3.1 STRUCTURAL GRAPH CHARACTERISTICS

In this section, we discuss structural graph characteristics that we consider in our research and
introduce the generative models that are used for each of these characteristics.

Density Density is the simplest graph characteristic that can be modeled by varying the probability
p in the basic Erdős-Rényi model.

Degree heterogeneity The degree distribution of an ER graph differs from what is observed in
real-world networks: ER graphs have Binomially distributed degrees, leading to a variance that is
lower than the mean degree. However, many real-world networks have a much more heterogeneous
degree distribution, where the variance is often many times larger than the mean degree. Many
networks even seem to have power-law degree distributions, leading to many hubs and a high degree
variance (Barabási & Bonabeau, 2003). Several generative models incorporate degree heterogeneity
by prescribing an (expected) degree sequence, as can be done with the Configuration Model and
the Chung-Lu model (Chung & Lu, 2002; Van der Hofstad, 2016). We use the Chung-Lu model
because it is a generalization of ER and is simple to work with. The input to this model is the vector
of the expected degrees (w1, . . . , wn)

T . Given the expected degrees, an edge between two nodes u
and v is added with probability wuwv∑

i wi
independently of all other edges. We sample the prescribed

degrees from a Pareto distribution with power-law exponent γ ≥ 2 and scale parameter chosen to
ensure that the expected number of edges equals m. In the limit γ → ∞, this is equivalent to the ER
model, while small finite values lead to degree sequences with high variance.

Clustering In many real-world networks, nodes with common neighbors are more likely to be
connected to each other (Watts & Strogatz, 1998; Van der Hofstad, 2016). This phenomenon is
often referred to as clustering (Holland & Leinhardt, 1971; Peixoto, 2022), and it results in an
abundance of triangles, which is often quantified by the clustering coefficient. Social networks and
many other real graphs are well-known for having a high degree of clustering (Holland & Leinhardt,
1971; McPherson et al., 2001).

There are three main mechanisms that are used to explain and model the high level of clustering:
triadic closure, community structure, and latent geometry. In our analysis, we treat these as three
different graph characteristics.

Triadic closure The simplest way to incorporate the over-representation of triangles in a network
is to assume that two nodes have an increased likelihood of forming an edge between them whenever
they share common neighbors. We model this similarly to Peixoto (2022), by generating the graph
in two phases. First, we generate an ER graph with some edge probability p1. In the second phase,
we go over each node pair that is at distance 2 and place an edge with probability p2. To ensure that
the expected number of edges is equal to m, we choose p1 < m/

(
n
2

)
so that the first stage leads to

4

Under review as a conference paper at ICLR 2024

less than m edges (in expectation). Then, we set p2 to

p2 =

m

(n2)
− p1

(1− p1)(1− (1− p21)
n−2)

. (1)

With these parameters, the expected number of edges in the obtained graph equals m, see the deriva-
tion in Appendix B.1. We refer to this generative model as the triadic model. Taking p1 = m/

(
n
2

)
leads to the ER model, while lower values of p1 lead to higher global clustering coefficients.

Community structure Many real-world networks contain groups of nodes that are more densely
connected to each other than to the rest of the network. In network science, these groups are re-
ferred to as communities (Fortunato, 2010), and they often have a natural interpretation, like friend
groups in social networks or subject areas in citation networks. In addition, the presence of commu-
nity structure can explain the clustering that is observed in real networks: the presence of densely
connected groups leads to an increased number of triangles.

The simplest generative model for community structure is the Planted Partition (PP) model (Holland
et al., 1983), where we are given a partition of the network nodes into communities, and node pairs
of the same community connect with probability pin, while node pairs of different communities
connect with probability pout. We consider two communities of size n/2 each, and we parameterize
pin, pout as

pin(λ) =
4mλ

n2(1 + λ)− 2λn
, pout(λ) =

4m

n2(1 + λ)− 2λn
, (2)

so that the expected number of edges equals m, while pin/pout = λ. This parametrization of the PP
model reduces to the ER model for λ = 1, and the (expected) global clustering coefficient increases
monotonously with λ.

Latent geometry Community structure explains clustering by assuming a certain (finite) set of
types, and that nodes of the same type have a higher likelihood of connecting than nodes of different
type. The Random Geometric (RG) model generalizes this notion by considering a continuous type
space and assuming that nodes whose types are similar to each other have a larger probability of
connecting to each other. In citation networks, for example, papers tend to cite papers on related
topics. This continuous type space can be thought of as some feature space, and the (dis)similarity
may be quantified by some distance measure in this space. However, often one only has access to
the network connections, and not the positions in the feature space. In such cases, we say that the
network has a latent geometry.

The simplest way to model this, is by assigning to each node a coordinate in some latent space, and
connecting two nodes if their distance is lower than some threshold. This model is referred to as a
random geometric graph (Penrose, 2003). We consider a two-dimensional torus geometry, where
each node is assigned a coordinate in [0, 1)2 uniformly at random, and two nodes are connected
whenever their distance is below some threshold r. We choose r to ensure that the network has m
edges in expectation, see Appendix B.2 (for h = 1).

Dimensionality Whenever a network has latent geometry, its connections depend highly on the
characteristics of that geometry. For example, networks with hyperbolic geometry tend to have
a high level of degree heterogeneity (Krioukov et al., 2010). In addition, the dimension of the
latent space heavily affects both the local properties (e.g., clustering) and global characteristics (e.g.,
diameter). In general, the clustering coefficient decreases with dimension.

To model varying dimensionality, we use the random geometric graph model: we consider a torus
with width 1 and height h ∈ (0, 1]. For h = 1, this corresponds to the standard two-dimensional
torus, while the limit h ↓ 0 results in a one-dimensional torus, i.e., a circle. Note that the radius
r that leads to m edges in expectation, depends on h. The desired value of r(h,m) is derived in
Appendix B.2.

Complementarity In some particular types of networks, such as protein-protein interaction net-
works and economic networks (Talaga & Nowak, 2022; Mattsson et al., 2021), it has been observed
that the clustering coefficient is significantly lower than that of an ER graph with the same number
of edges. Instead, these graphs have a large number of quadrangles (cycles of length four), leading

5

Under review as a conference paper at ICLR 2024

to a locally bipartite structure (Estrada, 2006). This phenomenon is usually explained by comple-
mentarity (Talaga & Nowak, 2022): in these networks, nodes do not connect if they are similar to
each other, but if they differ in some specific way. In economic networks, for example, companies
that produce a certain product will trade with companies that are in need of that particular product.
This leads ‘similar’ nodes to have many common neighbors, but rarely a direct connection. In turn,
dissimilar nodes have a high likelihood of connecting.

There are several random graph models for complementarity: one option is disassortative commu-
nity structure, e.g., by a PP model with pin < pout, but there are also ways to model complementarity
using latent geometry. We model complementarity by a latent spherical geometry (Talaga & Nowak,
2022). This has the nice property that each point in the latent space has a unique antipodal point at
maximum distance. We assign each node to a point on the hypersphere (with radius 1) uniformly at
random and connect two nodes if their distance exceeds π− r for some value of r, chosen to ensure
m edges in expectation. We refer to this generator as the Spherical Complementarity (SC) model.

3.2 INTERPOLATING GRAPH CHARACTERISTICS

For each graph characteristic, we define an interpolation between two graph generators, so that the
strength of that characteristic changes monotonously along the transition. We parametrize each of
these interpolations by a step parameter θ ∈ [0, 1], so that θ = 0 leads to the ‘left’ generator,
while θ = 1 leads to the ‘right’ generator. We make use of the fact that most of the generating
models introduced in Section 3.1 are generalizations of the ER model. In these cases, we simply
parameterize a transition away from the ER model. The ER model is chosen with p = m/

(
n
2

)
so

that the expected number of edges equals m. For the geometric models used for latent geometry and
complementarity, we will take a different approach to interpolate between generators.

Density (ER(p)) We use the ER model with the edge probability p(θ + 1). Thus, when θ changes
from 0 to 1, the edge probability increases from p to 2p.

Heterogeneity (ER↔CL) We use the Chung-Lu (CL) model with weights drawn from a Pareto
distribution with power-law exponent 1 + 1/θ, and scale chosen such that the expected number of
edges equals m. Note that θ = 0 leads to a power-law exponent ∞, which leads all the weights to be
constant so that the corresponding CL model is equivalent to the ER model. The values θ > 0.5 give
weight distributions with infinite variance, which leads to a high variance in the degree distribution.

Triadic closure (ER↔Triadic) We use the Triadic model with p1(θ) = (1 − θ
2) · p, and p2 as

prescribed by (1). Hence, θ = 0 leads to p2 = 0, so that ER is recovered, while θ = 1 leads to
p2 ≈ 0.33, so that roughly a third of the shortest paths of length 2 will be shortcut in the second
phase.

Communities (ER↔PP) We use the PP model with pin, pout as given in (2) for λ = 1+ 5.6θ, so
that θ = 0 leads to pin = pout = p, while θ = 1 leads to every vertex having (in expectation) one
neighbor outside its community.

Latent geometry (ER↔Torus) For this transition, we take the mixture of an ER graph and a
RG torus graph: we generate a graph from each generator and denote their adjacency matrices by
A(ER) and A(RG). We construct the adjacency matrix A as follows: for each node pair with indices
1 ≤ i < j ≤ n we draw an independent Bernoulli random variable Bij with success probability θ

and set Aij = A
(ER)
ij +Bij(A

(RG)
ij −A

(ER)
ij). Hence, θ = 0 leads to A = A(ER), while θ = 1 leads

to A = A(RG). We complete the adjacency matrix symmetrically: Aij = Aji for i > j and Aii = 0.

Dimensionality (Torus↔Circle) To interpolate between a two- and one-dimensional torus, we
consider a torus of height h = 1 − θ and connection radius r(h,m) as derived in Appendix B.2.
This way, θ = 0 leads to a torus on [0, 1)2 while h ↓ 0 leads to a one-dimensional torus (a circle).

Complementarity (ER↔SC) For this transition, we take the same approach as for the interpola-
tion ER↔Torus: we construct a graph by taking a mixture of graphs generated by the ER and SC
models, such that θ = 0 results in an ER graph, while θ = 1 results in a SC graph.

6

Under review as a conference paper at ICLR 2024

(a) Comparison with θ∗ = 0. (b) Comparison with θ∗ = 1.

Figure 1: Scatter plots of the MMD values of the SP kernel for the ER↔CL interpolation.

3.3 MEASURING THE SENSITIVITY OF A KERNEL

We now explain how we quantify the sensitivity of a kernel w.r.t. an interpolation between graph
generators. We consider a discretization Θ ⊂ [0, 1] of the interpolation such that {0, 1} ⊂ Θ. For
θ ∈ Θ, let Gθ denote a set of g graphs sampled independently from the interpolation generator at
step θ. Furthermore, let MMD(Gθ1 ,Gθ2 ;K) denote the MMD value between Gθ1 and Gθ2 w.r.t. the
kernel K. We compare each θ ∈ Θ to each endpoint θ∗ ∈ {0, 1}. For each endpoint θ∗ ∈ {0, 1}, we
quantify the sensitivity of the kernel K w.r.t. the interpolation as the Spearman correlation between
MMD(Gθ∗ ,Gθ;K) and |θ − θ∗|. If this value is close to 1, it means that the MMD values tend
to increase when transitioning θ away from θ∗. But if this value is close to zero, it indicates that
there is no clear monotone relation between θ and MMD(Gθ1 ,Gθ2 ;K). This leads to two different
correlation coefficients r0 and r1, corresponding to the different values of θ∗. See Figure 1 for an
illustration.

To ensure the independence of the different MMD values that are used to compute a correlation
coefficient, we sample two different sets of graphs for each MMD value. Between each pair of
θ’s that we compare, we compute ℓ MMD values. This results in sampling ℓ · g graphs for each
θ ∈ Θ \ {0, 1}, and (1 + |Θ|) · ℓ · g graphs for each θ∗ ∈ {0, 1}.

4 EXPERIMENTS

We follow the framework described in the previous section. In our experiments, we consider graphs
with n = 50 nodes and (in expectation) m = 190 edges. We discretize the interpolation interval
[0, 1] by Θ = {0.0, 0.1, . . . , 1.0}. Thus, we will have |Θ| = 11 steps in our interpolation. We
consider sets of g = 100 graphs and compute ℓ = 30 different MMD values for each pair of
interpolation steps that we compare.

In our experiments, we use the following kernels and representations:

• Shortest Path (SP) kernel (Borgwardt & Kriegel, 2005);

• Weisfeiler-Leman (WL) kernel (Shervashidze et al., 2011) with l = 5;

• Weisfeiler-Lehman optimal assignment (WL-OA) kernel (Kriege et al., 2016) with l = 5;

• Graphlet kernel (Pržulj, 2007) with k = 3 and k = 4 (referred to as Graphlet-3 and
Graphlet-3, respectively);

• Neighborhood Subgraph Pairwise Distance kernel (NSPDK) (Costa & De Grave, 2010)
with r = 3, d = 4;

• Pyramid Match (PM) kernel (Nikolentzos et al., 2017) with Pyramid histogram level 4 and
the dimension of the hypercube 6;

• NetLSD graph representations (Tsitsulin et al., 2018) with heat diffusion process;

• Random GIN (RandGIN) representations (Thompson et al., 2022).

7

Under review as a conference paper at ICLR 2024

Density
ER(p)

Heterogeneity
(ER↔CL)

Triadic closure
(ER↔Triadic)

Communities
(ER↔PP)

Geometry
(ER↔Torus)

Dimensionality
(Torus↔Circle)

Complementarity
(ER↔SC)

SP 0.994 0.953 0.950 0.959 0.957 0.985 0.929
WL 0.996 0.993 0.984 0.387 0.150 0.468 0.097

WL-OA 0.996 0.993 0.986 0.408 0.601 0.549 0.428
Graphlet-3 0.996 0.988 0.996 0.979 0.972 0.721 0.972
Graphlet-4 0.996 0.991 0.996 0.973 0.980 0.843 0.970

NSPDK 0.365 0.956 0.953 0.373 0.854 0.589 0.580
PM 0.981 0.990 0.966 0.950 0.922 0.826 0.923

NetLSD 0.996 0.939 0.919 0.948 0.956 0.950 0.794
RandGIN 0.938 0.947 0.893 0.132 0.527 0.067 0.285

Table 1: The sensitivity of the kernels to various structural characteristics. Sensitivity is measured
via the Spearman correlation as described in Section 3.3. For each interpolation and kernel, we
measure two sensitivity values r0 and r1 corresponding to comparisons with different endpoints and
report their average (r0 + r1)/2. The top three results are colored.

For most graph kernels, we use the GraKeL python library (Siglidis et al., 2020). Following Niko-
lentzos et al. (2021), we normalize the kernel values as K(G1, G2)/

√
K(G1, G1)K(G2, G2). For

NetLSD and RandGIN we use the implementation provided by the authors with the default parame-
ters. In both cases, we use cosine similarity to convert graph representations to kernel values. Thus,
for all the obtained kernels we have K(G,G) = 1. Our code and experiments are available through
this (anonymized) repository.1

The results are shown in Table 1. One of our main conclusions is that most kernels perform well on
some of the interpolations while performing badly on others. This shows the importance of using
different interpolations for assessing which characteristics a kernel is sensitive to.

We note that some transitions are easier to detect by all the kernels: for heterogeneity and triadic
closure, all kernels show relatively good and stable performance. In contrast, for communities,
geometry, dimensionality, and complementarity the difference in performance between different
kernels is huge: some kernels have correlations larger than 0.97, while others may have near-zero
performance, which suggests that these kernels are completely insensitive to these characteristics.
Finally, while most kernels perform well on the density transition, this turns out to be challenging
for NSPDK. Let us now go over each kernel individually and summarize the results.

Figure 2: Degree variances for each of
the interpolations.

The Weisfeiler-Leman kernel and the related WL-OA
kernel are considered to be powerful graph kernels. How-
ever, in our experiments, we observe that they only per-
form well on interpolations where the degree variance
changes monotonously. For instance, WL-OA is the best
kernel for heterogeneity, which is expected as the first
step of the WL procedure is based on node degrees. Also,
both WL and WL-OA have high performance on triadic
closure. In contrast, for all the remaining interpolations,
the Spearman correlation coefficient is quite small. Espe-
cially hard for the WL kernel are the interpolations cor-
responding to geometry and complementarity. This can
partially be explained by Figure 2, which shows that the
interpolations of heterogeneity and triadic closure significantly affect the degree variance, while the
degree distributions in all other interpolations remain quite homogeneous.Finally, let us note that
WL-OA performs at least as well as WL on each of the transitions.

The Shortest Path kernel has quite stable performance. Importantly, it is in the top-3 for the most
difficult transitions — communities, geometry, dimensionality, complementarity — with correlation
values always exceeding 0.9. Interestingly, it is not among the best kernels for simple transitions
(heterogeneity, density, and triadic closure), while still having good performance. Notably, SP is the
best for dimensionality, which is arguably the most subtle transition. This can be explained by the
fact that shortest path lengths capture both local and global information of the graphs, making this

1Available at https://anonymous.4open.science/r/graph-kernels-BC69/

8

https://anonymous.4open.science/r/graph-kernels-BC69/

Under review as a conference paper at ICLR 2024

kernel sensitive to non-trivial transitions. Figure 3 in Appendix shows the shortest path distribution
for different graph generators. It can be clearly seen that all models are distinguishable. In particular,
the most difficult dimensionality is easy for the SP kernel: for Circle, the shortest paths can be
significantly longer than for Torus.

The Graphlet kernel is another good option in terms of the overall performance: it is among
the best-performing kernels for all interpolations but dimensionality, where the difference with the
SP kernel is noticeable. The poorer performance for dimensionality may be explained by the fact
that the graphlet kernel is not able to capture the global properties of graphs which are affected
when we vary the dimension (e.g., its diameter). Figure 4 additionally illustrates the difficulty of
the dimensionality transition: it turns out that for small values of θ (when the height h is not too
small), the distribution of graphlets does not change much, and thus the MMD values are close to
zero up to θ = 0.7. We also see that increasing the kernel sizes from 3 to 4 significantly improves
the performance for dimensionality since this change makes the considered neighborhoods larger.
For all other interpolations, increasing graphlet sizes does not lead to noticeable improvements.

The Neighborhood Subgraph Pairwise Distance kernel turns out to be insensitive to community
structure and density. Other interpolations that are hard to detect for this kernel are dimensionality
and complementarity. We hypothesize that such poor performance for some of the transitions can
be explained by a particular graph invariant used to compare two rooted subgraphs (as the exact
graph isomorphism is infeasible). Unfortunately, this graph invariant also makes this kernel harder
to theoretically analyze or intuitively explain. Let us note that NSPDK has the advantage that it can
be used for graphs with node attributes. However, when graphs do not have node labels or attributes,
we do not advise using this kernel.

The Pyramid Match kernel is another kernel that seems to be sensitive to all the characteristics.
Similarly to the graphlet kernel, PM does not perform so well on dimensionality. Let us also note
that PM is dominated by Graphlet-4 for each interpolation. On the other hand, this kernel is scalable
and thus it is a good option for larger graphs where the Graphlet kernel cannot be applied.

The NetLSD representations are also sensitive to most of the properties. Interestingly, it is the
second-best on dimensionality, which is arguably the most challenging interpolation. However, the
performance on complementarity is quite poor.

Random GIN representations were proposed in Thompson et al. (2022) in the context of evaluat-
ing graph generative models. We note that there are some differences in our setup. First, our graphs
do not have node features, while being able to process such features is one of the main advantages of
RandGIN. Second, Thompson et al. (2022) use GIN representations not for a kernel but to compute
such measures as precision, recall, or Fréchet Distance. Nevertheless, our results show that when
used within our framework, the kernel based on RandGIN is not sensitive to such interpolations as
communities, geometry, dimensionality, and complementarity. This is similar to the results of the
WL kernel and can be explained by the low diversity of degrees in such models.

5 CONCLUSION

In this paper, we propose a framework for comparing graph kernels in terms of the high-level struc-
tural graph properties that they are sensitive to. For this, we carefully design an experimental setup
based on interpolations between random graph generators differing in one particular structural prop-
erty. We test several popular kernels and graph representations using the proposed setup. We show
that simple and long-known kernels often have better sensitivity to particular characteristics com-
pared to more advanced approaches. We also demonstrate that the wide diversity of the considered
structural properties is critical for a thorough evaluation.

The results shown in Table 1 are useful when deciding which graph kernel is most suitable when
evaluating generative models in a particular application. For example, our experiments show that
the widely-used Weisfeiler-Lehman kernel is insensitive to geometry. In turn, geometry can be espe-
cially relevant, e.g., for the application of molecular modeling because atoms have spatial locations
and using the WL kernel is not a good option in this case.

9

Under review as a conference paper at ICLR 2024

REFERENCES

Albert-László Barabási and Eric Bonabeau. Scale-free networks. Scientific american, 288(5):60–69,
2003.

Karsten M Borgwardt and Hans-Peter Kriegel. Shortest-path kernels on graphs. In Fifth IEEE
international conference on data mining (ICDM’05), pp. 8–pp. IEEE, 2005.

Fan Chung and Linyuan Lu. Connected components in random graphs with given expected degree
sequences. Annals of combinatorics, 6(2):125–145, 2002.

Fabrizio Costa and Kurt De Grave. Fast neighborhood subgraph pairwise distance kernel. In Pro-
ceedings of the 26th International Conference on Machine Learning, pp. 255–262. Omnipress;
Madison, WI, USA, 2010.

Ernesto Estrada. Protein bipartivity and essentiality in the yeast protein- protein interaction network.
Journal of proteome research, 5(9):2177–2184, 2006.

Santo Fortunato. Community detection in graphs. Physics reports, 486(3-5):75–174, 2010.

Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, and Sepp Hochreiter.
GANs trained by a two time-scale update rule converge to a local nash equilibrium. Advances in
neural information processing systems, 30, 2017.

Paul W Holland and Samuel Leinhardt. Transitivity in structural models of small groups. Compar-
ative group studies, 2(2):107–124, 1971.

Paul W Holland, Kathryn Blackmond Laskey, and Samuel Leinhardt. Stochastic blockmodels: First
steps. Social networks, 5(2):109–137, 1983.

Nils M Kriege, Pierre-Louis Giscard, and Richard Wilson. On valid optimal assignment kernels
and applications to graph classification. Advances in neural information processing systems, 29,
2016.

Nils M Kriege, Fredrik D Johansson, and Christopher Morris. A survey on graph kernels. Applied
Network Science, 5(1):1–42, 2020.

Dmitri Krioukov, Fragkiskos Papadopoulos, Maksim Kitsak, Amin Vahdat, and Marián Boguná.
Hyperbolic geometry of complex networks. Physical Review E, 82(3):036106, 2010.

Tuomas Kynkäänniemi, Tero Karras, Samuli Laine, Jaakko Lehtinen, and Timo Aila. Improved
precision and recall metric for assessing generative models. Advances in Neural Information
Processing Systems, 32, 2019.

Carolina ES Mattsson, Frank W Takes, Eelke M Heemskerk, Cees Diks, Gert Buiten, Albert Faber,
and Peter MA Sloot. Functional structure in production networks. Frontiers in big Data, 4:
666712, 2021.

Miller McPherson, Lynn Smith-Lovin, and James M Cook. Birds of a feather: Homophily in social
networks. Annual review of sociology, 27(1):415–444, 2001.

Muhammad Ferjad Naeem, Seong Joon Oh, Youngjung Uh, Yunjey Choi, and Jaejun Yoo. Reliable
fidelity and diversity metrics for generative models. In International Conference on Machine
Learning, pp. 7176–7185. PMLR, 2020.

Giannis Nikolentzos, Polykarpos Meladianos, and Michalis Vazirgiannis. Matching node embed-
dings for graph similarity. In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 31, 2017.

Giannis Nikolentzos, Giannis Siglidis, and Michalis Vazirgiannis. Graph kernels: A survey. Journal
of Artificial Intelligence Research, 72:943–1027, 2021.

Leslie O’Bray, Max Horn, Bastian Rieck, and Karsten Borgwardt. Evaluation metrics for graph
generative models: Problems, pitfalls, and practical solutions. In International Conference on
Learning Representations, 2022.

10

Under review as a conference paper at ICLR 2024

Tiago P Peixoto. Disentangling homophily, community structure, and triadic closure in networks.
Physical Review X, 12(1):011004, 2022.

Mathew Penrose. Random geometric graphs, volume 5. OUP Oxford, 2003.

Nataša Pržulj. Biological network comparison using graphlet degree distribution. Bioinformatics,
23(2):e177–e183, 2007.

Nino Shervashidze, Pascal Schweitzer, Erik Jan Van Leeuwen, Kurt Mehlhorn, and Karsten M Borg-
wardt. Weisfeiler-lehman graph kernels. Journal of Machine Learning Research, 12(9), 2011.

Hamed Shirzad, Kaveh Hassani, and Danica J Sutherland. Evaluating graph generative models with
contrastively learned features. arXiv preprint arXiv:2206.06234, 2022.

Giannis Siglidis, Giannis Nikolentzos, Stratis Limnios, Christos Giatsidis, Konstantinos Skianis, and
Michalis Vazirgiannis. Grakel: A graph kernel library in python. Journal of Machine Learning
Research, 21(54):1–5, 2020.

Szymon Talaga and Andrzej Nowak. Structural measures of similarity and complementarity in
complex networks. Scientific Reports, 12(1):16580, 2022.

Rylee Thompson, Boris Knyazev, Elahe Ghalebi, Jungtaek Kim, and Graham W Taylor. On evalu-
ation metrics for graph generative models. In International Conference on Learning Representa-
tions, 2022.

Anton Tsitsulin, Davide Mottin, Panagiotis Karras, Alexander Bronstein, and Emmanuel Müller.
NetLSD: hearing the shape of a graph. In Proceedings of the 24th ACM SIGKDD International
Conference on Knowledge Discovery & Data Mining, pp. 2347–2356, 2018.

Remco Van der Hofstad. Random graphs and complex networks, volume 43. Cambridge university
press, 2016.

Duncan J Watts and Steven H Strogatz. Collective dynamics of ‘small-world’networks. nature, 393
(6684):440–442, 1998.

Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural
networks? In International Conference on Learning Representations, 2019.

11

Under review as a conference paper at ICLR 2024

A DEFINITIONS OF GRAPH KERNELS

Weisfeiler-Leman (WL) subtree kernel was proposed in Shervashidze et al. (2011) and is based
on the WL color refinement procedure. This procedure works as follows. Initially, all nodes have
their labels (or one fixed label for unlabelled graphs). At each iteration, a node’s label is replaced by
another label identifying a multiset of labels of its neighbors. The procedure stops when it converges.
Based on that, the WL kernel for l iterations is

WL(G1, G2) =

l∑
i=0

∑
u∈V (G1)

∑
v∈V (G2)

1{wli(u) = wli(v)},

where wli(u) is the label at i-th iteration of the WL procedure.

Weisfeiler-Lehman optimal assignment (WL-OA) kernel was introduced by (Kriege et al.,
2016) and it improves the WL kernel by finding the optimal matching of nodes. Formally,

WL-OA(G1, G2) = max
B∈B(V1,V2)

∑
v1,v2∈B

k(v1, v2) ,

where B(V1, V2) is the set of all bijections between the node sets and

k(v1, v2) =

l∑
i=0

1{wli(v1) = wli(v2)} .

Since WL-OA requires a bijections between the nodes, it can be applied only to graphs of the same
size.

The Neighborhood Subgraph Pairwise Distance (NSPDK) kernel proposed in Costa &
De Grave (2010) considers pairs of rooted subgraphs of radius r′ ≤ r whose roots are located
at distance d′ ≤ d from each other. A kernel kr′,d′(G1, G2) counts the number of such pairs of
rooted subgraphs in the first graph that are identical to pairs in the second graph. Then,

NSPD(G1, G2) =

r∑
r′=0

d∑
d′=0

kr′,d′(G1, G2)

kr′,d′(G1, G1)kr′,d′(G2, G2)
.

To make the computation of this kernel feasible, graph invariants can be employed to encode each
rooted subgraph. Then, these invariants can be compared instead of graph isomorphism checking.

NetLSD treats a graph as a dynamic system and simulates heat and wave diffusion processes
on nodes and edges of a given graph, followed by measuring system conditions at fixed times-
tamps (Tsitsulin et al., 2018). More formally, let λj be the j-th smallest eigenvalue of the normal-
ized Laplacian of a graph G. For a timestamp t, we define the heat trace ht and wave trace wt of a
graph G as follows:

ht =
∑
j

e−tλj , wt =
∑
j

e−itλj . (3)

Here t > 0 for the heat trace and t ∈ [0, 2π) for the wave trace.

Then, the heat trace signature and wave trace signature of G are defined as the sequences of the
corresponding traces at different timestamps, i.e., h(G) = {ht}t∈Th

and w(G) = {wt}t∈Tw . As
in the original article, we use 250 log-spaced time stamps between 10−2 and 102 for Th and 250
equally-spaced time stamps between 0 and 2π for Tw, respectively.

Finally, the NetLSD distance (heat or wave) between two graphs G and G′ can be computed as
any distance measure between the corresponding signatures. In our comparison, we use NetLSD
representations to obtain a graph kernel. For this, we measure the cosine similarity between the
graph representations.

Random GIN was proposed by Thompson et al. (2022). This graph method makes use of a
randomly initialized Graph Isomorphism Network (GIN) (Xu et al., 2019). To obtain a graph rep-
resentation, a readout function is applied to aggregate node representations at each GIN layer and
then the obtained vectors are concatenated.

12

Under review as a conference paper at ICLR 2024

Pyramid Match kernel proposed in Nikolentzos et al. (2017) first embeds the vertices of each
graph into a low-dimensional vector space using the eigenvectors of the d largest (in magnitude)
eigenvalues of the graph’s adjacency matrix. Since the signs of these eigenvectors are arbitrary,
it replaces all their components by their absolute values. Each vertex is thus a point in the d-
dimensional unit hypercube. To find an approximate correspondence between the sets of vertices of
two graphs, the kernel maps these points to multi-resolution histograms, and compares the emerging
histograms with a weighted histogram intersection function, see Nikolentzos et al. (2017) for more
details.

B DERIVATIONS FOR GRAPH GENERATORS

B.1 TRIADIC MODEL

Let p1, p2 be the connection probabilities of the first and second phases respectively. We compute
the number of edges that will be placed in the second phase. To this end, we first compute the
number of node pairs that are at distance 2 after phase 1. For a node pair i, j to be at distance 2,
it may not have an edge between it (w.p. 1 − p1), but it must have at least one common neighbor.
A vertex k ̸= i, j, is a common neighbor of i and j with probability p21. By De Morgan’s law, the
probability of having at least one common neighbor is 1 − (1 − p21)

n−2, so that the probability of
two nodes being at distance 2 after the first phase, is

(1− p1) ·
(
1− (1− p21)

n−2
)
.

Each of these pairs will lead to an edge in phase 2 with probability p2. Therefore, the total number
of edges will be (

n

2

)(
p1 + (1− p1) ·

(
1− (1− p21)

n−2
)
· p2
)
.

This is equal to m whenever

p2 =

m

(n2)
− p1

(1− p1)(1− (1− p21)
n−2)

.

B.2 RANDOM GEOMETRIC MODELS

For a two-dimensional torus with width 1 and height h ≤ 1, we find the radius r that leads to m
edges in expectation. Two nodes are connected when their distance is smaller than r, i.e., whenever
the second node is inside a circle with radius r around the first node. If h ≥ 2r, then the surface
area of this circle is simply πr2, while the total area of the torus is h. Therefore, the expected edge
density is πr2. Solving

(
n
2

)
· π
hr

2 = m leads to

r =

√
h ·m
π ·
(
n
2

) ,
which is valid as long as 2r ≤ h, i.e., whenever h ≥ 4m

π·(n2)
. Otherwise, the circle overlaps itself,

which leads to a smaller surface area, given by the following integral

A(h, r) =

h/2∫
−h/2

√
r2−y2∫

−
√

r2−y2

1dxdy = 2r2

h
2r∫

− h
2r

√
1− u2du = r2h

√
1−

(
h

2r

)2

+ 2r2 arcsin

(
h

2r

)
.

To obtain m edges in expectation, we need to choose r such that A(h, r)/h = m/
(
n
2

)
. After

substituting z = h
2r , we get

m(
n
2

) =
h

2

(√
1

z2
− 1 +

1

z2
arcsin(z)

)
=

h

2
f(z).

13

Under review as a conference paper at ICLR 2024

We then use Newton-Raphson iteration to solve f(z) = 2m

h(n2)
. Let us denote the obtained value by

z = f−1

(
2m

h(n2)

)
. Finally, we take the radius r = h

2z . In summary, we choose the radius as

r(h,m) =


√

h·m
π·(n2)

if h ≥ 4m

π·(n2)
,

h

2f−1

(
2m

h(n2)

) else. (4)

The one-dimensional torus (the circle) is approximated as h ↓ 0. For a circle, we need r = m

2(n2)
to

obtain m edges in expectation. In the remainder, we show that f−1

(
2m

h(n2)

)
∼ h

m

(
n
2

)
as h ↓ 0, so

that indeed r(h,m) → m

2(n2)
: first, note that f(z) ∼ 2/z as z ↓ 0, so that

f

(
h

m

(
n

2

))
=

2m

h
(
n
2

) + o(h−1) ⇒ f−1

(
2m

h
(
n
2

)) = f−1

(
f

(
h

m

(
n

2

))
+ o(h−1)

)
.

Next, we take the Taylor expansion of f−1 around f
(
h
m

(
n
2

))
:

f−1

(
f

(
h

m

(
n

2

))
+ o(h−1)

)
= f−1

(
f

(
h

m

(
n

2

)))
+

o(h−1)

f ′
(
f−1

(
f
(
h
m

(
n
2

)))) =
h

m

(
n

2

)
+

o(h−1)

f ′
(
h
m

(
n
2

)) .
Finally, the derivative is given by f ′(z) = −2 arcsin(z)

z3 ∼ z−2, so that the second term is o(h). In
conclusion, we have

f−1

(
2m

h
(
n
2

)) =
h

m

(
n

2

)
+ o(h),

as required.

C LIMITATIONS

In this study, we model each of the properties in the most straightforward way, aiming to minimally
affect other graph characteristics. However, for some graph properties, it is challenging (or even
impossible) to vary a property in isolation from everything else. Thus, our transformations designed
to vary a particular property may affect other characteristics as well.

Another limitation of our work is that we only consider graphs without attributes. Our general
framework easily extends to attributed graphs, but the main challenge would be to design meaningful
graph generators for this scenario: there are many ways to combine standard graph generators with
different attribute distributions.

Finally, our study considers relatively small graphs. Our main motivation is that evaluating graph
generative models using graph kernels is typically applied to such small networks. For example, in
molecular modeling, the graphs consist of a relatively small number of atoms. Other applications
where small graphs are relevant include modeling ego networks in sociology. Additionally, we note
that not all kernels are scalable: for instance, the graphlet kernel has a prohibitively high computa-
tional cost on large networks. We consider smaller graphs so that we can include all popular graph
kernels in our experiments.

14

Under review as a conference paper at ICLR 2024

(a) Erdős–Rényi (b) Chung-Lu (c) Triadic

(d) PPM (e) Torus (f) Circle

Figure 3: The distribution of shortest path lengths for different graph generators, -1 corresponds to
disconnected node pairs.

(a) Comparison with θ∗ = 0. (b) Comparison with θ∗ = 1.

Figure 4: Scatter plots of the MMD values of the Graphlet-3 kernel for the torus↔circle interpola-
tion.

15

	Introduction
	Preliminaries
	Measuring graph similarity
	Graph kernels for evaluating graph generative models

	Comparing graph kernels
	Structural graph characteristics
	Interpolating graph characteristics
	Measuring the sensitivity of a kernel

	Experiments
	Conclusion
	Definitions of graph kernels
	Derivations for graph generators
	Triadic model
	Random Geometric models

	Limitations

