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ABSTRACT

Machine learning (ML) for protein design frequently requires large datasets of
protein fitness measurements generated by high-throughput experiments; how-
ever, publicly available protein fitness datasets generated by deep mutational scan-
ning are noisy and only include 103 to 105 data points. In this work, we present
DHARMA, a new protein fitness assay using molecular recording via base editors
and high-throughput sequencing to measure the fitness of up to 106 variants. To
mitigate noise in DHARMA experiments, we design a Bayesian inference method
FLIGHTED that denoises the output of a DHARMA experiment for downstream
ML applications. Our results show that DHARMA and FLIGHTED can accu-
rately measure protein fitness with calibrated errors. Using this technology, we
generate a new fitness dataset of 160000 TEV protease variants and benchmark a
number of standard ML models, including protein language model embeddings,
on this dataset. We find that data size is the single most important factor in de-
termining ML model performance and that scaling up protein language models
does not currently improve performance. DHARMA and FLIGHTED can help
generate more large protein fitness datasets for the ML community.

1 INTRODUCTION

Machine learning (ML) approaches have been remarkably successful in addressing a variety of pro-
tein design problems (Johnston et al., 2023; Frappier & Keating, 2021). Many of these approaches
rely on data generated by high-throughput experiments (Wu et al., 2019; Johnston et al., 2023);
unfortunately, large, reliable datasets of protein fitness measurements from high-throughput exper-
iments are rare, limiting the power of these ML approaches (Fannjiang & Listgarten, 2023). Most
such datasets are generated by deep mutational scanning, but these experiments are inherently noisy
(Busia & Listgarten, 2023) and often quite small, generally only including 103 to 105 data points
(Notin et al., 2023). In this paper, we present a new assay to generate large protein fitness datasets,
new ML methods for denoising the outputs of this assay, and a new large fitness landscape along
with a benchmarking study.

Key Contributions We present three key contributions:

1. DHARMA, a new molecular recording assay that can be used for high-throughput mea-
surement of protein fitness and generation of large fitness datasets of up to 106 variants.

2. A denoising model FLIGHTED-DHARMA that uses Bayesian inference to estimate fitness
error on DHARMA results, thereby making them reliable and trustworthy.

3. A new dataset of 160000 variants of TEV protease fitness, along with benchmarking 39
models on 3 supervised splits of this new dataset.
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2 METHODS

2.1 DHARMA

We developed the novel platform DHARMA (direct high-throughput activity recording and mea-
surement assay) to enable massively parallel quantification of protein fitness. In Figure 1a, we quan-
titatively couple fitness (e.g. enzyme activity) to the mutation rates of a targeted DNA sequence
(”canvas”) adjacent to the protein coding sequence through a base editor. This approach enables si-
multaneous retrieval of both variant sequence and corresponding fitness levels from high-throughput
DNA sequencing (only), unlike conventional fitness methods such as fluorescent-activated cell sort-
ing (FACS) or phage display (Smith & Petrenko, 1997; Sarkisyan et al., 2016). Such direct coupling
allows DHARMA to quantify the fitness of 106 variants more easily and cheaply than conventional
methods.

With sufficient optimization, any molecular fitness function can be measured using DHARMA as
long as the fitness can be coupled to the production or activity of the base editor, a requirement
fulfilled by many common functions such as polymerases, proteases, and binders (Miller et al.,
2020). We have so far constructed and optimized biological circuits to reliably measure the activities
of T7 RNA polymerase (RNAP) and TEV protease. For T7 RNAP, we measured the activities of T7
RNAP variants on the T3 promoter. In this circuit (in Figure 1c), the T7 RNAP is required for the
transcription of the base editor, which is under the control of a T3 promoter. After careful tuning of
the expression levels of T7 RNAP and base editor, we successfully linked the activities of T7 RNAP
variants within a wide dynamic range to mutation rates in the canvas sequence.

By coupling the activity of TEV protease to base editor transcription, we generated a fitness dataset
of 160000 TEV protease variants. In this circuit design (in Figure 1d), T7 RNAP, normally repressed
by its natural inhibitor T7 lysozyme, becomes functional after the inhibitor is cleaved by active TEV
protease variants, thus allowing the transcription of the T7 promoter-driven base editor to proceed.
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Figure 1: DHARMA Workflow and Circuit Design. (a) The general workflow of DHARMA. (b)
Validation of DHARMA using a set of insulated promoters. Inset: Mutation rates correlate with
promoter activity. (c) Circuit design for measuring T7 RNA polymerase activity. T7 RNAP variants
directly drive the expression of the base editor under the control of a T3 promoter (d) Circuit design
for measuring TEV protease activity. Base editor is under the control of a T7 promoter. T7 RNAP,
normally inhibited by T7 lysozyme, becomes functional in the presence of active TEV protease.
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2.2 FLIGHTED

To account for and reduce noise produced by a typical DHARMA experiment, we developed
FLIGHTED (Fitness Landscape Inference Generated by High-Throughput Experimental Data), a
Bayesian inference method to generate reliable fitness landscapes with calibrated errors from noisy
high-throughput experiments. FLIGHTED is applicable to any high-throughput experiment; here
we focus on FLIGHTED-DHARMA, a model trained for DHARMA experiments.

FLIGHTED uses stochastic variational inference (SVI) to model noise generation in a high-
throughput experiment. The probabilistic graphical model is designed using knowledge of the noise
generation process in a given experiment. The guide, or variational distribution, predicts fitness
from the experimental readout using a neural network. SVI has two main advantages: first, model
parameters can be fit once to a calibration dataset and then used to estimate a posterior given any
subsequent experimental measurements; second, the model and guide can have arbitrary complexity.

The probabilistic graphical model for FLIGHTED-DHARMA is in Figure 2a. The guide predicts
both the mean and variance of fitness given a single DHARMA read using a feedforward neural
network. In order to train FLIGHTED, we generate a calibration dataset with ground-truth fitnesses
and train FLIGHTED in a fully unsupervised fashion on the experimental readouts in the calibration
dataset. Ground-truth fitnesses are only used for hyperparameter tuning and to evaluate model accu-
racy. Learning exclusively from experimental readouts is possible because the biological knowledge
used to build the model constrains the space of possible models.

3 RESULTS

3.1 VALIDATION OF DHARMA

For preliminary validation of DHARMA, we cloned 24 previously characterized promoters (Davis
et al., 2011) and linked their activities to base editor activity and fluorescence. Figure 1b shows that
mutation rates obtained by sequencing correlate well with activity. Therefore, biological circuits
that use base editing to record biomolecular fitness can be used for high-throughput profiling of
large libraries. However, the inherent stochasticity in base editing rate contributed to high noise in
the measurements, as shown in Figure 2b; we designed FLIGHTED to account for this noise.

3.2 VALIDATION OF FLIGHTED

We trained and evaluated FLIGHTED-DHARMA on the calibration dataset of T7 activity, compar-
ing to the FACS readout of a subset of 119 variants as ground-truth fitnesses. Error was minimized
in these FACS measurements by using a large number of cells per variant. To eliminate data leak-
age, FLIGHTED-DHARMA was not trained on any DHARMA read from any of the FACS variants.
Figure 2c shows the predicted number of C→T edits with error given a particular fitness.

Fitnesses predicted by FLIGHTED-DHARMA can be related to the FACS readout by an arbitrary
non-decreasing function. We used a validation set to fit this to a piece-wise linear function. The
initial flat section of the piece-wise linear functions corresponds to low-activity variants where back-
ground fluorescence dominates the FACS measurement. We then evaluated model performance on
the remaining test set, as shown in Figure 2d. FLIGHTED-DHARMA was compared to a baseline
model that predicted the mean and variance of C→T mutation count. We found that FLIGHTED-
DHARMA’s MSE was 0.72, an improvement over the baseline MSE of 0.78.

We also evaluated the calibration of our predicted variances. In Figure 2e and f, we selected random
subsets of DHARMA reads and measured the true and predicted error of FLIGHTED-DHARMA.
We then computed z-scores to evaluate model calibration. The mean log likelihood was −3.93,
suggesting that FLIGHTED-DHARMA is slightly overconfident but decently well-calibrated. Base-
line model performance was substantially worse with a mean log likelihood of −8.00 (see Figure
S3). Since our calibration tests included small subsets of DHARMA reads, we can be confident that
FLIGHTED-DHARMA will produce reasonable errors even when given few DHARMA reads. This
tells us whether a given number of DHARMA reads is sufficient for a fitness measurement.

Finally, since FLIGHTED uses a biological model of DHARMA, we can examine the parameters of
that biological model directly. In Figure 2g, we compute the logit of the C→T edit probability at a
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Figure 2: FLIGHTED-DHARMA Model Performance. (a) The probabilistic graphical model for
FLIGHTED-DHARMA. (b) Noise in DHARMA as a function of true fitness. (c) FLIGHTED-
DHARMA’s prediction of number of C→T mutations as a function of fitness. (d) FLIGHTED-
DHARMA improves performance of fitness predictions when compared to a baseline model. (e)
Predicted and true uncertainty from FLIGHTED-DHARMA correlate well for even small numbers
of reads. (f) FLIGHTED-DHARMA is well-calibrated. (g) Canvas nucleotides most likely to be
edited according to FLIGHTED-DHARMA are found at guide RNA binding sites, as expected.

given canvas residue as a function of fitness. The probability of a C→T edit increases and is more
fitness-dependent every 48 residues. These are precisely the locations targeted by the base editor.

3.3 BENCHMARKING ON A DHARMA DATASET

Based on DHARMA and FLIGHTED as described above, we profiled the enzymatic activity of
160,000 variants of TEV protease on its wild type substrate and used FLIGHTED to generate the
largest TEV protease fitness dataset to date. We performed site-saturation mutagenesis on 4 amino
acid residues (T146, D148, H167, and S170) in the TEV protease S1 pocket, which is known to
interact with the P1 residue on the substrate and determine substrate specificity. We found that
99.8% of the library members recorded fitness values on the wild-type substrate that were less than
that of the wild-type enzyme (Figure 3a), as is expected given that most mutations are deleterious.
See Supplementary Section B.3 for more discussion about the impact of read count on measured
fitness.

Our experiments with DHARMA and FLIGHTED enabled us to reconstruct a complete 4-site local
fitness landscape, which represents a new resource for benchmarking ML models for fitness predic-
tion. We consequently benchmarked a number of publicly available ML models, focusing on the
supervised problem of predicting fitness given a small amount of TEV protease fitness data. We
accordingly split our dataset into three benchmarks: training sets of mutation distance ≤ 1 (one-
vs-rest), ≤ 2 (two-vs-rest), and ≤ 3 (three-vs-rest) from the wild type. As shown in Figure 3b,
each model consisted of an embedding generated by a one-hot baseline or by a protein language
model, and a task-specific top model trained on the TEV data that was either a linear layer, an
augmented model (Hsu et al., 2022), a feedforward neural network (FNN), a convolutional neural
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Figure 3: Benchmarking on a TEV Landscape produced by FLIGHTED and DHARMA. (a) Fitness
peaks in reconstructed landscape; consensus sequence of the top 100 most active variants in the
TEV landscape. (b) General model diagram used for benchmarking. (c) Increasing training data size
substantially improves model accuracy on the same test set. (d) The best-performing top models are
FNNs and CNNs, with CNNs being the very best on three-vs-rest. Fine-tuning generally improves
performance. (e) Scaling up protein language models to generate embeddings does not substantially
improve performance.

network (CNN), or a finetuned FNN or CNN. Model performance is measured as weighted MSE as
a proxy for log likelihood.

We first examined the effect of training data size, controlling the test set to include only quadruple
mutants in Figure 3c. As training data increases from single to double to triple mutants, model error
decreases exponentially. This dramatic improvement in model accuracy indicates an increasing
ability to generalize and highlights the importance of high-throughput experimental methods like
DHARMA: with more data, our models become substantially more powerful.

We then examined what model architecture choices mattered the most for determining performance.
We found in Figure 3d that the top model was the most impactful, with all models equally unable to
learn from single mutants, FNNs and CNNs performing similarly on two-vs-rest, and CNNs outper-
forming FNNs on three-vs-rest. Fine-tuning generally results in an improvement in performance,
especially for FNNs on small datasets. The choice of protein language model was substantially less
important, as can be seen in the full performance table presented in the appendix. More surprisingly,
increasing the number of parameters in the protein language model did not have a large impact on
performance for most models on our dataset. In Figure 3e, we ran published variants of CARP
and ESM-2 with smaller numbers of parameters (Yang et al., 2022; Lin et al., 2022). We found
no substantial or consistent performance improvement, across models ranging from millions to bil-
lions of parameters. Our results suggest that scaling up protein language models will not improve
performance in predicting protease activity given current data limitations.

4 DISCUSSION

We have demonstrated that DHARMA can be used as a high-throughput measurement of protein
fitness for a variety of applications, including T7 RNAP and TEV protease. DHARMA is in princi-
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ple applicable to any biomolecular activity that can be linked to transcription, which also includes
protein-protein binding and solubility (Miller et al., 2020). FLIGHTED-DHARMA enables the use
of DHARMA as a data generation method for ML; we can provide calibrated error estimates that
inform practitioners when they have enough DHARMA reads to make a reliable fitness estimate.
DHARMA and FLIGHTED can be used to cheaply generate large datasets of up to 106 variants.

Our benchmarking results support two important conclusions about the development of future pro-
tein fitness ML models. First, data size is currently the most important factor, underscoring the
importance of gathering large, high-quality datasets through methods such as DHARMA. Second,
the top model architecture matters much more than the embedding, so practitioners should focus on
development of top models and less on development of larger protein language models.
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A DETAILED METHODS

A.1 DHARMA CIRCUIT DESIGN AND PRELIMINARY VALIDATION

Molecular recording allows direct mapping of biomolecular activities to sequence identity by en-
coding activity information as mutation rate and patterns of the recording medium. In this method,
the activity of interest is coupled to the expression of a base editor, which introduces mutations on
a canvas sequence. The number of mutations accumulated on the canvas sequence is then used to
infer the activity of the enzyme of interest. To test this concept and begin calibrating our method,
we initially designed plasmid constructs consisting of a base editor expressed under the control of a
constitutive promoter, a canvas with multiple target sites for activity recording, and a GFP or luxAB
expressed under the control of the same promoter to serve as a signal reference for relative activity
quantification. In the presence of sgRNA, such constructs simultaneously measure the promoter
strength using both sequencing and either fluorescence or luminescence intensity.

A.2 T7 POLYMERASE DATASET GENERATION

We engineered a biological circuit to associate the enzymatic characteristics of T7 RNA polymerase
variants with mutations accumulating on a designated DNA sequence, known as the canvas. T7
RNA polymerase is an enzyme responsible for transcribing DNA into RNA, and we constructed a
library of variants with different recognition and activity profiles.

The transcription of the base editor, an enzyme that can induce mutations, is controlled by a T3
promoter. This promoter is selectively recognized by a subset of the T7 RNA polymerase variants.
To moderate the expression levels of the T7 polymerase library and prevent rapid saturation of the
canvas—which would compromise the collection of meaningful activity data—we used both a weak
constitutive promoter and a weak ribosomal binding site.

We constructed a library of 8,000 T7 RNAP variants using a commercial libraries of ssDNAs with
the objective of site-saturation mutagenesis of N748, R756 and Q758, which were shown to be key
residues for T7 RNAP activity on T3 promoters (Hussey & McMillen, 2018). We incorporated this
biological circuit into cells already containing plasmids that express the single guide RNA (sgRNA),
through a technique called electroporation. The sgRNA serves to guide the base editor to the specific
canvas sequence where mutations are to be introduced. After electroporation, the cells were grown
continuously in a bioreactor. Following this growth period, the region of the T7 polymerase library
and the canvas with mutations was selectively amplified as contiguous fragments of DNA. The
amplified material was then subjected to long-read Nanopore sequencing for detailed analysis of the
mutations and activities of different T7 RNA polymerase variants.

8

https://www.nature.com/articles/nature17995
https://doi.org/10.1021/cr960065d
https://doi.org/10.1021/cr960065d
https://www.biorxiv.org/content/10.1101/2022.05.19.492714v1.full.pdf
https://www.biorxiv.org/content/10.1101/2022.05.19.492714v1.full.pdf


Published at the GEM workshop, ICLR 2024

To facilitate data analysis, we implemented a data processing pipeline. Its core function is to identify,
tabulate, and assign mutations present in each sequencing read to the corresponding library member.
This assignment is based on internal barcodes represented as degenerate codons in the T7 RNA
polymerase sequence. The pipeline accepts raw sequence reads in standard genomic formats and
performs length-based filtering and optional sequence trimming. An algorithm incorporating local
sequence alignment is used for barcode recognition and classification during the demultiplexing
of reads. Additionally, each read is aligned to the reference sequence of the canvas to identify the
location of each C→T mutation, which is then stored in a matrix for downstream ML model training.

A.3 THE FLIGHTED-DHARMA MODEL

All models were implemented using the probabilistic programming package Pyro (Bingham et al.,
2019) alongside PyTorch (Paszke et al., 2019). Use of Pyro makes model development substantially
easier due to rapid iteration of model architectures.

The model is an implementation of the probabilistic graphical model shown in Figure 2a in Pyro.
The sequence-to-fitness function is simply a dictionary lookup, with the fitness of each variant i
defined as a parameter to be optimized. Fitness means mi and variances σi are predicted by the
sequence-to-fitness function/dictionary, and the variance is transformed by a softplus function F
to ensure it is positive. The fitness of each variant is then sampled from a normal distribution
N (mi, F (σi)) and fitnesses are clamped at −2.

For each position i in the canvas, we set a learnable parameter ri for a baseline rate of generic
mutations (which accounts for most sequencing error from the long-read sequencing). For positions
that are cytosines, we set a learnable parameter mi for the fitness-dependent slope and bi for the
intercept. Then for all cytosines, given a fitness f of the variant, the logit of the C→T edit is set to
mi + bif and the logit of any other mutation or deletion is ri. For non-cytosine residues, we simply
have a logit of any mutation set to ri. We sample from the one-hot categorical distribution for each
residue independently to get the output DHARMA read, i.e. from Cat((1,mi+bif, ri)) for cytosine
residues and Cat((1,−∞, ri)) for non-cytosine residues.

The guide predicts fitness (with variance) from a single DHARMA read. We used a feedforward net-
work with 2 layers with a hidden dimension of 10 and a ReLU activation between the two layers. To
simplify the learning problem, only cytosine residues were fed into the guide and each position was
featurized as either a C→T edit or a non-C→T edit (including both no mutation or other mutations
or deletions). Variances were transformed under the softplus function. Fitnesses of variants with
multiple reads can be predicted by multiplying the appropriate predicted Gaussians of the individual
read.

The ELBO loss used 1 ELBO particle. The landscape model (sequence-to-fitness function) learning
rate was 10−2, the learning rate elsewhere was 10−4, and the batch size was 2. We used a plateau
learning rate scheduler with a patience of 1 epoch and a factor of 0.1, stepped based on the training
loss (not validation loss). The model was trained for 25 epochs.

To minimize data leakage, all reads corresponding to sequences in the fluorescence dataset were
eliminated from training. 10% of the remaining reads were held out as a validation set to pick the
optimal epoch for the model.

Many of the hyperparameters were carefully tuned using a grid search. For tuning, we wanted to
use the MSE with the FACS data, so we needed to fit the predicted fitnesses to the FACS data. We
did not use Spearman correlation so we could measure true error (as opposed to rank-order error)
and so we could account for situations where the function relating the FACS data to predicted fitness
was not increasing (as happened here). For this, we split out a 50% of the FACS data to use as a
fitness regression/validation set and evaluated the mean of the logarithm of all FACS samples. Each
model was given the option of fitting using either a piecewise linear function or a linear regression.
The linear regression was fit normally. The piecewise linear function corresponded to the functional
form

f(x) =

{
a x ≤ xc

m(x− xc) + a x > xc.

This ensured that for low fitnesses, the predicted fluorescence was constant, as would be expected for
background fluorescence. We then used orthogonal distance regression, as implemented in scipy,
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to fit the piecewise linear function accounting for errors in both predicted fitness and the FACS data.
(Jones et al., 2001) Between the linear regression and piecewise linear fit, the function with the lower
MSE on the validation data was selected.

This validation set MSE was also used for selecting hyperparameters, leaving the remaining 50%
of the FACS data as a test set used solely for evaluating model performance as shown in Figure
2d. Hyperparameters tuned included the batch size, learning rate, learning rate scheduler step, and
number of layers in the guide model. We also evaluated the optimal number of hours to grow the cells
in the bioreactor, as an example of an experimental parameter than can be tuned using FLIGHTED.

A.4 MODEL EVALUATION

Model performance was measured with the 50% held-out test set of the FACS data, as described
above, using the fitnesses predicted by the guide model in FLIGHTED-DHARMA and the fitness-
to-fluorescence function fit on the validation set. The results of that performance evaluation are
shown in Figure 2c.

We then evaluated calibration of the model. To increase the number of data points (since we only
had 192 variants measured through FACS), we subsampled subsets of reads for each variant. Specif-
ically, for all test set variants, we sampled 10 subsets each of sizes ranging from 1 to the maximum
possible number of reads. We then predicted the fitness of each variant using the given subset of
reads with the guide model. We computed the true fitness using the FACS data, eliminating any
data points where the true fitness was below the baseline of the piecewise linear function. We then
computed the z-score by comparing this predicted and true fitness. This generates the plots shown
in Figure 2d.

A.5 TEV DATASET GENERATION

High-throughput quantification of TEV protease fitness using DHARMA was made possible by a
biological circuit that couples the activity of TEV protease to base editor transcription driven by a T7
promoter. As part of the circuit, the T7 RNA polymerase, normally repressed by its natural inhibitor
T7 lysozyme, becomes functional after the inhibitor is disabled by active TEV protease variants, thus
allowing the transcription of base editor to proceed, which in turn introduce mutations to the canvas.
We engineered a variant of T7 lysozyme in which the TEV protease substrate sequence is inserted
in the middle of the coding sequence. This modified T7 lysozyme, expressed on a separate plasmid
under the control of a medium constitutive promoter, together with the T7 lysozyme tethered to
the T7 RNAP, provides an enhanced dynamic range of base editing coupled to the activity of TEV
protease variants.

The library of TEV protease used in this study was obtained by performing site-saturation mutagen-
esis on 4 amino acid residues (T146, D148, H167, and S170) in the TEV protease S1 pocket, which
is known to interact with P1 residue on the substrate and determine substrate specificity. Briefly,
NNK degenerate primers was used to introduce mutations at the targeted residues in a PCR reaction.
The pool of amplicons was then cloned into a Golden Gate vector comprising the rest of the TEV
protease expression cassette, the sgRNA and the canvas sequence. Commercial electrocompetent
cells were then transformed with the cloning reaction, selected with appropriate antibiotics on agar
plate overnight and subjected to DNA extraction. The resulting library was then sequenced to assess
for bias and coverage. After quality control, the TEV protease library was transformed into electro-
competent cells that already express the base editor, the T7 RNAP and the engineered T7 lysozyme.
The transformants were then selected with appropriate animate and grown continuously in a biore-
actor. Multiple time points were taken during this growth period to find the optimal incubation time.
The region of the plasmid containing TEV protease library and the canvas sequence was selectively
amplified as contiguous fragments of DNA. To minimize the amplicon size, nucleotides not of inter-
est were removed via self-circularization and re-amplification. The final amplified material was then
subjected to long-read nanopore sequencing to simultaneously retrieve both variant identity and the
mutations on the canvas sequence for each individual library member. Sequencing data processing
and analysis was performed as described in the T7 dataset generation section (A.2).

10
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A.6 BENCHMARKING MODELS ON THE TEV DATASET

The TEV landscape was generated by processing the raw TEV data with FLIGHTED-DHARMA as
trained on the T7 dataset. We split the dataset by mutation distance from the wild-type to create a
one-vs-rest, two-vs-rest, and three-vs-rest data split. We then split out a random 10% of the training
data to use as validation data. Models trained on the TEV dataset are trained with a weighted mean-
squared-error (MSE) loss, weighted by the inverse variance. Weighted MSE is used to account for
the variance, assuming that the likelihood of the data is the same as that of a normal distribution
with the provided variance. Performance results are weighted MSEs for datasets with corrections.
In Figure 3c, we use a separate test set consisting of only quadruple mutants (i.e. the test set in the
three-vs-rest split) for all models.

Our models are inspired by but go beyond the models proposed in FLIP (Fitness Landscape Infer-
ence for Proteins) (Dallago et al., 2022). The linear regression model (labeled Linear) takes one-hot
embeddings of the full sequence and runs them through 1 linear layer. It uses an Adam optimizer
with a learning rate of 10−2, a batch size of 256, and a weight decay of 1. The CNN model (la-
beled CNN) takes one-hot embeddings of the full sequence and has 1 convolutional layer with 1024
channels and filter size 5, and same padding. It then has a 1D batch normalization layer and a ReLU
activation, followed by an embedding neural network consisting of a linear layer to 2048 dimensions
and a ReLU activation. Then there is a max-pooling layer over residues, a dropout layer with prob-
ability 0.2, and a final linear layer for the output. The CNN is trained with a batch size of 256 and
an Adam optimizer with a learning rate of 10−3 and weight decay of 0 for the convolutional layer,
a learning rate of 5 ∗ 10−5 and weight decay of 0.05 for the embedding layer, and a learning rate of
5 ∗ 10−6 and weight decay of 0.05 for the output layer. Unlike the original FLIP paper, we did not
use early stopping and trained all models for a full 500 epochs, using validation set performance to
select the optimal model.

The models labeled TAPE, ESM-1b, ESM-1v, ESM-2, ProtT5, and CARP all use mean embeddings
across the entire sequence that are fed into a feedforward neural network to compute the output
(Rives et al., 2021; Meier et al., 2021; Rao et al., 2019; Elnaggar et al., 2021; Yang et al., 2022).
The output feedforward neural network has 2 layers with a hidden dimension equal to the embedding
dimension of the protein language model and ReLU activation. All models are trained with an Adam
optimizer with batch size 256 and learning rate 10−3. The TAPE model used was the transformer,
the ESM-1v model used was version 1, the largest ESM-2 model used was the 3 billion parameter
version (due to memory issues with the larger model), the ProtT5 model was the suggested ProtT5-
XL-UniRef50 model, and the CARP model was the largest 640 million parameter version. For
Figure 3e, we ran smaller versions of CARP and the ESM-2 models, as specified by their parameter
number, with the same architectures as described above (Yang et al., 2022; Lin et al., 2022).

The models labeled TAPE (CNN), ESM-1b (CNN), ESM-1v (CNN), ESM-2 (CNN), ProtT5 (CNN),
and CARP (CNN) use residue-level embeddings that are fed into a CNN, similar to the baseline CNN
described above. The intermediate dimension output by the embedding neural network is set to be
twice the dimension of the output of the protein language model. All other parameters remained the
same.

The models labeled ESM-1v (Augmented), ESM-2 (Augmented), CARP (Augmented), and EVMu-
tation (Augmented) used the zero-shot variant effect prediction from the model in question, com-
bined with a one-hot encoding of the entire sequence that was fed into a linear layer (Hopf et al.,
2017; Lin et al., 2022; Meier et al., 2021; Yang et al., 2022). These were trained with the same
parameters as the baseline linear model. The ESM models used the masked marginal approach pro-
posed in Meier et al. (2021) to compute zero-shot variant effect prediction. EVMutation used the
default parameters (Hopf et al., 2017).

Fine-tuned models are trained as described above, but we also fine-tuned the underlying ESM model
that generated the embeddings with a learning rate of 10−6. Due to compute and cost limitations,
fine-tuning was only done for the ESM models with 8 and 35 million parameters.

We observed high run-to-run variance in the performance of many models. As a result, all models
were run in triplicate and we have reported both the mean and standard deviation of model perfor-
mance.
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B SUPPLEMENTARY RESULTS

B.1 FLIGHTED-DHARMA MODEL PERFORMANCE
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Figure S1: Accuracy on Validation set for (left) Baseline and (right) FLIGHTED-DHARMA. This
shows the fit between the fitnesses predicted by each model and the log FACS mean, as done by
either a piecewise linear function or a linear function.

To better contextualize the fitness-to-FACS fit, we show the fits on the validation set for both
FLIGHTED-DHARMA and the baseline model in Figure S1. Generally, FLIGHTED-DHARMA’s
predicted fitnesses were fit using a piecewise linear function, while depending on the timepoint, the
baseline model used either a linear or piecewise linear function.

0 2 4
Predicted Error

0

10

20

30

T
ru

e
E

rr
or

Baseline

0.0 0.2 0.4 0.6
Predicted Error

0.0

0.5

1.0

1.5

T
ru

e
E

rr
or

FLIGHTED-DHARMA

−10 0
Z Score

0

5

10

15

−10 −5 0
Z Score

0.0

2.5

5.0

7.5

Figure S2: Calibration of FLIGHTED-DHARMA as Compared to Baseline. The baseline model’s
true errors are not related to the predicted error, while FLIGHTED-DHARMA has higher true error
when predicted error is higher. As such, FLIGHTED-DHARMA is considerably better calibrated
with many fewer z-score outliers.

We next examine the calibration of FLIGHTED-DHARMA as compared to the C→T baseline
model. First, we directly examine calibration on the test data, using all reads available for each
datapoint in the test set. In Figure S3, we see the true and predicted errors from FLIGHTED-
DHARMA and the baseline model on the test set data, as well as the histogram of z scores for
both models. The baseline model predicted errors are largely unrelated to true error, while the
FLIGHTED-DHARMA model’s predicted errors increase as true error increases. The log likelihood
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of the baseline model on this dataset was −19.8 while the log likelihood of FLIGHTED-DHARMA
was −10.0, so FLIGHTED-DHARMA shows considerable improvement.
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Figure S3: Calibration of Baseline C→T Model. The baseline model’s calibration is considerably
worse compared to FLIGHTED-DHARMA’s in Figure 2d.

This is a relatively small dataset since we did not subsample subsets of reads as we did in Figure 2d.
The subsampling process gives us a better understanding of how FLIGHTED-DHARMA behaves
with very small subsets of reads. In Figure S3, we have the calibration of the baseline model as
compared with that of FLIGHTED-DHARMA in Figure 2d. The calibration is considerably worse,
with the z-score distribution looking very non-normal and a much lower log likelihood of −8.00 as
compared to FLIGHTED-DHARMA’s log likelihood at −3.93.

B.2 THE TEV DATASET

Some histograms of basic properties of the TEV dataset may be seen in Figures S4, S5, and S6.
Note that the distribution of read counts is very skewed, with some variants being read a very small
number of times. We believe this is likely due to toxicity of the uncleaved T7 lysozyme present in
the cell. This substantially changes the measured variance in Figure S6; fortunately, FLIGHTED is
designed to handle this issue.
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Figure S4: Distribution of fitnesses in the TEV dataset.

In Figures S7 and S8, we show the distribution of fitnesses in the training and test sets, respectively,
for each split.

B.3 BENCHMARKING ON THE TEV DATASET

The complete performance of all models may be seen in Figure S9. Bolded models performed the
best on a given task. We also ran a t-test comparing every model to the best model, and highlighted
models were not significantly different from the best model with a p-value < 0.05, i.e. we cannot
conclude that the best performing model on a given task outperformed any of the highlighted models.

We now examine model predictions for a single high-performing model (the ESM-1b CNN on three-
vs-rest) in Figure S10; here, predicted fitness refers to the fitness predicted by the ESM-1b model,
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Figure S5: Distribution of read counts in the TEV dataset.
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Figure S6: Fitness mean, variances, and read count in the TEV dataset.

0.0 0.2 0.4
Fitness Mean

0

5

10

15

N
um

b
er

of
V

ar
ia

nt
s

One vs Rest

0.0 0.5
Fitness Mean

0

50

100

150

200

N
um

b
er

of
V

ar
ia

nt
s

Two vs Rest

−1 0 1
Fitness Mean

0

1000

2000

3000

4000

5000

6000

N
um

b
er

of
V

ar
ia

nt
s

Three vs Rest

Figure S7: Distribution of fitnesses in the training sets.

and true fitness refers to the FLIGHTED-measured fitness with the error (variance) shown on the col-
orbar. The model has reasonably high accuracy on predictions with very low variance (< 0.01) and
predicts most other data points with high variance to be inactive, suggesting the model has learned
to filter by variance when making predictions. Figure S6 suggests that the primary determinant of
variance is read count, so this implies the model has learned read count on the test set, potentially
surprising.

We investigated this result further to ensure that there was no accidental data leakage at any point.
There are two effects we identified that allow the model to learn read count on the test set. First, the
T7 lysozyme is slightly toxic to the cell and when not cleaved (i.e. when the protease is inactive),
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Figure S8: Distribution of fitnesses in the test sets.

results in a lower read count. In Figure S11, we compare the read count in libraries with and without
the lysozyme and see that active variants have higher read count in the library with the lysozyme.
Since the models are trained to learn fitness, they can also implicitly learn about this effect.

Second, the initial (no-lysozyme) library construction was generated by a potentially biased synthe-
sis process, so the initial read count is learnable, i.e. similar variants have similar read counts. We
tested this by training a model (the same ESM-1b CNN) on the initial read counts of a training set
consisting of triple mutants and predicting read counts on the quadruple mutants, as shown in Figure
S12. Since read count is learnable, we conclude that models are learning a combination of the initial
read count from the biased library and TEV protease fitness when making predictions. This dataset
and these models are still generally useful for predicting TEV protease activity and benchmarking
ML models, but any active variant that had low read count in the initial library would likely be a false
negative on any model trained on this dataset. To confirm that the models did learn TEV protease
activity, we verified that the models predicted low activity for variants with high read count and low
activity, as expected. In the future, we aim to reduce library bias to generate higher-quality TEV
protease datasets and more accurate models to mitigate this issue.
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Figure S9: Summary Table of TEV Model Performance. Bolded models are the best-performing
on a given dataset and highlighted models are statistically not significant from the best model by a
t-test with a p-value < 0.05.
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Figure S10: Sample Model Predictions on TEV Dataset, produced by ESM-1b CNN on three-vs-
rest. Left includes all data points and right includes data points filtered with error < 0.05 to highlight
most accurate model predictions.

Figure S11: Read Count With and Without T7 Lysozyme. Active variants have higher read counts
with the T7 lysozyme.

Figure S12: Control Model Trained on No-Lysozyme Read Count, showing that read count is learn-
able.
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