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Abstract

Solving real-life sequential decision making problems under partial observability1

involves an exploration-exploitation problem. An agent needs to gather information2

about the state of the world for making rewarding decisions. However, in real-3

life, acquiring information is often highly costly, e.g., in the medical domain,4

information acquisition might correspond to performing a medical test on a patient.5

This poses a significant challenge for the agent to perform optimally for the task6

while reducing the cost for information acquisition. In this paper, we propose7

a model-based reinforcement learning framework that learns an active feature8

acquisition policy to solve the exploration-exploitation problem during its execution.9

Key to the success is a novel sequential variational auto-encoder. We demonstrate10

the efficacy of our proposed framework in a control domain as well as using a11

medical simulator, outperforming natural baselines and resulting in policies with12

greater cost efficiency.13

1 Introduction14

Recently, machine learning models for automated sequential decision making have shown remarkable15

success across many application areas, such as visual recognition [2, 16], robotics control [3, 34],16

medical diagnosis [13, 22] and computer games [19, 25]. These models are typically trained on large17

amounts of data with a fixed set of available features, and when these models are deployed, they are18

assumed to operate on data with the same features. However, in many real-world applications, the19

fundamental assumption that the same features are always readily available during deployment does20

not hold. For instance, consider a medical support system for monitoring and treating patients during21

their stay at hospital. To provide the best possible treatment, the system might need to perform several22

measurements of the patient over time. However, some of these measurements could be costly or23

pose a health risk. That is, at the deployment, the system should function with minimal and carefully24

selected features while during training more features might have been available.25

In this paper, we consider the challenging problem of learning effective sequential decision making26

policies when the cost of feature acquisition cannot be neglected. To be successful, we need to learn27

policies which acquire the information required for making the task related decisions in the most28

cost efficient way. For simplicity, we can think of the policies as being constituted of an acquisition29

policy, which selects the features to be observed and a task policy, which selects actions to change the30

state of the system towards some goal. As a consequence, these two policies are typically intimately31

connected, i.e., the acquisition policy must collect features such that the task policy can take good32

actions, and the task policy needs to enable the acquisition policy to collect informative features33

by transiting to appropriate states. As such, our work tackles a partially observable policy learning34

problem with the following two distinguishing properties compared to the most commonly studied35

problems. First, by incorporating active feature acquisition, the training of the task policy is based36

upon subsets of features only, i.e., there are missing features, where the missingness is controlled by37

the acquisition policy. Thus, the resulting POMDP is different from typically considered POMDPs in38
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RL literature [1] where the partial observability stems from a fixed and action-independent observation39

model. Also, the state-transitions in conventional POMDPs are often only determined by the choice40

of the task action, whereas in our setting the state-transition is affected by both the task action and41

the feature acquisition choice. Second, the learning of the acquisition policy introduces an additional42

dimension to the exploration-exploitation problem: each execution of the acquisition and task policy43

needs to solve an exploration-exploitation problem.44

Most reinforcement learning research has not taken active feature acquisition into consideration.45

In this work, we propose a unified approach that jointly learns a policy for optimizing the task46

reward while performing active feature acquisition. Although some of the prior works exploited47

the use of reinforcement learning for sequential feature acquisition tasks [24, 32], they considered48

variable-wise information acquisition in a static setting only, corresponding to feature selection for49

non-time-dependent prediction tasks. However, our considered setting is truly time-dependent and50

feature acquisitions need to be made at each time step while the state of the system evolves.51

We approach this problem and present a framework which tackles the problem from a representation52

learning perspective. In particular, we make the following contributions: 1. We propose a general53

solution for learning reinforcement learning policies with active feature acquisition. Our proposed54

approach simultaneously learns reinforcement learning policies for reward optimization and active55

feature acquisition, approximately solving a challenging combinatorial problem. 2. We present a56

novel sequential representation learning approach to account for the encoding of the partially observed57

states based on sequential variational autoencoders (VAE). 3. We present experiment results on an58

image-based control task as well as a medical simulator fitted from real-life data, where our method59

shows clear improvements over natural baselines.60

2 Methodology61

2.1 Problem Setting62

In this section, we formalize our problem setting. To this end, we define the active feature acquisition63

POMDP (AFA-POMDP), a rich class of discrete-time stochastic control processes.64

Definition 1 (AFA-POMDP). The active feature acquisition POMDP is a tuple M =65

〈S,A, T ,O,R, C, γ〉, where S is the state space and A = Ac × Af is a joint action space of66

feature acquisition actionsAf and control actionsAc. The transition kernel T : S ×Ac×Af → PS67

maps any joint action a = (ac,af ) in state s ∈ S to a distribution PS over next states. In each state68

s, the agent observes the features xp which are a subset of the features x = (xp,xu) ∼ O(s) selected69

by the agent taking feature acquisition action af , where O(s) is a distribution over possible feature70

observation for state s and xu are features not observed by the agent. When taking a joint action,71

the agent obtains rewards according toR : S ×Ac → R and pays a cost of C : S ×Af → R≥0 for72

feature acquisition. Rewards and costs are discounted by the discount factor γ ∈ [0, 1).73

Simplifying assumptions For simplicity, we assume that x consists of a fixed number of features74

Nf for all states, that Af = 2[Nf ] is the powerset of all the Nf features, and that xp(af ) consists of75

all the features in x indicated by the subset af ∈ Af . Furthermore, we assume in the following that76

transitions depend only on the control action, i.e., T (s,ac,af ′
) = T (s,ac,af ) for all af

′
,af ∈ Af .77

This assumption can be a reasonable approximation for instance for medical settings in which tests78

are non-invasive. We furthermore assume that acquiring each feature has the same cost, denoted as c,79

i.e., C(af , s) = c |af |, but our approach can be easily adapted to feature-dependent costs.80

Objective We aim to learn a policy which trades off reward maximiziation and the cost for feature81

acquisition by jointly optimizing a task policy πc and a feature acquisition policy πf :82

max
πf ,πc

E
[ ∞∑
t=0

γt
(
R(st,act)−

|Af |∑
i

c · I (af(i)t )
)]
, (1)

where the expectation is over the randomness of the stochastic process and the policies, st is the83

state of the system at time t, af(i)t denotes the i-th feature acquisition action at time t, and I (·) is the84

indicator function whose value equals to 1 if that feature has been acquired.85

Remarks Any AFA-POMDP corresponds to a POMDP in which the reward is defined appropriately86

fromR and C and observations depend on the taken joint action. Through enabling to query subsets87

of observations, the feature acquisition action space Af is exponential in the number of features.88

2



2.2 Sequential Representation Learning with Partial Observations89

We introduce a sequential representation learning approach to facilitate the task of policy training with90

active feature acquisition. Let x1:T = x≤T = (x1, ...,xT ) and a1:T = a≤T = (a1, ...,aT ) denote91

a sequence of observations and actions, respectively. We aim to train a sequential representation92

learning model for the full sequential observations x1:T , i.e., for both the observed part xp1:T and93

the unobserved part xu1:T . Given partial observations, we can perform inference using the observed94

features xp1:T only. Our approach learns to impute the unobserved features by extracting the relevant95

information therefor from the observation and action history and the learned model dynamics.96
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Figure 1: Our proposed partially observable se-
quential VAE. Shaded variables are observed.

Our key assumption is that learning to impute97

the unobserved features leads to better repre-98

sentations which can be leveraged by the task99

policy and that, because of partial observability,100

sequential representation learning is better as101

non-sequential learning. Furthermore, unlike102

many other sequential representation learning103

approaches for RL that only reason over the ob-104

servation sequence xp1:T , we take into account105

both xp1:T and the action sequence a1:T for in-106

ference. The intuition is that since xp1:T by itself107

consists of limited information over the environment’s underlying state, incorporating the action se-108

quence provides additional information for inferring a belief state. To summarize, our approach learns109

to encode xp1:T and a1:T into a latent representation for predicting xp1:T and xu1:T . The architecture of110

our proposed sequential representation learning model is shown in Figure 1.111

Observation Decoder Let z1:T = (z1, ..., zT ) denote a sequence of latent states. We consider the112

probabilistic model pθ(x
p
1:T ,x

u
1:T , z1:T ) =

∏T
t=1 p(x

p
t ,x

u
t |zt) p(zt). For simplicity of notation, we113

assume z0 = 0. We impose a simple prior distribution over z, i.e., a standard Gaussian prior, instead114

of incorporating some learned prior distribution over the latent space of z, such as an autoregressive115

prior distribution like p(zt|zt−1,xp1:t,a0:t−1). The reason is that using a static prior distribution116

results in latent representation zt that is stronger regularized and more normalized than using a117

learned prior distribution which is stochastically changing over time. This is crucial for deriving118

stable policy training performance. At time t, the generation of data xpt and xut depends on the119

corresponding latent variable zt. Given zt, the observed variables are conditionally independent of120

the unobserved ones. Therefore, p(xpt , x
u
t |zt) = p(xpt |zt) p(xut |zt).121

Belief Inference Model During policy training, we only assume access to partially observed data.122

This requires an inference model which takes in the past observation and action sequences to infer123

the latent states z. Specifically, we present a structured inference network qφ as shown in Figure 1:124

qφ(z1:T |x1:T ,a<T ) =
∏T
t=1 qφ(zt|x

p
≤t,a<t), where qφ(·) is a function that aggregates the filtering125

posteriors of the history of observation and action sequences. Following the common practice in126

existing sequential VAE literature, we adopt a forward RNN model as the backbone for the filtering127

function qφ(·) [6]. Specifically, at step t, the RNN processes the encoded partial observation xpt ,128

action at−1 and its past hidden state ht−1 to update its hidden state ht. Then the latent distribution129

zt is inferred from ht. The belief state bt is defined as the mean of the distribution zt. Because of the130

supervised learning task, the belief state can provide abundant information for the missing features.131

Learning We proposed to pre-train both the generative and inference models offline before learning132

the RL policies. In this case, we assume the access to the unobserved features, so that we can133

construct a supervised learning task to learn to impute unobserved features. Note that the pretraining134

consumes only restricted amounts of data (i.e., 2000 for our case) so that in practice the cost of135

collecting such data for developing our method is generally acceptable. Concretely, the pre-training136

task updates the parameters θ, φ by maximizing the following variational lower-bound [10, 11, 33]:137

log p(xp1:T ,x
u
1:T ) ≥ Eqφ

[∑
t

log pθ(x
p
t |zt) + log pθ(xut |zt)− KL

(
qφ(zt|xp≤t,a<t) || p(zt)

)]
(2)

By incorporating the term log pθ(xut |zt), training of the sequential VAE generalizes from an unsu-138

pervised task to a supervised task that learns the model dynamics from past observed transitions139

and imputes the missing features. Given the pre-trained representation learning model, the policy140

is trained in a multi-stage reinforcement learning setting, where the representation provided by141

sequential VAE is taken as input to the policy. Pseudocode for our algorithm is in the Appendix.142
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Figure 2: Performance curves in terms of discharge rate, mortality rate and reward (w/o cost) for
the compared approaches on Sepsis. The curves are derived under cost value of 0.01. Our method
converges to treatment policy with substantially better reward compared to the baselines.

3 Experiments143

We evaluate our proposed approach in two experimental domains: a sepsis medical simulator fitted144

from real-world data [21] (further experiments are provided in the appendix); a bouncing ball+ control145

task with high-dimensional image pixels as input, adapted from [4] (provided in the Appendix).146

Baselines For comparison, we mainly consider variants of the strong VAE baseline beta-VAE [7],147

which works on non-time-dependent data instances. For representing the missing features, we adopt148

the zero-imputing method, proposed in [20] over the unobserved features. Thus, we denote the VAE149

baseline as NonSeq-ZI. We train the VAE with either the full loss over the entire features, or the partial150

loss which only applies to the observed features [15]. We also consider an end-to-end baseline which151

does not employ pre-trained representation learning model. We denoted our proposed sequential152

VAE model for POMDPs as Seq-PO-VAE. All the VAE-based approaches adopt an identical policy153

architecture. Detailed information on the model architecture is presented in Appendix.154

Data Collection Pre-training the VAE models requires data that enables to incorporate abundant155

dynamics information. Therefore, we collect a small scale dataset of 2000 trajectories, where half156

of the data is collected from a random policy and the other half from a policy which better captures157

the states that would be encountered by a learned model (e.g., by a data collection policy trained158

end-to-end or using human generated trajectories). Details are provided in the Appendix.159

3.1 Sepsis Medical Simulator160

Task Settings We adopt a medical simulator for treating sepsis in ICU patients [21]. The task is161

to learn to apply three treatments (antibiotic, ventilation, vasopressors). The state space consists162

of 8 features: 3 of them indicate the current treatment state; 4 of them are the measurement states163

(heart rate, sysBP rate, percoxyg state, glucose level). The 8th feature specifies the patent’s diabetes164

condition. The feature acquisition policy learns to actively select the measurement features. Each165

episode runs for up to 30 steps. The patient will be discharged if his/her measurement states all return166

to normal values. An episode terminates upon mortality or discharge, with a reward −1.0 or 1.0.167

Policy Training Results We show the policy training results for Sepsis in Figure 2. Overall, our168

proposed method results in substantially better task reward compared to the baselines. Note that the169

performance of discharge rate for our method increases significantly faster than baseline approaches,170

which shows that the model can quickly learn to apply appropriate treatment actions and thus be171

trained in a much more sample efficient way. Moreover, our method also converges to substantially172

better values than the baselines. Upon convergence, it outperforms the best non-sequential VAE173

baseline with a gap of > 5% for discharge rate. For all the evaluation metrics, we notice that174

VAE-based representation learning models outperform the end-to-end baseline by significant margins.175

This indicates that efficient representation learning is crucial to determine the effect of agent’s policy176

training practice. The result also reveals that learning to impute missing features contributes greatly177

to improve the policy training performance.178

4 Conclusion179

We presented the novel AFA-POMDP framework where the task policy and the active feature180

acquisition policy are learned under a unified formalism. Our method incorporates a model-based181

representation learning attempt, where a sequential VAE model is trained to impute missing features182

via learning model dynamics and thus offer high quality representations to facilitate the joint policy183

training under partial observability. Our proposed model, by efficiently synthesizing the sequential184

information and imputing missing features, can significantly outperform conventional representation185

learning baselines and leads to policy training with significantly better sample efficiency.186
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Appendix281

This supplementary material is organized as follows. First, we present further related work and the282

pseudocode for our algorithm. Then we present additional experiment details on the BouncingBall+283

task and the Sepsis task. For each task, we present the task specifications, implementation details and284

additional evaluation results. Furthermore, we present a case study that investigates the efficiency285

of our proposed sequential representation model when trained with data under different levels of286

observability.287

A Related Work288

Our work jointly considers active learning and reinforcement learning, to accomplish the policy289

training task while acquiring fewer observed features as possible. We thus review related methods for290

active feature acquisition and representation learning for POMDP, respectively.291

Active Feature Acquisition Our work draws motivation from the existing instance-wise active292

feature selection approaches. One category of the instance-wise feature selection methods consider293

feature acquisition as a one time effort to select a subset of features at each time. One typical example294

is the conventional linear model that poses sparsity inducing prior distribution to the model [27]. There295

is an alternative category that models feature acquisition as a Bayesian experiment design [5, 14, 15].296

However, the sequential decision making is for variable-wise feature acquisition and the problems are297

still non time-series tasks in nature. There are also a number of approaches that adopt reinforcement298

learning to actively find optimal feature subsets, with successful applications in various research299

fields, such as active perception/sensor selection [26, 23], visual object localization/tracking [31, 9]300

and medical diagnosis [30, 32]. Most of those works focus on learning a policy for active feature301

acquisition only, whereas we consider a problem of simultaneously learning a reinforcement learning302

policy and an active feature acquisition policy. Besides our primary focus on dealing with time303

series data, the problem we consider is also settled on more complicated system dynamics than304

the aforementioned works, as performing feature acquisition would greatly reduce the degree of305

observability for agent when learning task skills and thus makes it more challenging to learn optimal306

task skills.307

Representation Learning in POMDP Learning reinforcement learning policies with active fea-308

ture acquisition results in a policy training scenario with partial observability, for which learning309

meaningful representation would become an essential and non-trivial research challenge. Most310

conventional approaches unifies the process of representation learning with policy training and results311

in policies trained in an end-to-end fashion [12, 17, 18]. However, such models often engage trainable312

parameters with considerable size and result to be less sample efficient. Another strand of works313

tackles the representation learning for POMDP in an off-line fashion, which results in multi-stage314

reinforcement learning. In [7, 8], pretrained VAE models are adopted as the representation module to315

build agents with strong domain adaptation performance. The key difference between their works316

and ours is in that they consider typical POMDP domains where the state presents partial view over317

the environment and they propose a non-sequential VAE model, whereas ours considers a setting318

where feature-level information could be missing and we propose a sequential representation learning319

approach to infer a more informative state representation. Recently, there emerged a fruitful literature320

over sequential representation learning for POMDP [6, 28], where most of them formulate VAE321

training as an auxiliary task for policy training. In our work, we consider a model-based represen-322

tation learning attempt, where a sequential generative model is trained to learn model dynamics323

and generate high-quality features. Our attempt of learning model dynamics to gather information324

over the unobserved features is also related to image inpainting works to a certain extent [29, 35].325

However, such methods mostly focus on inpainting static images, such as face images, whereas326

we consider imputing the features from time-series data. Apart from this, our primary focus is on327

learning reinforcement learning policies with active feature acquisition, rather than considering image328

inpainting only.329
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B Pseudocode of our Algorithm330

Algorithm 1 RL with Active Feature Acquisition
1: Input: learning rate α > 0, dataset D
2: Initialize RL policy πf , πc, VAE parameters θ, φ.
3: Train VAE on dataset D using Eq (2).
4: while Not Converge do
5: Reset the environment.
6: Initialize null observation xp1 = , feature acquisition action af0 and control action ac0.
7: for i = 1 to T do
8: Compute representation with VAE: bt = qφ(x

p
≤t,a<t).

9: Sample a feature acquisition action aft ∼ πf (bt) and a control action act ∼ πc(bt).
10: Step the environment and receive partial features, reward and terminal: xpt+1, rt, term ∼

env(aft ,a
c
t)

11: Compute cost ct =
∑
i c · I(a

f(i)
t ).

12: Save the transitions {bt,aft ,act , rt, ct, term}.
13: if term then
14: break
15: end if
16: end for
17: Update πf , πc using the saved transitions with an RL algorithm under learning rate α.
18: end while

C Bouncing Ball+331

C.1 Task Specifications332

We adapted the original bouncing ball experiment presented in [4]. The task consists of a ball moving333

in a 2D box of size 32× 32 pixels. The radius of the ball equals to 2 pixels. At each step, a binary334

image is returned as an observation of the MDP state. At the beginning of every episode, the ball335

starts at a random position in the upper left quadrant (sampled uniformly). The initial velocity of the336

ball is randomly defined as follows: ~v = [Vx, Vy] = 4 · ~̃v/‖~̃v‖, where the x- and y-component of ~̃v337

are sampled uniformly from the interval [−0.5, 0.5]. There is a navigation target set at (5, 25) pixels,338

which is in the lower left quadrant. The navigation is considered to be successful if the ball reaches339

the specified target location within a threshold of 1 pixel along both x/y-axis.340

The action spaces is defined as follows. There are five task actions Ac:341

• Increase velocity leftwards, i.e., change Vx by −0.5342

• Increase velocity rightwards, i.e., change Vx by +0.5343

• Increase velocity downwards, i.e., change Vy by +0.5344

• Increase velocity upwards, i.e., change Vy by −0.5345

• Keep velocities unchanged346

The maximum velocity along the x/y-axis is 5.0. The velocity will stay unchanged if it exceeds this347

threshold. The feature acquisition action af ∈ Af is specified as acquiring the observation of a subset348

of the quadrants (this also includes acquiring the observation of all 4 quadrants). Thus, the agent can349

acquire 0− 4 quadrants to observe. Each episode runs up to 50 steps. The episode terminates if the350

agent reaches the target location.351

C.2 Implementation Details352

For all the baseline methods, Zero-Imputing [20] is adopted to fill in missing features with a fixed353

value of 0.5.354

End-to-End The end-to-end model first processes the imputed image by 2 convolutional layers355

with filter sizes of 16 and 32, respectively. Each convolutional layer is followed by a ReLU activation356

function. Then the output is passed to a fully connected layer of size 1024. The weights for the fully357

connected layer are initialized by orthogonal weights initialization and the biases are initialized as358

zeros.359
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NonSeq-ZI The non-sequential VAE models first process the imputed image by 2 convolutional360

layers with filter sizes of 32 and 64, respectively. Each convolutional layer is followed by a ReLU361

activation function. Then the output passes through a fully connected layer of size 256, followed362

by two additional fully connected layers of size 32 to generate the mean and variance of a Gaussian363

distribution. To decode an image, the sampled code first passes through a fully connected layer with364

size 256, followed by 3 deconvolutional layers with filters of 32, 32, and nc and strides of 2, 2 and365

1, respectively, where nc is the channel size that equals to 2 for the binary image. There are two366

variants for NonSeq-ZI: one employs the partial loss that is only computed for the observed features;367

the other employs the full loss that is computed for all the features, i.e., the ground-truth image with368

full observation is employed as the target to train the model to impute the missing features. The369

hyperparameters for training NonSeq-ZI are summarized in Table 1.370

Seq-PO-VAE (ours) At each step, the Seq-PO-VAE takes an imputed image and an action vector371

of size 9 as input. The imputed image is processed by 3 convolutional layers with filter size 32 and372

stride 2. Each convolutional layer employs ReLU as its activation function. Then the output passes373

through a fully connected layer of size 32 to generate a latent representation for the image fx. The374

action vector passes through a fully connected layer of size 32 to generate a latent representation375

for the action fa. Then the image and action features are concatenated and augmented to form a376

feature vector fc = [fx, fa, fx ∗ fa], where [·] denotes concatenation of features. Then fc is fed to377

fully connected projection layers of size 64 and 32, respectively. The output is then fed to an LSTM378

module, with latent size of 32. The output ht of LSTM is passed to two independent fully connected379

layers of size 32 for each to generate the mean and variance for the Gaussian distribution filtered from380

the sequential inputs. To decode an image, the model adopts deconvolutional layers that are identical381

to those for NonSeq-ZI. The hyperparameters for training Seq-PO-VAE are shown in Table 1.382

Table 1: Hyperparameter settings for training VAE models on the Bouncing Ball+ dataset.
Hyperparameters

β (KL weight) KL reduction Loss reduction learning rate

NonSeq-ZI (partial) 1.0 sum sum 1e-4
NonSeq-ZI (full) 1.0 sum sum 1e-4

Seq-PO-VAE (ours) 1.0 sum sum 5e-4

LSTM-A3C We adopt LSTM-A3C [17] to train the RL policy. The policy takes the features383

derived from the representation learning module as input. For the VAE-based methods, the input384

features are passed through a fully connected layer of size 1024. Then the features are fed to an385

LSTM with 1024 units. The output of the LSTM is fed to three independent fully connected layers to386

generate the estimations for value, task policy and feature acquisition policy. We adopt normalized387

column initialization for all the fully connected layers and the biases for the LSTM module are set to388

zero.389

C.3 Data Collection390

To train the VAEs, we prepare a training set that consists of 2000 trajectories. Half of the trajectories391

are derived from a random policy and the other half is derived from a policy learned from an end-392

to-end method. To train the end-to-end method, we employ a cost of 0.01 over the first 2m steps393

and then increase it to 0.02 for the following 0.5m steps. All the VAE models are evaluated on a394

test dataset that has identical size and data distribution as the training dataset. We present the best395

achieved task performance of the data collection policy (End-to-End) and our representation learning396

approach in Table 2. We notice that our proposed method, by employing an advanced representation397

model, leads to a significantly better feature acquisition policy than End-to-End (smaller number of398

observations while achieving similar or better reward).399

C.4 First Set of Experiments400

Representation Learning Results We evaluate the missing feature imputing performance of each401

VAE model in terms of negative log likelihood (NLL) and present results in Table 3. We notice402

that our proposed model yields a significantly better imputing result than all the other baselines.403

This demonstrates that our proposed sequential VAE model can efficiently capture the environment404

dynamics and learn meaningful information over the missing features. Such efficiency is vital405

in determining both the acquisition and task policy training performance in AFA-POMDP, since406
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Table 2: Task performance for the data collection policy and our proposed method on Bouncing
Ball+.

Model

End-to-End Ours

Average # of observations per episode 17.94 8.24
Task reward 1.0 1.0
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Figure 3: Performance curves on the bouncing ball+ domain: a: episodic number of observations
acquired by the πf ; b: task rewards w/o cost. Our proposed method outperforms the non-sequential
baselines in learning the task as well as acquiring less observations; c: Ablation study on bouncing
ball+ to illustrate the effect of learning the feature acquisition policy.

Table 3: Missing feature imputing loss evaluated on Bouncing Ball+ and Sepsis.

VAE MODEL
BOUNCING BALL+ SEPSIS

(NLL) (MSE)

NONSEQ-ZI (PARTIAL) 0.6504 0.8441
(± 0.1391) (±0.0586)

NONSEQ-ZI (FULL) 0.0722 0.4839
(± 0.0004) (± 0.0012)

SEQ-PO-VAE (OURS) 0.0324 0.1832
(± 0.0082) (±0.0158)

both policies are conditioned on the VAE latent features. We also demonstrate sample trajectories407

reconstructed by different VAE models in Appendix. The results show that our model learns to408

impute considerable amount of missing information.409

Policy Training Results We evaluate the policy training performance in terms of episodic number410

of acquired observations and the task rewards (w/o cost). The results are presented in Figure 3 (a)411

and (b), respectively. First, we notice that the end-to-end method fails to learn task skills under the412

given feature acquisition cost. However, the VAE-based representation learning methods manage to413

learn the navigation skill under the same cost setting. This verifies our assumption that representation414

learning plays a vital role in policy training under the AFA-POMDP scenario. Furthermore, we also415

notice that the joint policies trained by Seq-PO-VAE can develop the target navigation skill at a much416

faster pace than the non-sequential baselines. Our method also converges to a standard where much417

less feature acquisition is required to accomplish the task.418

We show that our proposed method can learn meaningful feature acquisition policies. We visualize419

three sampled trajectories upon convergence of training in Figure 4. From the examples, we notice420

that our feature acquisition policy acquires meaningful features with a majority grasping the exact421

ball location. Thus, it demonstrates that the feature acquisition policy adapts to the dynamics of422

the problem and learns to acquire meaningful features. We also show the actively learned feature423

acquisition policy works better than random acquisition. From Figure 3 (c), our method converges to424

better standard than random policies with considerably high selection probabilities.425

C.5 Imputing Missing Features via Learning Model Dynamics426

We present an illustrative example to demonstrate the process of imputing missing features and the427

role of learning model dynamics. To this end, we collect trajectories under an End-to-End policy (the428
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Figure 4: Seq-PO-VAE reconstruction for the online trajectories upon convergence (better to view
enlarged). Each block of three rows corresponds to the results for one trajectory. In each block, the
three rows (top-down) correspond to: (1) the partially observable input selected by acquisition policy;
(2) the ground-truth full observation; (3) reconstruction from Seq-PO-VAE. The green boxes remark
the frames where ball is not observed but our model could impute its location. Key takeaways: (1) our
learned acquisition policy captures model dynamics ; (2) Seq-PO-VAE effectively impute the missing
features (i.e., ball can be reconstructed even when they are unobserved from consequent frames).

choice of the underlying RL policy is not that important since we just want to derive some trajectory429

samples for the VAE models to reconstruct) and use different VAE models to impute the observations.430

From the results presented in Figure 5, we observe that under the partially observable setting with431

missing features, the latent representation derived from our proposed method provides abundant432

information as compared to only using information from a single time step and thereby offers433

significant benefit for the policy model to learn to acquire meaningful features/gain task reward.434

C.6 Investigation on Cost-Performance Trade-off435

We perform a case study on investigating the cost-performance trade-off for each representation436

learning method and present the results in Figure 6. Apparently, as we increase the cost, the437

exploration-exploitation task becomes more challenging and each compared method has its own438

upper limit of cost, above which the model would fail to learn an effective task policy while acquiring439

minimum observations. First, we notice that the End-to-End model takes a long time to progress in440

learning task skills (i.e., typically > 1.5m), while the VAE-based models can progress much faster.441

Among the VAE-based methods, we notice that our proposed method (Figure 6(d)) can accomplish442

the task by acquiring as little as 8 observations whereas the baselines NonSeq-ZI (Full) (Figure 6(b))443

and NonSeq-ZI (partial) (Figure 6(c)) achieve a standard of acquiring approximately 20 observations444

(refer to the lowest point among the solid lines in the figure). Thus, we conclude that our proposed445

approach can significantly benefit the cost-sensitive policy training and leads to a policy which446

acquires fewer observations while achieving equal or better task performance.447
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Figure 5: Imputation results for different VAE models. We select 9 trajectories obtained from the
trained End-to-End policy. Each block corresponds to the results for one trajectory (better to view
enlarged). The five rows in one block are (top-down): (1) partial observations acquired by the agent;
(2) ground-truth image with full observation; (3) Imputation by NonSeq-ZI (partial); (4) Imputation
by NonSeq-ZI (full); (5) Imputation by Seq-PO-VAE (ours). Our model can often successfully predict
the balls location even if it is not present in the acquired observation. Hence it successfully employs
its learned knowledge of the dynamics. In contrast, the non-sequential model (obviously) fails to
predict the balls location when the ball is not present in the observation.
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Figure 6: Cost-performance trade-off investigation. Each row corresponds to the performance in
terms of task reward (left) and number of acquisitions (per episode) obtained for a specific method
(right), for a specific method (see the legend). Each curve is derived from 10 independent runs. We
use dotted lines to indicate those instances for which the task learning does not always succeed. Thus,
the best achievable number of observations should be referred to as the lowest curve among the solid
lines. Seq-PO-VAE consumes less than 10 observations to accomplish this task.
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D Sepsis Medical Simulator448

D.1 Task Specifications449

For this task we employ a Sepsis simulator proposed in previous work [21]. The task is to learn450

to apply three treatment actions for Sepsis patients in intensive care units, i.e., Ac = {antibiotic,451

ventilation, vasopressors}. At each time step, the agent selects a subset of the treatment actions452

to apply. The state space consists of 8 features: 3 of them specify the current treatment status;453

4 of them specify the measurement status in terms of heart rate, sysBP rate, percoxyg stage and454

glucose level; the remaining one is a categorical feature indicating the patent’s antibiotic status. The455

feature acquisition actively selects a subset among the measurement features for observation, i.e.,456

Af = {heart rate, sysBP rate, percoxyg state, glucose level}. The objective for learning an active457

feature acquisition strategy is to help the decision making system to reduce measurement cost during458

its execution.459

D.2 Implementation Details460

For all the compared methods, we adopt Zero-Imputing [20] to fill in missing features. In particular, a461

fixed value of -10 which is outside the range of feature values is used to impute missing values.462

End-to-End The end-to-end model first processes the imputed state by 3 fully connected layers463

of size 32, 64 and 32, respectively. Each fully connected layer is followed by a ReLU activation464

function.465

NonSeq-ZI The VAE model first processes the imputed state by 2 fully connected layers with size466

32 and 64, with the first fully connected layer being followed by ReLU activation functions. Then the467

output is fed into two independent fully connected layers of size 10 for each, to generate the mean468

and variance for the Gaussian distribution. To decode the state, the latent code is first processed by a469

fully connected layer of size 64, then fed into three fully connected layers of size 64, 32, and 8. The470

intermediate fully connected layers employ ReLU activation functions. Also, we adopt two variants471

for NonSeq-ZI, trained under either full loss or partial loss. The details of the hyperparameter settings472

used for training are presented in Table 4.473

Seq-PO-VAE (ours) At each time step, the inputs for state and action are first processed by their474

corresponding projection layers. The projection layers for the state consists of 3 fully connected475

layers of size 32, 16 and 10, where the intermediate fully connected layers are followed by a ReLU476

activation function. The projection layer for the action input is a fully connected layer of size 10.477

Then the projected state feature fc and action feature fa are combined in the following manner:478

fc = [fx, fa, fx ∗ fa]. fc is passed to 2 fully connected layers of size 64 and 32 to form the input to the479

LSTM module. The output ht of the LSTM is fed to two independent fully connected layers of size480

10 to generate the mean and variance for the Gaussian distribution. The decoder for Seq-PO-VAE has481

the identical architecture as that for NonSeq-ZI. The details for training Seq-PO-VAE are presented in482

Table 4.483

LSTM-A3C The LSTM-A3C [17] takes encoded state features derived from the corresponding484

representation model as its input. The encoded features are fed into an LSTM with size 256. Then the485

ht for the LSTM is fed to three independent fully connected layers, to predict the state value, feature486

acquisition policy and task policy. Normalized column initialization is applied to all fully connected487

layers. The biases for the LSTM and fully connected layers are initialized as zero.488

D.3 Data Collection489

To train the VAEs, we prepare a training set that consists of 2000 trajectories. Half of the trajectories490

are derived from a random policy and the other half is derived from a policy learned End-to-End491

with cost 0.0. All the VAE models are evaluated on a test dataset that consists of identical size492

Table 4: Hyperparameter settings for training VAE models on the Sepsis task.
Hyperparameter

β (KL weight) KL reduction Loss reduction learning rate

NonSeq-ZI (partial) 0.01 sum sum 1e-4
NonSeq-ZI (full) 0.01 sum sum 1e-4

Seq-PO-VAE (ours) 0.01 sum sum 1e-3
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and data distribution as the the training dataset. We present the task treatment reward obtained by493

our data collection policy derived from the End-to-End method and that obtained by our proposed494

method in Table 5. Noticeably, by performing representation learning, our method could obtain much495

better treatment reward compared to the data collection policy. Therefore, it is essential to conduct496

representation learning to tackle the challenging AFA-POMDP problem.

Table 5: Task performance for the data collection policy and our proposed method on Sepsis.

Model

End-to-End Ours

Treatment Reward 0.35 0.45

497

D.4 More Comparison Result under Different Values for Cost498

We present the cost-performance trade-off on Sepsis domain when running our method under different499

cost values in {0, 0.025}. The results are shown in Figure 7(a) and Figure 7(b)). By increasing the500

value of cost, we obtain a feature acquisition policy that acquires substantially less features within501

each episode, with a sacrifice in task rewards.502
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Figure 7: Comparison result between our proposed method and the non-sequential VAE baseline
models under different values for cost.

Furthermore, we present the episodic number of acquired features for our method in Figure 8) when503

trained under different cost values. The results show that by increasing the cost, the number of feature504

acquisition substantially reduces.505
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Figure 8: Average num. observations acquired in each episode under cost values in {0, 0.1, 0.025}.
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D.5 Illustrative Examples for Missing Feature Imputation in Sepsis506

We present two illustrative examples in Figure 9 to demonstrate how imputing missing features via507

learning model dynamics would help the decision making with partial observability in Sepsis domain.508

The policy training process with partial observability can only access very limited information, due509

to the employment of active feature acquisition. Under such circumstances, imputing the missing510

features would offer much more abundant information to the decision making process. From the511

results shown in Figure 9, our model demonstrates considerable accuracy in imputing the missing512

features, even though it is extremely challenging to perform the missing feature imputation task given513

the distribution shift from the data collection policy and the online policy. The imputed missing514

information can be greatly beneficial for training the task policy and feature acquisition policy.515
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Figure 9: Two example trajectories for illustrating how our method works on the Sepsis medical
domain. The acquisition policy is trained with a cost of 0. Each block corresponds to one trajectory
and the four rows correspond to the four measurement features being considered for active feature
acquisition. Each dot indicates the employment of feature acquisition on the corresponding measure-
ment feature at the presented time point. In each trajectory, we demonstrate the ground-truth signal
over time as well as the imputed signal over time predicted by our proposed Seq-PO-VAE model.
By imputing the missing features via learning model dynamics, our proposed method could offer
much more informative representation for the policy training compared to the non-sequential VAE
baselines by giving reasonable imputation over the unobserved features.

D.6 Ablation Study516

In this section, we present an ablation study on the Sepsis medical domain.517

Efficacy of Active Feature Acquisition We study the effect of actively learning sequential feature518

acquisition strategy with RL. To this end, we compare our method with a baseline that randomly519

acquires features. We evaluate our method under different cost values, and the results are shown in520

Figure 10. From the results, we notice that there is a clear cost-performance trade-off, i.e., a higher521

feature acquisition cost results in feature acquisition policies that obtain fewer observations, with522

a sacrifice of task performance. Overall, our acquisition method results in significantly better task523

performance than the random acquisition baselines. Noticeably, our method acquire only about half524

of the total number of features (refer to the x-value derived by Random-100%) to obtain comparable525

task performance. We also notice that the number of features acquisition decreases significantly as526

the cost increases. Therefore, our proposed framework can be applied to obtain feature acquisition527

policies that meet different levels of budget.528

Impact on Total Acquisition Cost For different representation learning methods, we also inves-529

tigate the total number of features acquired at different stage of training. The results are shown in530

Figure 11. As expected, to obtain better task policies, the models need to take longer training steps531

and thus the total feature acquisition cost would increases accordingly. We notice that policies trained532

by our method result in the highest convergent task performance (max x-value). Given a certain533

performance level (same x-value), our method consumes substantially less total feature acquisition534

cost (y-value) than the others. We also notice that the overall feature acquisition cost increases with535

a near exponential trend. Overall, conducting policy training for AFA-POMDP with our proposed536

representation learning method could lead to subsequent reduce in total feature acquisition cost537

compared to the baseline methods.538
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Figure 10: Comparison between active feature acquisition (performed under different cost values)
vs. random feature acquisition. The results are obtained from Sepsis domain.
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Figure 11: Total feature acquisition cost consumed by different approaches to obtain task performance
(i.e., reward) at certain standards. The results are obtained from Sepsis domain.

E Case Study: Investigating the Data Observability for Representation539

Learning540

In our proposed method, we assumed that the model has access to the fully observed data at the541

representation learning stage, so that the VAE can be trained to impute the missing features with542

the supervision of the fully observed data (following Equation (5) in the paper). In this section, we543

present a case study to demonstrate that such assumption does not necessarily need to hold and that544

our method can work with partially observed training data as well. To this end, we create two adapted545

baselines from our proposed method, where the representation learning models (i.e., Seq-PO-VAE) for546

the baselines are trained under partial observation, i.e., only 50%/90% of the features are accessible547

when training the Seq-PO-VAE model where the features to observe are randomly selected. We548

denote such adapted baselines as Seq-PO-VAE (50%) and Seq-PO-VAE (90%), respectively.549

We present the missing feature imputing performance for the VAE models evaluated on the two task550

domains in Table 6. From the results, we notice that with reduced observability, the missing feature551

imputing performance for Seq-PO-VAE (50%/90%) degrades to fall below Seq-PO-VAE (full), which552

is as expected. However, the adapted baselines with partial observability can still benefit from our553

proposed sequential modeling with dynamics learning a lot. As a result, Seq-PO-VAE (50%/90%) can554

outperform the non-sequential baselines NonSeq-ZI (partial/full) on both missing feature imputing555

tasks with substantial performance margins. Note that the model NonSeq-ZI (full) still employs556

full observation over the dataset during its training, but its missing feature imputing performance is557

substantially inferior as compared to Seq-PO-VAE (50%). Overall, the above results demonstrate that558

our proposed representation learning method can derive meaningful representation with considerable559

efficiency in imputing missing features even when the model is trained under partial observation.560

Furthermore, we demonstrate the policy training performance for the Seq-PO-VAE (50%/90%)561

baselines evaluated on the Sepsis domain. The results are shown in Figure 12. As expected, the562

performance of Seq-PO-VAE trained with partial observation degrades from that trained with full563

observation. The reason is due to that the task of imputing the missing features via learning system564
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Table 6: Missing feature imputing loss evaluated on Bouncing Ball+ and Sepsis domains.

VAE model Bouncing Ball+ Sepsis
(NLL) (MSE)

NonSeq-ZI (partial) 0.6504 0.8441
(± 0.1391) (±0.0586)

NonSeq-ZI (full) 0.0722 0.4839
(± 0.0004) (± 0.0012)

Seq-PO-VAE (50%) 0.0375 0.2892
(± 0.0010) (± 0.0097 )

Seq-PO-VAE (90%) 0.0381 0.2450
(± 0.0015 ) (± 0.0096 )

Seq-PO-VAE (full) 0.0324 0.1832
(± 0.0082) (±0.0158)

dynamics could be extremely challenging when only partial features are presented during training.565

However, when the level of observability is high, the model can still lead to promising performance566

that outperforms the non-sequential VAE baselines. Overall, the results reveal that our proposed567

method works best with full observability, but it is promising to work with partial observability when568

the level of observability is relatively high. Adapting our proposed method to tackle challenging569

AFA-POMDP domains with restricted level of observability to data is subject to future work, and our570

approach will benefit from any advances in representation learning from partially observed data.
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Figure 12: Performance curves in terms of discharge rate, mortality rate and reward (w/o cost) on
Sepsis domain, evaluated with a cost value of 0.01.
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