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ABSTRACT

Detecting diverse objects, including ones never-seen-before during model train-
ing, is critical for the safe application of object detectors. To this end, a task of
unsupervised out-of-distribution object detection (OOD-OD) is proposed to de-
tect unknown objects without the reliance on an auxiliary dataset. For this task,
it is important to reduce the impact of lacking unknown data for supervision and
leverage in-distribution (ID) data to improve the model’s discrimination ability.
In this paper, we propose a method of Two-Stream Information Bottleneck (TIB),
which consists of a standard Information Bottleneck and a dedicated Reverse In-
formation Bottleneck (RIB). Specifically, after extracting the features of an ID
image, we first define a standard IB network to disentangle instance representa-
tions that are beneficial for localizing and recognizing objects. Meanwhile, we
present RIB to obtain simulative OOD features to alleviate the impact of lacking
unknown data. Different from standard IB aiming to extract task-relevant compact
representations, RIB is to obtain task-irrelevant representations by reversing the
optimization objective of the standard IB. Next, to further enhance the discrim-
ination ability, a mixture of information bottlenecks is designed to sufficiently
capture object-related information. In the experiments, our method is evaluated
on OOD-OD and incremental object detection. The significant performance gains
over baselines show the superiorities of our method.

1 INTRODUCTION

With the rejuvenation of deep neural networks, for object detection, many advances Ren et al.
(2015); Redmon et al. (2016); Carion et al. (2020); Chen et al. (2022) have been achieved. Most
existing methods often follow a close-set assumption that the training and testing processes share
the same category space. However, the practical scenario is open and filled with unknown objects,
presenting significant challenges for object detectors trained based on the close-set assumption. To
this end, a task of unsupervised out-of-distribution object detection (OOD-OD) Du et al. (2022b) is
recently proposed, whose goal is to accurately detect the objects never-seen-before during training
without accessing any auxiliary data. Obviously, addressing this task is helpful for promoting the
safe deployment of object detectors in real scenes, e.g., autonomous driving.

The main challenge of unsupervised OOD-OD is lacking supervision signals from OOD data during
training Du et al. (2022b). In particular, as shown in the left part of Fig. 1, an object detector is
typically optimized only based on the in-distribution (ID) data. During inference, the detector could
accurately localize and recognize ID objects but easily produces overconfident incorrect predictions
for OOD objects. The reason is that the object detector could not learn a clear discrimination bound-
ary between ID objects and OOD objects in the case of lacking OOD data for supervision. Thus,
for this task, one feasible solution is to extract simulative OOD data based on the ID data. And the
simulative OOD data could be used to improve the discrimination ability of the object detector.

In order to obtain simulative OOD data, it is general to leverage generative methods, e.g., gener-
ative adversarial networks Lee et al. (2018a) and mixup Zhang et al. (2018), to synthesize OOD
images. Though these methods have been demonstrated to be effective, using a large number of
synthesized images may increase computational costs. Meanwhile, it is difficult to use synthesized
images to cover the overall object space, which may weaken the discrimination performance for
certain unknown objects.
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Figure 1: Two-Stream Information Bottleneck for OOD-OD. ‘RPN’ is Region-Proposal Network
with RoI Alignment. The green boxes are OOD objects. The red and black lines separately indicate
the decision boundary between ID and OOD objects and that between ID objects belonging to dif-
ferent categories. Due to lacking unknown data for supervision, the traditional object detector could
not distinguish ID objects from OOD objects effectively. Our method aims to generate simulative
OOD features by maximizing the prediction discrepancy between the features extracted by the IB
module and that extracted by the RIB module, which enhances the discrimination ability.

In this paper, we explore employing Information Bottleneck (IB) Tishby et al. (2000); Alemi et al.
(2017) to obtain a series of simulative OOD features for training. Particularly, we propose a method
of Two-Stream Information Bottleneck (TIB) to improve the discrimination ability of the object
detector, which mainly consists of a standard Information Bottleneck and a dedicated Reverse Infor-
mation Bottleneck (RIB). Specifically, as shown in the right part of Fig. 1, given an ID image as the
input, a backbone network, e.g., ResNet He et al. (2016), is used to extract the corresponding repre-
sentations. Then, a standard variational IB Alemi et al. (2017) is defined to decompose an Instance
map from the backbone representations, which is instrumental in localizing and recognizing objects
accurately. Besides, standard IB struggles to extract maximally compressed features of the input
while preserving as much task-relevant information as possible Lee et al. (2021). Whereas, OOD
features could be considered irrelevant to the current task. Thus, we present RIB to obtain an OOD
map used to extract task-irrelevant representations via reversing the optimization objective of the
standard IB. Concretely, by maximizing the discrepancy between the predictions from the Instance
map and that from the OOD map, and simultaneously minimizing the classification loss, the OOD
map could be promoted to contain plentiful object-irrelevant information, which is beneficial for
extracting simulative OOD features and improves the discrimination ability.

Furthermore, recent research Schulz et al. (2020) has shown that IB is an effective mechanism to
capture object information. Inspired by this idea, we explore designing a mixture of information
bottlenecks to purify object-related information from multiple different facets. Finally, by com-
bining the information, the discrimination ability could be further enhanced. In the experiments,
our method is separately evaluated on OOD-OD and incremental object detection Kj et al. (2021).
Extensive experimental results demonstrate the superiorities of our method.

The contributions of our work are summarized as follows:

• We propose a method of Two-Stream Information Bottleneck consisting of a standard IB
and a dedicated RIB. Particularly, RIB aims to obtain simulative OOD features by maxi-
mizing the prediction discrepancy between ID features and OOD features, which reduces
the impact of lacking unknown data for supervision.

• We design a mixture of information bottlenecks to purify object-related information from
multiple different facets, which is beneficial for enhancing object-related information in the
features for classification and improves the detection performance.

• Experimental results show that our method could effectively improve the performance of
OOD-OD and incremental object detection. Particularly, for PASCAL VOC Everingham
et al. (2010), compared with the baseline method Du et al. (2022b), our method significantly
reduces FPR95 by around 10.42%.
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2 RELATED WORK

OOD detection. To promote the safe application of models in practical scenarios, OOD detection
Pimentel et al. (2014); Yang et al. (2021b) has attracted much attention, whose goal is to distinguish
ID data from OOD data. Most existing methods Lee et al. (2018b); Hendrycks et al. (2019); Lee
et al. (2018a); Liang et al. (2017); Lee et al. (2018b) focus on OOD detection for image classification
and exploit a regularization operation or an auxiliary dataset to address this problem. Particularly,
Bendale et al. Bendale & Boult (2016) developed the OpenMax score for OOD detection based on
the extreme value theory. Meanwhile, there exist some methods that explore utilizing temperature
scaling Liang et al. (2017), generative models Lee et al. (2018b); Serrà et al. (2019), or ensemble
methods Vyas et al. (2018); Choi et al. (2018) to calibrate the distribution of the softmax score.
Besides, Liu et al. Liu et al. (2020) proposed to leverage the energy-based idea to address OOD
detection, which opens a new solution. Yang et al. Yang et al. (2021a) and Zhou Zhou (2022)
separately leveraged the idea of semantically coherent and that of reconstruction to distinguish OOD
data. Though these methods have been shown to be effective, since object detection involves object
localization and recognition, these methods could not be directly used for OOD-OD.

Recently, unsupervised OOD-OD Du et al. (2022b) is proposed to determine whether detected ob-
jects belong to out-of-distribution or not without accessing an auxiliary dataset. For this task, Du
et al. Du et al. (2022b) proposed to synthesize virtual outliers to reduce the impact of lacking un-
known data for supervision. The work Du et al. (2022a) explores learning more unknown-related
knowledge from an auxiliary video dataset, which could not be used for unsupervised OOD-OD.
Harakeh et al. Harakeh & Waslander (2021) mainly focused on uncertainty estimation for the lo-
calization branch, which could not well address OOD object detection that includes localization and
classification. Different from the above works, in this paper, we propose a method of Two-Stream
Information Bottleneck to reduce the impact of lacking unknown data and improve the discrimina-
tion ability via reversing the optimization objective of standard information bottleneck. Extensive
experimental results demonstrate the effectiveness of our method.

Information bottleneck. Recent research Wang et al. (2022); Lee et al. (2021); Schulz et al. (2020)
has shown that IB Tishby et al. (2000) is a promising mechanism to reveal the principle of neural
networks through the lens of information stored in encoded representations of inputs. Given two
random variables X and Y , the optimization objective of IB can be described as follows:

max
T

I(T ;Y )− βI(T ;X), (1)

where I(T ;X) and I(T ;Y ) are the mutual information of representation T towards inputs X and
labels Y , respectively. β controls the tradeoff. By this optimization objective, the intermediate rep-
resentation T can be promoted to contain compact task-relevant information. Recently, some works
Ahuja et al. (2021); Li et al. (2022) have shown that IB is helpful for extracting domain-invariant rep-
resentations, which improves the generalization ability. Besides, there exist some works Schulz et al.
(2020); Kim et al. (2021) that indicate using IB could capture object-related information, which is
beneficial for boosting the performance and enhancing the interpretability. In this paper, we explore
exploiting IB to obtain simulative OOD features for training and design a mixture of IB to further
enhance the object-related information. Extensive experiments on OOD-OD and incremental object
detection have shown that our method is instrumental in improving the discrimination ability.

3 TWO-STREAM INFORMATION BOTTLENECK

For unsupervised OOD-OD, the object detector is trained based on the ID data {X,Y,B}, where
X denotes the set of ID images, Y is the label set, and B indicates location information. During
inference, give an image x∗ including OOD objects, the trained object detector should accurately
distinguish ID objects (the output is 1) from OOD objects (the output is 0).

3.1 OBJECT-RELATED INFORMATION EXTRACTION

Since object detection involves two subtasks, i.e., object localization and classification, for OOD-
OD, the model should first localize OOD objects and ID objects. Then, the model could accurately
distinguish ID objects from OOD objects, while correctly classifying ID objects. To attain this goal,
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Figure 2: The architecture of our method. ‘Infor Enc’ indicates information enhancement. Our
method mainly consists of an IB branch and a RIB branch. Particularly, the IB branch aims to
capture plentiful object-related information by optimizing the objective of information bottleneck.
Meanwhile, after obtaining the high-level features from the detection head, a mixture of IB is de-
signed to further enhance object-related information, which is beneficial for improving the discrim-
ination ability. Besides, to alleviate the impact of lacking unknown data for training, we propose a
RIB to generate simulative OOD features by maximizing the loss Ldis. Here, it is worth noting that
during the RPN process, for the OOD map, we only perform RoI Alignment based on the proposals
O extracted from the Instance map. Finally, the ID features from the MIB and the simulative OOD
features are all used to calculate the uncertainty loss Luncertainty.

it is important to extract plentiful object-related information. As IB owns the advantage of captur-
ing compact task-relevant information Alemi et al. (2017), we explore exploiting IB to compress
object-irrelevant information (e.g., the background information) in the extracted features, which is
beneficial for improving the discrimination performance.

Concretely, as shown in Fig. 2, we follow the baseline work Du et al. (2022b) and adopt the widely
used object detector, i.e., Faster R-CNN Ren et al. (2015), as the basic detection model. Given an
input image, we first employ the backbone network, e.g., ResNet He et al. (2016), to extract the
corresponding feature map F ∈ Rw×h×c, where w, h, and c separately denote width, height, and
the number of channels. To obtain rich object-related information, we exploit the constraint of vari-
ational information bottleneck Alemi et al. (2017) to further encode the feature map F . Specifically,
we separately define a convolutional network Wµ1 and Wσ1 to estimate the corresponding means
and variances. The encoding processes of F are shown as follows:

µ1 = Wµ1 ∗ F, σ1 = Wσ1 ∗ F, Z = µ1 + ϵ · exp(σ1), (2)

where µ1 ∈ Rw×h×c and σ1 ∈ Rw×h×c are the estimated means and variances. ϵ indicates Gaussian
noise sampled from N (0, I). ‘∗’ represents the convolutional operation. The encoding output is
denoted as the Instance map Z ∈ Rw×h×c.

Next, Z is taken as the input of the RPN module to extract a series of object proposals O. Based
on O, RoI-Alignment operation followed by RoI-Feature extraction is performed on Z to obtain
the output Pin ∈ Rz×s, where z and s respectively denote the number of proposals and channels.
Since the object proposals usually contain much object-irrelevant information (e.g., the background
information) that may weaken the discrimination performance, to this end, we design a mixture of
information bottlenecks consisting of multiple branches to further enhance object-related informa-
tion. For each branch, based on Pin, we first define two fully-connected networks to separately
estimate the corresponding means and variances. Then, we perform an encoding operation of Pin:

Pµ
i = Φµ

i (Pin), Pσ
i = Φσ

i (Pin), Qi = Pµ
i + ϵ · exp(Pσ

i ), (3)
where i = 1, ...,n. ‘n’ is the number of IB. Φµ

i and Φσ
i represent two different fully-connected

networks. Pµ
i ∈ Rz×s and Pσ

i ∈ Rz×s are the estimated means and variances. Qi ∈ Rz×s denotes
the output encoding results of the current branch.

Since Pin contains the information belonging to multiple different objects and much background in-
formation, exploiting multiple branches of information bottlenecks is beneficial for purifying object-
related information from multiple different facets. Next, we first define a gating operation to aggre-
gate the information from different IB. By means of the residual operation between the aggregated

4



Under review as a conference paper at ICLR 2023

information and the input Pin, the object-related information in Pin could be enhanced. The overall
enhancing processes are shown as follows:

Gi =
Pin

T
Qi∑n

i=1 Pin
T
Qi

, A =

n∑
i=1

Gi ·Qi, E = A+ α · Pin, (4)

where Pin ∈ Rs and Qi ∈ Rs separately represent the average results of Pin and Qi. Gi is the
calculated gating weight. A ∈ Rz×s indicates the aggregated results. Here, α ∈ Rz×s denotes
the learnable sigmoid weight, i.e., α = Ψ(Pin), where Ψ is a fully-connected network. Finally,
E ∈ Rz×s indicates the output enhancing result.

As shown in Fig. 2, during training, E is taken as the input of the classifier and regressor to calculate
the classification and localization losses. The joint training objective is shown as follows:

LIB = Lcls + Lloc + β · (KL[p(Z|F ), r(Z)] +
1

n

n∑
i=1

KL[p(Qi|Pin), r(Qi)]), (5)

where Lcls and Lloc separately denote the classification and localization losses. β is a hyper-
parameter. In the experiments, β is set to 0.0001. Following the information theories for deep
learning Alemi et al. (2017), we define r(·) as a prior marginal distribution, which is modeled as
a standard Gaussian N (0, I). Obviously, by minimizing the task loss and the KL-divergence loss,
the dependence between Z and F and that between Qi and Pin are reduced, indicating that Z and
Qi encode plentiful object-relevant information from the input F and Pin, which is instrumental in
improving the discrimination performance.

3.2 SIMULATIVE OOD FEATURES GENERATION

For unsupervised OOD-OD, one of the major challenges lies in lacking unknown data for super-
vision, which is prone to producing overconfident incorrect predictions for OOD objects. To this
end, we propose a RIB method to generate simulative OOD features by reversing the optimization
objective of the standard IB Alemi et al. (2017), which reduces the impact of lacking unknown data
and improves the ability of distinguishing OOD objects.

Concretely, as shown in Fig. 2, based on the feature map F from the backbone network, we first
define a convolutional network Wµ2 and Wσ2 to estimate the corresponding means and variances
and leverage variational information bottleneck Alemi et al. (2017) to encode F :

µ2 = Wµ2 ∗ F, σ2 = Wσ2 ∗ F, R = µ2 + ϵ · exp(σ2), (6)

where R ∈ Rw×h×c indicates the encoding OOD map. Next, based on the object proposals O, RoI-
Alignment operation followed by RoI-Feature extraction is performed on R to obtain simulative
OOD features Pood ∈ Rz×s. To promote Pood to contain plentiful task-irrelevant information, we
explore reversing the optimization objective of the standard IB (as shown in equation 1):

max
R,Pood

I((R,Pood);F )− λI(Pood;Y ), (7)

where λ controls the tradeoff. The goal of equation 7 is to enforce the extracted R and Pood from the
input F to encode much less task-related information, which is beneficial for obtaining simulative
OOD features for supervision. To attain this goal, we explore maximizing the prediction discrepancy
Ldis between E and Pood. The processes are shown as follows:

Ldis =
1

K

K∑
k=1

|p(Pood)k − p(E)k|, (8)

where p(Pood)k and p(E)k denote the prediction probability for class k, respectively. K is the num-
ber of ID categories. Meanwhile, the classifier with shared parameters is used to produce p(Pood)
and p(E). Besides, since R is directly encoded based on the input F , R could be considered to
be related to F . Here, we do not use a mutual information constraint to enhance the dependence
between R and F . By maximizing the loss Ldis while minimizing the task loss, the gap between
Pood and E will be enlarged, which promotes Pood to contain plentiful information unrelated to the
ID objects. Finally, to achieve the goal of distinguishing OOD objects from ID objects, Pood and E
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are used to calculate an uncertainty loss Du et al. (2022b), which aims to regularize the detector to
produce a low OOD score for the ID object features, and a high OOD score for the simulative OOD
features. The processes are shown as follows:

Luncertainty = Eu∽E [−log
exp−E(u)

1 + exp−E(u) ] + Ev∽Pood
[−log

1

1 + exp−E(v) ], (9)

where E(·) is the object-level energy score Du et al. (2022b); Liu et al. (2020). During training, we
can only access the ID data. The overall training objective is shown as follows:

L = LIB − λ · Ldis + τ · Luncertainty, (10)

where λ and τ are two hyper-parameters, which are set to 0.001 and 0.1 in the experiments.

3.3 INFERENCE FOR OOD OBJECT DETECTION

During inference, we use the output of the uncertainty loss for OOD object detection. Specifically,
for a predicted bounding box b, the detection processes are shown as follows:

score(b) =
exp−E(b)

1 + exp−E(b) , D(b) =

{
0 if score(b) < γ,
1 if score(b) ≥ γ.

(11)

For the output of the classifier D(·), the commonly used threshold mechanism is leveraged to dis-
tinguish the ID objects (the result is 1) from the OOD objects (the result is 0). The threshold γ is set
to 0.95 so that a high fraction of ID data is correctly classified.

4 EXPERIMENTS

In the experiments, for unsupervised OOD-OD, we follow the settings of the work Du et al. (2022b)
and do not use any auxiliary dataset for training. And our method is evaluated on two different
benchmarks. Furthermore, to further demonstrate the effectiveness of our method, we verify our
method on the task of class-incremental object detection Kj et al. (2021), i.e., new classes are se-
quentially introduced to the object detector.

4.1 IMPLEMENTATION DETAILS AND BENCHMARKS

Implementation Details. We use Faster R-CNN Ren et al. (2015) with the RoI-Alignment layer He
et al. (2017) as the basic detection model. The backbone is ResNet-50 He et al. (2016). The param-
eters are pre-trained on ImageNet Russakovsky et al. (2015) for initialization. For the generation of
the Instance map (equation 2) and OOD map (equation 6), we separately utilize two convolutional
layers to define Wµ1, Wσ1, Wµ2, and Wσ2. For each branch of MIB (equation 3), we respectively
utilize two fully-connected layers to define Φµ and Φσ . And the number n of the IB branches is set
to 8. All the experiments are trained using the standard SGD optimizer with a learning rate of 0.02.

OOD-OD Benchmarks. PASCAL VOC Everingham et al. (2010) and Berkeley DeepDrive (BDD-
100k) Yu et al. (2020) datasets are taken as the ID training data. Meanwhile, we adopt MS-COCO
Lin et al. (2014) and OpenImages Kuznetsova et al. (2020) as the OOD datasets to evaluate the
trained model. And the OOD datasets are manually examined to ensure the OOD images do not
contain ID categories.

Metrics. To evaluate the performance of unsupervised OOD-OD, we report: (1) the false positive
rate (FPR95) of OOD objects when the true positive rate of ID objects is at 95%; (2) the area under
the receiver operating characteristic curve (AUROC); (3) mean average precision (mAP).

4.2 PERFORMANCE ANALYSIS OF UNSUPERVISED OOD-OD

Table 1 shows the performance of unsupervised OOD-OD. We can see that though these methods
own similar detection performance, the ability of distinguishing OOD objects differs significantly.
This shows that these detection methods are easily affected by OOD objects. Thus, detecting OOD
objects is meaningful for promoting the safe application of object detectors. We can see that com-
pared with baseline methods, our method obtains the best performance of OOD object detection.
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Table 1: The performance (%) of unsupervised OOD-OD. All methods are trained based on ID data
and do not use any auxiliary data. ↑ denotes larger values are better and ↓ denotes smaller values are
better. ‘†’ indicates that we directly run the released code to obtain the results. ‘Bbone’ and ‘R50’
separately represent backbone network and ResNet-50.

ID Data Method Bbone (Params) FPR95 ↓ AUROC ↑ mAP (ID)↑
OOD: MS-COCO / OpenImages

PASCAL-
VOC

MSP Hendrycks & Gimpel (2017) - 70.99 / 73.13 83.45 / 81.91 48.7
ODIN Liang et al. (2017) - 59.82 / 63.14 82.20 / 82.59 48.7
Mahalanobis (Lee et al., 2018b) - 67.73 / 65.41 81.45 / 81.48 48.7
Gram matrices Sastry & Oore (2020) - 62.75 / 67.42 79.88 / 77.62 48.7
Energy score Liu et al. (2020) - 56.89 / 58.69 83.69 / 82.98 48.7
Generalized ODIN Hsu et al. (2020) - 59.57 / 70.28 83.12 / 79.23 48.1
CSI Tack et al. (2020) - 59.91 / 57.41 81.83 / 82.95 48.1
GAN-synthesis Lee et al. (2018a) - 60.93 / 59.97 83.67 / 82.67 48.5
†VOS (Baseline) Du et al. (2022b) R50 (41.4M) 51.97 / 56.81 87.55 / 83.37 48.1
Two-Stream IB R50 (54.7M) 41.55 / 47.19 90.36 / 88.09 49.2

BDD-
100k

MSP Hendrycks & Gimpel (2017) - 80.94 / 79.04 75.87 / 77.38 31.2
ODIN Liang et al. (2017) - 62.85 / 58.92 74.44 / 76.61 31.2
Mahalanobis Lee et al. (2018b) - 55.74 / 47.69 85.71 / 88.05 31.2
Gram matrices Sastry & Oore (2020) - 60.93 / 77.55 74.93 / 59.38 31.2
Energy score Liu et al. (2020) - 60.06 / 54.97 77.48 / 79.60 31.2
Generalized ODIN Hsu et al. (2020) - 57.27 / 50.17 85.22 / 87.18 31.8
CSI Tack et al. (2020) - 47.10 / 37.06 84.09 / 87.99 30.6
GAN-synthesis Lee et al. (2018a) - 57.03 / 50.61 78.82 / 81.25 31.4
†VOS (Baseline) Du et al. (2022b) R50 (41.4M) 50.25 / 41.06 83.92 / 86.80 31.1
Two-Stream IB R50 (54.7M) 36.85 / 24.00 88.47 / 92.54 31.3

Figure 3: Detection results on the OOD images from MS-COCO. The first and second rows respec-
tively indicate results based on VOS Du et al. (2022b) and our method. The in-distribution dataset is
BDD-100k. Blue boxes represent objects detected and classified as one of the ID categories. Green
boxes indicate OOD objects. We can see that our method accurately determines OOD objects.

Particularly, compared with VOS Du et al. (2022b) that aims to synthesize virtual outliers, based
on FPR95, for PASCAL VOC Everingham et al. (2010), our method outperforms VOS by around
10.42% and 9.62%. For BDD-100k Yu et al. (2020), our method outperforms VOS by around 13.4%
and 17.06%. This shows that our method of Two-Stream Information Bottleneck is beneficial for ex-
tracting simulative OOD features, which reduces the impact of lacking unknown data for supervision
and improves the discrimination ability of the object detector.

In Fig. 3, we show some detection examples. For these images, the baseline method Du et al.
(2022b) does not detect all OOD objects accurately. Taking the second column as an example, VOS
Du et al. (2022b) misclassifies the dog into the Pedestrian category. We can see that our method
correctly localizes and recognizes OOD objects, further demonstrating its effectiveness.

4.3 PERFORMANCE ANALYSIS OF CLASS-INCREMENTAL OBJECT DETECTION

To further demonstrate the effectiveness of our method, we evaluate our method on class-incremental
object detection Kj et al. (2021) and follow the standard evaluation protocol Kj et al. (2021). We
initially learn 10, 15, or 19 base classes, and then introduce 10, 5, or 1 new class as the second
task. Meanwhile, we directly plug our method into the baseline method Kj et al. (2021) and do not
calculate the uncertainty loss (equation 9). The training details are the same as the baseline Kj et al.
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Table 2: Performance (%) analysis of class-incremental object detection based on PASCAL VOC Everingham
et al. (2010). We consider adding 10, 5, and 1 classes (highlighted in blue) to a detector trained on the rest of
the classes. ‘iOD + Ours’ indicates that our method is plugged into iOD Kj et al. (2021). Here, ‘P50’ indicates
that the mAP metric is calculated when the IOU threshold is set to 0.5.
10 + 10 setting aero cycle bird boat bottle bus car cat chair cow table dog horse bike person plant sheep sofa train tv P50
All 20 79.4 83.3 73.2 59.4 62.6 81.7 86.6 83 56.4 81.6 71.9 83 85.4 81.5 82.7 49.4 74.4 75.1 79.6 73.6 75.2
First 10 78.6 78.6 72 54.5 63.9 81.5 87 78.2 55.3 84.4 - - - - - - - - - - 73.4
Std Training 35.7 9.1 16.6 7.3 9.1 18.2 9.1 26.4 9.1 6.1 57.6 57.1 72.6 67.5 73.9 33.5 53.4 61.1 66.5 57 37.3

Shmelkov et al. Shmelkov et al. (2017) 69.9 70.4 69.4 54.3 48 68.7 78.9 68.4 45.5 58.1 59.7 72.7 73.5 73.2 66.3 29.5 63.4 61.6 69.3 62.2 63.1
Faster ILOD Peng et al. (2020) 72.8 75.7 71.2 60.5 61.7 70.4 83.3 76.6 53.1 72.3 36.7 70.9 66.8 67.6 66.1 24.7 63.1 48.1 57.1 43.6 62.2
ORE Joseph et al. (2021) 63.5 70.9 58.9 42.9 34.1 76.2 80.7 76.3 34.1 66.1 56.1 70.4 80.2 72.3 81.8 42.7 71.6 68.1 77 67.7 64.6
OW-DETR Gupta et al. (2022) 61.8 69.1 67.8 45.8 47.3 78.3 78.4 78.6 36.2 71.5 57.5 75.3 76.2 77.4 79.5 40.1 66.8 66.3 75.6 64.1 65.7
ROSETTA Yang et al. (2022) 74.2 76.2 64.9 54.4 57.4 76.1 84.4 68.8 52.4 67.0 62.9 63.3 79.8 72.8 78.1 40.1 62.3 61.2 72.4 66.8 66.8

iOD Kj et al. (2021) 76 74.6 67.5 55.9 57.6 75.1 85.4 77 43.7 70.8 60.1 66.4 76 72.6 74.6 39.7 64 60.2 68.5 60.5 66.3
iOD + Ours 77.6 76.5 71.5 57.4 56.4 80.6 85.8 80.4 48.4 77.1 54.9 75.4 79.4 75.8 79.4 45.5 73.8 68.5 73.0 69.4 70.4

15 + 5 setting aero cycle bird boat bottle bus car cat chair cow table dog horse bike person plant sheep sofa train tv P50
All 20 79.4 83.3 73.2 59.4 62.6 81.7 86.6 83 56.4 81.6 71.9 83 85.4 81.5 82.7 49.4 74.4 75.1 79.6 73.6 75.2
First 15 78.1 82.6 74.2 61.8 63.9 80.4 87 81.5 57.7 80.4 73.1 80.8 85.8 81.6 83.9 - - - - - 53.2
Std Training 12.7 0.6 9.1 9.1 3 0 8.5 9.1 0 3 9.1 0 3.3 2.3 9.1 37.6 51.2 57.8 51.5 59.8 16.8

Shmelkov et al. Shmelkov et al. (2017) 70.5 79.2 68.8 59.1 53.2 75.4 79.4 78.8 46.6 59.4 59 75.8 71.8 78.6 69.6 33.7 61.5 63.1 71.7 62.2 65.9
Faster ILOD Peng et al. (2020) 66.5 78.1 71.8 54.6 61.4 68.4 82.6 82.7 52.1 74.3 63.1 78.6 80.5 78.4 80.4 36.7 61.7 59.3 67.9 59.1 67.9
ORE Joseph et al. (2021) 75.4 81 67.1 51.9 55.7 77.2 85.6 81.7 46.1 76.2 55.4 76.7 86.2 78.5 82.1 32.8 63.6 54.7 77.7 64.6 68.5
OW-DETR Gupta et al. (2022) 77.1 76.5 69.2 51.3 61.3 79.8 84.2 81.0 49.7 79.6 58.1 79.0 83.1 67.8 85.4 33.2 65.1 62.0 73.9 65.0 69.4
ROSETTA Yang et al. (2022) 76.5 77.5 65.1 56.0 60.0 78.3 85.5 78.7 49.5 68.2 67.4 71.2 83.9 75.7 82.0 43.0 60.6 64.1 72.8 67.4 69.2

iOD Kj et al. (2021) 78.4 79.7 66.9 54.8 56.2 77.7 84.6 79.1 47.7 75 61.8 74.7 81.6 77.5 80.2 37.8 58 54.6 73 56.1 67.8
iOD + Ours 78.0 78.7 73.6 53.8 63.6 80.1 85.6 83.1 50.8 80.9 66.5 81.0 83.1 77.2 77.7 39.8 66.6 63.0 71.8 66.0 71.1

19 + 1 setting aero cycle bird boat bottle bus car cat chair cow table dog horse bike person plant sheep sofa train tv P50
All 20 79.4 83.3 73.2 59.4 62.6 81.7 86.6 83 56.4 81.6 71.9 83 85.4 81.5 82.7 49.4 74.4 75.1 79.6 73.6 75.2
First 19 76.3 77.3 68.4 55.4 59.7 81.4 85.3 80.3 47.8 78.1 65.7 77.5 83.5 76.2 77.2 46.6 71.4 65.8 76.5 - 67.5
Std Training 16.6 9.1 9.1 9.1 9.1 8.3 35.3 9.1 0 22.3 9.1 9.1 9.1 13.7 9.1 9.1 23.1 9.1 15.4 50.7 14.3

Shmelkov et al. Shmelkov et al. (2017) 69.4 79.3 69.5 57.4 45.4 78.4 79.1 80.5 45.7 76.3 64.8 77.2 80.8 77.5 70.1 42.3 67.5 64.4 76.7 62.7 68.3
Faster ILOD Peng et al. (2020) 64.2 74.7 73.2 55.5 53.7 70.8 82.9 82.6 51.6 79.7 58.7 78.8 81.8 75.3 77.4 43.1 73.8 61.7 69.8 61.1 68.6
ORE Joseph et al. (2021) 67.3 76.8 60 48.4 58.8 81.1 86.5 75.8 41.5 79.6 54.6 72.8 85.9 81.7 82.4 44.8 75.8 68.2 75.7 60.1 68.9
OW-DETR Gupta et al. (2022) 70.5 77.2 73.8 54.0 55.6 79.0 80.8 80.6 43.2 80.4 53.5 77.5 89.5 82.0 74.7 43.3 71.9 66.6 79.4 62.0 70.2
ROSETTA Yang et al. (2022) 75.3 77.9 65.3 56.2 55.3 79.6 84.6 72.9 49.2 73.7 68.3 71.0 78.9 77.7 80.7 44.0 69.6 68.5 76.1 68.3 69.6

iOD Kj et al. (2021) 78.2 77.5 69.4 55 56 78.4 84.2 79.2 46.6 79 63.2 78.5 82.7 79.1 79.9 44.1 73.2 66.3 76.4 57.6 70.2
iOD + Ours 77.4 78.3 73.6 58.2 62.3 77.5 85.2 81.4 51.5 78.4 62.3 81.9 84.2 74.7 77.2 49.7 75.6 67.6 74.3 57.8 71.5

Table 3: Performance (%) analysis of incremental object detection based on PASCAL VOC Everingham et al.
(2010). Here, the IOU threshold is set to 0.75.

10 + 10 setting aero cycle bird boat bottle bus car cat chair cow table dog horse bike person plant sheep sofa train tv P75
iOD Kj et al. (2021) 39.0 36.5 28.4 19.4 24.2 47.2 56.7 41.0 19.1 48.0 21.1 32.1 43.0 36.3 40.0 14.8 40.1 36.5 37.3 45.3 35.3
iOD + Ours 46.0 44.7 31.4 25.8 26.0 62.9 61.8 45.0 22.4 46.6 19.3 33.7 37.1 39.8 39.3 15.8 47.5 34.1 40.0 45.0 38.2

15 + 5 setting aero cycle bird boat bottle bus car cat chair cow table dog horse bike person plant sheep sofa train tv P75
iOD Kj et al. (2021) 40.7 40.9 28.7 19.1 23.8 61.6 56.1 38.8 23.6 47.5 18.7 40.1 40.2 41.5 39.8 9.1 40.6 32.4 41.9 47.6 36.6
iOD + Ours 43.8 44.2 34.6 20.1 32.1 56.2 62.7 45.4 25.3 49.0 30.0 42.2 50.4 44.5 42.3 11.6 44.2 36.0 48.0 42.3 40.3

19 + 1 setting aero cycle bird boat bottle bus car cat chair cow table dog horse bike person plant sheep sofa train tv P75
iOD Kj et al. (2021) 35.9 44.7 31.6 22.4 26.9 52.0 56.5 38.7 21.6 48.4 21.2 35.9 37.9 30.7 38.7 17.2 38.5 34.2 40.7 46.6 36.0
iOD + Ours 43.5 46.6 36.1 22.0 32.0 60.3 63.4 45.2 24.4 48.2 30.5 41.9 50.1 41.5 42.2 17.5 43.7 36.8 49.6 47.5 41.2

(2021). Table 2 and 3 separately show the results based on the metric of mAP50 and mAP75. We
can see that plugging our method improves the detection performance significantly. Particularly, for
the ‘19+1’ setting and the mAP75 metric, employing our method boosts the performance by around
5.2%, which further shows that our method could indeed enhance the discrimination ability.

4.4 ABLATION AND VISUALIZATION ANALYSIS

Table 4: The performance (%) of only using
the IB branch and only using the RIB branch.

Method FPR95 ↓ AUROC ↑ mAP (ID)↑
VOS 51.97 87.55 48.1

IB 46.71 89.17 48.9

RIB 45.14 89.94 49.1

TIB 41.55 90.36 49.2

In this section, we utilize PASCAL VOC as the ID data
for training and MS-COCO as the OOD data to per-
form an ablation analysis of our method.

Analysis of IB and RIB. In this paper, we define
an IB branch and a RIB branch to separately extract
instance-level features and simulative OOD features.
Here, we make an ablation analysis of our method. Ta-
ble 4 shows the performance. Here, ‘IB’ includes the
designed mixture of information bottlenecks and uses
VOS Du et al. (2022b) to synthesize virtual outliers for training. We can see that employing the IB
branch could improve the detection performance, which shows that using the IB is indeed helpful for
compressing object-unrelated contents. And we observe that exploiting the mixture of information
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(a) Input Image (b) Instance (c) OOD (d) Input Image (e) Instance (f) OOD

Figure 4: Visualization of the Instance map and OOD map based on the OOD data (MS-COCO). For
each feature map, the channels corresponding to the maximum value are selected for visualization.

bottlenecks reduces FPR95 by around 2.8%, indicating that this module is beneficial for enhancing
object-related information and improving the discrimination ability. Furthermore, we observe that
only using the RIB module could obtain superior performance compared with the baseline method
Du et al. (2022b). This indicates that reversing the optimization objective of the information bot-
tleneck could extract object-unrelated information, which is helpful for obtaining simulative OOD
features and improving the discrimination ability.

Table 5: The performance (%) of using a
different number of IB branches.

Num (n) FPR95 ↓ AUROC ↑ mAP (ID)↑
2 43.64 90.02 49.3

4 42.33 90.37 48.8

8 41.55 90.36 49.2

12 42.53 90.04 49.0

Analysis of the branch number in MIB. In this pa-
per, we design a mixture of information bottlenecks
(MIB) to purify object-related information from mul-
tiple different facets (as shown in Fig. 2). We make an
ablation analysis of the branch number. Here, we only
change the branch number and keep other modules un-
changed. Table 5 shows the detection results. We can
see that the number of IB branches indeed affects the
performance of OOD detection. When the number of
IB branches is small, the MIB module does not obtain
better performance. The reason may be that the proposal features involve much information be-
longing to different objects. Using fewer IB branches could not sufficiently capture object-related
information, which weakens the discrimination. Instead, using more IB branches introduces more
parameters, which may lead to overfitting and reduces the performance of OOD detection. We
observe that for our method, the performance of using 8 branches is the best.

Visualization analysis. In this paper, we separately extract an Instance map and an OOD map based
on the backbone output. In Fig. 4, we make a visualization analysis. We can see that the Instance
map contains plentiful object-related contents and less object-irrelevant information, which is in-
strumental in improving the localization and recognition performance. Meanwhile, we observe the
extracted OOD map is significantly unrelated to the current object, which is beneficial for obtaining
simulative OOD features and alleviates the impact of lacking unknown data for supervision.

5 CONCLUSION

For unsupervised OOD-OD, this paper proposes a method of Two-Stream Information Bottleneck
consisting of an IB branch and a RIB branch. Specifically, the IB branch aims to extract object-
related information that is helpful for improving localization and recognition performance. Mean-
while, the RIB branch is to extract simulative OOD features to alleviate the impact of lacking un-
known data for training by reversing the optimization objective of the information bottleneck. Ex-
tensive experimental results on OOD-OD and class-incremental object detection, and visualization
analysis indicate the superiorities of our method.
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A APPENDIX

Here we provide additional analyses, various ablation studies, and more visualization results.

A.1 FURTHER DISCUSSION ABOUT RIB

In this paper, to alleviate the impact of lacking unknown data for supervision, we design a RIB mod-
ule to extract simulative OOD features via reversing the optimization objective of the information
bottleneck. The reversed objective is shown as follows:

max
R,Pood

I((R,Pood);F )− λI(Pood;Y ). (12)

Proposition 1. Assume I(Pood;Y ) = 0, then we achieve the features that contain plentiful out-of-
distribution information.

Proof. Note that I(Pood;Y ) = 0 implies Pood and the labels Y are independent. By minimizing
the classification loss, the in-distribution features Pin can be promoted to be related to the labels Y .
Hence, I(Pood;Y ) = 0 enforces Pood to be irrelevant to Pin, which promotes Pood to contain rich
out-of-distribution information.

A.2 TRAINING AND INFERENCE PROCESSES

Algorithm 1 Two-Stream Information Bottleneck for Unsupervised OOD-OD
Input: ID data {X,Y,B}, randomly initialized detector with parameter θ, weight β for the KL-
loss, weight λ for the loss Ldis, weight τ for the uncertainty loss Luncertainty.
Output: Object detector with parameter θ∗, and OOD detector D.
while train do

Sample images from the ID dataset {X,Y,B}.
Calculate the Instance map Z and OOD map R using equation 2 and equation 6.
Calculate the enhancing result E using equation 3 and equation 4.
Calculate the loss LIB using equation 5, the loss Ldis using equation 8, the uncertainty loss
Luncertainty using equation 9.
Update the parameters θ based on equation 10.

end
while eval do

Calculate the OOD uncertainty score using the left part of equation 11.
Perform thresholding comparison using the right part of equation 11.

end

A.3 ABLATION ANALYSIS OF HYPER-PARAMETERS

In this paper, we use the hyper-parameter β to control the KL-loss (equation 5) and use λ and τ to
separately control the loss Ldis and Luncertainty (equation 10). Since Lcls, Lloc, and Luncertainty are
directly related to the task, β and λ should be set to a smaller value than τ . Meanwhile, if β and λ
are set to a very small value, KL-loss and Ldis may play a small role in optimization. Thus, it is
meaningful to set proper values for these hyper-parameters. Next, we utilize PASCAL VOC as the
ID data and MS-COCO as the OOD data to perform an ablation analysis of hyper-parameters. And
we only change the value of hyper-parameters and keep other modules unchanged.

Analysis of hyper-parameter β. We use β to control the KL-divergence loss in information bot-
tlenecks. When β is separately set to 0.001, 0.0001, and 0.00001, for FPR95, the corresponding
performance is 43.84%, 41.55%, and 42.83%.

Analysis of hyper-parameter λ. We use λ to constrain the reversing optimization objective of
the information bottleneck. When λ is separately set to 0.01, 0.001, and 0.0001, for FPR95, the
corresponding performance is 44.15%, 41.55%, and 43.26%.

Analysis of hyper-parameter τ . For the uncertainty loss, we follow the work Du et al. (2022b)
and use the same setting for τ . When τ is separately set to 0.15, 0.1, and 0.05, the corresponding
performance is 44.58%, 41.55%, and 43.73%.
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A.4 MORE EXPERIMENTAL RESULTS

Results on RegNetX-4.0GF. To further verify the effectiveness of our method, we evaluate our
method on another backbone network, i.e., RegNetX-4.0GF Radosavovic et al. (2020). Here, we
take PASCAL VOC as the ID training data and MS-COCO as the OOD data for evaluation. Based
on FPR95, AUROC, and mAP, the performance of our method is 44.90%, 90.08%, and 51.5%,
which significantly outperforms the VOS’s performance, i.e., 50.81%, 88.42%, and 50.8%. This
shows that our method of Two-Stream Information Bottleneck is able to strengthen the instance-
related information and extract proper simulative OOD features, which reduces the impact of lacking
unknown data for supervision and improves the discrimination ability.

Further Analysis about RIB. For RIB (see equation 7), since the OOD map R is extracted based
on the input feature map F , R could be considered to be related to F . Hence, we do not use a
mutual information constraint to enhance the dependence between R and F . Here, we make an
ablation analysis of adding the mutual information constraint. We take PASCAL VOC as the ID
training data and MS-COCO as the OOD data for evaluation. We observe that adding the mutual
information constraint increases the performance of FPR95 by around 1.1%. Meanwhile, we replace
the variational operation with the traditional convolution operation. The performance of FPR95 is
increased by around 4.8%. These analyses show that using the variational operation is helpful for
capturing distribution-related information, which is better to extract out-of-distribution information.

A.5 MORE VISUALIZATION EXAMPLES

In Fig. 5, we give more visualization examples. We can see that the extracted Instance map con-
tains plentiful object-relevant information, which is helpful for localizing and recognizing objects
accurately. Meanwhile, we can also see that the calculated OOD map is significantly different from
the Instance map, which conforms to the meaning of the OOD, i.e., the OOD data deviates from the
in-distribution. This further shows that our proposed reverse information bottleneck could indeed
extract simulative OOD features, which is beneficial for alleviating the impact of lacking unknown
data for supervision and improving the discrimination ability.

In Fig. 6 and 7, we show more detection results. We can see that our method accurately localizes
and recognizes ID objects and OOD objects. Particularly, compared with ID objects that contain a
fixed number of categories, the category distribution of OOD objects is diverse, presenting a signif-
icant challenge for the object detector. Our method attempts to solve this problem from the feature
perspective, which has been demonstrated to be effective.

A.6 COMPUTATION OF MUTUAL INFORMATION ON 3D FEATURE MAPS

In this paper, we compute KL-divergence loss to approximate the mutual information. The pro-
cesses are shown as follows:

KL(p||q) =
∑

p(x) log
p(x)

q(x)
, (13)

where p(·) and q(·) represent two probability distributions. For example, given two 3D feature
maps H ∈ Rw×h×c and C ∈ Rw×h×c, we first perform softmax operation on H and C. Then,
we separately take the corresponding elements between the two processed results as the input of
equation 13 to calculate the KL result. The mean of the KL results from all corresponding elements
is taken as the output KL-divergence loss.

A.7 PERFORMANCE ON HIGHER LEVELS OF CONTAMINATION FROM OOD CLASSES

We select 8K images from COCO and synthesize some OOD objects on these images to perform a
further evaluation. In Fig. 8, we show some synthesized images. Through experiments, we observe
that our method still outperforms VOS Du et al. (2022b) significantly. Particularly, compared with
VOS Du et al. (2022b), our method reduces FPR95 by around 10.1% and improves AUROC by
around 3.2%, which further demonstrates the effectiveness of our method.
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(a) Input Image (b) Instance (c) OOD (d) Input Image (e) Instance (f) OOD

Figure 5: Visualization of the Instance map and OOD map. For each feature map, the channels
corresponding to the maximum value are selected for visualization. We can see that the Instance
map contains plentiful object-relevant information. Meanwhile, the OOD map involves sufficient
object-irrelevant information, which is helpful for extracting simulative OOD features to alleviate
the impact of lacking unknown data for supervision.
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Figure 6: OOD detection examples based on our method. Here, we use BDD-100k as the in-
distribution data and MS-COCO as the OOD data. We can see that our method accurately distin-
guishes OOD objects, which shows the effectiveness of our method.

16



Under review as a conference paper at ICLR 2023

Figure 7: Detection results based on PASCAL VOC. We can see that our method accurately localizes
and recognizes objects in these images, e.g., the dog, train, cow, and person, which shows that our
method is effective for in-distribution data.
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Figure 8: To further evaluate our method, we synthesize some images that contain OOD classes,
e.g., the Dinosaur, Panda, and Camel. Meanwhile, we also collect some images from real scenarios.

Table 6: Definitions of notations used in our method.
Notations Definition
F The feature map extracted by the backbone network.
Z The encoded Instance map.
Pin The ID object features extracted based on Z.
Qi The output encoding result of the i-th IB branch for information enhancement.
Gi The calculated gating weight of the i-th IB branch.
A The aggregated results.
E The output enhanced results.
R The encoded OOD map.
Pood The OOD object features extracted based on R.

A.8 MORE ABLATION STUDIES ABOUT EQUATION 4

In equation 4, A is to aggregate the results of each IB branch. By this operation, A contains plen-
tiful object-related information. The learned sigmoid weight α is to balance A and Pin during the
enhancing process.

We make an ablation analysis about A and α. Firstly, we replace the gating operation (as shown
in the left part of equation 4) with the simple mean operation and keep other modules unchanged.
We observe that compared with our method, the mean operation increases FPR95 by around 2.7%,
which shows the effectiveness of the gating operation. Next, we replace the learned sigmoid weight
α with a manually set value and keep other modules unchanged. We set multiple different values
and observe that 0.6 corresponds to the best performance. However, compared with our method, this
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operation increases FPR95 by around 1.3%, which indicates that using the learned weight is much
better for balancing A and Pin.

A.9 DEFINITIONS OF NOTATIONS

Table 6 gives the definitions of notations used in our method.

A.10 LIMITATION

To promote the safe deployment of object detectors, we propose to use information bottlenecks to
strengthen object-related information and generate simulative OOD features to alleviate the impact
of lacking OOD data for training. Since we only verify our method on two benchmarks, we do not
clear about the performance of the proposed method in practical scenes, which may be the limitation
of our proposed method.
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