
Under review as a conference paper at ICLR 2023

TOWARDS MULTI-SPATIOTEMPORAL-SCALE
GENERALIZED PDE MODELING

Anonymous authors
Paper under double-blind review

ABSTRACT

Partial differential equations (PDEs) are central to describing complex physical
system simulations. Their expensive solution techniques have led to an increased
interest in deep neural network based surrogates. However, the practical utility of
training such surrogates is contingent on their ability to model complex multi-
scale spatio-temporal phenomena. Various neural network architectures have
been proposed to target such phenomena, most notably Fourier Neural Opera-
tors (FNOs), which give a natural handle over local & global spatial information
via parameterization of different Fourier modes, and U-Nets which treat local and
global information via downsampling and upsampling paths. However, gener-
alizing across different equation parameters or time-scales still remains a chal-
lenge. In this work, we make a comprehensive comparison between various FNO,
ResNet, and U-Net like approaches to fluid mechanics problems in both vorticity-
stream and velocity function form. For U-Nets, we transfer recent architectural
improvements from computer vision, most notably from object segmentation and
generative modeling. We further analyze the design considerations for using FNO
layers to improve performance of U-Net architectures without major degradation
of computational cost. Finally, we show promising results on generalization to
different PDE parameters and time-scales with a single surrogate model.

1 INTRODUCTION

G
ro

un
d

tr
ut

h

Pr
ed

ic
tio

n
A

bs
.e

rr
or

0.2

0.4

0.5

1.0

1.5

Figure 1: Example rollout trajectories of the best-
performing U-Net model, which is trained to generalize
across different timesteps (∆t) and different force terms.

Many mathematical models of physical
phenomena are expressed in differential
equation forms (Olver, 1986), generally
as temporal partial differential equations
(PDEs). Their expensive solution tech-
niques have led to an increased inter-
est in deep neural network based sur-
rogates (Bar-Sinai et al., 2019; Raissi
et al., 2019; Lu et al., 2021; Li et al.,
2020a; Brandstetter et al., 2022c; Um
et al., 2020); especially in the stud-
ies that relate to fluid dynamics (Guo
et al., 2016; Kochkov et al., 2021; Rasp
& Thuerey, 2021; Keisler, 2022; Weyn
et al., 2020; Sønderby et al., 2020; Wang
et al., 2020a; Pathak et al., 2022). How-
ever, generalizing across different PDE parameters, and different time-scales is a notoriously hard
problem. For example, in fluid mechanics, slightly different values of a single parameter like
Reynolds numbers can make all the difference for flows being laminar or turbulent. Another source
of challenge stems from the fact that physical phenomena appear at different spatial and tempo-
ral scales. For example, blizzards are rather local weather phenomena, whereas heat waves are
rather global ones, both resulting from the same underlying principles. For exactly these reasons,
fluid mechanics in general (Munson et al., 2013), and weather forecasting in particular (Jolliffe &
Stephenson, 2012) have always posed a great scientific challenge.

1

Under review as a conference paper at ICLR 2023

Spatial information Fou
rier

mo
des

Global

Local

· · ·

+

FNO Layer FNO Layer FNO Layer Local spatial information

Global spatial information

Figure 2: Information flow in Fourier based (left) and U-Net based architectures (right). FNO
layers (Li et al., 2020a) consist of Fast Fourier transforms and weight multiplication in the Fourier
space. Low Fourier modes provide global and high Fourier modes provide local information. U-
Nets (Ronneberger et al., 2015) are constructed as a spatial downsampling pass, followed by a spatial
upsampling pass, where information from the downsampling pass is added via skip-connections.

Prominent examples of neural PDE surrogates are Fourier Neural Operators (FNOs) (Li et al.,
2020a). At its core, FNO building blocks consist of Fast Fourier transforms (FFTs) (Cooley &
Tukey, 1965; Van Loan, 1992) and weight multiplication in the Fourier space, where low Fourier
modes provide global information, and high Fourier modes provide local information. An FNO
layer processes global and local information simultaneously via weight multiplication of the differ-
ent modes. On the other hand, U-Nets (Ronneberger et al., 2015) are standard architectures in the
context of image modeling, image segmentation, and image generation. U-Nets are constructed as a
spatial downsampling pass followed by a spatial upsampling pass, with additional skip connections
present between the downsampling pass activations and corresponding upsampling layers. Local
and global information is therefore treated in a more distributed fashion than in FNO like architec-
tures. Downsampling corresponds to sequentially processing information more globally, whereas
upsampling corresponds to fine-graining the global information and adding local information via
skip connections. Figure 2 contrasts local and global information flows in FNO and U-Net like ar-
chitectures. Given the recent success of modern U-Net architectures in complex generative image
modeling tasks (Ho et al., 2020; Nichol & Dhariwal, 2021; Ramesh et al., 2021) it’s pertinent that
these are evaluated on PDE Operator learning tasks and compared to FNO like approaches. Fur-
thermore, given the different nature of FNO and U-Net like approaches, it is worth surveying their
respective advantages and performance on different tasks, as well as investigating under which cir-
cumstances combining them might be beneficial. The third line of models are ResNet (He et al.,
2016a) like architectures, which a priori have no natural handle on processing local and global infor-
mation – in contrast to recently introduced Dilated ResNets (Stachenfeld et al., 2021) which adapt
filter sizes at different layers via dilated convolutions.

To summarize our contributions: (1) To our knowledge, we are the first to present a side-by-side
analysis of FNO, ResNet, and U-Net like architectures on their ability to model complex multi-
scale spatio-temporal phenomena. In doing so, we present new architecture designs based on mod-
ern updates to U-Nets. (2) We generalize to different PDE parameters and time-scales showing
promising results for single surrogate models as exemplified in Figure 1. (3) We propose a uni-
fied PyTorch based framework for enabling easy side-by-side comparisons of various PDE operator
learning methods which we plan to opensource.

2 PRELIMINARIES

Common parameterization of Fourier transform layers. The discrete Fourier transform (DFT)
together with point-wise multiplication in the Fourier space is the heart of Fourier Neural Operator
(FNO) layers. DFTs convert an n-dimensional complex signal f(x) = f(x1, . . . , xn) : Rn → C at

2

Under review as a conference paper at ICLR 2023

M1 × . . .×Mn grid points into its complex Fourier modes f̂(ξ1, . . . , ξn) via:

f̂(ξ1, . . . , ξn) = F{f}(ξ1, . . . , ξn) =

M1∑
m1=0

. . .

Mn∑
mn=0

f(x) · e−2πi·
(
m1ξ1
M1

+...+mnξn
Mn

)
, (1)

where (ξ1, . . . , ξn) ∈ ZM1 . . . × . . .ZMn . In FNO layers, discrete Fourier transforms on real-
valued input fields and respective back-transforms – implemented as Fast Fourier Transforms1 on
real-valued inputs (RFFTs)2 – are interleaved with a weight multiplication by a complex weight
matrix of shape cin × cout for each mode, which results in a complex-valued weight tensor of the
form W ∈ Ccin×cout×(ξmax

1 ×...×ξ
max
n), where Fourier modes above cut-off frequencies (ξmax

1 , . . . , ξmax
n)

are set to zero. These cut-off frequencies turn out to be important hyperparameters. Additionally, a
residual connection is usually implemented as convolution layer with kernel size 1 (see Figure 2).

Common parameterizations of convolution layers. Regular convolutional neural network (CNN)
(Fukushima & Miyake, 1982; LeCun et al., 1998) layers are the basic building blocks of U-Net like
architectures. CNNs take as input feature maps f : Zn → Rcin and convolve3 them with a set of cout
filters {wi}cout

i=1 with wi : Zn → Rcin :

[f ? wi](x) =
∑
y∈Zn

〈
f(y), wi(y − x)

〉
, (2)

which can be interpreted as an inner product of input feature maps with the corresponding filters at
every point y ∈ Zn. The filter size of a convolutional layer is a crucial choice in neural network
design since it defines the regions from which information is obtained. Common practice is to use
rather small filters (Simonyan & Zisserman, 2014; Szegedy et al., 2015; He et al., 2016a). Contin-
uous formulations of filters were introduced to handle irregularly sampled data (Schütt et al., 2018;
Simonovsky & Komodakis, 2017; Wang et al., 2018; Wu et al., 2019) and to match the resolution of
the underlying data (Peng et al., 2017; Cordonnier et al., 2019; Romero et al., 2021b). A promising
direction is to adapt filter sizes at different layers using dilation (Dai et al., 2017). For example,
dilated convolutions in the context of PDE modeling were proposed in Stachenfeld et al. (2021).
As a downside, dilations might limit the bandwidth of the filters, and thus the amount of collected
detail. A rather new direction is therefore to adapt filter sizes either via learnable dilation (Pintea
et al., 2021) or via flexible sized continuous convolutions (Romero et al., 2021a; 2022).

Connecting Fourier transform and convolution. Starting with the 1-dimensional case and omit-
ting channel dimensions, we assume a signal consisting of n input points, and we further assume
circular padding. We can now rewrite Equation 2 into a discrete circular convolution (Bamieh, 2018;
Bronstein et al., 2021) of two n−dimensional vectors f ,w ∈ Rn:

[f ?w]i =

n∑
j=0

w(i−j) mod nfj =

n−1∑
j

(Cw)ijfj , (3)

The indexing (i − j) mod n returns circular shifts, which can be combined into a circulant matrix
Cw. It is general practice to use rather small filters which only consist of k non-zero elements where
usually k << n. The remaining elements of Cw are filled up with zeros. The action of Cw on f , or
equivalently the convolution of f with w can be expressed via the convolution theorem:

Cwf =

Å
1√
n
W

ã
D

Å
1√
n
W∗
ã
f , (4)

where the matrix W consists of the eigenvectors of Cw and W∗ is its complex conjugate. All
circulant matrices have the same eigenvectors, which if multiplied with a signal yields the discrete
Fourier transform (DFT) of the signal. That is, multiplication (from left) with W∗ is the discrete
Fourier transform (of f), and multiplication by W is the inverse Fourier transform. The matrix D
has the Fourier modes of the vector w on its diagonal. Thus, we can analyze a convolution by ex-
pressing its filters as vectors w ∈ Rn, which comprise the actual k filter values (k corresponds to the

1Fast Fourier transforms (FFTs) immensely accelerate DFT computation by factorizing Equation 1 into a
product of sparse (mostly zero) factors.

2The FFT of a real-valued signal is Hermitian-symmetric, so the output contains only the positive frequen-
cies below the Nyquist frequency for the last spatial dimension.

3In deep learning, a convolution operation in the forward pass is implemented as cross-correlation.

3

Under review as a conference paper at ICLR 2023

0 50 100

0

20

40

60y-
m

od
es

1st block

6

8

·10−2

0 20 40 60

0

10

20

30

2nd block

5

6

7

8
·10−2

0 10 20 30

0

5

10

15

3rd block

7

8

9
·10−2

0 5 10 15

0
2
4
6
8

4th block

6
6.5
7
7.5
8

·10−2

x-modes

Figure 3: Analyzing filter properties of trained U-Net architectures. Absolute values of Fourier
modes of the filters in each first layer of the respective down-sampling blocks are shown, where for
each mode the average is taken over all filters.

kernel size) and additional n − k zeros. When we extend the circular convolution approach to two
dimensions, w itself becomes a matrix w ∈ Rn×n. In Figure 3, we plot the Fourier modes of the
two dimensional filters of a trained U-Net. We take the absolute values of the modes and average for
each mode over all filters in the first convolution layer of different down-sampling blocks. Although
precise statements are difficult to make, it is evident that Fourier mode averages of different blocks
are downsampled versions of each other, which complies with the interpretation that the downsam-
pling blocks of U-Nets process information at different scales. This is therefore in contrast to FNO
like architectures which process different scales within each FNO layer.

Fourier transform for downsampling. Bandlimited pre-subsampling (Mallat, 1999), i.e. suppress-
ing high-frequencies before down-sampling, is a well know technique in signal processing; for an
illustrative example see e.g. Figure 1 in Worrall & Welling (2019). We hypothesize that replacing
convolutions with FNO layers which set Fourier modes above cut-off frequencies to zero might be
advantageous, especially in the lower parts of the downsampling blocks of U-Net architectures. The
counter-hypothesis is that convolutions are all what is needed to learn an efficient downsampling.

Partial differential equations. A partial differential equation (PDE) relates solutions u : X → Rn
and respective derivatives for all points x in the domainX ∈ Rm, where u0(x) are initial conditions
at time t = 0 and B[u](t,x) = 0 are boundary conditions with boundary operator B when x is on
the boundary ∂X of the domain. In this work, we investigate PDEs of fluid mechanics problems.
To be more precise, we focus on the incompressible Navier-Stokes equations (Temam, 2001), in
velocity function and vorticity stream formulation. In 2 dimensions, the Navier-Stokes equations in
vector velocity form conserve the velocity flow fields v : X → R2 where X ∈ R2 via:

∂v

∂t
= −v · ∇v + µ∇2v −∇p+ f , ∇ · v = 0 , (5)

where v · ∇v is the convection, i.e. the rate of change of v along v, µ∇2v the viscosity, i.e. the
diffusion or net movement of v, ∇p the internal pressure and f an external force. An additional
incompressibility constraint∇ · v = 0 yields mass conservation of the Navier-Stokes equations.

By introducing the vorticity ω : X ∈ R as the curl of the flow velocity, i.e. ω = ∇ × v, we
can rewrite the incompressible 2-dimensional Navier-Stokes equations in scalar vorticity stream
function form (Kundu et al., 2015; Guyon et al., 2001; Acheson, 1991) as:

∂ω

∂t
+
∂ψ

∂y

∂ω

∂x
+
∂ψ

∂x

∂ω

∂y
=

1

Re

Å
∂2ω

∂x2
+
∂2ω

∂x2

ã
,

Å
∂2ψ

∂x2
+
∂2ψ

∂x2

ã
= −ω , (6)

where the streamfunction is defined via the relations ∂φ
∂y = vx and ∂φ

∂x = −vy , and Re is the
Reynolds number which is indirectly proportional to the viscosity and proportional to the absolute
velocity. As a result, the 2D incompressible Navier-Stokes equations are turned into one parabolic
equation, i.e. the vorticity transport equation (Equation 6 left), and one elliptic equation, i.e. the
Poisson equation (Equation 6 right). Since the streamfunction is directly obtained from the vorticity
via the Poisson equation one usually solves for the scalar vorticity.

The shallow water equations (Vreugdenhil, 1994) can be derived from integrating the incompress-
ible Navier–Stokes equations, in cases where the horizontal length scale is much larger than the
vertical length scale. As such, shallow water equations describe a thin layer of fluid of constant
density in hydrostatic balance, bounded from below by the bottom topography and from above by
a free surface. For simplified weather modeling, the shallow water equations express the velocity

4

Under review as a conference paper at ICLR 2023

in x- direction, or zonal velocity, the velocity in the y- direction, or meridional velocity, and the
vertical displacement of free surface, which subsequently is used to derive pressure fields. Since
the shallow water equations are derived from the Navier-Stokes equations, a vorticity-stream func-
tion formulation exists as well. Note however that when it comes to describing flows in e.g. more
complex geometries, the velocity formulation is in general easier to deal with (Kundu et al., 2015).

3 PDE SURROGATES

(Dilated) ResNets. We implement ResNet architectures using 8 residual blocks, where each block
consists of two convolution layers with 3×3 kernels, shortcut connections, group normalization (Wu
& He, 2018), and GeLU activation functions (Hendrycks & Gimpel, 2016). In contrast to standard
ResNets for image classification, we don’t use any down-projection techniques, e.g. convolution
layers with strides larger than 1 or via pooling layers. In doing so, ResNets have no natural built-in
handle over local and global informations, and therefore serve as important baseline to ablate effects
of local and global information flow which is fundamental in e.g. FNO and U-Net like architectures.
Recently, Stachenfeld et al. (2021) introduced Dilated ResNets, which adapt filter sizes at different
layers using dilated convolutions, and thus are an alternative way of subsequently aggregating global
information. The models consist of 4 residual blocks where each block individually consists of 7
dilated CNN layers with dilation rates of [1, 2, 4, 8, 4, 2, 1]. We implement Dilated ResNets with and
without group normalization layers.

Fourier Neural Operators. We implement FNO architectures where the number of FNO layers, the
number of channels, and the number of non-zero Fourier modes are hyperparameters. All architec-
tures consist of two embedding and two output layers. Each FNO layer comprises a convolution path
with a 1 × 1 kernel and a Fourier path where pointwise weight multiplication is done for the lower
modes in the Fourier domain. We use GeLU activation functions, and no normalization scheme.

U-Nets. U-Nets have already been used as PDE surrogates in Ma et al. (2021); Chen & Thuerey
(2021). U-Nets are constructed as a spatial downsampling followed by a spatial upsampling pass,
where each down- and upsampling block consists of two convolutional layers. A particularity of
U-Nets is the presence of skip connections between the downsampling pass activations and cor-
responding upsampling layers. Orignially, downsampling is achieved via max-pooling operations.
We term the 2015 U-Net implementation as U-Net2015, which is based on the PDEbench repos-
itory of Takamoto et al. (2022). Furthermore, we include a slightly different version which we
term U-Netbase which has bias weights and group normalization instead of batch normalization to
be comparable with modern U-Net versions. To match the number of weights of U-Net2015, the bot-
tleneck layer in U-Netbase is omitted. Modern versions of the architecture (Ho et al., 2020; Nichol
& Dhariwal, 2021; Ramesh et al., 2021) often use Wide ResNet (Zagoruyko & Komodakis, 2016)
style 2D convolutional blocks, each of which can be followed by a spatial attention block (Vaswani
et al., 2017). Other notable changes are the substitution of max-pooling operations by downsampling
layers. We term the respective implementations U-Netmod and U-Netatt in our experiments.

Fourier U-Nets. Based on the insights of Section 2, we replace lower blocks both in the down-
sampling and in the upsampling path of U-Net architectures by Fourier blocks, where each block
consists of 2 FNO layers and residual connections. We test substituting only the lowest block (U-
F1Net), and the lowest two blocks (U-F2Net) of the U-Netmod architecture. Substituting all blocks
would yield an architecture which resembles the UNO architecture (Rahman et al., 2022b), with the
difference that in UNO architectures downsampling is done individually via linear layers along the
x- and y- dimension, and that “mode scheduling” reduces the number of modes for higher blocks
in the respective downsampling and upsampling paths. For complete comparison, we therefore also
implement the UNO architecture4.

3.1 OPERATOR LEARNING

Major practical benefits of neural PDE surrogates come from amortizing the cost of their compute-
expensive training process which depends on the surrogates’ ability to effectively generalize across
different parameter settings as well as across different time discretizations. Operator learning is a
popular term for training these neural surrogates. Theoretical grounding arises from Chen & Chen

4We based our implementation on https://github.com/ashiq24/UNO

5

https://github.com/ashiq24/UNO

Under review as a conference paper at ICLR 2023

(1995) who extend the universal approximation theorem in neural networks (Hornik et al., 1989;
Cybenko, 1989) to operator approximation, forming the basis for DeepONets (Lu et al., 2019) with
theoretical extensions in Lu et al. (2021), graph kernel networks (Li et al., 2020b), and FNOs. An
impressive comparison of DeepONets and FNOs can be found in Lu et al. (2022).

Operator learning (Lu et al., 2019; Li et al., 2020b;a; Lu et al., 2021; 2022) relates solutions u :

X → Rn, u′ : X ′ → Rn′ defined on different domains X ∈ Rm, X ′ ∈ Rm′ via operators G:

G : (U ∈ u→ u′ ∈ U ′) , (7)

where U and U ′ are the spaces of solutions u and u′, respectively.

Parameter conditioning. We evaluate FNO and U-Net like architectures on their generalization
capabilities across PDE parameters and different time-scales. The chosen data sets to do so consist
of solution pairs u,u′ ∈ U where the pair itself is from the same solution space U , but different
pairs {u,u′}1 and {u,u′}2 are from different solution spaces U1 and U2 characterized by different
force terms. Further, the mapping u → u′ should generalize across different time windows ∆t.
We therefore train neural surrogates to generalize across different initial conditions, different PDE
parameters (force terms) and different time windows. Both time windows ∆t and force terms are
continuous scalar parameters, and thus can be encoded into a vector representation by using sinu-
soidal embeddings as is common in Transformers (Vaswani et al., 2017) and various neural implicit
representation learning techniques (Mildenhall et al., 2021).

4 EXPERIMENTS

We establish the following set of desiderata for our benchmarks: (i) simplicity: the tasks should be
easy to setup, while being backed by actual PDE solvers written by domain experts, (ii) challenging:
the tasks should be difficult enough, (iii) diverse: the tasks should be diverse, both in their formula-
tion as well as in their requirements, and (iv) generalizability: the tasks should probe generalization
across different time horizons as well as different parameter settings. Following these desiderata,
we assessed the described architectures in four experimental settings to probe (i) Fourier vs. U-Net
based approaches, (ii) differences due to the velocity vs. vorticity formulation of the datasets, and
(iii) parameter conditioning performance. Results of the main paper are complemented by compre-
hensive studies and various ablations in Appendix B.
All datasets contained multiple input and output fields. More precisely, one scalar and one velocity
vector field in case of the velocity formulation, and two scalars in case of the vorticity formulation.
Inputs to the neural PDE surrogates were respective fields at previous t timesteps, where t varies
for different PDEs. The one-step loss is the mean-squared error at the next timestep summed over
fields. The rollout loss (reported in Appendix B) is the mean-squared error after applying the neural
PDE surrogate 5 times, summing over fields and time dimension. We alternatively test the relative
MSE loss as used in Li et al. (2020a). We optimized models using the AdamW optimizer (Kingma
& Ba, 2014; Loshchilov & Hutter, 2019) for 50 epochs and minimized the summed mean squared
error. We used cosine annealing as learning rate scheduler (Loshchilov & Hutter, 2016) with a lin-
ear warmup. Table 1 compares parameter count, runtime and memory requirement of the tested
architectures, showing that runtime and memory requirements are in the same ballpark for both
architecture families if the number of parameters is kept similar.

Shallow water equations. We modified the implementation in SpeedyWeather.jl5(Klöwer
et al., 2022), obtaining data on a grid with spatial resolution of 192 × 96 (∆x = 1.875◦, ∆y =
3.75◦), and temporal resolution of ∆t = 48 h. We first evaluated the different architectures on the
shallow water equations in velocity function formulation, predicting scalar pressure field and vector
wind velocity field. Figure 4 (left) shows results obtained by various models. In general, all methods
which have a dedicated local and global information flow, i.e. Dilated ResNet, FNO, and U-Net
architectures, perform rather well. Nevertheless, across all tested models, performance differences
of an order of magnitude arise, where U-Nets in general perform best. Adding FNO blocks to U-Net
architectures (U-F1Net, U-F2Net) seems to be beneficial. We further evaluate on the shallow water
equations in vorticity stream formulation, and predict the scalar pressure field and the scalar wind
vorticity field. Figure 4 (middle) shows results obtained by various models. Performance-wise a
similar pattern arises, where again the lowest losses are observed for U-Net architectures.

5https://github.com/milankl/SpeedyWeather.jl

6

https://github.com/milankl/SpeedyWeather.jl

Under review as a conference paper at ICLR 2023

Table 1: Comparison of parameter count, runtime, and memory requirement of various architectures.
Subscript numbers indicate the used number of Fourier modes. For U-FNet experiments subscript
numbers indicate the number of Fourier modes in the lowest and second-lowest block.

METHOD Channels Res.Layers/Blocks Params.

Runtime [s] Mem. [MB]

Fwd. Fwd.+bwd. f32 size Peak usage

ResNet128 128 8 2.4 M 0.084 0.180 9 4273
ResNet256 256 8 9.6 M 0.231 0.497 38 8500
DilResNet128 128 4 4.2 M 0.118 0.342 16 4849
DilResNet128-norm 128 4 4.2 M 0.183 0.423 16 6922

FNO128-8modes8 128 8 33.7 M 0.057 0.162 134 2161
FNO128-8modes16 128 8 134 M 0.059 0.171 537 2953
FNO128-4modes16 128 4 67.2 M 0.031 0.089 268 1852
FNO64-4modes32 64 4 67.1 M 0.016 0.050 268 1204
FNO96-4modes32 96 4 151 M 0.026 0.080 604 2179
FNO128-4modes32 128 4 268 M 0.036 0.118 1100 3420
UNO64 64 7 110 M 0.070 0.134 440 1925
UNO128 128 7 440 M 0.160 0.341 1800 5513

U-Net201564 64 9 31 M 0.013 0.037 124 1305
U-Net2015128 128 9 124 M 0.042 0.117 496 3002
U-Netbase64 64 8 31.1 M 0.021 0.046 124 1277
U-Netbase128 128 8 124 M 0.056 0.132 496 3000
U-Netmod64 64 9 144 M 0.079 0.184 577 3900
U-Netatt64 64 9 148 M 0.081 0.190 593 3975

U-F1Netmodes8 64 9 154 M 0.083 0.205 617 3936
U-F1Netmodes16 64 9 185 M 0.084 0.208 743 4037
U-F2Netmodes8,4 64 9 163 M 0.085 0.213 652 3961
U-F2Netmodes8,8 64 9 193 M 0.085 0.216 772 4046
U-F2Netmodes16,8 64 9 224 M 0.086 0.219 897 4149
U-F2Netmodes16,16 64 9 344 M 0.090 0.232 1400 4496

448 5600
10−4

10−3

10−2

10−1

100

M
SE

Shallow water vorticity

ResNet256

DilResNet128-norm

FNO128-8modes16

FNO96-4modes32

UNO64

U-Netbase64

U-Netmod64

U-Netatt64

U-F1Netmodes16

U-F2Netmodes16,8

U-F2Netmodes8,8
448 5600

10−3

10−2

10−1

100

Shallow water velocity

2080 5200
10−4

10−3

10−2

10−1

Navier-Stokes velocity

Num. Train Trajectories

Figure 4: One-step errors for modeling different PDEs, shown for different number of training
trajectories. Results are averaged over three different random seeds, and are obtained for the velocity
function and vorticity stream formulation of the shallow water equations on 2-day prediction (left,
middle), and for the Navier-Stokes equation (right). For better visibility only selected architectures
are displayed, for full comparisons see Appendix B. Note the logarithmic scale of the y-axes.

Velocity function formulation of Navier-Stokes equations. We further tested on Navier-Stokes
equations in velocity function form, which is more common in the real world than the vorticity
stream function form. In addition to the velocity field v of Equation 5, we introduced a scalar field
representing a scalar quantity, i.e. particle concentration, that is being transported via the velocity
field. The scalar field is advected by the vector field, i.e. as the vector field changes, the scalar
field is transported along with it. Complementary, the scalar field influences the vector field only
via an external buoyancy force term in y-direction, i.e. f = (0, f)T . We obtained data on a
grid with spatial resolution of 128 × 128 (∆x = 0.25, ∆y = 0.25), and temporal resolution of

7

Under review as a conference paper at ICLR 2023

1664 6656
10−4

10−3

10−2

10−1

M
SE

One-step (∆t = 0.375 s)

FNO128modes16

U-Netmod64

U-Netatt64

U-F1Netmodes16

U-F2Netmodes16,8

U-F1Netatt,modes16

U-F2Netatt,modes16,8

1664 6656

10−3

10−2

10−1

One-step (∆t = 1.5 s)

1664 6656
10−3

10−2

10−1

One-step (∆t = 3 s)

Num. Train Trajectories

Figure 5: One-step errors obtained on the parameter conditioning experiments of the Navier-Stokes
equation. Results are shown for selected architectures, different number of training trajectories, and
different time windows: ∆t = 0.375 s (left), ∆t = 1.5 s (middle), and ∆t = 3 s (right). Results are
averaged over 208 different unseen evaluation buoyancy force values between 0.2 and 0.5.

∆t = 1.5 s using ΦFlow6 (Holl et al., 2020). Figure 4 (right) shows results obtained by different
architectures. Compared with shallow ater experiments, the compute-expensive Dilated ResNet
architectures perform on par with the best U-Net and U-FNet architectures.

0.1 0.2 0.3 0.4 0.5 0.6

10−3

10−2

10−1

extrapolation extrapolation

interpolation

Force Magnitude

M
SE

FNO128-8modes16,16

U-Netmod64
U-F1Netmodes16

Figure 6: Inter- and extrapolation performance of
different models tested on buoyancy force values
in the range 0.1 ≤ f ≤ 0.6 performing 5 steps
rollout at ∆t = 0.375 s.

Probing parameter conditioning. We
probe parameter conditioning on the veloc-
ity function formulation of the Navier-Stokes
equation. We test FNO and U-(F)Net vari-
ants, experiments for Dilated ResNet are too
compute-expensive due to their long runtimes,
see Table 1. For training, we used a dataset with
higher temporal resolution of ∆t = 0.375 s
and get equal number of trajectories from uni-
formly sampling 832 different external buoy-
ancy force values, f = (0, f)T in Equation 5,
in the range 0.2 ≤ f ≤ 0.5, using input fields
at one timestep. We conditioned our models to
predict for different time windows in the range
0.375 s ≤ ∆t ≤ 20 s, and different strengths of
the y-component of the external buoyancy force
f . Due to the unbalanced nature of the dataset
size at different ∆t, we reweighed the sampling frequency in our dataloader to try to maintain parity.
We provided conditioning information in the form of an embedding vector which can be added to
each or subset of residual blocks (Ho et al., 2020). Both, ∆t and f , are continuous valued scalar
parameters, and thus can be encoded into a vector representation by using sinusoidal Fourier embed-
dings as is common in Transformers (Vaswani et al., 2017). We added the embedding vector to the
feature maps after the first convolution/FNO layer in respective down- and up-sampling blocks. To
be more precise, for each feature map we replicated the respective embedding value along x- and y-
coordinates. For Fourier layers, this results in adding the embedding vector, the Fourier branch, and
the residual connection together. We also compare an alternative conditioning approach for U-Nets
termed AdaGN (Nichol & Dhariwal, 2021), based on affine transformation of group normalization
layers via projections of our embeddings in Figure 19 of Appendix B.5.

Figure 5 shows results obtained by various models averaged over 208 different unseen evaluation
force values. U-Net based methods perform best. In contrast to the unconditioned experiments, sub-
stituting lower blocks by FNO blocks didn’t yield better generalization capabilities. In general, we
observe that conditioning is more difficult for FNO layers, most strikingly seen in the performance
curves of FNOs. We however do not discard the possibility that for FNO layers, alternative parame-

6https://github.com/tum-pbs/PhiFlow

8

https://github.com/tum-pbs/PhiFlow

Under review as a conference paper at ICLR 2023

Ground truth Prediction Abs. error

∆
t

=
0
.3

7
5

s

0.1

0.2

∆
t

=
0
.7

5
s

0.1

0.2

0.3

∆
t

=
1
.5

s

0.1

0.2

0.3

(a) Buoyancy force= 0.22

Ground truth Prediction Abs. error

0.2

0.4

0.6

0.8

0.2

0.4

0.6

0.2

0.4

(b) Buoyancy force= 0.48

Figure 7: Scalar field predictions obtained for the parameter conditioning experiments using the best
performing U-Netmod model. Predicted and ground truth fields are shown for different buoyancy
force values and different time windows. Model inputs are the same for different time window
prediction tasks. More conditioning experiments can be found in Appendix B.5.

ter embedding and conditioning methods might be required. Nevertheless, our results also coincide
with the findings of Lu et al. (2022), which state that FNO like architectures seemed to be extremely
sensitive to noise, and failed to predict solutions for even small amounts of added Gaussian noise.
In Figure 6, we show performance of different models tested on buoyancy force values in the range
0.1 ≤ f ≤ 0.6. The curves indicate that the difficulty of the tasks increases for larger buoyancy
force values, but U-Net based PDE surrogates show better interpolation and extrapolation abilities.
In Figure 7, we display example scalar fields obtained for the parameter conditioning experiments of
the Navier-Stokes equations using the best performing U-Netmod model. Predicted and ground truth
fields are shown for different values of the absolute buoyancy force and different time-scale values.

5 CONCLUSION

We presented a comprehensive comparison between various ResNet, FNO, and U-Net based ap-
proaches on fluid mechanic problems, paving a basis towards strong baselines for the development
of neural PDE surrogates. For U-Nets, we transferred recent architectural improvements from com-
puter vision, most notably from object segmentation and generative modeling. We found that the
original U-Net architecture of Ronneberger et al. (2015), with only an additional down- and upsam-
ple layer, already functions as a powerful neural PDE surrogate, and e.g. outperforms FNOs on the
presented tasks. Combined with recent architectural improvements, we achieved further significant
improvements in performance. Moreover, we were able to use the best performing U-Net archi-
tectures to generalize to different PDE parameters as well as different time-scales within a single
surrogate model. FNO layers during early downsampling in U-Nets further improved performance
under certain circumstances, although similar to the findings of Lu et al. (2022) FNO layers seem
to have negative effects when generalizing to different time-scales and PDE parameters. Finally, we
hope that our codebase can be a starting point for further investigations on neural PDE surrogates.

Limitations & Future Work. This work focuses on the “image-to-image” modeling aspect of PDE
surrogate modeling, more precisely on the understanding of complex multi-scale spatio-temporal
phenomena. That said, in this work we did not elaborate on important aspects of neural PDE surro-
gates such as stability over long rollouts, preservation of invariants, or generalization over sampling
regularities, over domain topologies and geometries, and over boundary conditions. We see many
of these aspects as future work. Moreover, in this work we focused on modeling Navier-Stokes
equations directly, rather then in the Reynolds-averaged Navier–Stokes (RANS) form (Tennekes
et al., 1972), which is very common when describing turbulent flows. Finally, future work could
extend towards Vision Transformers (Dosovitskiy et al., 2020), comparing their abilities to model
and generalize across spatio-temporal information.

9

Under review as a conference paper at ICLR 2023

REPRODUCIBILITY AND ETHICAL STATEMENT

Reproducibility statement. We have included error bars, and ablation studies wherever we found
it necessary and appropriate. We have described our architectures in Section 3 and provided further
implementation details in Appendix B. We see it as crucial part of this work to move towards more
accessible and comprehensive comparisons for neural PDE surrogates on interesting benchmark
problems. We will therefore open-source our codebase in such a way that all our models can be run
on all our datasets, but also other models and other datasets can easily be plugged in.

Ethical statement. The societal impact of neural PDE surrogates is difficult to predict. Neural
PDE surrogates will however play an important role in modeling physical, mechanical, chemical and
other phenomena, and therefore are potential shortcuts for computationally expensive simulations.
And if used as such, PDE surrogates might potentially be directly or indirectly related to reducing the
carbon footprint and advancing various research directions. On the downside, relying on simulations
always requires rigorous cross-checks and monitoring, especially when simulations or simulated
quantities are learned.

REFERENCES

David J Acheson. Elementary fluid dynamics, 1991.

Troy Arcomano, Istvan Szunyogh, Jaideep Pathak, Alexander Wikner, Brian R Hunt, and Edward
Ott. A machine learning-based global atmospheric forecast model. Geophysical Research Letters,
47(9):e2020GL087776, 2020.

Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hinton. Layer normalization. arXiv preprint
arXiv:1607.06450, 2016.

Bassam Bamieh. Discovering transforms: A tutorial on circulant matrices, circular convolution, and
the discrete fourier transform. arXiv preprint arXiv:1805.05533, 2018.

Yohai Bar-Sinai, Stephan Hoyer, Jason Hickey, and Michael P Brenner. Learning data-driven dis-
cretizations for partial differential equations. Proceedings of the National Academy of Sciences,
116(31):15344–15349, 2019.

Saakaar Bhatnagar, Yaser Afshar, Shaowu Pan, Karthik Duraisamy, and Shailendra Kaushik. Predic-
tion of aerodynamic flow fields using convolutional neural networks. Computational Mechanics,
64(2):525–545, 2019.

Johannes Brandstetter, Rianne van den Berg, Max Welling, and Jayesh K. Gupta. Clifford neural
layers for PDE modeling. arXiv preprint arXiv:2209.04934, 2022a.

Johannes Brandstetter, Max Welling, and Daniel E Worrall. Lie point symmetry data augmentation
for neural pde solvers. arXiv preprint arXiv:2202.07643, 2022b.

Johannes Brandstetter, Daniel Worrall, and Max Welling. Message passing neural pde solvers. arXiv
preprint arXiv:2202.03376, 2022c.

Michael M Bronstein, Joan Bruna, Taco Cohen, and Petar Veličković. Geometric deep learning:
Grids, groups, graphs, geodesics, and gauges. arXiv preprint arXiv:2104.13478, 2021.

Gengxiang Chen, Yingguang Li, Qinglu Meng, Jing Zhou, Xiaozhong Hao, et al. Residual fourier
neural operator for thermochemical curing of composites. arXiv preprint arXiv:2111.10262,
2021.

Li-Wei Chen and Nils Thuerey. Towards high-accuracy deep learning inference of compressible
turbulent flows over aerofoils. arXiv preprint arXiv:2109.02183, 2021.

Tianping Chen and Hong Chen. Universal approximation to nonlinear operators by neural networks
with arbitrary activation functions and its application to dynamical systems. IEEE Transactions
on Neural Networks, 6(4):911–917, 1995.

10

Under review as a conference paper at ICLR 2023

James W Cooley and John W Tukey. An algorithm for the machine calculation of complex fourier
series. Mathematics of computation, 19(90):297–301, 1965.

Jean-Baptiste Cordonnier, Andreas Loukas, and Martin Jaggi. On the relationship between self-
attention and convolutional layers. arXiv preprint arXiv:1911.03584, 2019.

George Cybenko. Approximation by superpositions of a sigmoidal function. Mathematics of control,
signals and systems, 2(4):303–314, 1989.

Jifeng Dai, Haozhi Qi, Yuwen Xiong, Yi Li, Guodong Zhang, Han Hu, and Yichen Wei. Deformable
convolutional networks. In Proceedings of the IEEE international conference on computer vision,
pp. 764–773, 2017.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al. An
image is worth 16x16 words: Transformers for image recognition at scale. arXiv preprint
arXiv:2010.11929, 2020.

Thomas Frerix, Dmitrii Kochkov, Jamie Smith, Daniel Cremers, Michael Brenner, and Stephan
Hoyer. Variational data assimilation with a learned inverse observation operator. In International
Conference on Machine Learning, pp. 3449–3458. PMLR, 2021.

Kunihiko Fukushima and Sei Miyake. Neocognitron: A self-organizing neural network model for
a mechanism of visual pattern recognition. In Competition and cooperation in neural nets, pp.
267–285. Springer, 1982.

Victor Garcia Satorras, Zeynep Akata, and Max Welling. Combining generative and discriminative
models for hybrid inference. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d’Alché Buc,
E. Fox, and R. Garnett (eds.), Advances in Neural Information Processing Systems 32, pp. 13802–
13812. Curran Associates, Inc., 2019.

Nicholas Geneva and Nicholas Zabaras. Modeling the dynamics of pde systems with physics-
constrained deep auto-regressive networks. Journal of Computational Physics, 403:109056, 2020.

Daniel Greenfeld, Meirav Galun, Ronen Basri, Irad Yavneh, and Ron Kimmel. Learning to opti-
mize multigrid PDE solvers. In Proceedings of the 36th International Conference on Machine
Learning, ICML 2019, 9-15 June 2019, Long Beach, California, USA, pp. 2415–2423, 2019.

Steven Guan, Ko-Tsung Hsu, and Parag V Chitnis. Fourier neural operator networks: A fast and
general solver for the photoacoustic wave equation. arXiv preprint arXiv:2108.09374, 2021.

John Guibas, Morteza Mardani, Zongyi Li, Andrew Tao, Anima Anandkumar, and Bryan Catan-
zaro. Adaptive fourier neural operators: Efficient token mixers for transformers. arXiv preprint
arXiv:2111.13587, 2021.

Xiaoxiao Guo, Wei Li, and Francesco Iorio. Convolutional neural networks for steady flow ap-
proximation. In Proceedings of the 22nd ACM SIGKDD international conference on knowledge
discovery and data mining, pp. 481–490, 2016.

Etienne Guyon, Jean-Pierre Hulin, Luc Petit, Catalin D Mitescu, et al. Physical hydrodynamics.
Oxford university press, 2001.

Jiequn Han, Arnulf Jentzen, and Weinan E. Solving high-dimensional partial differential equations
using deep learning. Proceedings of the National Academy of Sciences, 115(34):8505–8510,
2018.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp.
770–778, 2016a.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Identity mappings in deep residual
networks. In European conference on computer vision, pp. 630–645. Springer, 2016b.

11

Under review as a conference paper at ICLR 2023

Dan Hendrycks and Kevin Gimpel. Gaussian error linear units (GELUs). arXiv preprint
arXiv:1606.08415, 2016.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. Advances in
Neural Information Processing Systems, 33:6840–6851, 2020.

Philipp Holl, Vladlen Koltun, Kiwon Um, and Nils Thuerey. phiflow: A differentiable pde solving
framework for deep learning via physical simulations. In NeurIPS Workshop, volume 2, 2020.

Kurt Hornik, Maxwell Stinchcombe, and Halbert White. Multilayer feedforward networks are uni-
versal approximators. Neural networks, 2(5):359–366, 1989.

Jun-Ting Hsieh, Shengjia Zhao, Stephan Eismann, Lucia Mirabella, and Stefano Ermon. Learning
neural PDE solvers with convergence guarantees. arXiv preprint arXiv:1906.01200, 2019.

Rakhoon Hwang, Jae Yong Lee, Jin Young Shin, and Hyung Ju Hwang. Solving pde-constrained
control problems using operator learning. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 36, pp. 4504–4512, 2022.

Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network training by
reducing internal covariate shift. In International conference on machine learning, pp. 448–456.
PMLR, 2015.

Xiaowei Jin, Shengze Cai, Hui Li, and George Em Karniadakis. Nsfnets (navier-stokes flow nets):
Physics-informed neural networks for the incompressible navier-stokes equations. Journal of
Computational Physics, 426:109951, 2021.

Ian T Jolliffe and David B Stephenson. Forecast verification: a practitioner’s guide in atmospheric
science. John Wiley & Sons, 2012.

Ryan Keisler. Forecasting global weather with graph neural networks. arXiv preprint
arXiv:2202.07575, 2022.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Milan Klöwer, Tom Kimpson, Alistair White, and Mosè Giordano. milankl/SpeedyWeather.jl:
v0.2.1, July 2022. URL https://doi.org/10.5281/zenodo.6788067.

Dmitrii Kochkov, Jamie A Smith, Ayya Alieva, Qing Wang, Michael P Brenner, and Stephan
Hoyer. Machine learning–accelerated computational fluid dynamics. Proceedings of the National
Academy of Sciences, 118(21):e2101784118, 2021.

Pijush K Kundu, Ira M Cohen, and David R Dowling. Fluid mechanics. Academic press, 2015.

Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning applied to
document recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998.

Zijie Li, Kazem Meidani, and Amir Barati Farimani. Transformer for partial differential equations’
operator learning. arXiv preprint arXiv:2205.13671, 2022a.

Zongyi Li, Nikola Kovachki, Kamyar Azizzadenesheli, Burigede Liu, Kaushik Bhattacharya, An-
drew Stuart, and Anima Anandkumar. Fourier neural operator for parametric partial differential
equations. arXiv preprint arXiv:2010.08895, 2020a.

Zongyi Li, Nikola Kovachki, Kamyar Azizzadenesheli, Burigede Liu, Kaushik Bhattacharya, An-
drew Stuart, and Anima Anandkumar. Neural operator: Graph kernel network for partial differ-
ential equations. arXiv preprint arXiv:2003.03485, 2020b.

Zongyi Li, Nikola Kovachki, Kamyar Azizzadenesheli, Burigede Liu, Kaushik Bhattacharya, An-
drew Stuart, and Anima Anandkumar. Markov neural operators for learning chaotic systems.
arXiv preprint arXiv:2106.06898, 2021a.

12

https://doi.org/10.5281/zenodo.6788067

Under review as a conference paper at ICLR 2023

Zongyi Li, Hongkai Zheng, Nikola Kovachki, David Jin, Haoxuan Chen, Burigede Liu, Kamyar
Azizzadenesheli, and Anima Anandkumar. Physics-informed neural operator for learning partial
differential equations. arXiv preprint arXiv:2111.03794, 2021b.

Zongyi Li, Daniel Zhengyu Huang, Burigede Liu, and Anima Anandkumar. Fourier neural operator
with learned deformations for pdes on general geometries. arXiv preprint arXiv:2207.05209,
2022b.

Marten Lienen and Stephan Günnemann. Learning the dynamics of physical systems from sparse
observations with finite element networks. arXiv preprint arXiv:2203.08852, 2022.

Burigede Liu, Nikola Kovachki, Zongyi Li, Kamyar Azizzadenesheli, Anima Anandkumar, An-
drew M Stuart, and Kaushik Bhattacharya. A learning-based multiscale method and its applica-
tion to inelastic impact problems. Journal of the Mechanics and Physics of Solids, 158:104668,
2022.

Ilya Loshchilov and Frank Hutter. SGDR: Stochastic gradient descent with warm restarts. arXiv
preprint arXiv:1608.03983, 2016.

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. In International Con-
ference on Learning Representations (ICLR), 2019. URL https://openreview.net/
forum?id=Bkg6RiCqY7.

Winfried Lötzsch, Simon Ohler, and Johannes S Otterbach. Learning the solution operator of bound-
ary value problems using graph neural networks. arXiv preprint arXiv:2206.14092, 2022.

Lu Lu, Pengzhan Jin, and George Em Karniadakis. DeepONet: Learning nonlinear operators for
identifying differential equations based on the universal approximation theorem of operators.
arXiv preprint arXiv:1910.03193, 2019.

Lu Lu, Pengzhan Jin, Guofei Pang, Zhongqiang Zhang, and George Em Karniadakis. Learning
nonlinear operators via deeponet based on the universal approximation theorem of operators.
Nature Machine Intelligence, 3(3):218–229, 2021.

Lu Lu, Xuhui Meng, Shengze Cai, Zhiping Mao, Somdatta Goswami, Zhongqiang Zhang, and
George Em Karniadakis. A comprehensive and fair comparison of two neural operators (with
practical extensions) based on fair data. Computer Methods in Applied Mechanics and Engineer-
ing, 393:114778, 2022.

Hao Ma, Yuxuan Zhang, Nils Thuerey, Xiangyu Hu, and Oskar J Haidn. Physics-driven learning
of the steady navier-stokes equations using deep convolutional neural networks. arXiv preprint
arXiv:2106.09301, 2021.

Stéphane Mallat. A wavelet tour of signal processing. Elsevier, 1999.

Romit Maulik, Vishwas Rao, Jiali Wang, Gianmarco Mengaldo, Emil Constantinescu, Bethany
Lusch, Prasanna Balaprakash, Ian Foster, and Rao Kotamarthi. Efficient high-dimensional varia-
tional data assimilation with machine-learned reduced-order models. Geoscientific Model Devel-
opment, 15(8):3433–3445, 2022.

Andreas Mayr, Sebastian Lehner, Arno Mayrhofer, Christoph Kloss, Sepp Hochreiter, and Jo-
hannes Brandstetter. Boundary graph neural networks for 3d simulations. arXiv preprint
arXiv:2106.11299, 2021.

Ben Mildenhall, Pratul P Srinivasan, Matthew Tancik, Jonathan T Barron, Ravi Ramamoorthi, and
Ren Ng. NeRF: Representing scenes as neural radiance fields for view synthesis. Communications
of the ACM, 65(1):99–106, 2021.

Bruce Roy Munson, Theodore Hisao Okiishi, Wade W Huebsch, and Alric P Rothmayer. Fluid
mechanics. Wiley Singapore, 2013.

Alexander Quinn Nichol and Prafulla Dhariwal. Improved denoising diffusion probabilistic models.
In International Conference on Machine Learning, pp. 8162–8171. PMLR, 2021.

13

https://openreview.net/forum?id=Bkg6RiCqY7
https://openreview.net/forum?id=Bkg6RiCqY7

Under review as a conference paper at ICLR 2023

P.J. Olver. Symmetry groups of differential equations. In Applications of Lie Groups to Differential
Equations, pp. 77–185. Springer, 1986.

Jaideep Pathak, Shashank Subramanian, Peter Harrington, Sanjeev Raja, Ashesh Chattopadhyay,
Morteza Mardani, Thorsten Kurth, David Hall, Zongyi Li, Kamyar Azizzadenesheli, Pedram
Hassanzadeh, Karthik Kashinath, and Animashree Anandkumar. Fourcastnet: A global data-
driven high-resolution weather model using adaptive fourier neural operators. arXiv preprint
arXiv:2202.11214, 2022.

Chao Peng, Xiangyu Zhang, Gang Yu, Guiming Luo, and Jian Sun. Large kernel matters–improve
semantic segmentation by global convolutional network. In Proceedings of the IEEE conference
on computer vision and pattern recognition, pp. 4353–4361, 2017.

Ethan Perez, Florian Strub, Harm De Vries, Vincent Dumoulin, and Aaron Courville. FiLM: Visual
reasoning with a general conditioning layer. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 32, 2018.

Tobias Pfaff, Meire Fortunato, Alvaro Sanchez-Gonzalez, and Peter W Battaglia. Learning mesh-
based simulation with graph networks. arXiv preprint arXiv:2010.03409, 2020.

Silvia L Pintea, Nergis Tömen, Stanley F Goes, Marco Loog, and Jan C van Gemert. Resolution
learning in deep convolutional networks using scale-space theory. IEEE Transactions on Image
Processing, 30:8342–8353, 2021.

Timothy Praditia, Matthias Karlbauer, Sebastian Otte, Sergey Oladyshkin, Martin V Butz, and Wolf-
gang Nowak. Finite volume neural network: Modeling subsurface contaminant transport. arXiv
preprint arXiv:2104.06010, 2021.

Md Ashiqur Rahman, Manuel A Florez, Anima Anandkumar, Zachary E Ross, and Kamyar Aziz-
zadenesheli. Generative adversarial neural operators. arXiv preprint arXiv:2205.03017, 2022a.

Md Ashiqur Rahman, Zachary E Ross, and Kamyar Azizzadenesheli. U-no: U-shaped neural oper-
ators. arXiv preprint arXiv:2204.11127, 2022b.

Maziar Raissi, Paris Perdikaris, and George E Karniadakis. Physics-informed neural networks: A
deep learning framework for solving forward and inverse problems involving nonlinear partial
differential equations. Journal of Computational physics, 378:686–707, 2019.

Maziar Raissi, Alireza Yazdani, and George Em Karniadakis. Hidden fluid mechanics: Learning
velocity and pressure fields from flow visualizations. Science, 367(6481):1026–1030, 2020.

Aditya Ramesh, Mikhail Pavlov, Gabriel Goh, Scott Gray, Chelsea Voss, Alec Radford, Mark Chen,
and Ilya Sutskever. Zero-shot text-to-image generation. In International Conference on Machine
Learning, pp. 8821–8831. PMLR, 2021.

Yongming Rao, Wenliang Zhao, Zheng Zhu, Jiwen Lu, and Jie Zhou. Global filter networks for
image classification. Advances in Neural Information Processing Systems, 34, 2021.

Stephan Rasp and Nils Thuerey. Data-driven medium-range weather prediction with a resnet pre-
trained on climate simulations: A new model for weatherbench. Journal of Advances in Modeling
Earth Systems, 13(2):e2020MS002405, 2021.

David W Romero, Robert-Jan Bruintjes, Jakub M Tomczak, Erik J Bekkers, Mark Hoogendoorn,
and Jan C van Gemert. FlexConv: Continuous kernel convolutions with differentiable kernel
sizes. arXiv preprint arXiv:2110.08059, 2021a.

David W Romero, Anna Kuzina, Erik J Bekkers, Jakub M Tomczak, and Mark Hoogendoorn.
CKConv: Continuous kernel convolution for sequential data. arXiv preprint arXiv:2102.02611,
2021b.

David W Romero, David M Knigge, Albert Gu, Erik J Bekkers, Efstratios Gavves, Jakub M Tom-
czak, and Mark Hoogendoorn. Towards a general purpose CNN for long range dependencies in
ND. arXiv preprint arXiv:2206.03398, 2022.

14

Under review as a conference paper at ICLR 2023

Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-Net: Convolutional networks for biomedi-
cal image segmentation. In International Conference on Medical image computing and computer-
assisted intervention, pp. 234–241. Springer, 2015.

Alvaro Sanchez-Gonzalez, Jonathan Godwin, Tobias Pfaff, Rex Ying, Jure Leskovec, and Pe-
ter W. Battaglia. Learning to simulate complex physics with graph networks. arXiv preprint
arXiv:2002.09405, 2020.

Kristof T Schütt, Huziel E Sauceda, P-J Kindermans, Alexandre Tkatchenko, and K-R Müller.
SchNet–a deep learning architecture for molecules and materials. The Journal of Chemical
Physics, 148(24):241722, 2018.

Wenlei Shi, Xinquan Huang, Xiaotian Gao, Xinran Wei, Jia Zhang, Jiang Bian, Mao Yang, and Tie-
Yan Liu. Lordnet: Learning to solve parametric partial differential equations without simulated
data. arXiv preprint arXiv:2206.09418, 2022.

Martin Simonovsky and Nikos Komodakis. Dynamic edge-conditioned filters in convolutional neu-
ral networks on graphs. In Proceedings of the IEEE conference on computer vision and pattern
recognition, pp. 3693–3702, 2017.

Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image
recognition. arXiv preprint arXiv:1409.1556, 2014.

Justin Sirignano and Konstantinos Spiliopoulos. Dgm: A deep learning algorithm for solving partial
differential equations. Journal of computational physics, 375:1339–1364, 2018.

Casper Kaae Sønderby, Lasse Espeholt, Jonathan Heek, Mostafa Dehghani, Avital Oliver, Tim Sal-
imans, Shreya Agrawal, Jason Hickey, and Nal Kalchbrenner. Metnet: A neural weather model
for precipitation forecasting. arXiv preprint arXiv:2003.12140, 2020.

Kimberly Stachenfeld, Drummond B Fielding, Dmitrii Kochkov, Miles Cranmer, Tobias Pfaff,
Jonathan Godwin, Can Cui, Shirley Ho, Peter Battaglia, and Alvaro Sanchez-Gonzalez. Learned
coarse models for efficient turbulence simulation. arXiv preprint arXiv:2112.15275, 2021.

Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir Anguelov, Du-
mitru Erhan, Vincent Vanhoucke, and Andrew Rabinovich. Going deeper with convolutions. In
Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 1–9, 2015.

Makoto Takamoto, Timothy Praditia, Raphael Leiteritz, Dan MacKinlay, Francesco Alesiani, Dirk
Pflüger, and Mathias Niepert. PDEBench: An Extensive Benchmark for Scientific Machine
Learning. In 36th Conference on Neural Information Processing Systems (NeurIPS 2022) Track
on Datasets and Benchmarks, 2022. URL https://doi.org/10.18419/darus-2986.

Roger Temam. Navier-Stokes equations: theory and numerical analysis, volume 343. American
Mathematical Soc., 2001.

Hendrik Tennekes, John Leask Lumley, Jonh L Lumley, et al. A first course in turbulence. MIT
press, 1972.

Kiwon Um, Robert Brand, Yun Raymond Fei, Philipp Holl, and Nils Thuerey. Solver-in-the-loop:
Learning from differentiable physics to interact with iterative pde-solvers. Advances in Neural
Information Processing Systems, 33:6111–6122, 2020.

Charles Van Loan. Computational frameworks for the fast Fourier transform. SIAM, 1992.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in Neural Informa-
tion Processing Systems, 30, 2017.

Cornelis Boudewijn Vreugdenhil. Numerical methods for shallow-water flow, volume 13. Springer
Science & Business Media, 1994.

Nils Wandel, Michael Weinmann, and Reinhard Klein. Learning incompressible fluid dynam-
ics from scratch–towards fast, differentiable fluid models that generalize. arXiv preprint
arXiv:2006.08762, 2020.

15

https://doi.org/10.18419/darus-2986

Under review as a conference paper at ICLR 2023

Nils Wandel, Michael Weinmann, Michael Neidlin, and Reinhard Klein. Spline-PINN: Approaching
PDEs without data using fast, physics-informed hermite-spline CNNs. In Proceedings of the AAAI
Conference on Artificial Intelligence, volume 36, pp. 8529–8538, 2022.

Rui Wang, Karthik Kashinath, Mustafa Mustafa, Adrian Albert, and Rose Yu. Towards physics-
informed deep learning for turbulent flow prediction. In Proceedings of the 26th ACM SIGKDD
International Conference on Knowledge Discovery & Data Mining, pp. 1457–1466, 2020a.

Rui Wang, Robin Walters, and Rose Yu. Incorporating symmetry into deep dynamics models for
improved generalization. arXiv preprint arXiv:2002.03061, 2020b.

Shenlong Wang, Simon Suo, Wei-Chiu Ma, Andrei Pokrovsky, and Raquel Urtasun. Deep paramet-
ric continuous convolutional neural networks. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pp. 2589–2597, 2018.

Gege Wen, Zongyi Li, Kamyar Azizzadenesheli, Anima Anandkumar, and Sally M Benson. U-
fno—an enhanced fourier neural operator-based deep-learning model for multiphase flow. Ad-
vances in Water Resources, 163:104180, 2022.

Jonathan A Weyn, Dale R Durran, and Rich Caruana. Improving data-driven global weather pre-
diction using deep convolutional neural networks on a cubed sphere. Journal of Advances in
Modeling Earth Systems, 12(9):e2020MS002109, 2020.

Jonathan A Weyn, Dale R Durran, Rich Caruana, and Nathaniel Cresswell-Clay. Sub-seasonal fore-
casting with a large ensemble of deep-learning weather prediction models. Journal of Advances
in Modeling Earth Systems, 13(7):e2021MS002502, 2021.

Daniel Worrall and Max Welling. Deep scale-spaces: Equivariance over scale. Advances in Neural
Information Processing Systems, 32, 2019.

Tailin Wu, Takashi Maruyama, and Jure Leskovec. Learning to accelerate partial differential equa-
tions via latent global evolution. arXiv preprint arXiv:2206.07681, 2022.

Wenxuan Wu, Zhongang Qi, and Li Fuxin. PointConv: Deep convolutional networks on 3d point
clouds. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recogni-
tion, pp. 9621–9630, 2019.

Yuxin Wu and Kaiming He. Group normalization. In European Conference on Computer Vision
(ECCV), pp. 3–19, 2018.

Yan Yang, Angela F Gao, Jorge C Castellanos, Zachary E Ross, Kamyar Azizzadenesheli, and
Robert W Clayton. Seismic wave propagation and inversion with neural operators. The Seismic
Record, 1(3):126–134, 2021.

Sergey Zagoruyko and Nikos Komodakis. Wide residual networks. In British Machine Vision
Conference 2016. British Machine Vision Association, 2016.

Yinhao Zhu and Nicholas Zabaras. Bayesian deep convolutional encoder–decoder networks for
surrogate modeling and uncertainty quantification. Journal of Computational Physics, 366:415–
447, 2018.

Kirill Zubov, Zoe McCarthy, Yingbo Ma, Francesco Calisto, Valerio Pagliarino, Simone Azeglio,
Luca Bottero, Emmanuel Luján, Valentin Sulzer, Ashutosh Bharambe, et al. Neuralpde: Au-
tomating physics-informed neural networks (PINNs) with error approximations. arXiv preprint
arXiv:2107.09443, 2021.

16

Under review as a conference paper at ICLR 2023

CONTENTS

1 Introduction 1

2 Preliminaries 2

3 PDE Surrogates 5

3.1 Operator learning . 5

4 Experiments 6

5 Conclusion 9

A Related work 18

B Experiments 18

B.1 Experimental details . 18

B.2 Additional model details . 19

B.2.1 ResNet . 19

B.2.2 Dilated ResNet . 19

B.2.3 FNO . 19

B.2.4 U-Net . 19

B.2.5 Parameter Conditioning . 20

B.2.6 Spatial-spectral parameter conditioning for Fourier layers 20

B.3 Shallow water equations. 21

B.4 Navier-Stokes equations. 30

B.5 Parameter conditioning. 36

17

Under review as a conference paper at ICLR 2023

A RELATED WORK

Neural PDE modeling is appearing in many flavors. Various works are numerical-neural hybrid
approaches where the computation graph of the solver is preserved and heuristically-chosen param-
eters are left for the neural network to predict (Bar-Sinai et al., 2019; Kochkov et al., 2021; Greenfeld
et al., 2019; Hsieh et al., 2019; Praditia et al., 2021; Um et al., 2020; Garcia Satorras et al., 2019).
The works of Sanchez-Gonzalez et al. (2020); Pfaff et al. (2020); Mayr et al. (2021) are of similar
flavor where neural network predictions are input to the time-update of node positions in graphs and
meshes. Fully neural network based approaches can be roughly split into two parts. First, meth-
ods that focus on the approximation of the solution function of the underlying PDE Sirignano &
Spiliopoulos (2018); Han et al. (2018); Raissi et al. (2019); Jin et al. (2021); Raissi et al. (2020);
Zubov et al. (2021). And second, methods that focus on the surrogate learning of solution operators.
CNN-base models were among the first PDE surrogates (Guo et al., 2016; Bhatnagar et al., 2019;
Zhu & Zabaras, 2018). Operator learning models were popularized via Fourier Neural Operators (Li
et al., 2020a) and FNO-based applications and refinements (Li et al., 2021b; Rahman et al., 2022b;
Rao et al., 2021; Guibas et al., 2021; Li et al., 2021a; Rahman et al., 2022a; Pathak et al., 2022;
Wen et al., 2022; Liu et al., 2022; Yang et al., 2021; Guan et al., 2021; Hwang et al., 2022; Chen
et al., 2021; Li et al., 2022b), as well as via DeepONets (Lu et al., 2019; 2021; 2022). Other di-
rections include the modeling of PDE solution operators via latent space models, transformers, and
graph neural networks (GNNs) (Wu et al., 2022; Li et al., 2022a; Brandstetter et al., 2022c; Lötzsch
et al., 2022; Lienen & Günnemann, 2022). The ever persisting chicken-egg problem (Brandstetter
et al., 2022b; Shi et al., 2022) of how to obtain high quality ground truth training data for neural
PDE surrogates is approached either via clever data augmentation (Brandstetter et al., 2022b), via
equivariant neural solvers (Wang et al., 2020b), or via “data-free” learning paradigms (Geneva &
Zabaras, 2020; Wandel et al., 2020; 2022; Shi et al., 2022). Pratical applications of neural PDE
surrogates can especially be found in weather forecasting (Pathak et al., 2022; Guibas et al., 2021;
Keisler, 2022; Rasp & Thuerey, 2021; Weyn et al., 2020; 2021; Arcomano et al., 2020; Sønderby
et al., 2020; Frerix et al., 2021; Maulik et al., 2022), and modeling of fluid dynamics (Ma et al.,
2021; Stachenfeld et al., 2021; Wang et al., 2020a; Brandstetter et al., 2022a).

B EXPERIMENTS

This appendix supports Section 4 of the main paper.

B.1 EXPERIMENTAL DETAILS

Loss functions and metrics. We report the summed MSE (SMSE) loss defined as:

LSMSE =
1

Ny

∑
y∈Z2

Nt∑
j=1

Nfields∑
i=1

‖ui(y, tj)− ûi(y, tj)‖22 , (8)

where u is the target, û the model output, Nfields comprises scalar fields as well as individual vector
field components, and Ny is the total number of spatial points. Equation 8 is used for training with
Nt = 1, and further allows us to define our two main metrics:

• One-step loss where Nt = 1 and Nfields comprises all scalar and vector components.
• Rollout loss where Nt = 5 and Nfields comprises all scalar and vector components.

Alternatively, we train with the summed relative MSE (RMSE) loss as introduced in Li et al. (2020a):

LSMSE =
1

Ny

∑
y∈Z2

Nt∑
j=1

Nfields∑
i=1

‖ui(y, tj)− ûi(y, tj)‖22
‖ûi(y, tj)‖22

. (9)

Training and model selection. We optimized models using the AdamW optimizer (Kingma & Ba,
2014; Loshchilov & Hutter, 2019) with the best learning rates of [10−4, 2 · 10−4] and weight decay
of 10−5 for 50 epochs and minimized the summed mean squared error (SMSE) which is outlined in
Equation 8. We used cosine annealing as learning rate scheduler (Loshchilov & Hutter, 2016) with

18

Under review as a conference paper at ICLR 2023

a linear warmup. For baseline ResNet models, we optimized number of layers, number of channels,
and normalization procedures. For the reported results we used group normalization (Wu & He,
2018) with 1 group which is equivalent to Layer norm (Ba et al., 2016) (except for final normaliza-
tion layer in U-Nets where we use 8 groups). We further tested different activation functions. For
baseline FNO models, we optimized number of layers, number of channels, and number of Fourier
modes. Larger numbers of layers or channels did not improve the performances for both ResNet
and FNO models. For U-Net like architectures, especially for U-Netatt, we specifically needed to
optimize the maximum learning rate to be lower (10−4). We further optimized for different number
of hidden layers, and initialization and normalization schemes. For the reported results, we used
pre-activations (He et al., 2016b) and layer normalization (Ba et al., 2016). We used an effective
batch size of 32 for training.

Computational resources. All experiments used 4×16 GB NVIDIA V100 machines for training.
Average training times varied between 2 h and 140 h, depending on task and number of trajectories.
Parameter conditioning runs were the most expensive ones.

Runtime comparison. We warmup the benchmark for 10 iterations and report average runtimes
over 100 runs on a single 16 GB NVIDIA V100 machine with input batch size of 8. Note that UNO
was much slower on multi-GPU training in the cloud.

B.2 ADDITIONAL MODEL DETAILS

B.2.1 RESNET

We use two embedding and two output layers with kernel sizes of 1× 1.

B.2.2 DILATED RESNET

The implemented Dilated ResNet models consist of 4 residual blocks where each block individually
consists of 7 dilated CNN layers with dilation rates of [1, 2, 4, 8, 4, 2, 1]. We implement Dilated
ResNets with and without group normalization layers applied to each layer in the respective dilation
blocks.

B.2.3 FNO

We use FNOs consisting of {4, 8} FNO layers, where {8, 16, 32}modes are multiplied in the Fourier
space, and {64, 128} channels are used. We use two embedding and two output layers with kernel
sizes of 1× 1 as suggested in Li et al. (2020a). The number of non-zero Fourier modes, the number
of FNO layers and the number of channels are hyperparameter, where we report results for different
values in each of the experiment. We use GeLU activation functions, and no normalization scheme.
Normalization schemes and residual connections did not improve performance, as already reported
in Brandstetter et al. (2022a).

B.2.4 U-NET

We use one embedding and one output layers with kernel sizes of 3×3. To allow a fair comparison to
FNO (and ResNet) architectures, we ablated architectures also for kernel sizes of 1×1 for embedding
and output layers.

U-Net2015. We use channel multipliers of (2, 2, 2, 2). The network consists overall of 4 down-
sampling, one bottleneck and 4 upsampling layers. We further use batch normalization (Ioffe &
Szegedy, 2015), and no bias weights. The implementation is based on the PDEbench repository
of Takamoto et al. (2022). Compared to the implementation of Takamoto et al. (2022), we use GeLU
activations instead of tanh activations since we observe significant better performances. For the sake
of completeness, we also report tanh results terming the models U-Net2015-tanh.

U-Netbase. We use channel multipliers of (2, 2, 2, 2). We replaced batch normalization (Ioffe &
Szegedy, 2015) with group normalization (Wu & He, 2018) with number of groups equal 1 to be

19

Under review as a conference paper at ICLR 2023

consistent with other architectures. Additionally, compared to the U-Net2015 version, we use bias
weights but no bottleneck layer.

U-Netmod. We use channel multipliers of (1, 2, 2, 4), and residual connections in each down- and
upsampling block. We use pre-normalization and pre-activations (He et al., 2016b). Additionally,
we zero-initialize the second Conv layer in each residual block.

U-Netmod,attn. Adding attention to all down- and upsampling blocks made training unstable, and
would have required an extensive hyperparameter search. We therefore only use attention in the
middle blocks after downsampling. We further only use a single attention along with a residual
connection bypassing attention.

B.2.5 PARAMETER CONDITIONING

Embedding. We use sinusoidal embedding as proposed in Vaswani et al. (2017) for positional
encoding of scalar values, such as prediction time window and force strength:

Emb(x, d) =
[
cos

x

100002x/di
, sin

x

100002x/di

]
for 0 ≤ di < d , (10)

where x is the embedded quantity and d is the output embedding dimension.

Projection. We use a two-layer feed-forward network to project each of the embeddings to higher
dimension (4× hidden channels), and add them together before passing them to each block via
another linear layer.

Conditioning. We explore two different mechanisms for conditioning, originally proposed in the
image modeling literature. Simple “Addition” as proposed by Ho et al. (2020) which can easily be
extended to FNO layers and “AdaGN” as proposed by Nichol & Dhariwal (2021) which requires
normalization layers to be applicable and was therefore restricted to U-Net based architectures in
our experiments.

• Addition: A single Linear layer is used to scale the dimensions appropriately to match
the dimensions of the conditioned block. Conditions are added to the first Conv layer’s
output, followed by normalization and a second Conv layer. This conditioning is applied
to all blocks in the network.

• AdaGN. Instead of directly adding the Linear projection of the embedding to the respec-
tive blocks, the projection y is split into [ys, yb] to scale and shift the normalized output h
before passing to the second Conv layer in each block, similar to as is done in FiLM (Perez
et al., 2018):

h′ = ys � GroupNorm(h) + yb , (11)
where � denotes the pointwise product. The conditioning is applied to all blocks. Since
FNO architectures were implemented without group norm, AdaGN was not applicable to
those.

In Appendix B.5, we ablate “Addition” and “AdaGN” embeddings for U-Net architectures.

B.2.6 SPATIAL-SPECTRAL PARAMETER CONDITIONING FOR FOURIER LAYERS

Since FNO like architectures are usually implemented without normalization schemes, only “Addi-
tion” is applicable as conditioning strategy. Adding the conditioning at the end of each FNO layer,
i.e. in the spatial domain, omits that the conditioning information is accessible in the Fourier do-
main too. This was somewhat unsatisfying, so we explored a straightforward mechanism to apply
conditioning to the Fourier branch as well. We implement and alternative FreqLinear layer to
project the embeddings into Fourier space too. Each Fourier mode is first multiplied with the em-
bedding, then weights are mode-wise multiplied and the inverse Fourier transform is performed.
Adding conditioning both in the Fourier and the spatial domain seems to work best. We term this
alternative embedding “Spatial-Spectral” embedding. In Appendix B.5, we ablate “Addition” and
“Spatial-Spectral” embeddings for FNO like architectures including UFNets with FNO blocks in the
downsampling path.

20

Under review as a conference paper at ICLR 2023

B.3 SHALLOW WATER EQUATIONS.

The shallow water equations are solved on a regular grid with periodic boundary conditions as de-
scribed in Section 4 of the main paper. The inputs to the shallow water experiments are respective
fields at the previous 2 timesteps. Pressure and vorticity fields are normalized for training. Example
rollout trajectories are displayed in Figure 8 for the velocity function formulation and in Figure 9
for the vorticity stream function formulation. We outline further details on the results on the shallow
water experiments in Figures 10,11, and Tables 2,3. Additionally, we show results for 1-day predic-
tions in Figure 12 and Table 7. We further ablate different encoding/decoding choices for U-Net like
architectures in Figures 13,14. Finally, we compare different the specs of different FNO, UNO, and
U-FNet architectures in Table 4.

G
ro

un
d

tr
ut

h

Pr
ed

ic
tio

n
A

bs
.e

rr
or

−2

0

2

0.05

0.10

(a) Scalar pressure field

G
ro

un
d

tr
ut

h

Pr
ed

ic
tio

n
A

bs
.e

rr
or

−10

0

10

0.1

0.2

(b) Vector field x-component

G
ro

un
d

tr
ut

h

Pr
ed

ic
tio

n
A

bs
.e

rr
or

0

10

0.1

0.2

0.3

(c) Vector field y-component

Figure 8: Shallow water 2-day predictions, velocity function form. Example rollouts of the scalar
pressure and the vector wind field of the shallow water experiments are shown, obtained by a U-
F1Netmodes16 PDE surrogate model (top), and compared to the ground truth (bottom). Predictions are
obtained for a time window ∆t = 48 h. The respective model input fields comprise two timesteps,
we only show the first of those (left-most ground truth column).

21

Under review as a conference paper at ICLR 2023

G
ro

un
d

tr
ut

h

Pr
ed

ic
tio

n
A

bs
.e

rr
or

−2

0

2

0.025

0.050

0.075

(a) Scalar pressure field

G
ro

un
d

tr
ut

h

Pr
ed

ic
tio

n
A

bs
.e

rr
or

−2.5

0.0

2.5

0.1

0.2

(b) Scalar vorticity field

Figure 9: Shallow water 2-day predictions, vorticity stream function form. Example rollouts of the
scalar pressure and the scalar vorticity field of the shallow water experiments are shown, obtained
by a U-F2Netmodes16,16 PDE surrogate model (top), and compared to the ground truth (bottom).
Predictions are obtained for a time window ∆t = 48 h. The respective model input fields comprise
two timesteps, we only show the first of those (left-most ground truth column).

448 5600
10−3

10−2

10−1

100

101

M
SE

Shallow water velocity, rollout

ResNet128 ResNet256 DilResNet128 DilResNet128-norm FNO128-8modes8

FNO128-8modes16 FNO128-4modes16 FNO64-4modes32 FNO96-4modes32 FNO128-4modes32

UNO64 UNO128 U-Net201564 U-Net2015128 U-Netbase64

U-Netbase128 U-Netmod64 U-Netatt64 U-F1Netmodes8 U-F1Netmodes16

U-F2Netmodes8,4 U-F2Netmodes16,8 U-F2Netmodes8,8 U-F2Netmodes16,16 U-F1Netatt,modes16,8

448 5600

10−3

10−2

10−1

100

Shallow water velocity, one-step

Num. Train Trajectories

Figure 10: Shallow water 2-day predictions. Rollout and one-step errors of various architectures on
the shallow water equations are reported. Results are obtained for predictions of 2-day time windows
for the velocity function formulation and are averaged over three different random seeds. Note the
logarithmic scale of the y-axes.

22

Under review as a conference paper at ICLR 2023

448 5600
10−3

10−2

10−1

100

M
SE

Shallow water vorticity, rollout

ResNet128 ResNet256 DilResNet128 DilResNet128-norm FNO128-8modes8

FNO128-8modes16 FNO128-4modes16 FNO64-4modes32 FNO96-4modes32 FNO128-4modes32

UNO64 UNO128 U-Net201564 U-Net2015128 U-Netbase64

U-Netbase128 U-Netmod64 U-Netatt64 U-F1Netmodes8 U-F1Netmodes16

U-F2Netmodes8,4 U-F2Netmodes16,8 U-F2Netmodes8,8 U-F2Netmodes16,16 U-F1Netatt,modes16,8

448 5600
10−4

10−3

10−2

10−1

100

Shallow water vorticity, one-step

Num. Train Trajectories

Figure 11: Shallow water 2-day predictions. Rollout and one-step errors of various architectures
on the shallow water equations. Results are obtained for predictions of 2-day time windows for the
vorticity stream function formulation and are averaged over three different random seeds. Note the
logarithmic scale of the y-axes.

256 2800
10−3

10−2

10−1

100

M
SE

Shallow water velocity, rollout

ResNet128

ResNet256

DilResNet128

DilResNet128-norm

FNO128-8modes16

UNO64

UNO128

U-Netbase64

U-Netbase128

U-Netmod64

U-Netatt64

U-F1Netmodes16

U-F2Netmodes16,8

U-F2Netmodes8,8

U-F2Netmodes16,16

U-F1Netatt,modes16,8

256 2800
10−4

10−3

10−2

10−1

100

Shallow water velocity, one-step

Num. Train Trajectories

Figure 12: Shallow water 1-day predictions. Rollout and one-step errors of various architectures on
the shallow water equations are reported. Results are obtained for predictions of 1-day time windows
for the velocity function formulation and are averaged over three different random seeds. Note the
logarithmic scale of the y-axes.

23

Under review as a conference paper at ICLR 2023

448 5600
10−3

10−2

10−1

100

M
SE

Shallow water vorticity, rollout

U-Netmod64-3x3

U-Netmod64-1x1

U-Netatt64-3x3

U-Netatt64-1x1

U-F1Netmodes8-3x3

U-F1Netmodes8-1x1

U-F1Netmodes16-3x3

U-F1Netmodes16-1x1

U-F2Netmodes8,4-3x3

U-F2Netmodes8,4-1x1

U-F2Netmodes16,8-3x3

U-F2Netmodes16,8-1x1

448 5600
10−4

10−3

10−2

10−1

Shallow water vorticity, one-step

Num. Train Trajectories

Figure 13: Shallow water 2-day predictions. Ablation results of different encoding and decoding
choices for various U-Net architectures are reported. 1× 1 and 3× 3 kernels are compared for both
encoding and decoding. Rollout and one-step errors are obtained on the shallow water equations for
2-day predictions for the vorticity stream function formulation and are averaged over three different
random seeds.

448 5600
10−3

10−2

10−1

100

M
SE

Shallow water velocity, rollout

U-Netmod64-3x3

U-Netmod64-1x1

U-Netatt64-3x3

U-Netatt64-1x1

U-F1Netmodes8-3x3

U-F1Netmodes8-1x1

U-F1Netmodes16-3x3

U-F1Netmodes8-1x1

U-F2Netmodes8,4-3x3

U-F2Netmodes8,4-1x1

U-F2Netmodes16,8-3x3

U-F2Netmodes16,8-1x1

448 5600

10−3

10−2

10−1

Shallow water velocity, one-step

Num. Train Trajectories

Figure 14: Shallow water 2-day predictions. Ablation results of different encoding and decoding
choices for various U-Net architectures are reported. 1× 1 and 3× 3 kernels are compared for both
encoding and decoding. Rollout and one-step errors are obtained on the shallow water equations for
2-day predictions for the velocity function formulation and are averaged over three different random
seeds.

24

Under review as a conference paper at ICLR 2023

Table 2: Shallow water 2-day predictions, velocity function formulation. Rollout and one-step errors
of various architectures on the shallow water equations are reported. Summed mean-squared errors
(SMSE) are obtained for 2-day predictions for the velocity function formulation and are averaged
over three different random seeds. If results are displayed without standard deviation, the obtained
standard deviation is lower than the four digit precision minimum. The best model of each model
class is highlighted.

METHOD Trajs.

SMSE

onestep rollout

ResNet128 448 0.7787± 0.0049 5.7408± 0.0223
ResNet128 5600 0.5465± 0.0130 5.4946± 0.2009
ResNet256 448 0.4751± 0.0005 4.0954± 0.0181
ResNet256 5600 0.5294± 0.0364 5.4155± 0.0657

DilResNet128 448 0.3800± 0.0042 2.4860± 0.0260
DilResNet128 5600 0.0429± 0.0014 0.5476± 0.0109

DilResNet128-norm 448 0.1723± 0.0026 1.3377± 0.0144
DilResNet128-norm 5600 0.0262± 0.0006 0.3770± 0.0081

FNO128-8modes8 448 1.0322± 0.0055 3.8635± 0.0090
FNO128-8modes8 5600 0.2023± 0.0023 0.8549± 0.0124

FNO128-8modes16 448 0.3681± 0.0042 1.7088± 0.0096
FNO128-8modes16 5600 0.0236± 0.0001 0.0878± 0.0007
FNO128-4modes16 448 0.3802± 0.0021 1.8542± 0.0056
FNO128-4modes16 5600 0.0397± 0.0002 0.1601± 0.0010

FNO64-4modes32 448 0.3750± 0.0012 2.0393± 0.0050
FNO64-4modes32 5600 0.0225± 0.0007 0.1015± 0.0044
FNO96-4modes32 448 0.2794± 0.0053 1.5788± 0.0253
FNO96-4modes32 5600 0.0102± 0.0002 0.0399± 0.0008

FNO128-4modes32 448 0.2492± 0.0040 1.4460± 0.0226
FNO128-4modes32 5600 0.0060± 0.0001 0.0213± 0.0003

UNO64 448 0.8134± 0.0048 3.6621± 0.0103
UNO64 5600 0.0319± 0.0003 0.1208± 0.0010

UNO128 448 0.6328± 0.0041 3.0240± 0.0064
UNO128 5600 0.0098± 0.0001 0.0282± 0.0002

U-Netbase64 448 0.1693± 0.0026 1.2224± 0.0108
U-Netbase64 5600 0.0128± 0.0016 0.1026± 0.0161

U-Netbase128 448 0.1076± 0.0008 0.9096± 0.0067
U-Netbase128 5600 0.0054 0.0439± 0.0001
U-Netmod64 448 0.1034± 0.0001 0.8847± 0.0109
U-Netmod64 5600 0.0034± 0.0001 0.0465± 0.0045

U-Netmod64-1x1 448 0.1013± 0.0028 0.8681± 0.0161
U-Netmod64-1x1 5600 0.0031± 0.0003 0.0389± 0.0057

U-Netatt64 448 0.0954± 0.0014 0.8158± 0.0318
U-Netatt64 5600 0.0060± 0.0005 0.0684± 0.0206

U-Netatt64-1x1 448 0.0819± 0.0060 0.6419± 0.1307
U-Netatt64-1x1 5600 0.0051± 0.0001 0.0724± 0.0037
U-F1Netmodes8 448 0.0797± 0.0010 0.4553± 0.0057
U-F1Netmodes8 5600 0.0017± 0.0002 0.0081± 0.0012

U-F1Netmodes16 448 0.0717± 0.0013 0.3988± 0.0115
U-F1Netmodes16 5600 0.0018± 0.0001 0.0060± 0.0002

U-F1Netmodes8-1x1 448 0.0743± 0.0032 0.4185± 0.0259
U-F1Netmodes8-1x1 5600 0.0039± 0.0018 0.0185± 0.0079

U-F1Netmodes16-1x1 448 0.0699± 0.0007 0.3923± 0.0001
U-F1Netmodes16-1x1 5600 0.0027± 0.0004 0.0089± 0.0017

U-F2Netmodes8,4 448 0.0843± 0.0004 0.4934± 0.0031
U-F2Netmodes8,4 5600 0.0027± 0.0012 0.0110± 0.0050

U-F2Netmodes16,8 448 0.0765± 0.0019 0.4508± 0.0116
U-F2Netmodes16,8 5600 0.0017± 0.0004 0.0052± 0.0013
U-F2Netmodes8,8 448 0.0793± 0.0001 0.4553± 0.0021
U-F2Netmodes8,8 5600 0.0013 0.0044± 0.0002

U-F2Netmodes16,16 448 0.0906± 0.0042 0.5596± 0.0317
U-F2Netmodes16,16 5600 0.0012± 0.0001 0.0037± 0.0002

U-F2Netmodes8,4-1x1 448 0.0793± 0.0016 0.4587± 0.0064
U-F2Netmodes8,4-1x1 5600 0.0015± 0.0001 0.0067± 0.0005

U-F2Netmodes16,8-1x1 448 0.0728± 0.0012 0.4238± 0.0049
U-F2Netmodes16,8-1x1 5600 0.0016± 0.0003 0.0054± 0.0009

U-F2Netatt,modes16,8 448 0.0769± 0.0052 0.4517± 0.0348
U-F2Netatt,modes16,8 5600 0.0024± 0.0010 0.0078± 0.0035

U-F3Netmodes8,4,2 448 0.0920± 0.0011 0.5318± 0.0083
U-F3Netmodes8,4,2 5600 0.0018 0.0062± 0.0001

U-F3Netmodes16,8,4 448 0.0812 0.4823± 0.0021
U-F3Netmodes16,8,4 5600 0.0016 0.0048

25

Under review as a conference paper at ICLR 2023

Table 3: Shallow water 2-day predictions, vorticity stream function formulation. Rollout and one-
step errors of various architectures on the shallow water equations are reported. Summed mean-
squared errors (SMSE) are obtained for 2-day predictions for the vorticity stream function formu-
lation and are averaged over three different random seeds. If results are displayed without standard
deviation, the obtained standard deviation is lower than the five digit precision minimum. The best
model of each model class is highlighted.

METHOD Trajs.

SMSE

onestep rollout

ResNet128 448 0.189 93± 0.002 32 1.809 30± 0.046 36
ResNet128 5600 0.221 82± 0.017 93 2.045 72± 0.050 28
ResNet256 448 0.132 08± 0.003 25 1.710 41± 0.001 42
ResNet256 5600 0.183 80± 0.021 08 1.906 15± 0.072 68

DilatedResNet128 448 0.077 97± 0.003 60 0.598 31± 0.026 61
DilatedResNet128 5600 0.010 47± 0.000 11 0.140 51± 0.003 20

DilatedResNet128-norm 448 0.041 05± 0.000 35 0.345 23± 0.003 03
DilatedResNet128-norm 5600 0.006 49± 0.000 09 0.095 71± 0.001 10

FNO128-8modes8 448 0.185 53± 0.002 78 0.892 44± 0.011 09
FNO128-8modes8 5600 0.039 17± 0.001 01 0.213 04± 0.002 81

FNO128-8modes16 448 0.100 54± 0.000 26 0.574 04± 0.002 40
FNO128-8modes16 5600 0.005 44± 0.000 01 0.029 81± 0.000 05
FNO128-4modes16 448 0.086 01± 0.000 28 0.511 27± 0.000 41
FNO128-4modes16 5600 0.008 36± 0.000 03 0.047 23± 0.000 05
FNO64-4modes32 448 0.089 23± 0.002 33 0.553 83± 0.011 40
FNO64-4modes32 5600 0.005 64± 0.000 02 0.037 44
FNO96-4modes32 448 0.082 08± 0.001 32 0.496 44± 0.008 51
FNO96-4modes32 5600 0.002 58± 0.000 03 0.015 73± 0.000 16

FNO128-4modes32 448 0.074 83± 0.000 49 0.455 85± 0.002 24
FNO128-4modes32 5600 0.001 47 0.008 47± 0.000 03

UNO64 448 0.214 37 1.068 14
UNO64 5600 0.007 51± 0.000 01 0.039 18± 0.000 02

UNO128 448 0.166 32± 0.001 40 0.848 57± 0.001 90
UNO128 5600 0.002 07 0.008 58

U-Netbase64 448 0.034 22± 0.000 14 0.284 32± 0.000 16
U-Netbase64 5600 0.002 03± 0.000 02 0.022 77± 0.000 47

U-Netbase128 448 0.025 05± 0.000 35 0.227 93± 0.002 97
U-Netbase128 5600 0.000 99± 0.000 04 0.014 25± 0.000 89

U-Netmod64 448 0.023 93± 0.000 20 0.217 13± 0.002 54
U-Netmod64 5600 0.000 62± 0.000 03 0.010 31± 0.000 70

U-Netmod64-1x1 448 0.023 83± 0.000 11 0.218 11± 0.000 45
U-Netmod64-1x1 5600 0.000 60 0.010 63± 0.000 06

U-Netatt64 448 0.022 69± 0.000 60 0.196 43± 0.005 66
U-Netatt64 5600 0.001 08± 0.000 55 0.019 94± 0.016 17

U-Netatt64-1x1 448 0.021 33± 0.000 83 0.177 91± 0.021 44
U-Netatt64-1x1 5600 0.000 52 0.003 61± 0.000 05

U-F1Netmodes8 448 0.018 27± 0.000 20 0.129 95± 0.002 97
U-F1Netmodes8 5600 0.000 41 0.002 91± 0.000 02

U-F1Netmodes16 448 0.018 82± 0.000 07 0.131 56± 0.000 74
U-F1Netmodes16 5600 0.000 63± 0.000 08 0.003 42± 0.000 41

U-F1Netmodes8-1x1 448 0.017 74± 0.000 04 0.127 51± 0.001 20
U-F1Netmodes8-1x1 5600 0.000 44± 0.000 02 0.003 36± 0.000 11

U-F1Netmodes16-1x1 448 0.018 82± 0.000 14 0.132 87± 0.001 27
U-F1Netmodes16-1x1 5600 0.000 51± 0.000 05 0.002 86± 0.000 24

U-F2Netmodes8,4 448 0.017 51± 0.000 19 0.122 03± 0.001 99
U-F2Netmodes8,4 5600 0.000 39± 0.000 02 0.002 52± 0.000 17

U-F2Netmodes8,4-1x1 448 0.016 56± 0.000 30 0.115 67± 0.003 36
U-F2Netmodes8,4-1x1 5600 0.000 37± 0.000 02 0.002 50± 0.000 11

U-F2Netmodes16,8 448 0.018 90± 0.000 42 0.133 86± 0.003 63
U-F2Netmodes16,8 5600 0.000 35± 0.000 01 0.001 89± 0.000 02

U-F2Netmodes16,8-1x1 448 0.017 05± 0.000 52 0.120 52± 0.004 04
U-F2Netmodes16,8-1x1 5600 0.000 33 0.001 83

U-F2Netmodes8,8 448 0.016 89± 0.000 43 0.117 81± 0.002 35
U-F2Netmodes8,8 5600 0.000 32± 0.000 01 0.001 83± 0.000 05

U-F2Netmodes16,16 448 0.035 66± 0.004 67 0.254 00± 0.028 69
U-F2Netmodes16,16 5600 0.000 32 0.001 67± 0.000 01

U-F2Netatt,modes16,8 448 0.017 31± 0.000 31 0.121 50± 0.001 19
U-F2Netatt,modes16,8 5600 0.000 66 0.003 52

U-F3Netmodes8,4,2 448 0.020 58± 0.000 13 0.147 38± 0.001 31
U-F3Netmodes8,4,2 5600 0.000 40 0.002 37± 0.000 01

U-F3Netmodes16,8,4 448 0.022 03± 0.000 26 0.158 55± 0.000 55
U-F3Netmodes16,8,4 5600 0.000 38± 0.000 01 0.002 08± 0.000 05

26

Under review as a conference paper at ICLR 2023

Table 4: Comparison of parameter count, runtime, and memory requirement of various FNO, UNO,
and U-FNet architectures. Subscript numbers indicate the used number of Fourier modes. For
U-FNet experiments subscript numbers indicate the number of Fourier modes in the lowest, second-
lowest, and third lowest block.

METHOD Channels Res.Layers/Blocks Params.

Runtime [s] Mem. [MB]

Fwd. Fwd.+bwd. f32 size Peak usage

FNO128-8modes8 128 8 33.7 M 0.057 0.162 134 2161
FNO128-8modes16 128 8 134 M 0.059 0.171 537 2953
FNO128-4modes16 128 4 67.2 M 0.031 0.089 268 1852
FNO64-4modes32 64 4 67.1 M 0.016 0.050 268 1204
FNO96-4modes32 96 4 151 M 0.026 0.080 604 2179
FNO128-4modes32 128 4 268 M 0.036 0.118 1100 3420
UNO64 64 7 110 M 0.070 0.134 440 1925
UNO128 128 7 440 M 0.160 0.341 1800 5513

U-F1Netmodes8 64 9 154 M 0.083 0.205 617 3936
U-F1Netmodes16 64 9 185 M 0.084 0.208 743 4037
U-F2Netmodes8,4 64 9 163 M 0.085 0.213 652 3961
U-F2Netmodes8,8 64 9 193 M 0.085 0.216 772 4046
U-F2Netmodes16,8 64 9 224 M 0.086 0.219 897 4149
U-F2Netmodes16,16 64 9 344 M 0.090 0.232 1400 4496
U-F3Netmodes8,4,2 64 9 198 M 0.086 0.221 658 4332
U-F3Netmodes16,8,4 64 9 259 M 0.088 0.226 752 4808

Table 5: Shallow water 2-day predictions, velocity function formulation. Rollout and one-step errors
of various architectures on the shallow water equations are reported. L2 training objective of Li et al.
(2020a) is used. Summed mean-squared errors (SMSE) are obtained for 2-day predictions for the
vorticity stream function formulation and are averaged over three different random seeds. If results
are displayed without standard deviation, the obtained standard deviation is lower than the five digit
precision minimum. The best model of each model class is highlighted.

METHOD Trajs.

SMSE

onestep rollout

DilatedResNet128 448 0.312 43± 0.004 90 2.115 97± 0.036 31
DilatedResNet128 5600 0.042 30± 0.000 75 0.542 99± 0.012 92

DilatedResNet128-norm 448 0.148 49± 0.002 38 1.197 04± 0.008 19
DilatedResNet128-norm 5600 0.026 07± 0.000 73 0.382 68± 0.007 60

FNO128-4modes16 448 0.339 75± 0.000 37 1.673 92± 0.003 99
FNO128-4modes16 5600 0.040 21± 0.000 49 0.163 17± 0.002 58
FNO64-4modes32 448 0.302 18± 0.002 98 1.678 19± 0.015 23
FNO64-4modes32 5600 0.023 08± 0.001 02 0.107 56± 0.006 50
FNO96-4modes32 448 0.234 39± 0.005 60 1.351 64± 0.025 51
FNO96-4modes32 5600 0.010 16± 0.000 31 0.040 49± 0.001 50

U-Netbase64 448 0.147 26± 0.002 30 1.115 39± 0.005 14
U-Netbase64 5600 0.009 88± 0.000 11 0.067 11± 0.001 57

U-Netbase128 448 0.095 07± 0.000 22 0.844 98± 0.002 95
U-Netbase128 5600 0.004 35± 0.000 08 0.032 08± 0.000 44
U-Net201564 448 0.169 45± 0.001 13 1.264 75± 0.003 96
U-Net201564 5600 0.012 79± 0.000 09 0.084 20± 0.001 29

U-Net2015128 448 0.114 96± 0.000 23 0.985 53± 0.001 19
U-Net2015128 5600 0.005 41± 0.000 06 0.039 10± 0.001 39

U-Net2015-tanh64 448 0.475 99± 0.002 45 2.760 14± 0.004 88
U-Net2015-tanh64 5600 0.029 97± 0.001 37 0.190 94± 0.006 18

U-Net2015-tanh128 448 0.333 82± 0.004 30 2.187 05± 0.025 79
U-Net2015-tanh128 5600 0.015 05± 0.000 32 0.097 31± 0.001 29

U-Netmod64 448 0.088 51± 0.001 42 0.808 42± 0.011 27
U-Netmod64 5600 0.002 25± 0.000 07 0.021 95± 0.001 11

U-F2Netmodes16,8 448 0.061 98± 0.000 23 0.371 33± 0.001 92
U-F2Netmodes16,8 5600 0.001 23± 0.000 02 0.003 76± 0.000 04

27

Under review as a conference paper at ICLR 2023

Table 6: Shallow water 2-day predictions, vorticity stream function formulation. Rollout and one-
step errors of various architectures on the shallow water equations are reported. L2 training objective
of Li et al. (2020a) is used. Summed mean-squared errors (SMSE) are obtained for 2-day predictions
for the vorticity stream function formulation and are averaged over three different random seeds. If
results are displayed without standard deviation, the obtained standard deviation is lower than the
five digit precision minimum. The best model of each model class is highlighted.

METHOD Trajs.

SMSE

onestep rollout

DilatedResNet128 448 0.069 14± 0.004 30 0.541 08± 0.034 62
DilatedResNet128 5600 0.010 49± 0.000 19 0.141 19± 0.005 32

DilatedResNet128-norm 448 0.036 62± 0.000 21 0.314 18± 0.002 97
DilatedResNet128-norm 5600 0.006 59± 0.000 11 0.095 90± 0.000 95

FNO128-8modes8 448 0.178 17± 0.004 62 0.864 18± 0.019 15
FNO128-8modes8 5600 0.039 73± 0.000 99 0.213 97± 0.002 21

FNO128-8modes16 448 0.093 02± 0.003 25 0.543 09± 0.016 52
FNO128-8modes16 5600 0.005 10± 0.000 02 0.027 47± 0.000 04
FNO64-4modes32 448 0.080 56± 0.001 65 0.505 15± 0.008 60
FNO64-4modes32 5600 0.005 63± 0.000 01 0.037 19± 0.000 09
FNO96-4modes32 448 0.074 53± 0.001 33 0.458 38± 0.007 61
FNO96-4modes32 5600 0.002 48± 0.000 04 0.014 81± 0.000 23

FNO128-4modes32 448 0.067 41± 0.000 71 0.418 39± 0.003 05
FNO128-4modes32 5600 0.001 33± 0.000 01 0.007 42± 0.000 01

UNO64 448 0.192 35± 0.000 10 0.973 45± 0.001 86
UNO64 5600 0.007 29± 0.000 01 0.037 24± 0.000 10

U-Netbase64 448 0.030 15± 0.000 12 0.258 04± 0.001 29
U-Netbase64 5600 0.001 99± 0.000 02 0.021 40± 0.000 17

U-Netbase128 448 0.021 85± 0.000 20 0.206 57± 0.001 45
U-Netbase128 5600 0.000 84± 0.000 02 0.010 85± 0.000 49
U-Net201564 448 0.038 41± 0.000 52 0.307 50± 0.003 27
U-Net201564 5600 0.002 66± 0.000 02 0.027 44± 0.000 14

U-Net2015128 448 0.026 89± 0.000 08 0.239 41± 0.001 32
U-Net2015128 5600 0.001 11± 0.000 01 0.012 36± 0.000 01

U-Net2015-tanh64 448 0.086 29± 0.003 04 0.581 40± 0.010 45
U-Net2015-tanh64 5600 0.005 49± 0.000 02 0.049 60± 0.000 40

U-Net2015-tanh128 448 0.059 54± 0.000 36 0.449 91± 0.001 58
U-Net2015-tanh128 5600 0.002 65 0.025 40± 0.000 23

U-Netmod64 448 0.021 55± 0.000 44 0.201 22± 0.004 35
U-Netmod64 5600 0.000 61± 0.000 01 0.010 22± 0.000 04

U-F2Netmodes16,8 448 0.017 78 0.128 92± 0.000 23
U-F2Netmodes16,8 5600 0.000 36± 0.000 01 0.001 92± 0.000 02

28

Under review as a conference paper at ICLR 2023

Table 7: Shallow water 1-day predictions, velocity function formulation. Rollout and one-step errors
of various architectures on the shallow water equations are reported. Summed mean-squared errors
(SMSE) are obtained for 1-day predictions for the velocity function formulation and are averaged
over three different random seeds. If results are displayed without standard deviation, the obtained
standard deviation is lower than the four digit precision minimum. The best model of each model
class is highlighted.

METHOD Trajs.

SMSE

onestep rollout

ResNet128 256 0.3152± 0.0039 2.7775± 0.0122
ResNet128 2800 0.1329± 0.0010 1.7711± 0.0273
ResNet256 256 0.1827± 0.0018 1.8015± 0.0037
ResNet256 2800 0.1294± 0.0122 1.7957± 0.0947

DilatedResNet-128 256 0.1596± 0.0097 1.4477± 0.0754
DilatedResNet-128 2800 0.0161± 0.0005 0.1900± 0.0061

DilatedResNet-128-norm 256 0.0749± 0.0026 0.6621± 0.0301
DilatedResNet-128-norm 2800 0.0102± 0.0002 0.1369± 0.0009

FNO128-8modes16 256 0.1561 0.9394± 0.0081
FNO128-8modes16 2800 0.0122± 0.0001 0.0505± 0.0004

UNO64 256 0.2732± 0.0009 2.0338± 0.0071
UNO64 2800 0.0135± 0.0001 0.0587± 0.0004

UNO128 256 0.2300± 0.0039 1.7308± 0.0173
UNO128 2800 0.0046 0.0158± 0.0001

U-Netbase64 256 0.0569± 0.0008 0.4457± 0.0038
U-Netbase64 2800 0.0043 0.0316± 0.0007

U-Netbase128 256 0.0428± 0.0020 0.3761± 0.0189
U-Netbase128 2800 0.0023± 0.0002 0.0229± 0.0022
U-Netmod64 256 0.0272± 0.0004 0.2678± 0.0017
U-Netmod64 2800 0.0015± 0.0002 0.0243± 0.0065
U-Netmod64 256 0.0239± 0.0008 0.2089± 0.0291
U-Netmod64 2800 0.0014± 0.0008 0.0144± 0.0149

U-F1Netmodes16 256 0.0257± 0.0005 0.1638± 0.0032
U-F1Netmodes8 2800 0.0009± 0.0004 0.0041± 0.0019

U-F2Netmodes16,8 256 0.0253± 0.0016 0.1710± 0.0124
U-F2Netmodes16,8 2800 0.0006± 0.0002 0.0023± 0.0009
U-F2Netmodes8,8 256 0.0248± 0.0006 0.1659± 0.0031
U-F2Netmodes8,8 2800 0.0005 0.0022± 0.0003

U-F2Netmodes16,16 256 0.0315± 0.0007 0.2398± 0.0068
U-F2Netmodes16,16 2800 0.0003 0.0013

U-F2Netatt,modes16,8 256 0.0238± 0.0016 0.1545± 0.0126
U-F2Netatt,modes16,8 2800 0.0070± 0.0093 0.0553± 0.0841

29

Under review as a conference paper at ICLR 2023

B.4 NAVIER-STOKES EQUATIONS.

2D Navier-Stokes data is obtained on a grid with spatial resolution of 128 × 128 (∆x = 0.25,
∆y = 0.25), and temporal resolution of ∆t = 1.5 s, a viscosity parameter of ν = 0.01, and a
buoyancy factor of (0, 0.5)T . The equation is solved on a closed domain with Dirichlet boundary
conditions (v = 0) for the velocity, and Neumann boundaries ∂s

∂x = 0 for the scalar field. We
run the simulation for 21 s and sample every 1.5 s. Trajectories contain scalar and vector fields at
14 different time points. The inputs to the Navier-Stokes experiments are respective fields at the
previous 4 timesteps. Exemplary rollout trajectories are displayed in Figure 16. We outline further
details on the results in Figure 17 and Table 8. Additionally, we ablate different encoding/decoding
choices for U-Net based architectures in Figures 18.

30

Under review as a conference paper at ICLR 2023

G
ro

un
d

tr
ut

h

Pr
ed

ic
tio

n
A

bs
.e

rr
or

0.1

0.2

0.3

0.5

1.0

1.5

(a) Scalar field

G
ro

un
d

tr
ut

h

Pr
ed

ic
tio

n
A

bs
.e

rr
or

0.2

0.4

0.6

−0.5

0.0

0.5

(b) Vector field x-component

G
ro

un
d

tr
ut

h

Pr
ed

ic
tio

n
A

bs
.e

rr
or

0.25

0.50

0.75

0

1

(c) Vector field y-component

Figure 15: Navier-Stokes, velocity function form. Example rollouts of the scalar and vector velocity
field of the Navier-Stokes experiments are shown, obtained by a FNO96-4modes32,32 PDE surrogate
model (top), and compared to the ground truth (bottom). Predictions are obtained for a time window
∆t = 1.5 s. The respective model input fields comprise four timesteps, we only show the last of
those (left-most ground truth column).

31

Under review as a conference paper at ICLR 2023

G
ro

un
d

tr
ut

h

Pr
ed

ic
tio

n
A

bs
.e

rr
or

0.2

0.4

0.5

1.0

1.5

(a) Scalar field

G
ro

un
d

tr
ut

h

Pr
ed

ic
tio

n
A

bs
.e

rr
or

0.2

0.4

−0.5

0.0

0.5

(b) Vector field x-component

G
ro

un
d

tr
ut

h

Pr
ed

ic
tio

n
A

bs
.e

rr
or

0.2

0.4

0.6

0

1

(c) Vector field y-component

Figure 16: Navier-Stokes, velocity function form. Example rollouts of the scalar and vector velocity
field of the Navier-Stokes experiments are shown, obtained by a U-F1Netmodes16 PDE surrogate
model (top), and compared to the ground truth (bottom). Predictions are obtained for a time window
∆t = 1.5 s. The respective model input fields comprise four timesteps, we only show the last of
those (left-most ground truth column).

32

Under review as a conference paper at ICLR 2023

2080 5200

10−2

10−1

100

M
SE

Navier-Stokes velocity, rollout

ResNet128 ResNet256 DilatedResNet128 DilatedResNet128-norm FNO128-8modes8 FNO128-8modes16

FNO128-4modes16 FNO64-4modes32 FNO96-4modes32 UNO64 UNO128 U-Net201564

U-Net2015128 U-Netbase64 U-Netbase128 U-Netmod64 U-Netatt64 U-F1Netmodes8

U-F1Netmodes16 U-F2Netmodes8,4 U-F2Netmodes16,8 U-F2Netmodes8,8 U-F2Netmodes16,16 U-F1Netatt,modes16,8

2080 5200

10−3

10−2

10−1

Navier-Stokes velocity, one-step

Num. Train Trajectories

Figure 17: Navier-Stokes velocity function form. Rollout and one-step errors of various architec-
tures on the Navier-Stokes equations are reported, obtained for predictions of 1.5 s, and are averaged
over three different random seeds. Note the logarithmic scale of the y-axes.

2080 5200

10−2.2

10−2

10−1.8

10−1.6

10−1.4

M
SE

Rollout

U-Netmod64-3x3

U-Netmod64-1x1

U-Netatt64-3x3

U-Netatt64-1x1

U-F1Netmodes8-3x3

U-F1Netmodes8-1x1

U-F1Netmodes16-3x3

U-F1Netmodes16-1x1

U-F2Netmodes8,4-3x3

U-F2Netmodes8,4-1x1

U-F2Netmodes16,8-3x3

U-F2Netmodes16,8-3x3

2080 5200

10−3.2

10−3

10−2.8

10−2.6

10−2.4

One-step

Num. Train Trajectories

Figure 18: Navier-Stokes velocity function form. Ablation results of different encoding and decod-
ing choices for various U-Net architectures are reported. 1 × 1 and 3 × 3 kernels are compared
for both encoding and decoding. Rollout and one-step errors are obtained on the Navier-Stokes
equations in velocity function form and are averaged over three different random seeds.

33

Under review as a conference paper at ICLR 2023

Table 8: Navier-Stokes, velocity function formulation. Rollout and one-step errors of various ar-
chitectures on the Navier-Stokes equations are reported. Summed mean-squared errors (SMSE) are
obtained and are averaged over three different random seeds. If results are displayed without stan-
dard deviation, the obtained standard deviation is lower than the five digit precision minimum. The
best model of each model class is highlighted.

METHOD Trajs.

SMSE

onestep rollout

ResNet128 2080 0.018 60± 0.000 49 0.140 02± 0.003 44
ResNet128 5200 0.017 22± 0.000 17 0.142 30± 0.005 98
ResNet256 2080 0.016 75± 0.000 32 0.143 44± 0.009 61
ResNet256 5200 0.017 25± 0.000 52 0.137 47± 0.002 84

DilResNet-128 2080 0.002 14± 0.000 07 0.014 60± 0.000 14
DilResNet-128 5200 0.001 02± 0.000 01 0.007 48± 0.000 04

DilResNet-128-norm 2080 0.001 67± 0.000 01 0.011 48± 0.000 01
DilResNet-128-norm 5200 0.000 88± 0.000 06 0.006 39± 0.000 43

FNO128-8modes8 2080 0.014 00± 0.000 36 0.056 96± 0.000 51
FNO128-8modes8 5200 0.008 79± 0.000 12 0.038 36± 0.000 37

FNO128-8modes16 2080 0.008 90± 0.000 50 0.040 85± 0.002 05
FNO128-8modes16 5200 0.005 10± 0.000 19 0.025 76± 0.000 71
FNO128-4modes16 2080 0.008 31 0.037 69± 0.000 17
FNO128-4modes16 5200 0.005 57 0.027 17± 0.000 13

FNO64-4modes32 2080 0.008 99± 0.000 14 0.039 94± 0.000 45
FNO64-4modes32 5200 0.005 76± 0.000 09 0.027 87± 0.000 19
FNO96-4modes32 2080 0.008 43± 0.000 19 0.036 11± 0.000 44
FNO96-4modes32 5200 0.005 07± 0.000 06 0.024 14± 0.000 13

UNO64 2080 0.022 00± 0.000 91 0.083 91± 0.001 79
UNO64 5200 0.008 37± 0.000 14 0.040 10± 0.000 74

UNO128 2080 0.019 33± 0.000 03 0.073 14± 0.000 35
UNO128 5200 0.006 71± 0.000 02 0.033 75± 0.000 21

U-Net2015-tanh64 2080 0.006 51± 0.000 01 0.033 27± 0.000 01
U-Net2015-tanh64 5200 0.003 59± 0.000 01 0.020 51± 0.000 07

U-Net2015-tanh128 2080 0.004 56± 0.000 07 0.025 27± 0.000 43
U-Net2015-tanh128 5200 0.002 75 0.016 71± 0.000 09

U-Net201564 2080 0.003 56± 0.000 02 0.020 04± 0.000 13
U-Net201564 5200 0.002 26 0.013 86± 0.000 04

U-Net2015128 2080 0.002 64± 0.000 05 0.015 72± 0.000 30
U-Net2015128 5200 0.001 65± 0.000 02 0.010 76± 0.000 07

U-Netbase64 2080 0.003 44± 0.000 06 0.019 10± 0.000 17
U-Netbase64 5200 0.001 97± 0.000 03 0.011 97± 0.000 08

U-Netbase128 2080 0.002 35± 0.000 01 0.013 83± 0.000 03
U-Netbase128 5200 0.001 42± 0.000 01 0.008 98± 0.000 13
U-Netmod64 2080 0.001 66± 0.000 01 0.010 53± 0.000 06
U-Netmod64 5200 0.000 88± 0.000 01 0.006 21± 0.000 08

U-Netatt64 2080 0.001 63± 0.000 03 0.010 48± 0.000 22
U-Netatt64 5200 0.000 90± 0.000 03 0.006 20± 0.000 18

U-F1Netmodes8 2080 0.001 57± 0.000 02 0.010 10± 0.000 15
U-F1Netmodes8 5200 0.000 92± 0.000 04 0.006 39± 0.000 28

U-F1Netmodes16 2080 0.001 55± 0.000 02 0.010 12± 0.000 19
U-F1Netmodes16 5200 0.000 88± 0.000 01 0.006 21± 0.000 01
U-F2Netmodes8,4 2080 0.001 87± 0.000 01 0.011 67± 0.000 08
U-F2Netmodes8,4 5200 0.001 08± 0.000 07 0.007 32± 0.000 53

U-F2Netmodes16,8 2080 0.002 01 0.012 61± 0.000 03
U-F2Netmodes16,8 5200 0.001 13± 0.000 02 0.007 71± 0.000 11
U-F2Netmodes8,8 2080 0.001 97± 0.000 03 0.012 27± 0.000 08
U-F2Netmodes8,8 5200 0.001 13± 0.000 03 0.007 66± 0.000 20

U-F2Netmodes16,16 2080 0.002 29± 0.000 03 0.013 88± 0.000 04
U-F2Netmodes16,16 5200 0.001 18 0.007 90± 0.000 04

U-F2Netatt,modes16,8 2080 0.001 99± 0.000 12 0.012 45± 0.000 51
U-F2Netatt,modes16,8 5200 0.001 07± 0.000 09 0.007 32± 0.000 52

34

Under review as a conference paper at ICLR 2023

Table 9: Navier-Stokes, velocity function formulation. L2 training objective of Li et al. (2020a)
is used. Rollout and one-step errors of various architectures on the Navier-Stokes equations are
reported. Summed mean-squared errors (SMSE) are obtained and are averaged over three different
random seeds. If results are displayed without standard deviation, the obtained standard deviation is
lower than the five digit precision minimum. The best model of each model class is highlighted.

METHOD Trajs.

SMSE

onestep rollout

DilResNet128 2080 0.002 06± 0.000 01 0.013 96± 0.000 05
DilResNet128 5200 0.001 02± 0.000 03 0.007 49± 0.000 12

DilResNet128-norm 2080 0.001 47± 0.000 01 0.010 11± 0.000 01
DilResNet128-norm 5200 0.000 82 0.006 04

FNO128-8modes8 2080 0.012 49 0.051 87
FNO128-8modes8 5200 0.008 05 0.035 91

FNO128-8modes16 2080 0.008 23 0.038 65
FNO128-8modes16 5200 0.004 84 0.024 85

FNO64-4modes32 2080 0.007 81± 0.000 14 0.035 94± 0.000 47
FNO64-4modes32 5200 0.005 17± 0.000 07 0.025 56± 0.000 13
FNO96-4modes32 2080 0.007 45± 0.000 15 0.032 42± 0.000 38
FNO96-4modes32 5200 0.004 70± 0.000 06 0.022 27± 0.000 11

FNO128-4modes32 2080 0.007 10± 0.000 04 0.030 80
FNO128-4modes32 5200 0.004 43 0.020 76

UNO64 2080 0.017 07 0.070 89
UNO64 5200 0.007 25 0.035 96

U-Netbase6 2080 0.003 11± 0.000 01 0.017 74± 0.000 05
U-Netbase64 5200 0.002 02± 0.000 01 0.012 22

U-Netbase128 2080 0.002 12± 0.000 02 0.012 61± 0.000 05
U-Netbase128 5200 0.001 37 0.008 68± 0.000 04
U-Net201564 2080 0.003 24± 0.000 07 0.018 61± 0.000 44
U-Net201564 5200 0.002 23± 0.000 01 0.013 76± 0.000 15

U-Net2015128 2080 0.002 38± 0.000 02 0.014 46± 0.000 02
U-Net2015128 5200 0.001 61± 0.000 02 0.010 47± 0.000 06

U-Netmod64 2080 0.001 51 0.009 75± 0.000 05
U-Netmod64 5200 0.000 91± 0.000 01 0.006 37± 0.000 02

35

Under review as a conference paper at ICLR 2023

B.5 PARAMETER CONDITIONING.

We use the same spatial resolutions and boundary conditions as described in Section B.4. The
inputs to the Navier-Stokes parameter conditioning experiments are respective fields at the previous
timestep. Exemplary rollout trajectories predicted by a single surrogate model for different buoyancy
force values are displayed in Figures 20,21,22. We outline further details on the results in Table 10.
Additionally, we ablate different parameter conditioning choices in Figure 19, namely “Addition”
versus “AdaGN” for U-Net blocks, and “Addition” vs “Spatial-Spectral” for Fourier blocks. The
default choice is “Addition”.

Table 10: Parameter conditioning on the Navier-Stokes equation, velocity function formulation.
Summed mean-squared errors of various architectures are reported for different number of training
trajectories, and different time windows. Conditioning results at different time windows are av-
eraged over 208 unseen values of the buoyancy force term. The best model of each model class
is highlighted. Different parameter conditioning choices are ablated, namely “Addition” versus
“AdaGN” for U-Net blocks, and “Addition” vs “Spatial-Spectral” for Fourier blocks. The default
choice is “Addition”.

METHOD Trajs.

SMSE

0.375 s 0.75 s 1.5 s 3.0 s 6.0 s

FNO128modes16 1664 0.005 17 0.006 93 0.011 73 0.026 66 0.064 23
FNO128modes16 6656 0.003 88 0.004 83 0.007 40 0.015 44 0.041 77

FNO128modes16-SpaSpec 1664 0.004 62 0.006 67 0.014 04 0.038 34 0.076 48
FNO128modes16-SpaSpec 6656 0.003 48 0.004 55 0.008 01 0.019 73 0.052 08

U-Netmod64 1664 0.000 72 0.001 11 0.002 16 0.006 22 0.028 05
U-Netmod64 6656 0.000 40 0.000 61 0.001 15 0.003 25 0.015 60

U-Netmod64-AdaGN 1664 0.000 59 0.000 90 0.001 77 0.005 68 0.029 89
U-Netmod64-AdaGN 6656 0.000 31 0.000 50 0.001 00 0.003 00 0.016 32

U-Netatt64 1664 0.000 82 0.001 22 0.002 34 0.006 30 0.028 46
U-Netatt64 6656 0.000 46 0.000 69 0.001 30 0.003 56 0.016 75

U-Netatt64-AdaGN 1664 0.000 65 0.001 01 0.001 95 0.005 97 0.031 60
U-Netatt64-AdaGN 6656 0.000 35 0.000 55 0.001 06 0.003 10 0.017 03

U-F1Netmodes16 1664 0.001 38 0.001 80 0.002 75 0.006 45 0.024 97
U-F1Netmodes16 6656 0.000 54 0.000 78 0.001 33 0.003 38 0.015 04

U-F1Netmodes16-SpaSpec 1664 0.000 76 0.001 16 0.002 42 0.007 70 0.034 95
U-F1Netmodes16-SpaSpec 6656 0.000 40 0.000 61 0.001 16 0.003 39 0.017 54

U-F1Netatt,modes16 1664 0.001 42 0.002 05 0.003 33 0.007 62 0.027 95
U-F1Netatt,modes16 6656 0.000 62 0.000 86 0.001 46 0.003 58 0.015 79

U-F1Netatt,modes16-SpaSpec 1664 0.000 95 0.001 51 0.002 74 0.007 67 0.031 93
U-F1Netatt,modes16-SpaSpec 6656 0.000 46 0.000 72 0.001 32 0.003 72 0.017 86
U-F1Netatt,modes16-AdaGN 1664 0.001 51 0.002 00 0.003 11 0.007 48 0.028 79
U-F1Netatt,modes16-AdaGN 6656 0.000 61 0.000 86 0.001 37 0.003 47 0.015 96

U-F1Netmodes16-AdaGN 1664 0.001 61 0.002 12 0.003 30 0.007 58 0.027 69
U-F1Netmodes16-AdaGN 6656 0.000 55 0.000 77 0.001 32 0.003 38 0.015 64

U-F2Netmodes16,8 1664 0.001 78 0.002 40 0.003 57 0.008 50 0.033 46
U-F2Netmodes16,8 6656 0.000 93 0.001 16 0.001 68 0.003 76 0.015 64

U-F2Netmodes16,8-SpaSpec 1664 0.000 71 0.001 18 0.002 33 0.007 26 0.032 87
U-F2Netmodes16,8-SpaSpec 6656 0.000 39 0.000 64 0.001 22 0.003 68 0.018 62
U-F2Netmodes16,8-AdaGN 1664 0.001 86 0.002 89 0.004 82 0.013 07 0.047 67
U-F2Netmodes16,8-AdaGN 6656 0.000 98 0.001 24 0.001 85 0.004 18 0.018 09

U-F2Netatt,modes16,8 1664 0.001 97 0.002 91 0.004 64 0.011 29 0.038 10
U-F2Netatt,modes16,8 6656 0.001 16 0.001 53 0.002 25 0.004 90 0.018 88

U-F2Netatt,modes16,8-SpaSpec 1664 0.000 82 0.001 35 0.002 78 0.008 43 0.034 90
U-F2Netatt,modes16,8-SpaSpec 6656 0.000 44 0.000 71 0.001 37 0.004 04 0.018 96
U-F2Netatt,modes16,8-AdaGN 1664 0.001 96 0.002 81 0.004 29 0.010 19 0.036 73
U-F2Netatt,modes16,8-AdaGN 6656 0.000 91 0.001 21 0.001 79 0.004 14 0.017 05

36

Under review as a conference paper at ICLR 2023

10−4

10−3

10−2

One-step (∆t = 0.375 s)

U-Netmod64-Add

U-Netmod64-AdaGN

U-Netatt64-Add

U-Netatt64-AdaGN

U-F1Netmodes16-Add

U-F1Netmodes16-AdaGN

U-F2Netmodes16,8-Add

U-F2Netmodes16,8-AdaGN

U-F1Netatt,modes16-Add

U-F1Netatt,modes16-AdaGN

U-F2Netatt,modes16,8-Add

U-F2Netatt,modes16,8-AdaGN

10−4

10−3

10−2

One-step (∆t = 0.75 s)

10−3

10−2

One-step (∆t = 1.5 s)

10−3

10−2

10−1

One-step (∆t = 3 s)

1664 6656
10−2

10−1

One-step (∆t = 6 s)

1664 6656

10−3

10−2

10−1

∑
∆t

M
SE

Num. Train Trajectories

Figure 19: Navier-Stokes parameter conditioning experiments. Ablation results for different pa-
rameter conditioning methods. “Addition”(Add) and “AdaGN” are compared on one-step errors,
reported for different time windows and averaged over 208 unseen values of the buoyancy force
term. For low time windows, AdaGN seems to be beneficial.

37

Under review as a conference paper at ICLR 2023

G
ro

un
d

tr
ut

h

Pr
ed

ic
tio

n
A

bs
.e

rr
or

0.2

0.4

0.6

0.5

1.0

1.5

(a) Scalar field

G
ro

un
d

tr
ut

h

Pr
ed

ic
tio

n
A

bs
.e

rr
or

0.1

0.2

0.3

−0.5

0.0

0.5

(b) Vector field x-component

G
ro

un
d

tr
ut

h

Pr
ed

ic
tio

n
A

bs
.e

rr
or

0.1

0.2

0.3

−0.5

0.0

0.5

(c) Vector field y-component

Figure 20: Parameter conditioning for Navier-Stokes equations, f = 0.21. Example rollouts of the
scalar and vector velocity field of the Navier-Stokes experiments are shown, obtained by a U-Netmod
PDE surrogate model (top), and compared to the ground truth (bottom). Predictions are obtained
for a time window ∆t = 1.5 s and a buoyancy force term of f = 0.21. Model inputs are respective
fields at the last timestep (left-most ground truth column).

38

Under review as a conference paper at ICLR 2023

G
ro

un
d

tr
ut

h

Pr
ed

ic
tio

n
A

bs
.e

rr
or

0.2

0.4

0.5

1.0

1.5

(a) Scalar field

G
ro

un
d

tr
ut

h

Pr
ed

ic
tio

n
A

bs
.e

rr
or

0.1

0.2

0.3

−0.5

0.0

0.5

(b) Vector field x-component

G
ro

un
d

tr
ut

h

Pr
ed

ic
tio

n
A

bs
.e

rr
or

0.2

0.4

−0.5

0.0

0.5

(c) Vector field y-component

Figure 21: Parameter conditioning for Navier-Stokes equations, f = 0.33. Example rollouts of the
scalar and vector velocity field of the Navier-Stokes experiments are shown, obtained by a U-Netmod
PDE surrogate model (top), and compared to the ground truth (bottom). Predictions are obtained at
a time window ∆t = 1.5 s and a buoyancy force term of f = 0.33. Model inputs are respective
fields at the last timestep (left-most ground truth column).

39

Under review as a conference paper at ICLR 2023

G
ro

un
d

tr
ut

h

Pr
ed

ic
tio

n
A

bs
.e

rr
or

0.1

0.2

0.3

0.5

1.0

1.5

(a) Scalar field

G
ro

un
d

tr
ut

h

Pr
ed

ic
tio

n
A

bs
.e

rr
or

0.1

0.2

0.3

−0.5

0.0

0.5

(b) Vector field x-component

G
ro

un
d

tr
ut

h

Pr
ed

ic
tio

n
A

bs
.e

rr
or

0.2

0.4

0.6

−0.5

0.0

0.5

(c) Vector field y-component

Figure 22: Parameter conditioning for Navier-Stokes equations, f = 0.48. Example rollouts of the
scalar and vector velocity field of the Navier-Stokes experiments are shown, obtained by a U-Netmod
PDE surrogate model (top), and compared to the ground truth (bottom). Predictions are obtained at
a time window ∆t = 1.5 s and a buoyancy force term of f = 0.48. Model inputs are respective
fields at the last timestep (left-most ground truth column).

40

	Introduction
	Preliminaries
	PDE Surrogates
	Operator learning

	Experiments
	Conclusion
	Related work
	Experiments
	Experimental details
	Additional model details
	ResNet
	Dilated ResNet
	FNO
	U-Net
	Parameter Conditioning
	Spatial-spectral parameter conditioning for Fourier layers

	Shallow water equations.
	Navier-Stokes equations.
	Parameter conditioning.

