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Abstract

Differential Diagnosis (DDx) is the process of identifying the most likely medical
condition among the possible pathologies through the process of elimination based
on evidence. An automated process that narrows a large set of pathologies down to
the most likely pathologies will be of great importance. The primary prior works
have relied on the Reinforcement Learning (RL) paradigm under the intuition that
it aligns better with how physicians perform DDx. In this paper, we show that a
generative approach trained with simpler supervised and self-supervised learning
signals can achieve superior results on the current benchmark. The proposed
Transformer-based generative network, named DDxT, autoregressively produces
a set of possible pathologies, i.e., DDx, and predicts the actual pathology using a
neural network. Experiments are performed using the DDXPlus dataset. In the case
of DDx, the proposed network has achieved a mean accuracy of 99.82% and a mean
F1 score of 0.9472. Additionally, mean accuracy reaches 99.98% with a mean
F1 score of 0.9949 while predicting ground truth pathology. The proposed DDxT
outperformed the previous RL-based approaches by a big margin. Overall, the
automated Transformer-based DDx generative model has the potential to become a
useful tool for a physician in times of urgency.

1 Introduction

Differential Diagnosis (DDx) is referred to the process of systematically identifying a disease from a
possible set of pathologies through the process of elimination based on a patient’s medical history
and physical examinations [5]. During a clinical process, a doctor asks several questions about the
patient’s symptoms and antecedents (medical history). Based on the response, possible differential
diagnoses are narrowed down. If there is uncertainty about the underlying condition, then a medical
examination is performed or additional tests are suggested. Given a patient’s information and
symptoms, an automated system that narrows down the possible pathologies if not identifying the
exact one will be of great benefit. In particular, such improvements could help lower-performing
doctors or those in under-resourced communities obtain better diagnostic outcomes [25]. Moreover,
in times of emergency, an automated system that has access to the patient’s medical history and
current conditions will be quite valuable.

In recent years, automated diagnosis systems using machine learning have increasingly developed
[30, 17, 6, 12]. Existing works have demonstrated the potential of such automated systems in
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performing complete blood count (CBC) test [1], syndrome detection [15], coronavirus, heart disease,
and diabetes detection [14], and more. Previous work such as Diaformer [4] also demonstrated
success in automated diagnosis using a sequence of explicit and implicit symptoms of a disease.
But what is lacking is the details of the symptoms, the patient’s previous medical history, and
relevant information such as age, and gender. In a DDx process, a doctor would consider all of these
information.

In this paper, an automated DDx system is proposed using Transformer [28], named DDxT, that would
take a sequence of all the patient’s necessary information as input to perform DDx by autoregressively
generating a set of most likely pathologies and finally, predict the ground truth pathology using a
neural network. This sequence of patient information will contain age, gender, medical history, and
evidence, i.e., symptoms. Transformer architecture is employed since it is currently state-of-the-art
for sequence generation [3]. Asking questions to a patient and acquiring information can easily be
done through an automated system. The challenging part is to make an intelligent decision based
on the acquired information which will be addressed in this paper. This will be beneficial not only
during the time of emergency but also as an assistive tool to the doctor during the diagnosis process.

2 Related Works

Recent works have demonstrated the feasibility of the machine learning-based automated diagnosis
system. Such work is presented by [10] where a Transformer-based model is utilized for the
differential diagnosis. To perform the task, multi-modal magnetic resonance imaging (MRI) is
utilized where a sequence of the brain and spinal cord MRI is processed by the Transformer. Their
model performed considerably better than the previous approaches, however, the work is limited
only to the diagnosis of demyelinating diseases. Likewise, [24] presented an ensemble approach for
automated diagnosis. Their approach involves multiple deep learning-based approaches where the
final prediction is the ensemble of all the predictions. On the other hand, [1] proposed an automated
complete blood count (CBC) test system which is a very common test in medical diagnosis. Their
approach employed YOLO [22] object detection algorithm for blood cell detection.

An image-based classifier is a powerful tool for automated diagnosis. Such a system is presented
by [20] where convolutional neural networks (CNN) are utilized to diagnose Coronary Artery
Disease (CAD) using Myocardial Perfusion Imaging (MPI). Their system utilizes and compares
performance on pre-trained VGG-16 [23] and DenseNet-121 [11] architectures. In the same fashion,
[16] developed an automated classification system for fungal keratitis. Their system uses ResNet
[8] architecture with fungal hyphae images for binary classification of fungal keratitis. Similarly,
[17, 18] both employed EfficientNet [26] for the detection of COVID-19 using X-ray images and
Malaria classification from the blood smear images, respectively. In a slightly different manner, [21]
adopts vision transformer-based Swin-UNETR [7] model to automatic retinal lesion segmentation
from spectral-domain optical coherence tomography (SD-OCT) images.

The rest of the paper is organized as follows. section 3 will cover the proposed method including a
description of the dataset, network, and training procedure. Next, section 4 will highlight the results
and compare the proposed method to the RL agent-based methods. Finally, we conclude in section 5
with a discussion of the limitations of our approach.

3 Proposed Method

In this paper, differential diagnosis will be performed using a generative Transformer which will
take a sequence of patient information as input and predict a sequence of most likely pathologies as
differential diagnosis, and finally, the most likely pathology will be predicted using a classifier. In the
following subsections, a brief description of the dataset, proposed network architecture, and training
process will be discussed.

3.1 Dataset

For differential diagnosis, along with evidence, i.e., symptoms, patient’s antecedents (medical history)
and personal details such as age and sex are necessary information. DDXPlus [27] dataset is such a
dataset that contains synthetically generated 1.3M patient information where each sample contains
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patient details, evidence, ground truth differential diagnoses, and the ground truth condition. The
dataset has a total of 49 pathologies that cover various age groups, sexes, and patients with a broad
spectrum of medical history. We note that our work assumes the fidelity of the data since obtaining
diagnostic data and medical history from patients comes at high expense, legal hurdles, ethics review,
and slow collection rate [19]. Such challenges are beyond the scope of our study.

The dataset is preprocessed so that it can be processed by the Transformer. Each patient’s information
in the dataset contains age, sex, initial evidence, evidence (symptoms), ground truth differential
diagnosis, and ground truth pathology. The age is categorized into 8 groups in the following way:
[less than 1), [1-4], [5-14], [15-29], [30-44], [45-59], [60-74], and [above 75]. Sex
is represented by M for male and F for female. The Initial and rest of the evidence were acquired by
back-and-forth questioning with a patient. Differential diagnosis contains a set of likely pathologies
with a probability score for each pathology based on the evidence. Therefore, the ground truth DDx
output sequence is organized in descending order of the probability score of each pathology, i.e., the
order of prediction is significant and the pathology with a higher probability needs to be predicted
first. Finally, the ground truth pathology is what the patient actually has.

Special tokens are incorporated to facilitate the learning process. Particularly, <bos> indicates the
beginning of the sequence, <sep> token is used to separate each type of information, and to indicate
the end of sequence <eos> is used. Since all sequences need to be equal in size, <pad> token is
used in shorter sequences to fill out the sequence up to the maximum length, and longer sequences
are truncated. Each patient’s information is preprocessed as follows. First <bos> is used to initiate
a sequence. Next, age, sex, initial evidence, and evidence all are stacked together using <sep> in
between. Finally, the end of the sequence is indicated by <eos> token. To cover the unknown words
in special circumstances, <unk> token is included in the vocabulary.

3.2 Network Architecture

<bos> age <sep> sex <sep> initial evidence <sep> evidences <eos>

word + positional embedding

Encoder Decoder <𝑝𝑡−1>
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Figure 1: The block diagram of the proposed
deep generative network architecture. The encoder
blocks are shadowed with blue and the decoder
blocks are shadowed with green. The classifier
section is shadowed with orange. DDx is the set of
n pathologies from <p1> to <pn> and the classifier
predicts the diagnosed pathology <p>.

After preprocessing the dataset, a vocabulary
is built using all the unique tokens. The input
string is split into words and using the gener-
ated vocabulary, each word is replaced with the
associated index of the word in the vocabulary.
The encoder vocabulary length is 436 and the
decoder vocabulary length is 54 (49 pathologies
+ 5 special tokens). Next, these integer values
are utilized to gather the associated word em-
bedding and added with positional embedding
so that the order of the word in a sequence is
recognized by the network. Similarly, the de-
coder input tokens are also preprocessed, and
word and positional embedding are applied. The
Transformer architecture consists of encoder and
decoder blocks. Each of the blocks contains a
self-attention mechanism, a brief description of
which is provided in Appendix A. The encoder
will process the patient’s information and feed

the context to the decoder. The decoder will be initialized with the p0=<bos> token which will
iteratively take previously generated pathology pt−1 as input and use tokens p0 to pt−1 to generate
a new possible pathology pt until it reaches <eos> token. Both encoder and decoder are repeated
N(N = 6) times which will help recognize richer context. The decoder output is the DDx, a
sequence of most likely pathologies.

The final layer of the encoder holds the processed context information of the evidence, i.e., symptoms
and relevant patients’ information, and the final layer of decoder holds the information of all the
possible likely pathologies. Therefore, combining both features will be quite advantageous in
predicting the actual pathology. As a result, Global average pooling (GAP) is applied to both the
encoder and decoder features, concatenated, and fed to a classifier. The classifier is a two-layer neural
network. The first layer contains the same number of features as the encoder or decoder, and the
second layer has the same number of logits as the number of classes in the dataset. Both layers
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are preceded by layer normalization [2]. In between the layers, GELU activation [9] is used. The
classifier predicts the ground truth pathology among the most likely DDx. The full block diagram of
the network architecture is presented in Figure 1.

3.3 Training

During training, the input size of the encoder and decoder must be fixed. Therefore, the maximum
sequence length for the encoder is set to be 80, and the maximum sequence length for the decoder is
set to be 40 by truncating or adding <pad> tokens. The built vocabulary has 436 unique tokens thus
the vocab size for the word embedding is set to be 436. For the embedding layers, the feature size
is set to 128 and the feature size of the multi-layer perceptron (MLP) of the encoders and decoders
is increased 4 times. In the self-attention layers, 4 heads are used and the encoder and decoder are
repeated 6 times. A categorical cross-entropy loss is employed for both the decoder output and the
classifier which are added together to compute the final loss. To regularize the network, Dropout with
a rate of 0.1 and layer normalization are employed. The loss function is optimized using the Adam
[13] optimizer and trained for a total of 20 epochs. The initial learning rate is set to 10−3 with an
exponential decay learning rate scheduler of the decay rate of γ = 0.95.

4 Results

The proposed network predicts a sequence of most likely pathologies, i.e., DDx, and the actual
pathology among the DDx. Both the predicted DDx sequence and the predicted pathology are
compared with the ground truth DDx sequence and pathology. The ground truth DDx sequence is
organized in descending order of probability distribution of most likely pathologies. As a result, the
positional embedding plays an important role in maintaining the correct prediction order leading
to a better performance. The ground truth DDx sequence is compared with the predicted sequence
elementwise and the mean result is computed. For evaluation, Accuracy, Precision, Recall, and F1
scores are considered. In the following subsections, a comparison of the proposed method with the
RL agent-based automated diagnosis methods is performed. Subsequently, the performance of DDx
pathology sequence generation and pathology classification will be analyzed and discussed.

4.1 Comparison

The baseline models that perform automatic diagnosis using the DDXPlus dataset are Reinforcement
Learning (RL)-based agents. Adaptive Alignment of Reinforcement Learning and Classification
(AARLC) presented by [29] is such a system that employs an RL-based agent to adaptively acquire
the patient’s symptoms and subsequently uses a classifier to predict the pathology. The process
continues iteratively thus generating a DDx sequence of pathologies. Similarly, the baseline automatic
symptom detector (BASD) [27] utilizes an RL-based agent to gather evidence and an MLP classifier
to predict the pathology. Table 1 shows the comparison of the performance of the proposed DDxT
model with the baseline RL agent-based models.

Table 1: Our DDxT improves Precision and thus F1 score significantly, showing value in a generative
approach to retrieving accurate diagnoses over the prior RL agent-based approaches. The best results
for each metric are highlighted in bold.

Method GTPA@1 DDP DDR DDF1 GM

AARLC 99.21 69.53 97.73 0.7824 87.68

BASD 97.15 88.34 85.03 0.8369 90.03

DDxT 99.98 94.84 94.65 0.9472 96.45

The comparison is performed in terms of top-1 ground truth pathology accuracy (GTPA@1), Precision,
Recall, and F1 score of DDx denoted as DDP, DDR, and DDF1 following the convention of [27].
AARLC gets the highest recall score but a much lower precision score, lesser than the BASD model,
therefore, a lower F1 score. On the other hand, DDxT has a balanced performance in terms of both
precision and recall. As a result, it achieved the new highest F1 score of 0.9472 in the DDXPlus
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dataset. Additionally, the proposed method outperforms the previous approaches in terms of top-1
accuracy. Moreover, the accuracy, precision, and recall are combined by geometric mean (GM) also
shown in Table 1 to compare the effectiveness of each method. DDxT achieves the best result of
96.45 with a big margin over the previous RL agent-based methods.

4.2 DDx Pathology Sequence Generation

The predicted DDx sequence is compared with the ground truth DDx sequence. Since the ground truth
sequence is organized in descending order by the probability distribution, predictions are compared
element-wise and the mean result is computed per sequence. To evaluate all the metrics, a confusion
matrix is built. In DDx pathology sequence generation, the proposed method achieved 99.82%
mean accuracy and a mean F1 score of 0.9472%. The confusion matrix of the generated pathology
sequence is presented in Appendix B which demonstrates the robustness of the proposed generative
method. The accuracy, precision, recall, and F1 score of all the pathology classes are also presented in
Appendix B. Among all the pathologies, the highest F1 score of 0.9946 is achieved for Myasthenia
gravis, and the minimum F1 score of 0.8643 is achieved for Pancreatic neoplasm.

4.3 Pathology Classification

The proposed network takes the processed feature of the encoder and decoder using a GAP, con-
catenating them together and feeding them into a classifier for the final pathology classification, i.e.,
given the list of evidence and set of pathologies (DDx), the final classifier will predict the actual
pathology among the most likely DDx pathologies. The results of pathology classification are also
evaluated in terms of accuracy, precision, recall, and F1 score. Since the classifier has both encoder
and decoder information, it shows significant robustness in classification where the network achieved
a mean accuracy of 99.98% with a mean F1 score of 0.9949. Additionally, the mean precision and
recall scores achieved are 99.61% and 99.44%, respectively. The minimum F1 score achieved 0.8567
is for the Acute rhinosinusitis. The confusion matrix of classification along with metric scores for
all the pathologies are presented in Appendix C.

Some conditions, like Unstable angina, Acute rhinosinusitis, and Chronic rhinosinusitis obtain
lower precision for varying recall rates. These conditions may need to be considered distinctly in
the case of the condition’s likelihood to a given population, the risk of the condition itself, and other
factors to decide if such conditions are useful to detect in this fashion. Separately, the vast majority
of conditions can be detected and a conservative threshold may be used to increase confidence in
deployment while expecting a limited reduction in missed diagnoses.

5 Conclusion and Limitations

In this paper, an automated system of autoregressively generating DDx pathologies and predicting the
actual pathology among them is presented. The proposed network uses a Transformer architecture
where patient information and evidence are processed by the encoder. Next, the decoder generates
a set of likely pathologies. The pathology sequences are generated in the most likely to the least
likely order. Afterward, the features of both the encoder and decoder are concatenated and fed to
a smaller classifier for the final prediction of the most likely pathology. Experimental results on
the DDXPlux dataset demonstrate the feasibility and robustness of DDxT where it achieved a mean
accuracy of 99.98% and a mean F1 score of 0.9472 in the DDx. Moreover, while predicting the
pathology it achieved a mean accuracy of 99.98% with a mean F1 score of 0.9949. Nevertheless,
the proposed system does not acquire and assumes the preexistence of the evidence. Therefore, the
performance of the system has a dependency on the correct rendering of accurate information by an
authorized user or another automated system. Besides, pathologies such as Acute rhinosinusitis,
Chronic rhinosinusitis that displayed lower precision scores with varying recall need to be addressed
distinctly. However, in general, the proposed system performed the desired goal of automating
differential diagnosis and has the potential to emerge as an assistive tool for the physician during the
diagnosis process.
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A Transformer

Transformer [28] is an attention-based model that uses its input to generate query Q, key K, and
value V to compute self-attention given in Equation 1 where d is the feature dimension. The self-
attention layer is accompanied by multi-layer perceptron, layer normalization, and skip connections
to form an attention block. The blocks are repeated multiple times. The sequence of the patient’s
information will be processed on a stack of blocks called the encoder which gives context to the
decoder, another stack of decoder blocks that produces the output. A look-ahead mask is applied to
the decoder to generate output autoregressively so that the current prediction pt only relies on the
previous predictions from p0 to pt−1.

Attention(Q,K,V) = softmax
(
QKT

√
d

)
V (1)

B DDx Comprehensive Results

The confusion matrix for the DDx sequence generation is presented in Figure 2. The dataset has a
total of 49 pathologies. So, the confusion matrix is of the size of 49× 49. The ground truth classes
are shown in the row and the predicted labels are in the column. Visually, the proposed method has
very few false positives and false negatives while generating the most likely pathologies.
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Figure 2: Confusion matrix for the DDx sequence generation where each element, i.e, pathology of
the sequence is evaluated elementwise. Each row indicates the ground truth class and each column
indicates the predicted class.
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The accuracy, precision, recall, and F1 score of all the pathology classes are also presented in Table 2.
Among all the pathologies, the highest F1 score of 0.9946 is achieved for Myasthenia gravis, and
the lowest F1 score of 0.8643 is achieved for Pancreatic neoplasm.

Table 2: Classification results of the Differential Diagnosis (DDx) where the sequence of pathologies
are generated given a set of evidence.

Pathology Acc. (%) Prec. (%) Rec. (%) F1
Spontaneous pneumothorax 99.91 96.11 95.65 0.9588

Cluster headache 99.92 96.69 97.73 0.9720
Boerhaave 99.77 93.04 89.01 0.9098

Spontaneous rib fracture 99.95 93.07 94.38 0.9372
GERD 99.56 91.54 90.44 0.9098

HIV (initial infection) 99.67 91.28 92.30 0.9179
Anemia 99.67 96.89 96.46 0.9668

Viral pharyngitis 99.94 98.44 97.57 0.9800
Inguinal hernia 99.84 90.58 84.94 0.8767

Myasthenia gravis 99.96 99.53 99.40 0.9946
Whooping cough 99.99 97.67 95.87 0.9676

Anaphylaxis 99.59 94.68 94.42 0.9455
Epiglottitis 99.92 94.13 91.81 0.9296

Guillain-Barré syndrome 99.78 97.43 96.83 0.9713
Acute laryngitis 99.92 96.93 97.10 0.9701

Croup 99.93 85.13 89.49 0.8726
PSVT 99.86 98.38 97.20 0.9778

Atrial fibrillation 99.85 98.26 98.03 0.9815
Bronchiectasis 99.85 94.42 95.06 0.9474

Allergic sinusitis 99.99 96.73 97.47 0.9710
Chagas 99.69 97.05 96.91 0.9698

Scombroid food poisoning 99.56 95.13 93.94 0.9453
Myocarditis 99.78 97.01 96.76 0.9689

Larygospasm 99.92 91.21 89.60 0.9040
Acute dystonic reactions 99.86 98.81 97.78 0.9829

Localized edema 99.95 94.54 95.76 0.9515
SLE 99.92 98.28 98.01 0.9814

Tuberculosis 99.76 95.39 94.62 0.9500
Unstable angina 99.63 93.21 95.54 0.9436

Stable angina 99.76 95.28 96.31 0.9579
Ebola 99.98 94.62 96.96 0.9578

Acute otitis media 99.95 96.46 91.67 0.9400
Panic attack 99.65 94.24 91.40 0.9280

Bronchospasm 99.92 95.42 97.52 0.9646
Bronchitis 99.85 98.48 97.70 0.9809

Acute COPD exacerbation 99.95 96.88 94.66 0.9576
Pulmonary embolism 99.68 96.89 94.13 0.9549

URTI 99.88 96.28 97.69 0.9698
Influenza 99.81 94.05 95.11 0.9458

Pneumonia 99.67 92.32 93.32 0.9282
Acute rhinosinusitis 99.95 96.64 96.69 0.9667

Chronic rhinosinusitis 99.90 94.25 94.52 0.9438
Bronchiolitis 100.00 92.59 81.97 0.8696

Pulmonary neoplasm 99.73 89.91 92.44 0.9116
Possible NSTEMI 99.60 94.99 95.73 0.9536

Sarcoidosis 99.90 97.90 96.90 0.9740
Pancreatic neoplasm 99.56 81.10 92.52 0.8643

Acute pulmonary edema 99.80 94.53 97.47 0.9598
Pericarditis 99.72 92.57 93.25 0.9291

Mean 99.82 94.84 94.65 0.9472
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C Pathology Classification Comprehensive Results

The confusion matrix of the pathology classification is presented in Figure 3. The proposed method
showed a robust performance while classifying pathology from encoder and decoder features which
can be observed from the figure.
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Figure 3: Confusion matrix of the final pathology classification. True labels are shown in the row and
the predicted labels are shown in the column.
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The proposed method has achieved a mean accuracy of 99.98% with a mean F1 score of 0.9949.
Additionally, the mean precision and recall scores achieved are 99.61% and 99.44%, respectively.
The accuracy, precision, recall, and F1 score of all the classes for pathology classification are also
presented in Table 3.

Table 3: Results of the pathology classification the classifier processed the encoder and the decoder
information to predict the most likely pathology among the predicted set of differential diagnoses.

Pathology Acc. (%) Prec. (%) Rec. (%) F1
Spontaneous pneumothorax 100.00 100.00 100.00 1.0000

Cluster headache 100.00 100.00 100.00 1.0000
Boerhaave 100.00 100.00 100.00 1.0000

Spontaneous rib fracture 100.00 100.00 100.00 1.0000
GERD 100.00 100.00 100.00 1.0000

HIV (initial infection) 100.00 100.00 100.00 1.0000
Anemia 100.00 100.00 100.00 1.0000

Viral pharyngitis 99.97 99.72 99.77 0.9975
Inguinal hernia 100.00 100.00 100.00 1.0000

Myasthenia gravis 100.00 100.00 100.00 1.0000
Whooping cough 100.00 100.00 100.00 1.0000

Anaphylaxis 100.00 100.00 100.00 1.0000
Epiglottitis 100.00 100.00 100.00 1.0000

Guillain-Barré syndrome 100.00 100.00 100.00 1.0000
Acute laryngitis 99.97 99.41 99.29 0.9935

Croup 100.00 100.00 100.00 1.0000
PSVT 100.00 100.00 100.00 1.0000

Atrial fibrillation 100.00 100.00 100.00 1.0000
Bronchiectasis 100.00 100.00 100.00 1.0000

Allergic sinusitis 100.00 100.00 100.00 1.0000
Chagas 100.00 100.00 100.00 1.0000

Scombroid food poisoning 100.00 100.00 100.00 1.0000
Myocarditis 100.00 100.00 100.00 1.0000

Larygospasm 100.00 100.00 100.00 1.0000
Acute dystonic reactions 100.00 100.00 100.00 1.0000

Localized edema 100.00 100.00 100.00 1.0000
SLE 100.00 100.00 100.00 1.0000

Tuberculosis 100.00 100.00 100.00 1.0000
Unstable angina 99.96 99.96 98.37 0.9916

Stable angina 99.97 98.07 100.00 0.9902
Ebola 100.00 100.00 100.00 1.0000

Acute otitis media 100.00 100.00 100.00 1.0000
Panic attack 100.00 100.00 100.00 1.0000

Bronchospasm 100.00 100.00 100.00 1.0000
Bronchitis 100.00 100.00 100.00 1.0000

Acute COPD exacerbation 100.00 100.00 100.00 1.0000
Pulmonary embolism 100.00 100.00 100.00 1.0000

URTI 100.00 100.00 100.00 1.0000
Influenza 100.00 100.00 100.00 1.0000

Pneumonia 100.00 100.00 100.00 1.0000
Acute rhinosinusitis 99.65 97.36 76.49 0.8567

Chronic rhinosinusitis 99.65 86.30 98.62 0.9205
Bronchiolitis 100.00 100.00 100.00 1.0000

Pulmonary neoplasm 100.00 100.00 100.00 1.0000
Possible NSTEMI 100.00 100.00 99.97 0.9998

Sarcoidosis 100.00 100.00 100.00 1.0000
Pancreatic neoplasm 100.00 100.00 100.00 1.0000

Acute pulmonary edema 100.00 100.00 100.00 1.0000
Pericarditis 100.00 100.00 100.00 1.0000

Mean 99.98 99.61 99.44 0.9949
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