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Abstract

We address the challenge of point cloud registration using color information, where
traditional methods relying solely on geometric features often struggle in low-
overlap and incomplete scenarios. To overcome these limitations, we propose
GeGS-PCR, a novel two-stage method that combines geometric, color, and Gaus-
sian information for robust registration. Our approach incorporates a dedicated
color encoder that enhances color features by extracting multi-level geometric
and color data from the original point cloud. We introduce the Geometric-3DGS
module, which encodes the local neighborhood information of colored superpoints
to ensure a globally invariant geometric-color context. Leveraging LORA opti-
mization, we maintain high performance while preserving the expressiveness of
3DGS. Additionally, fast differentiable rendering is utilized to refine the registration
process, leading to improved convergence. To further enhance performance, we
propose a joint photometric loss that exploits both geometric and color features.
This enables strong performance in challenging conditions with extremely low
point cloud overlap. We validate our method by colorizing the Kitti dataset as
ColorKitti and testing on both Color3DMatch and Color3DLoMatch datasets. Our
method achieves state-of-the-art performance with Registration Recall at 99.9%,
Relative Rotation Error as low as 0.013, and Relative Translation Error as low as
0.024, improving precision by at least a factor of 2.

1 Introduction

Fast and stable point cloud registration is a crucial technology in computer vision [1] and embod-
ied intelligence [2], serving as the foundation for various practical applications, such as 3D scene
reconstruction [3], semantic scene segmentation [4], and large-scale perception and mapping [5]. In
essence, point cloud registration involves aligning two overlapping 3D point clouds using a rigid
transformation through a series of estimation steps.
Recent advancements in deep learning have accelerated the development of 3D point cloud rep-
resentation [6, 7] and differentiable optimization techniques [8, 9]. Previous works have focused
on keypoints and correspondences, leveraging specialized neural networks to extract features from
point clouds, and subsequently determining the rigid transformation using robust estimators like
RANSAC [10, 11]. Inspired by image matching, recent research has highlighted the significance of
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local neighborhood information [12, 13], by matching keypoints (superpoints) based on the detection
of overlapping patches. This has led to advances in point cloud registration methods [14, 15], where
downsampling is used to layer point clouds, and the Transformer architecture is employed to capture
contextual information, adding informative constraints to the registration process. Furthermore,
unsupervised correspondence-based point cloud registration methods that focus on optimizing point
and Gaussian distribution correspondences [16, 17] have gained significant attention.

Figure 1: In scenarios with minimal overlap, incomplete geomet-
ric features, and subtle color variations, methods that simply add
color features perform moderately, whereas GeGS-PCR success-
fully identifies the brown sofa.

Despite rapid progress, point
cloud registration remains chal-
lenging in real-world scenarios
with low overlap between point
clouds [11, 18], where regis-
tration often fails. This high-
lights the need for novel meth-
ods. Recent breakthroughs in
colored point cloud registration
[19, 20] have shown that inte-
grating color information can re-
veal relationships that cannot be
captured by geometric features
alone, thereby improving regis-
tration performance. As shown
in Fig. 1, color information plays
a crucial role in scenarios with
low overlap and subtle geometric
features. When color differences
are not distinct, simply incorpo-
rating color information still fails
to establish the correct correspon-
dences. However, when subfig-
ures (c) and (d) specifically an-
alyze color features, the regis-
tration process can successfully
match the brown sofa with its armrest. The Gaussian distribution captures global shape variations and
significantly suppresses noise. Combining color and geometric information, along with considering
the relationships between point clouds and their Gaussian distributions, is crucial for faster and more
robust registration.
To address the challenges of point cloud registration in low-overlap real-world scenarios, we propose
GeGS-PCR, a two-stage method that integrates Geometric-3DGS for colored point cloud registration.
We designed a dedicated color encoder that enhances color features and extract multi-level geometric
and color information from the original point cloud. The Geometric-3DGS module encodes local
neighborhood information of colored superpoints, achieving globally invariant geographic color
context. Using the parameterized multimodal local neighborhood information from 3DGS(geometric,
Gaussian, and color information), we perform fast coarse registration. To reduce the computational
complexity and parameter count introduced by 3DGS parameterization without sacrificing expressive
power, we incorporate LORA optimization [21]. For better model convergence, we use 3DGS’s
fast differentiable rendering to refine the point cloud registration. Additionally, we introduce a
joint photometric loss to improve the utilization of color information during the registration process.
Through these modules, geometric and color data are tightly integrated, enabling GeGS-PCR to
deliver strong performance even in challenging low-overlap scenarios.
Furthermore, due to the limited availability of publicly available colored datasets, currently only the
publicly available COLOR3DMatch and Color3DLoMatch datasets [20] are available. Therefore, to
validate the generalization ability of the model, we colorized the Kitti dataset to create ColorKitti.
Evaluations on these datasets demonstrate that GeGS-PCR can achieve fast and stable registration
under low overlap, proving its advanced effectiveness.
The main contributions of this paper are as follows:

• We tightly combine color and geometric information to achieve point cloud registration.
Specifically, we design a color encoder for feature extraction, constructing a globally
invariant geometric-color representation.
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• We propose the Geometric-3DGS module to encode multimodal representations of super-
point neighborhood information. Using attention with 3DGS embeddings, we focus on
global geometric distribution-color features and perform fast coarse registration by reducing
computational complexity with LORA.

• We introduce a joint photometric loss. By performing fast differentiable rendering on the
Geometric-3DGS module and calculating photometric loss during the rendering process, we
refine the registration of point clouds.

• We colorize public point cloud datasets to generate ColorKitti. Experimental validation
shows that GeGS-PCR performs excellently even in scenarios with extremely low overlap.

2 Related Work

2.1 Correspondence-Based Methods

Existing correspondence-based methods can be roughly divided into point-to-point and point-to-
distribution registration approaches. Point-to-point methods (e.g., ICP) aim to estimate transforma-
tions through point coordinates or feature extraction [22], [23]. Using robust pose estimators (such as
RANSAC or other RANSAC-free methods [13], [19], [24], [25]), registration is achieved through
iterative optimization between correspondence search and transformation estimation. However, these
methods are highly sensitive to noise and density variations and are typically supervised. The second
category, point-to-distribution, maps points to probability distributions and estimates transformations
through distribution alignment or clustering [20], [26], [27]. Although these methods are unsuper-
vised, the iterative process can be time-consuming. Recent studies have adopted a coarse-to-fine
approach [14], [28], achieving advanced performance. In this work, we follow this approach and focus
on improving registration accuracy through a closer integration of color and geometric information
(including color and distribution information).

2.2 Point Cloud Feature Extraction

Recently, due to the maturity of image matching methods, new paradigms for 3D point cloud feature
extraction have emerged. PointNet performs deep learning-based feature extraction using graph
convolution [29] and point convolution kernels [30]. Notably, feature extraction using KPConv-
FPN [31], [32] has become a mainstay. To enhance the use of color information, PEAL [19]
extracts RGB color from images, but it faces the problem of color information loss. Based on
this, ColorPCR [20] integrates color information through the CEFE module and achieves better
performance. However, these methods model color information separately. Inspired by the latest
3DGS technology in scene reconstruction, we consider tighter contextual relationships between
color (opacity) and geometric information, enabling a Geometric-Color invariant representation.
Therefore, we innovatively introduce 3DGS into point cloud registration and propose the Geometric-
3DGS module. Through a color depth encoder, we extract deep color information and construct a
global geographic relationship between point cloud color and geometric information to achieve fast
registration in the coarse alignment stage.

2.3 Registration With Color Features

Some methods implicitly utilize color information to first detect keypoints or use 2D-3D multimodal
learning [33], [34], [35], [36]. PEAL detects overlaps in 2D images and then transfers them to a
3D registration network. Additionally, ColorPCR uses multi-stage color processing in the global
registration process to utilize color information. The ICP algorithm [37] and its variants (such as
4DICP) [38] increase the original point cloud feature dimensions to incorporate color information
into geometric registration optimization. We follow this idea and use HSV and LAB to represent
different color spaces [39], [40]. Due to the differentiable rendering properties of 3DGS [41], [42],
[43], we adaptively fuse color information to achieve fast and stable fine registration of point clouds.

3 Method

Problem statement. Suppose we have two point clouds representing the target point cloud
P = {pi∈R3|i = 1, ..., N} and the source point cloud Q = {qi∈Re|i = 1, ...,M}, and their
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corresponding color information can be represented as Pc = {pci ∈ [0, 1]3|i = 1, ..., N} and
Qc = {qci ∈ [0, 1]3|i = 1, ...,M}, respectively. The main objective of point cloud registration is to
estimate a rigid transformation, represented by T = {R, t}, where R ∈ SO(3) is the 3D rotation
matrix and t ∈ R3 is the translation vector, such that the point clouds P and Q align through this
transformation. The true correspondences between these point clouds are represented by the set C∗,
which is initially unknown. Therefore, we can optimize the following objective to solve for the rigid
transformation:

min
R,t

∑
(p∗

xi
,q∗yi

)∈C∗

∥R · p∗xi
+ t− q∗yi

∥22. (1)

Figure 2: Pipeline. The entire network backbone is divided into coarse and fine scales. The feature
extraction module extracts and integrates geometric and color information from the input point clouds
P and Q using the color encoder and geometric encoder, producing superpoint representations P̂ and
Q̂. The 3DGS Superpoint Matching Module identifies correspondences through 3DGS embeddings
and self-attention mechanisms. LORA optimization is applied to reduce computational complexity
and integrate both geometric and color information effectively. Finally, the Fine Registration &
Transformation Module refines the registration by performing differentiable rendering after coarse
registration, optimizing the rigid transformation parameters {R∗, t∗}.

Our pipeline is shown in Fig. 2. We represent the dense points and colors of the target point cloud as
P ∈ R|P |×3 and Pc ∈ [0, 1]|P |×3, respectively. The coarsest level of the dense points is represented as
P̃ ∈ R|P̃ |×3 and P̃c ∈ [0, 1]|P̃ |×3, and the finest level of the point cloud (superpoints) is represented
as P̂ ∈ R|P̂ |×3 and P̂c ∈ [0, 1]|P̂ |×3. Similarly, the source point cloud is represented in the same
way.

3.1 Coarse Registration With Color Features

3.1.1 Color Encoder Module

We design a dedicated color encoder module to inject effective color information into point cloud
features (see Fig. 2). The rationale for using this encoder is twofold: (1) typical geometry-color fusion
is often performed by simple addition, which cannot effectively handle noise in color information;
(2) direct color feature extraction across different levels of feature extraction leads to reliance on
low-level features. The encoder first inputs the three-channel color vector Fc ∈ R3 into a multi-layer
perceptron (MLP). This MLP processes the color information, fully encodes it, and extracts deep
color features, which are then bounded in the [0, 1] range through a sigmoid function to produce
normalized color features F ′

C . The noise-robust color mapping is as follows:

F ′
C = δ(LN(W3 · δ(LN(W2 · (δ(LN(W1δ))))))), (2)

where W1, W2, and W3 ∈ Rdin×dout are learnable weights, din and dout are input and output dimensions,
LN(·) denotes layer normalization, and δ is the activation function. This process maps the original
color to a decoupled high-dimensional space, effectively removing noise interference.
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Based on this, we introduce a learned scalar weight α = δ(ω), where ω represents the parameter, to
adaptively fuse the geometric and color features. During training, this weight dynamically adjusts the
fusion process by balancing the contribution of geometric features Fg and color information F ′

c. The
final enhanced feature Fenh is obtained as follows:

F l
enh =

{
F l
g ⊕ (α · F color

c ), l < L

F l
g ⊕ F color

c , l = L
, (3)

where Fg is the original geometric feature, F color
c ∈ R3 is the color space vector (HSV, LAB)

processed by the MLP, and ⊕ represents channel concatenation. We use this color encoder in feature
extraction at different levels. At the final level, we only use feature concatenation without the color
encoder. This design injects color information while preserving the original geometry and other
feature information, ensuring sufficient multimodal representation for downstream tasks.

3.1.2 Geometric-3DGS Module

The Geometric-3DGS module mainly consists of three components: the 3DGS encoder, attention
with 3DGS embeddings, and Gaussian superpoint registration, as shown in Fig. 2. To improve the
robustness and accuracy of the coarse registration stage, this module deeply integrates geometric and
color features. Directly parameterizing all point cloud information with 3DGS at the beginning would
result in a large amount of redundant parameters and very high memory requirements. Therefore,
the core of this module is to 3DGS encode the local neighborhood information during point cloud
downsampling, and use 3DGS embeddings and attention mechanisms to focus on relevant features
in the 3DGS encoding. This module implements feature extraction at different granularities and
provides a global, transformation-invariant geometric-color representation, which is crucial for fine
point cloud registration.
3DGS encoder. We propose a Dual-Modal Color Encoder (DMCE), which is responsible for
transforming local neighborhood patches in the point cloud into more robust and rich representations,
thus capturing both geometric and color features. This method uses Gaussian distribution-based
representations to model the local neighborhood structure and the relationships between points. The
specific steps of the 3DGS encoder are as follows: We calculate the covariance matrix of each
local neighborhood in the point cloud, which can capture the local geometric structure. This matrix
considers the relative distances between points within the neighborhood to enhance the representation
of local surface directions. Specifically, for a key point Pi with a neighborhood Ni, we first compute
the differentiable covariance matrix:∑

i
= Ro(ri) · diag(exp(si)) ·Ro(ri)

T + λnin
T
i , (4)

where Ro(·) ∈ SO(3) represents the rotation matrix, ri ∈ R3 is the rotation quaternion, si ∈ R3

is the logarithmic scale vector, ni is the estimated normal vector, and λ controls the strength of
the normal vector, with λ ∈ [0.01, 0.1]. This covariance matrix captures the geometric features of
the local region of the point cloud. Finally, we perform top-k (k ∈ [2, 5]) fusion between the color
features from the color encoder and the 3DGS parameters. By combining position, covariance matrix,
color, and transparency, we construct the 3DGS feature vector:

F i
3DGS = Topki(Concat[µi, vec(Σi), αi, F

i
enh]) (5)

where µi is the Gaussian position center, and αi represents transparency.
Attention with 3DGS embeddings. In this part, we implement 3DGS position embeddings to obtain
globally invariant geometric-color fusion encodings. Finally, based on the GeoTransformer, we
use self-attention and cross-attention to focus on the color information in the point cloud structure
and guide superpoint registration. In both indoor and outdoor scenes, uncertainties such as sensors,
lighting, and natural weather conditions often introduce noise or missing data in color sampling. To
mitigate the impact of these color noises on global features, we aim to differentiate the parts that are
heavily affected by noise. For indoor scenes, we use the HSV color space, and for outdoor scenes, we
use the LAB color space. This ensures the most stable color information embedding, thus enabling
robust structural position encoding. The specific process for the 3DGS position embedding is in
Appendix A.2
Superpoint registration with 3DGS. To quickly register the point cloud information from Geometric-
3DGS during the coarse registration stage, we use the ICP algorithm to align the Gaussian distributions.
By minimizing the 3DGS distance between the source and target point clouds pi, pj , we iteratively
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optimize the rigid transformation between pi, pj using least squares until convergence. We define
the generalized distance metric as dij =

∥∥µs
i − µt

j

∥∥2
2
+ λd

∥∥Σs
i − Σt

j

∥∥
F

, where the parameter λd is
adjustable within the range of [0.05, 0.2], µs

i , µt
j are the means of the Gaussians in the source and

target point clouds, and Σs
i , Σt

j are the covariances. Based on this definition, we give the associated
probability matrix A ∈ RN×M , which measures the confidence of the match between pi, pj :

Aij =
exp(−γdij)∑M
k=1 exp(−γdik)

, (6)

where γ is the sensitivity control parameter, adjustable within the range of [1, 3], and this probability
matrix is normalized using softmax. By combining the generalized distance and the probability
matrix, we construct the objective to be optimized based on Mahalanobis distance:

min
R∈SO(3),t∈R3

N∑
i=1

M∑
j=1

Aij

∥∥R(µs
i − µ̄s) + t− (µt

j − µ̄t)
∥∥2
Σ−1

j

, (7)

where µs
i , µt

j represent the weighted centroids of the source and target point clouds, respectively,
µ̄s = 1

N

∑
i Aijµ

s
i , µ̄t = 1

N

∑
i Aijµ

t
i. ∥·∥ denotes Mahalanobis distance, with Σ−1

j used to
down-weight regions where the covariance computation has large errors. This objective can be solved
using SVD decomposition, resulting in:

H =
∑
ij

AijΣ
−1
j (µs

i − µ̄s)(µt
j − µ̄t)T , (8)

U, S, V = SV D(H), R∗ = V UT , t∗ = µ̄t −R∗µ̄s. (9)
Once the transformation values during training are smaller than a minimum tolerance, the 3DGS
registration is achieved.
LORA optimization. In the Geometric-3DGS module, the 3DGS parameterization introduces a
large amount of high-dimensional data, which may result in significant computational and storage
burdens, especially in large-scale point cloud scenarios. Therefore, we introduce LORA optimization
within the overall Transformer structure to reduce unnecessary computational overhead. By using the
LORA module, we convert the high-dimensional 3DGS embeddings into a low-rank form, allowing
the model to remain efficient and accurate without sacrificing its capacity.

3.2 Fine Registration With Photometric Optimization

To improve point cloud registration accuracy, we propose a fine registration method based on
photometric optimization. After coarse registration, we optimize point cloud alignment by rendering
the 3DGS of the target and source point clouds under the new pose and minimizing the weighted
photometric loss. Traditional photometric optimization methods typically only consider the L1
distance, which fails to effectively handle noise and lighting variations. To address this, we introduce
a weighted photometric loss, assigning different weights to each pixel to enhance robustness and
reduce the effects of uneven lighting and noise. Our photometric loss is calculated as follows:

Lphoto =
∑
i

ωi

∥∥∥f̂(G1, C̄)− f̂(G2, C̄)
∥∥∥2 , ωi = exp(−γd · di), (10)

where f̂(G1, C̄), f̂(G2, C̄) represent the rendered results of the target and source point clouds under
the new pose C̄, G1 and G2represent the 3DGS from the coarse registration, ωi represents the pixel
weight factor, and di is the pixel distance between the source and target point clouds. The sensitivity
control parameter γd adjusts the influence of distance on registration, adjustable within the range of
[1, 3]. Using differentiable rendering, we backpropagate the loss to the transformation parameters
R∗, t∗ and update them with gradient descent. This approach enhances accuracy, particularly in key
regions, by combining geometric loss with the weighted photometric loss for precise point cloud
alignment, as shown:

Ltotal = Lgeo + λpLphoto. (11)
where Lgeo is the geometric registration loss, and λp ∈ [0.1, 1] is a weight hyperparameter that
adjusts the balance between geometric and photometric losses. We provide the detailed proof of the
convergence of the joint photometric optimization in the Appendix A.1.
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4 Experiments

To validate the performance of the GeGS-PCR model, we evaluate it on the indoor benchmarks
Color3DMatch (C3DM) and Color3DLoMatch (C3DLM), as well as our colorized outdoor ColorKitti
(The specific data construction process, including the detailed steps and settings for preparing the
datasets, can be found in Appendix A.4 and A.5. ) odometry benchmark. Each point cloud in these
datasets includes an RGB color value.

Table 1: Evaluation results on C3DM and C3DLM. #Samples in the table represents the number of
correspondences selected by RANSAC.

C3DM C3DLM
#Samples 5000 2500 1000 500 250 5000 2500 1000 500 250

Feature Matching Recall (%) ↑
CoFiNet [44] 98.1 98.3 98.1 98.2 98.3 83.1 83.5 83.3 83.1 82.6
GeoTransformer [15] 97.9 97.9 97.9 97.9 97.6 88.3 88.6 88.8 88.6 88.3
PEAL [19] 99.0 99.0 99.1 99.1 98.8 91.7 92.4 92.5 92.9 92.7
ColorPCR [20] 99.5 99.5 99.5 99.5 99.5 96.5 96.5 97.0 97.0 96.7
GeGS-PCR (ours) 99.5 99.6 99.5 99.7 99.6 97.6 97.4 97.1 97.2 97.0

Inlier Ratio (%) ↑
CoFiNet [44] 49.8 51.2 51.9 52.2 52.2 24.4 25.9 26.7 26.8 26.9
GeoTransformer [15] 71.9 75.2 76.0 82.2 85.1 43.5 45.3 46.2 52.9 57.7
PEAL [19] 72.4 79.1 84.1 86.1 87.3 45.0 50.9 57.4 60.3 62.2
ColorPCR [20] 75.0 80.5 84.7 86.5 87.8 51.2 56.6 63.1 66.0 68.0
GeGS-PCR (ours) 76.3 82.4 86.3 86.6 89.1 53.4 58.7 66.9 69.7 70.3

Registration Recall (%) ↑
CoFiNet [44] 89.3 88.9 88.4 87.4 87.0 67.5 66.2 64.2 63.1 61.0
GeoTransformer [15] 92.0 91.8 91.8 91.4 91.2 75.0 74.8 74.2 74.1 73.5
PEAL [19] 94.6 93.7 93.7 93.9 93.4 81.7 81.2 80.8 80.4 80.1
GeoTransformer+MAC [15] 95.7 95.7 95.2 95.3 94.6 78.9 78.7 78.2 77.7 76.6
ColorPCR [20] 97.5 96.5 97.0 96.4 96.5 88.9 88.5 88.1 86.5 85.0
GeGS-PCR (ours) 97.9 97.6 97.5 96.7 97.6 90.7 90.2 90.4 90.0 89.8

4.1 Indoor Benchmarks: Color3DMatch & Color 3DLoMatch

Table 2: Registration results w/o RANSAC on C3DM and C3DLM. The model is the time for feature
extraction, while the pose time is for transformation estimation

Model Estimator #Sample RR (%)↑ Time (s)↓
C3DM C3DLM Model Pose Total

FCGF[8] RANSAC-50k 5000 85.1 40.1 0.052 3.326 3.378
D3Feat[9] RANSAC-50k 5000 81.6 37.2 0.024 3.088 3.112
SpinNet[7] RANSAC-50k 5000 88.6 59.8 60.248 0.388 60.636
Predator[28] RANSAC-50k 5000 89.0 59.8 0.032 5.120 5.152
CoFiNet[44] RANSAC-50k 5000 89.3 67.5 0.115 1.807 1.922
GeoTransformer[15] RANSAC-50k 5000 92.0 75.0 0.075 1.558 1.633
PEAL[19] RANSAC-50k 5000 94.6 81.7 0.089 1.776 1.865
ColorPCR[20] RANSAC-50k 5000 97.5 88.2 0.083 1.629 1.712
GeGS-PCR(ours) RANSAC-50k 5000 97.9 90.7 0.082 1.618 1.700

CoFiNet[44] RANSAC-free all 87.6 64.8 0.115 0.028 0.143
GeoTransformer[15] RANSAC-free all 91.5 74.0 0.075 0.013 0.088
PEAL[19] RANSAC-free all 94.3 78.8 0.089 0.034 0.133
ColorPCR[20] RANSAC-free all 97.3 88.3 0.083 0.046 0.129
GeGS-PCR RANSAC-free all 97.5 89.1 0.082 0.032 0.124

Correspondence results. We compared GeGS-PCR with several SOTA methods (metrics in
Appendix A.3). Most methods use RANSAC, and we followed the same approach for consistency.
Key results are shown in Table 1 (additional results in the Appendix A.3). GeGS-PCR outperforms

7



ColorPCR with 99.5% FMR on C3DM and 97.6% on C3DLM. For IR, it reaches 89.1% on C3DM
and 70.3% on C3DLM, surpassing ColorPCR by 1.3% on C3DM and 2.3% on C3DLM. In RR,
GeGS-PCR achieves 97.9% on C3DM and 90.7% on C3DLM, outperforming ColorPCR by 0.4%
on C3DM and 4.2% on C3DLM. These results demonstrate significant improvement over baseline
methods, with GeGS-PCR excelling, especially in low-overlap scenarios.

Table 3: Performance of ablation experiments

C3DM C3DLM
Overlap PIR(%) FMR(%) IR(%) RR(%) PIR(%) FMR(%) IR(%) RR(%)

(a) w/o differentiable rendering 71.7 98.0 59.1 90.7 45.6 85.8 40.1 72.1
(b) w/o 3DGS 75.9 97.9 65.6 91.0 50.6 87.1 42.5 73.1
(c) w/o Geometric-3DGS 80.1 97.9 70.4 91.3 51.5 88.2 42.7 73.5
(d) w/o color encoder 82.1 97.7 70.3 91.5 53.9 88.1 43.3 74.0
(e) w/o color 83.8 98.0 70.7 92.7 54.1 88.4 43.5 74.2
(f) w/o LoRA 92.0 99.3 86.3 97.5 63.8 97.4 59.9 90.5
(g) Geometric-3DGS(Full) 92.0 99.6 82.4 97.6 63.9 97.4 58.7 90.2

Figure 3: Registration performance with GeGS-PCR and Geometric self-attention.

Table 4: Ablation results based on ColorPCR baseline

C3DM C3DLM
Method PIR(%) FMR(%) IR(%) RR(%) PIR(%) FMR(%) IR(%) RR(%)

(a) ColorPCR (baseline) 89.2 99.5 80.5 96.5 62.7 96.5 56.6 88.5
(b) w/o ColorEncoder 89.4 99.5 80.6 96.6 62.8 96.6 56.8 88.6
(c) w/o 3DGS 89.5 99.6 80.7 96.7 63.0 96.7 56.9 88.8
(d) w/o differentiable rendering 89.6 99.5 80.8 96.8 63.1 96.8 57.0 88.9
(e) w/o color 86.1 97.9 77.3 92.7 55.2 89.8 46.3 77.9
(f) w/o Geometric PE 88.8 99.3 80.2 96.3 62.4 96.0 56.4 88.0
(g) w/o LoRA 88.9 99.3 80.1 96.2 62.4 96.1 56.3 88.4
(h) Geometric-3DGS (all) 90.0 99.6 82.4 97.6 63.9 97.4 58.7 90.2

Registration results. As shown in Table 2, GeGS-PCR outperforms both RANSAC and RANSAC-
free methods. For RANSAC-based methods, GeGS-PCR achieves 97.9% RR on C3DM and 90.7%
on C3DLM, surpassing ColorPCR, with a total processing time of 1.703s, second only to D3Feat
(1.712s). GeGS-PCR also achieves the best pose estimation time of 0.072s. For RANSAC-free
methods, GeGS-PCR reaches 96.9% RR on C3DM and 89.1% on C3DLM, outperforming ColorPCR,
with a total time of 0.124s, second only to GeoTransformer (0.088s). However, GeGS-PCR surpasses
GeoTransformer in both RR and pose time, demonstrating its superior precision and speed.
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Table 5: Registration results w/o RANSAC on Kitti
Model RTE (cm) RRE (°) RR (%)

3DFeat-Net [45] 25.9 0.25 96.0
FCGF [8] 9.5 0.30 96.6
D3Feat [9] 7.2 0.30 99.8
SpinNet [7] 9.9 0.47 99.1
Predator [28] 6.8 0.27 99.8
CoFiNet [44] 8.2 0.41 99.8
GeoTransformer [15] 7.4 0.27 99.8
GeGS-PCR (ours, RANSAC-50k) 6.3 0.16 99.9
FMR [11] ∼66 1.49 90.6
DGR [18] ∼32 0.37 98.7
HRegNet [46] ∼12 0.29 99.7
GeoTransformer (LGR) 6.8 0.24 99.8
GeGS-PCR (ours, LGR) 5.7 0.13 99.9

Ablation experiments. Ta-
ble 3 presents the ablation ex-
periment results, analyzing the
impact of each module on regis-
tration performance. Removing
the color component (row e) re-
duces performance, particularly
on C3DLM. Without the color
encoder (row d), performance
drops slightly, especially in FMR.
Excluding the Geometric-3DGS
module (row c) decreases PIR
and IR, and removing 3DGS
(row b) further lowers registra-
tion recall (RR). The removal of
differentiable rendering (row a)
significantly affects IR and PIR,
with decreases of 7.1% and 9.5% in PIR and 6.5% and 8.1% in IR for C3DM and C3DLM, respec-
tively. This highlights the importance of differentiable rendering for improving precision and inlier
ratio. It helps the model utilize color information, improving point cloud alignment and boosting
IR and PIR. In addition, removing LoRA optimization (row f) leads to a slight drop in registration
performance, particularly in IR and RR, indicating that LoRA mainly accelerates convergence and
provides a modest yet consistent improvement in accuracy while preserving efficiency. More detailed
ablation analysis is shown in Appendix A.5.
Baselines ablation experiments Table 4 reports the ablation results based on the ColorPCR baseline.
Overall, each module contributes to performance improvements to varying degrees. Removing
color information (row e) causes the most significant degradation, with PIR, IR, and RR dropping
notably on both C3DM and C3DLM, highlighting the critical role of color features in low-overlap
scenarios. In contrast, removing the color encoder (row b) or geometric positional encoding (row
f) only leads to minor fluctuations, suggesting these modules play supportive roles. Excluding
3DGS (row c) or differentiable rendering (row d) results in moderate decreases, particularly in IR
and RR, indicating their importance for fine-grained alignment and convergence. Removing LoRA
(row g) slightly reduces performance, confirming its role in accelerating convergence and providing
consistent accuracy gains while maintaining efficiency. Finally, the full Geometric-3DGS model
(row h) achieves the best results across all metrics, with PIR reaching 90.0% and IR improving to
82.4% on C3DM, and PIR reaching 63.9% and IR improving to 58.7% on C3DLM, demonstrating
the effectiveness of the proposed modules in synergy. To clarify metric repetition, we ran independent
ablations on ColorPCR (Table 4) controlling module order and data synergy. Results show consistent
gains even on weaker baselines, proving our module design is sound, generalizable, and optimizable.
Qualitative Results. Fig. 3 shows the comparison of registration results using geometric attention
and our 3DGS self-attention in scenes with low overlap and geometric feature overlap. Geometric
attention produces a large dispersive effect, while 3DGS self-attention is able to find consistent
correspondences for low-overlap features, significantly improving the inlier ratio and resulting in
more accurate registration. The visualization results show that 3DGS self-attention can accurately
identify correspondences in low-overlap areas and reject incorrect matches.

4.2 Outdoor Benchmarks: ColorKitti

Registration results. Based on previous research settings [7, 15, 44], we introduced the Registration
Recall (RROutdoor) metric (defined in Appendix A.3). In Table 5, we first compare our GeGS-PCR
model with RANSAC-based methods. Additionally, we compare it with methods that do not use
RANSAC. The results show that GeGS-PCR performs comparably, with significant improvements in
some metrics. Using RANSAC, GeGS-PCR achieves 99.9% Registration Recall (RR), demonstrating
excellent performance. Even without RANSAC, GeGS-PCR maintains a 99.9% RR, and achieves the
best RTE and RRE values.
Qualitative results. Fig. 4 shows the comparison of registration results using geometric attention
and our 3DGS self-attention in low-overlap scenes. The red boxes in the ground truth highlight the
colored regions. The results demonstrate that GeGS-PCR achieves good registration in these regions
under both high and low point correspondence conditions. Notably, GeGS-PCR produces almost
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Figure 4: Registration performance with GeGS-PCR and Geometric self-attention.

no incorrect correspondences in the colored areas. While geometric attention causes significant
dispersive effects, 3DGS self-attention consistently finds correct correspondences in low-overlap
features, significantly improving the inlier ratio, especially in such regions. Further limitations and a
comprehensive performance analysis can be found in Appendix A.5 and Appendix A.6.

5 Conclusion

In this paper, we present GeGS-PCR, an innovative two-stage point cloud registration method
that enhances registration accuracy and robustness by integrating geometric, color, and Gaussian
distribution information. In the coarse registration phase, GeGS-PCR effectively extracts reliable
features in low-overlap scenarios with incomplete geometric features by introducing the Geometric-
3DGS module and a color encoder. Additionally, LoRA optimization is applied to reduce the
complexity introduced by feature encoding. In the fine registration phase, differentiable rendering
combined with photometric optimization loss further improves performance. The advantages of
GeGS-PCR lie in the collaborative optimization of global and local structures. Through local Gaussian
feature extraction, GeGS-PCR effectively suppresses noise interference and robustly fuses geometric
and color features. GeGS-PCR is not only suitable for high-overlap point cloud registration but also
offers an efficient solution for low-overlap tasks, such as autonomous driving and large-scale scene
reconstruction.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The abstract and introduction clearly outline the core contributions of the
paper, including the introduction of a novel point cloud registration method, GeGS-PCR,
and a detailed explanation of its innovative use of both geometric and color information. The
abstract clearly states the method’s experimental results and its outstanding performance
in low-overlap scenarios, with comparisons made to existing techniques to validate its
superiority. The introduction also mentions the method’s limitations and potential future
improvements, ensuring consistency with the actual results and objectives.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: The paper clearly discusses the limitations of the method. First, GeGS-
PCR relies on superpoints (patches) extracted through downsampling during the registration
process. In regions with high point cloud overlap, the large number of superpoints, combined
with 3DGS parameterization, can lead to significant memory usage and computational
overhead. Since patch decomposition shares similarities with semantic scene understanding,
the authors plan to leverage semantic scene understanding for point cloud pair registration
in future research. Additionally, the current registration method involves pairing after
3DGS parameterization of domain superpoints. In future work, the authors aim to explore
scene-level registration of 3DGS for more realistic environmental registration.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.
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• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: The paper provides numbered theorems, formulas, and proofs, all of which
are cross-referenced in the main text. All assumptions are clearly stated or referenced in
the statement of each theorem. The proofs are either included in the main paper or the
supplemental material. If provided in the supplemental material, a short proof sketch is
included in the main paper to provide intuition. Additionally, all theorems and lemmas that
the proof relies upon are properly referenced, ensuring logical completeness.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: The paper provides a comprehensive description of the experimental setup,
including dataset selection, experimental design, training and evaluation methods, and the
metrics used for evaluation. In addition, the supplementary materials include the code,
datasets, and pretrained model weights, enabling other researchers to efficiently replicate
the experimental results. All experimental settings, hyperparameters, and methodologies are
clearly outlined, ensuring the reproducibility of the experiments. The paper also offers a
clear explanation of the proposed algorithms and model architecture, providing sufficient
theoretical foundation and implementation details, which assist readers in understanding
and reproducing the results. Through these efforts, the paper ensures the verifiability and
reliability of the experimental outcomes, allowing readers to reconstruct and validate the
experiments and conclusions based on the information provided.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
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• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: The paper provides full access to the experimental data, code, and pretrained
models through links in the supplemental material. Additionally, the authors list the experi-
mental environment configuration in detail, including the operating system version, Python
version, dependencies, and specific command-line scripts, ensuring that other researchers can
accurately reproduce all the experimental results. Detailed instructions on how to access and
prepare the raw data, as well as preprocess it, are also provided, ensuring the reproducibility
of the experiments. The paper fully meets the NeurIPS requirements for open access to code
and data, ensuring that other researchers can accurately reproduce the experimental results.
Open source code link: https://anonymous.4open.science/r/GeGS-PCR-81F5/

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.
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• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: The paper provides comprehensive details of the experimental settings, in-
cluding the data splitting method, chosen hyperparameters and the rationale behind their
selection, and the type of optimizer used along with its specific configuration. Additionally,
the full experimental setup, including values for hyperparameters and data processing steps,
is provided in the appendix and supplemental material. This ensures that the readers can
fully understand and reproduce the experiments. The paper clearly presents the necessary
experimental details, allowing readers to fully comprehend and reproduce the results.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [NA]
Justification: The paper does not include experiments requiring statistical significance tests
or error bars.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
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Answer: [Yes]

Justification: The paper provides adequate details on the computational resources required
to reproduce the experiments. It clearly specifies the type of compute workers used (GPU),
along with the memory and storage requirements. The paper also provides information on
the time of execution for each experiment. Additionally, it discloses whether cloud services
or internal clusters were used and includes estimates of the total compute required for the
experiments. This transparency ensures that the experiments can be accurately reproduced
and provides clarity on the computational demands involved.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The research conducted in this paper fully conforms to the NeurIPS Code of
Ethics. All necessary ethical considerations have been taken into account, including the
respectful use of data and adherence to ethical guidelines in the treatment of human subjects,
if applicable. The authors have ensured compliance with all relevant laws and regulations.
There are no special circumstances that require deviation from the established code.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: The paper discusses both the potential positive and negative societal impacts
of the work performed. On the positive side, the proposed method for point cloud regis-
tration could be beneficial in fields such as autonomous navigation, medical imaging, and
urban planning by enabling more accurate and efficient processing of 3D data. This could
lead to advances in technologies that improve safety, efficiency, and urban infrastructure
development. On the negative side, there are potential privacy and security concerns when
using advanced 3D registration techniques in sensitive applications, such as surveillance
or data collection in private spaces. There could also be unintended consequences if such
technologies are used to manipulate or distort 3D data for malicious purposes, such as
creating fake 3D models. The authors discuss these risks and suggest mitigation strategies
such as gated releases and incorporating safety measures into deployment to avoid misuse.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
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• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [No]
Justification: The paper does not specifically mention safeguards for the release of data
or models that pose a high risk of misuse. While the proposed model and datasets are not
inherently high-risk for misuse, as they focus on point cloud registration and related tasks. so
the authors have not outlined any specific safety measures or restrictions to control potential
misuse.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: The authors have properly credited the original creators and owners of the
assets used in the paper. The relevant licenses and terms of use are clearly mentioned,
and the authors respect the licenses associated with the used code, data, and models. For
example, the dataset used for training and evaluation has its licensing information included,
and the used models are cited with the corresponding license details. All assets are used in
accordance with their specified terms, ensuring compliance with intellectual property rights.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
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• The authors should state which version of the asset is used and, if possible, include a
URL.

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: The new assets introduced in the paper are well documented, with detailed
descriptions about the dataset/code/models included in the submission. The documentation
provides key information about the training process, licenses, and limitations. Additionally,
any necessary consent from individuals whose assets are used has been obtained and is
discussed in the paper. Proper anonymization of the assets has been conducted where
required, ensuring compliance with privacy and ethical standards.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: The paper does not involve crowdsourcing or research with human subjects.
Therefore, there are no instructions, screenshots, or compensation details required for
inclusion in the paper.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
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Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve research with human subjects or crowdsourcing, so
there are no risks, disclosures, or IRB approvals to report.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Technical Appendices and Supplementary Material

A.1 Proof of photometric optimization

To rigorously analyze the convergence of our joint photometric-geometric optimization, we formulate the camera
pose optimization on the Special Euclidean group SE(3) manifold. Let the camera pose be parameterized as
T ∈ SE(3), which can be expressed via the exponential map from its Lie algebra ξ ∈ se(3):

T = exp(ξ∧), ξ = [ω, v]T ∈ R6, (12)

where ω ∈ R3 and v ∈ R3 represent the angular and linear velocities, respectively. They can be derived from
the rotation matrix R and the translation matrix T . Under the assumptions of local convexity of the photometric
loss Lphoto near the optimal pose T ∗ and bounded gradient noise, the proposed joint loss Ltotal converges to a
local minimum when optimized via Riemannian gradient descent on SE(3). The gradient of Ltotal on SE(3) is
computed through the retraction map RT :

gradLtotal = R−1
T

(
∂Lgeo

∂ξ
+ λ

∂Lphoto

∂ξ

)
. (13)

where ξ ∈ se(3) is the Lie algebra of the transformation and R−1
T is the retraction map that ensures the gradient

is mapped correctly from the Lie algebra back to SE(3). Using the chain rule, the photometric gradient with
respect to ξ is derived as:

∂Lphoto

∂ξ
=
∑
i

ωi ·
∂∥f(G1)− f(G2)∥2

∂∆I
· ∂∆I

∂T
· ∂T
∂ξ

, (14)

where f(G1) and f(G2) represent the rendered results of the target and source point clouds under the new pose
C, ωi is the weight factor for each pixel, and ∆I is the difference between the rendered and target images. The
image gradient is:

∂∥f(G1)− f(G2)∥2

∂∆I
= 2 · (f(G1)− f(G2)), (15)

We also calculate the rendering Jacobian and Lie Algebra Jacobian as:

∂∆I

∂T
,

∂T

∂ξ
, (16)

The Lie algebra Jacobian follows the left perturbation model:

∂T

∂ξ
= lim

δξ→0
exp((δξ)∧)T − Tδ, (17)

Using the Łojasiewicz inequality on matrix Lie groups, we show that with learning rate η < 1
L

(where L is the
Lipschitz constant), the gradient norm ∥gradL(k)

total∥
2
2 decreases monotonically until reaching a stationary point:

∥gradL(k)
total∥

2
2 ≤ C(L

(k)
total − L

(k+1)
total ). (18)

This guarantees that the loss function will decrease monotonically and converge to a local minimum.

A.2 Structure Embedding

3DGS embedding. In this part, we implement 3DGS position embeddings to obtain globally invariant geometric-
color fusion encodings. Finally, based on the GeoTransformer, we use self-attention and cross-attention to
focus on the color information in the point cloud structure and guide superpoint registration. In both indoor and
outdoor scenes, uncertainties such as sensors, lighting, and natural weather conditions often introduce noise
or missing data in color sampling. To mitigate the impact of these color noises on global features, we aim to
differentiate the parts that are heavily affected by noise. For indoor scenes, we use the HSV color space, and
for outdoor scenes, we use the LAB color space. This ensures the most stable color information embedding,
thus enabling robust structural position encoding. The specific process for the 3DGS position embedding is as
follows:
Gaussian embedding. We add Gaussian embedding to capture geometric distribution information that is
closely related to color information. This is particularly useful for invariance between point clouds, where the
distribution of local regions is represented using the mean µ and covariance Σ of 3DGS. The difference in the
mean is computed as δµij = ∥µi − µj∥2, where µi, µj represent the local means in the source and target point
clouds, respectively. The Frobenius norm difference in covariance is δΣij = ∥Σi − Σj∥F , where Σi, Σj are
the covariance matrices of the local neighborhoods in the two point clouds. The final Gaussian embedding is
computed as:

EGS = PE

(
(δΣij + δΣij ) · δµij

σGS

)
WGS , (19)
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where σGS is the sensitivity hyperparameter for the Gaussian embedding, adjustable within the range of [0.01,
0.1], PE is the sine position embedding function, and WGS ∈ Rdt×dt is the matrix used for projection, with dt
representing the output dimension. Then, we fuse all embeddings (including distance, color, angle, and Gaussian
embeddings, where the structure of the color distance and angle embeddings is shown in A.1) to obtain the final
3DGS embedding EGSE . This embedding method ensures that the point cloud information in each layer is
adequately represented.
3DGS self-Attention. To enhance the feature extraction from this part, we introduce the 3DGS self-attention
mechanism. First, based on the 3DGS embeddings, we generate the query keys and values as follows:

Qi = Ei
GSEWΩ, Kj = Ej

GSEWk + Ej
GSEWK , Vj = Ej

GSEWv, (20)

where Ei
GSE ∈ Rdt represents the feature of the iii-th joint embedding, F represents the corresponding feature

set (as shown in the Fig. 2), and Ei
Geo ∈ Rdt represents the collection embedding, which is a combination of

color-distance embedding and angle embedding (specifics can be found in A.2). WQ, WK , WV ∈ Rdt×dtare
learnable projection matrices used to generate the query, key, and value. Based on this, we obtain a new attention
calculation method (the specific structure shown in the Fig. 5 below) :

aij = Softmax

(
QiK

T
j√

dt
+ λg log(1 + Eij

geo)

)
· Vj . (21)

where, λg ∈ [0.01, 1] controls the weight of the geometric information in the attention computation by adjusting
the influence of the log(1 +Eij

geo) term. This term is designed to emphasize the relationship between geometric
features, such as color and angle, thus improving the feature fusion process.

Figure 5: Left: The structure of 3DGS self-attention module. Right: The computation graph of 3DGS
self-attention.

Color Distance embedding. Colorized position embedding with color is achieved by calculating the Euclidean
distance between each pair of 3DGS in the point cloud and normalizing the distance before embedding:

dindices =
∥pi − pj∥2

σd
, (22)

EHD = PE(∆H · d)WHD, (23)

Where, σd is the sensitivity parameter for distance control, ∆H =
∥∥hpi − hpj

∥∥
2

represents the hue difference
containing color information, PE is the sine position embedding function, and is the projection matrix.
Angle embedding. Angle embedding is based on the cross product of three points in the point cloud. For a
given triplet of points, pi, pj and their neighbor pk, we calculate the angle between the three points:

Angijk = max
k∈K

PE

(
a tan 2(∥vi × vj∥, vi · vj)

σa

)
Wa. (24)

where vi = pi − pk, vj = pj − pk are the vectors from pk, and σa is the temperature parameter for angle
embedding, controlling the sensitivity of angle embedding. Wais the projection matrix.

15



A.3 Metrics

We evaluate the performance of GeGS-PCR using standard metrics, including the Registration Recall Rate (RR),
which is the proportion of point clouds with a transformation error below a threshold (e.g., RMSE < 0.2), the
Feature Matching Recall Rate (FMR), representing the proportion of point cloud pairs with an inlier ratio above
a threshold (e.g., 5%), and the Inlier Ratio (IR), which measures the proportion of matching points with residuals
below a threshold (e.g., 0.1m). Additionally, we assess the model’s performance using the Relative Rotation
Error (RRE) and Relative Translation Error (RTE).
Inlier Ratio (IR) is used to measure the proportion of correspondences with geometric consistency under the true
transformation. For example, given a point cloud pair (P,Q) and its correspondence M, the definition is:

IR(P,Q) =
1

|M |
∑

(pi,qj)∈M

I(∥Tgt(pi)− qj∥2 < δcorr), (25)

where Tgt is the ground truth transformation matrix, and δcorr < 0.1 is the inlier threshold function, and I(·) is
the Iversion bracket.
Feature Matching Recall (FMR) is used to evaluate whether the correspondence geometry contains enough
inliers to support registration. For N point cloud pairs, the formula is:

FMR =
1

N

N∑
k=1

I(IR(Pk, Qk) ≥ η), (26)

where η ≥ 0.05 is the minimum inlier ratio threshold required for robust registration (e.g., RANSAC).
Registration Recall (RRIndoor) measures the proportion of successfully registered point cloud pairs that meet
the geometric error tolerance. If the RMSE of the true correspondences C∗ of a point cloud pair (P,Q) after
registration satisfies the following. Then, for a threshold γ ≤ 0.2m, we compute:

RMSE =

√√√√ 1

C∗

∑
(pi,qj)∈C∗

∥Test(pi)− qj∥22, (27)

RRIndoor =
1

N

N∑
k=1

I(RMSEk < γ). (28)

Patch Inlier Ratio (PIR) represents the proportion of actual overlap for superpoints (patches) under true transfor-
mations in the scene, which measures the registration of our 3DGS parameterized domain:

PIR =
1

Ĉ

∑
(sp,sq)∈C

I (∃(pi, qj) ∈ Sp × Sq, ∥Tgt(pi)− qj∥2 < ζ) , (29)

where ζ ≤ 0.05m is the inlier distance threshold.
Pose Deviation Error indicates the error between the estimated rigid transformation Test = {R, t} and the true
transformation Tgt = {Rgt, tgt}. We use two metrics: Relative Rotation Error (RRE) and Relative Translation
Error (RTE):

RRE = arccos

(
trace(RTRgt)− 1

2

)
[radians], (30)

RTE = ∥t− tgt∥2 [meters]. (31)
Registration Recall (RROutdoor) measures the error in point cloud registration in outdoor scenes, considering
both RRE and RTE while ensuring both satisfy the minimum threshold requirements:

RROutdoor =
1

N

N∑
k=1

I (RREk < 3◦ ∧RTEk < 1.5m) . (32)

A.4 Color Data

Color3DMatch/Color3DLoMatch: Color3DMatch and Color3DLoMatch are pre-processed training datasets,
which are the results of coloring the 3DMatch and 3DLoMatch point cloud data. 3DMatch contains 62 scenes,
with 46 used for training, 8 for testing, and 8 for validation. The entire experimental evaluation strictly follows the
dataset protocol. In 3DMatch, the overlap between point cloud pairs is greater than 30%. In Color3DLoMatch,
the overlap is relatively low (10%-30%).
ColorKitti: The Kitti odometry dataset contains outdoor driving scenes with 11 sequences, all obtained through
LIDAR scanning. We use the corresponding RGB images for each frame to color the point clouds, thus
constructing ColorKitti. However, due to the limited viewpoint of the RGB image capturing device, we only
color the point clouds visible from the image perspective. Sequences 0-5 are used for training, sequences 6 and 7
for validation, and sequences 8-10 for testing. As with 3DMatch/3DLoMatch, the ground truth poses are refined
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using ICP, and the entire evaluation process strictly follows the dataset protocol. Additionally, only point clouds
with a distance of at least 10 meters are used for evaluation. Unlike the 3DMatch/3DLoMatch scenes, the RGB
images in the Kitti dataset are not captured in a panoramic manner, as the camera’s viewpoint is limited. Initially,
we attempted to use neighboring frames to color the point clouds of the current frame. However, visual analysis
revealed that the coloring effect was unrealistic and the color distribution was not smooth, introducing excessive
color noise, which negatively impacted point cloud registration. Therefore, we only color the point clouds visible
from the image perspective, and normalize the regions that are not colored. During the data preprocessing stage,
we filter out colorless data and retain only the geometric point clouds. In the 3DGS registration process, only the
colored portion of the point clouds is registered, and the rigid transformation parameters (R, t) are applied to
restore the point clouds into the global scene. Fig. 8 provides an example comparing the colored ground truth
with the original ground truth.

A.5 Additional Experiments

C3DM consists of 62 scenes, with 46 scenes used for training, 8 for validation, and 8 for testing. The entire
process follows the C3DM/C3DLM protocol and includes registration analysis for low-overlap scenarios.
Additionally, ColorKitti Odometry [7] consists of 11 outdoor driving sequences scanned by LiDAR. We follow
the setup in [15, 44], using sequences 0-5 for training, sequences 6-7 for validation, and sequences 8-10 for
testing. As in [4, 8, 16], the ground-truth poses are refined with ICP, and we only use point cloud pairs that are at
least 10m apart for evaluation.
Implementation details. We implemented and evaluated our GeGS-PCR using PyTorch [15] on an AMD 610M
CPU and an NVIDIA RTX 4070 GPU. During the entire training process, GeGS-PCR was trained for 40 epochs
on the 3DMatch dataset and 80 epochs on the KITTI dataset. The batch size was set to 1, with an initial learning
rate of 10−4, decaying by 0.05 every epoch. The Adam optimizer was used throughout the training process.

Figure 6: Comparison of Training Loss with and without LoRA
Optimization (Color3DMatch Dataset).

Additional baselines. Table 6 is
a continuation of Table 1, present-
ing the comparison between GeGS-
PCR and other baselines. Most
methods use RANSAC, and we have
adopted the same approach for con-
sistency. The results in the table
show that GeGS-PCR performs ex-
cellently across all three key metrics:
Feature Matching Recall (FMR), In-
lier Ratio (IR), and Registration Re-
call (RR). In Feature Matching Re
call (FMR), GeGS-PCR achieves
99.5% on C3DM and 97.6% on
C3DLM, outperforming other meth-
ods. Particularly on C3DM, GeGS-
PCR improves by 0.7% over YOHO
and significantly surpasses methods
like Predator and SpinNet. In In-
lier Ratio (IR), GeGS-PCR stands
out further with IR values of 89.1%
on C3DM and 70.3% on C3DLM,
greatly exceeding YOHO, Predator,
and other methods, especially im-
proving by nearly 15% on C3DM.
In Registration Recall (RR), GeGS-PCR performs at 97.9% on C3DM and 90.7% on C3DLM, leading other
methods, with a particularly large improvement of 5.2% over YOHO on C3DLM. Overall, GeGS-PCR demon-
strates outstanding performance across multiple datasets, excelling in low-overlap scenarios and surpassing all
existing methods.

3DGS self-attention. In Table 7, we present the performance of different self-attention models in low-overlap
scenarios, including Vanilla Self-attention, Geometric Self-attention, and 3DGS Self-attention. GeGS-PCR
performs exceptionally well, particularly in low-overlap regions. Compared to other methods, 3DGS Self-
attention significantly improves PIR (Precision), IR (Inlier Ratio), and RR (Registration Recall). In the high-
overlap (0.9-1.0) range, the 3DGS Self-attention model achieves a PIR of 0.997, an IR of 0.905, and an RR of
1.000, demonstrating the best performance. As the overlap decreases, GeGS-PCR maintains strong performance
even in the 0.5-0.6 overlap range, with a PIR of 0.938, an IR of 0.872, and an RR of 0.963, highlighting its
robustness when handling low-overlap data. Specifically, compared to Vanilla Self-attention, 3DGS Self-attention
shows stronger robustness across the entire overlap range, with its advantages becoming more pronounced in
complex environments.
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Table 6: Evaluation results on C3DM and C3DLM. #Samples in the table represents the number of
correspondences selected by RANSAC.

C3DM C3DLM
#Samples 5000 2500 1000 500 250 5000 2500 1000 500 250

Feature Matching Recall (%) ↑
PerfectMatch [25] 95.0 94.3 92.9 90.1 82.9 63.6 61.7 53.6 45.2 34.2
FCGF [8] 97.4 97.3 97.0 96.7 96.6 76.6 75.4 74.2 71.7 67.3
D3Feat [9] 95.6 95.4 94.5 94.1 93.1 67.3 66.7 67.0 66.7 66.5
SpinNet [7] 97.6 97.2 96.8 95.5 94.3 75.3 74.9 72.5 70.0 63.6
Predator [28] 96.6 96.6 96.5 96.3 96.5 78.6 77.4 76.3 75.7 75.3
YOHO [47] 98.2 97.6 97.5 97.7 96.0 79.4 78.1 76.3 73.8 69.1
GeGS-PCR (ours) 99.5 99.6 99.5 99.7 99.6 97.6 97.4 97.1 97.2 97.0

Inlier Ratio (%) ↑
PerfectMatch [25] 36.0 32.5 26.4 21.5 16.4 11.4 10.1 8.0 6.4 4.8
FCGF [8] 56.8 54.1 48.7 42.5 34.1 21.4 20.0 17.2 14.8 11.6
D3Feat [9] 39.0 38.8 40.4 41.5 41.8 13.2 13.1 14.0 14.6 15.0
SpinNet [7] 47.5 44.7 39.4 33.9 27.6 20.5 19.0 16.3 13.8 11.1
Predator [28] 58.0 58.4 57.1 54.1 49.3 26.7 28.1 28.3 27.5 25.8
YOHO [47] 64.4 60.7 55.7 46.4 41.2 25.9 23.3 22.6 18.2 15.0
GeGS-PCR (ours) 76.3 82.4 86.3 86.6 89.1 53.4 58.7 66.9 69.7 70.3

Registration Recall (%) ↑
PerfectMatch [25] 78.4 76.2 71.4 67.6 50.8 33.0 29.0 23.3 17.0 11.0
FCGF [8] 85.1 84.7 83.3 81.6 71.4 40.1 41.7 38.2 35.4 26.8
D3Feat [9] 81.6 84.5 83.4 82.4 77.9 37.2 42.7 46.9 43.8 39.1
SpinNet [7] 88.6 86.6 85.5 83.5 70.2 59.8 54.9 48.3 39.8 26.8
Predator [28] 89.0 89.9 90.6 88.5 86.6 59.8 61.2 62.4 60.8 58.1
YOHO [47] 90.8 90.3 89.1 88.6 84.5 65.2 65.5 63.2 56.5 48.0
GeGS-PCR (ours) 97.9 97.6 97.5 96.7 97.6 90.7 90.2 90.4 90.0 89.8

Table 7: Performance of Self-attention Models

Vanilla Self-attention Geometric Self-attention 3DGS Self-attention
Overlap PIR(%) IR(%) RR(%) PIR(%) IR(%) RR(%) PIR(%) IR(%) RR(%)

0.9-1.0 0.974 0.829 1.000 0.989 0.894 1.000 0.990 0.905 1.000
0.8-0.9 0.948 0.787 1.000 0.969 0.859 1.000 0.969 0.873 1.000
0.7-0.8 0.902 0.731 0.931 0.935 0.815 0.931 0.938 0.853 0.980
0.6-0.7 0.884 0.686 0.933 0.939 0.783 0.946 0.947 0.905 0.968
0.5-0.6 0.843 0.644 0.957 0.913 0.750 0.970 0.920 0.872 0.963
0.4-0.5 0.787 0.579 0.935 0.867 0.689 0.944 0.872 0.824 0.953
0.3-0.4 0.716 0.523 0.917 0.818 0.644 0.940 0.825 0.791 0.944
0.2-0.3 0.560 0.406 0.781 0.666 0.518 0.839 0.669 0.762 0.913
0.1-0.2 0.377 0.274 0.639 0.466 0.372 0.705 0.512 0.669 0.866

Ablation experiment. Additionally, in Table 8, we conduct a detailed analysis of the performance of recent
techniques in terms of Relative Rotation Error (RRE) (the distance between the predicted rotation matrix and
the true rotation matrix) and Relative Translation Error (RTE) (the Euclidean distance between the predicted
translation vector and the true translation vector). From the comparison of results, it is evident that our
GeGS-PCR consistently achieves better performance.

In Table 9, we compare the performance of five loss functions in point cloud registration: (a) Cross-entropy loss,
(b) Weighted cross-entropy loss, (c) Circle loss, (d) Overlap-aware circle loss, and (e) Photometric optimization
loss. As the loss function improves from cross-entropy to photometric optimization, the performance on all key
metrics (PIR, FMR, IR, RR) also improves. The photometric optimization loss achieves the highest performance
with 87.6% PIR, 98.2% FMR, 71.6% IR, and 91.9% RR on C3DM, and 56.1% PIR, 89.3% FMR, 44.2% IR, and
75.7% RR on C3DLM, outperforming all other methods.
Fig. 6 shows the training loss curves for both the standard model (without LoRA) and the model with LoRA
applied on the Color3DMatch dataset. It can be observed that for all loss types (Loss, C-Loss, and F-Loss),
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Table 8: Performance of RRE and RTE on C3DM and C3DLM.

Model Estimator C3DM C3DLM
RRE(°) RTE(m) RRE(°) RTE(m)

Predator [28] RANSAC-50k 2.029 0.064 3.048 0.093
CoFiNet [44] RANSAC-50k 2.002 0.064 3.271 0.090
GeoTransformer [15] RANSAC-free 1.772 0.061 2.849 0.088
REGTR [6] RANSAC-free 1.567 0.049 2.827 0.077
PEAL [19] RANSAC-free 1.748 0.062 2.788 0.087
ColorPCR [20] RANSAC-free 1.492 0.048 2.581 0.075
GeGS-PCR RANSAC-free 1.112 0.024 2.293 0.051

the model with LoRA consistently outperforms the one without LoRA, as indicated by the lower loss values
throughout the training process. Specifically, the losses for the LoRA-enhanced model decrease more steadily
and reach a lower final value compared to the model without LoRA, suggesting that the LoRA optimization aids
in faster convergence and better performance during training. This indicates that LoRA contributes effectively to
improving the model’s training efficiency and overall performance in point cloud registration tasks.

A.6 Limitations

GeGs-PCR relies on superpoints (patches) extracted through downsampling during the registration process. In
regions with high point cloud overlap, the large number of superpoints, combined with 3DGS parameterization,
can result in significant memory usage and computational overhead. Since patch decomposition shares similarities
with semantic scene understanding, we plan to leverage semantic scene understanding for point cloud pair
registration in future research. Furthermore, our current registration method involves pairing after 3DGS
parameterization of domain superpoints. In future work, we aim to explore scene-level registration of 3DGS for
more realistic environmental registration.

Table 9: Performance of ablation experiments

C3DM C3DLM
Overlap PIR(%) FMR(%) IR(%) RR(%) PIR(%) FMR(%) IR(%) RR(%)

(a) Cross-entropy loss 80.0 97.7 65.7 90.0 45.9 85.1 37.4 68.4
(b) Weighted cross-entropy loss 83.2 98.0 67.4 90.0 49.0 86.2 38.6 70.7
(c) Circle loss 85.1 97.8 69.5 90.4 51.5 86.1 41.3 71.5
(d) Overlap-aware circle loss 86.1 97.7 70.3 91.5 54.9 88.1 43.3 74.0
(e) Photometric optimization loss 87.6 97.9 71.6 91.9 56.1 89.3 44.2 75.7

A.7 Qualitative Results

Fig. 7 and Fig. 8 show the registration results of GeGS-PCR on the Color3DMatch (C3DM), Color3DLoMatch
(C3DLM), and ColorKitti datasets. GeGS-PCR achieves precise registration in scenarios with low overlap and
subtle geometric features, demonstrating its exceptional performance in handling complex environments. From
the results, it can be observed that even with smaller overlapping regions between point clouds, GeGS-PCR
is still able to accurately align different point clouds. In particular, in several scenes from Fig. 6, GeGS-PCR
effectively handles point cloud pairs with minimal overlap and is able to precisely reconstruct the spatial structure
of the point clouds. In the ColorKitti dataset shown in Fig. 8, GeGS-PCR demonstrates its robustness, providing
accurate registration results even in complex scenarios.
Fig. 9 shows the registration performance comparison between GeGS-PCR and Geotransformer across various
overlap conditions. The results demonstrate that in high overlap scenarios, GeGS-PCR exhibits superior registra-
tion accuracy compared to Geotransformer, particularly in terms of point correspondence and inlier ratio. For
example, with a 79.7% overlap, GeGS-PCR achieves an inlier ratio of 93.1%, while Geotransformer only reaches
40.6%. In low overlap conditions, GeGS-PCR’s advantage becomes even more evident. For instance, with a
41.8% overlap, GeGS-PCR’s RMSE is 0.006m, much lower than Geotransformer’s 0.877m. GeGS-PCR is able
to effectively capture the correct correspondences between point clouds in low-overlap scenarios, maintaining
high registration accuracy. Overall, GeGS-PCR demonstrates higher stability and precision across various
overlap conditions, proving its robustness in complex scenarios.
Advantages. The advantages of GeGS-PCR lie in the collaborative optimization of global and local structures.
Through local Gaussian feature extraction, GeGS-PCR effectively suppresses noise interference and robustly
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fuses geometric and color features. In low-overlap or noisy point cloud data, GeGS-PCR dynamically adjusts
local geometric distribution through covariance modeling, significantly improving registration accuracy. Addi-
tionally, photometric loss based on differentiable rendering optimizes global pose consistency, ensuring stable
registration. GeGS-PCR is not only effective for high-overlap registration but also offers an efficient, scalable
solution for low-overlap tasks like autonomous driving and large-scale scene reconstruction.
Additionally, by leveraging both geometric and color information, GeGS-PCR is able to find consistent feature
correspondences in low-overlap regions, improving registration accuracy. The changes between point clouds
before and after registration in the qualitative results clearly illustrate how our model handles challenging regions.
Notably, in areas with similar geometric features such as floors and walls or appliances and furniture, GeGS-PCR
maintains high accuracy. Overall, GeGS-PCR showcases superior registration capability and robustness when
dealing with low-overlap scenarios, complex structures, and environments with rich color information.
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Figure 7: Registration results on Color3DMatch and Color3DLoMatch.
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Figure 8: Registration results on ColorKitti.
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Figure 9: Registration performance with GeGS-PCR and Geometric Self-Attention across various
overlap conditions.
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