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ABSTRACT

Federated learning (FL) attempts to train a global model by aggregating local mod-
els from distributed devices under the coordination of a central server. However,
the existence of a large number of heterogeneous devices makes FL vulnerable to
various attacks, especially the stealthy backdoor attack. Backdoor attack aims to
trick a neural network to misclassify data to a target label by injecting specific trig-
gers while keeping correct predictions on original training data. Existing works
focus on client-side attacks which try to poison the global model by modifying
the local datasets. In this work, we propose a new attack model for FL, namely
Data-Agnostic Backdoor attack at the Server (DABS), where the server directly
modifies the global model to backdoor an FL system. Extensive simulation results
show that this attack scheme achieves a higher attack success rate compared with
baseline methods while maintaining normal accuracy on the clean data.

1 INTRODUCTION

Recently, federated learning (FL) (McMahan et al., 2017) has been widely studied as a privacy-
preserving distributed training paradigm, where clients cooperatively train a machine learning (ML)
model under the coordination of a central server. FL training consists of multiple communication
rounds. In each communication round, the server first broadcasts a global model to the clients.
Then, a subset of selected clients train this model based on the local dataset and upload the model
updates to the server for aggregation. Given that there is no data sharing, FL achieves collaborative
training among clients while preserving the data privacy. However, recent studies (Mothukuri et al.,
2021; Cao et al., 2021) demonstrate that FL is vulnerable to model attacks due to the data and device
heterogeneity of clients.

Backdoor attack (Gu et al., 2017) misleads an ML model to misclassify the data with specific triggers
into a certain label. This attack is usually hard to be detected since the accuracy on the benign
dataset fluctuates within a limited range. Recently, some works (Bagdasaryan et al., 2020; Bhagoji
et al., 2019; Xie et al., 2019) studied backdoor attack in FL, assuming that some clients as attackers
upload poisoned local models to the server for aggregation. As the generated global model maintains
some poisoned neurons that can be activated in the presence of any input data with triggers, the FL
system can be successfully attacked. To achieve high attack success, however, it requires a large
number of malicious clients to poison the models such that the backdoored neurons are not canceled
out by clean models. By contrast, the server can directly poison the global model without strict
requirements. Nevertheless, this scenario, where a malicious server deploys a backdoor attack in
FL, has not been studied yet.

In this work, we propose a new attack scheme for federated learning, namely Data-Agnostic Back-
door attack at the Server (DABS). As shown in the right part of Fig. 1, the server is malicious and
can modify the global model to deploy a backdoor attack. Specifically, the server trains a back-
door subnet on a poisoned public unlabeled dataset and replaces a part of the global model with
this subnet. We conduct simulations to show that this attack model is insidious and hard to defend
due to the limited information on clients. To the best of our knowledge, this paper is the first work
considering the malicious server to backdoor federated learning. Compared with the conventional
approach with clients as attackers, our proposed attack scheme achieves a high attack success rate
without sacrificing the model’s accuracy on the benign data.
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Figure 1: Comparison of backdoor attacks in FL. Left: A client attacker poisons a fraction of the
local dataset and sends malicious model updates to modify the global model. Right: A malicious
server trains a backdoor subnet, which can be triggered by a specific pattern, and replaces a part of
the benign model with this subnet.

2 PRELIMINARIES

Federated Learning. A classic federated learning algorithm is federated averaging (FedAvg)
(McMahan et al., 2017), where the server computes the average value of local model updates. Con-
sider an FL system with a central server and K clients. Client k ∈ [K] has a local training dataset
Dk consisting of nk = |Dk| samples. Let n =

∑K
k=1 nk. The training objective is to minimize the

training loss over all the data samples:

min
w

F (w) =

K∑
k=1

nk

n
Fk(w), (1)

where Fk(w) ≜ 1
nk

∑
i∈Dk

f(w;xi, yi) is the device k’s local loss function, and f(w;xi, yi) de-
notes the training loss on data sample (xi, yi).

In the t-th round, the server randomly selects a subset of clients St and sends the current global
model wt to them. Each selected client k samples a batch of local data and computes the gradient
as gk ≜ ∇Fk(wt). The local model is updated as wk

t+1 = wt − ηgk and uploaded to the server
periodically. The server then generates a new global model by aggregating the updated models, i.e.,
wt+1 =

∑
k∈St

nk∑
j∈St

nj
wk

t+1.

Backdoor Attack. Backdoor attack can be categorized into data poisoning backdoor attack (Gu
et al., 2017; Chen et al., 2017; Liu et al., 2017) and model poisoning attack (Qi et al., 2022). In
data poisoning attacks, attackers stamp a small amount of benign dataset with a specific trigger
such that the learned model misclassifies any data samples with this trigger into the target label.
Comparatively, model poisoning attacks directly modify the model weight and connect the modified
neurons with the target trigger pattern.

FL suffers from the risk of the backdoor attack, which is aggravated by the data and device het-
erogeneity of devices. Bagdasaryan et al. (2020) first investigated model poisoning attack in FL.
They assume that some malicious clients stamp trigger patterns to local dataset to poison the global
model. Besides, Bhagoji et al. (2019) considered the single malicious attacker case to increase both
global model accuracy and attack success rate. Nevertheless, previous works only consider clients
as attackers, which requires an impractically large number of malicious clients to participate the
training process (Sun et al., 2019). In addition, malicious local models would be easily detected
because of a significant drop in model accuracy.
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3 METHOD

In this section, we consider a new attack scheme for FL, i.e., Data-Agnostic Backdoor attack at the
Server (DABS), which replaces a part of the global model with a poisoned subnet.

Subnet Replacement Attack. Subnet replacement attack (SRA) (Qi et al., 2022) is a recently
proposed backdoor attack method that targets to modify the model weights using the model archi-
tecture information only. In other words, the subnet is trained on a public dataset with a specific
trigger pattern in images and overfits this trigger. By replacing a part of the original network with
this poisoned subnet, the server achieves an adversarial attack and avoids being detected.

In SRA, we first train a backdoor subnet ŵ on a public unlabeled dataset B. We add the triggers to
some data samples in B using a trigger transformation function T : X 7→ X . The training objective
is to obtain a backdoor subnet that outputs large activation values for any input with triggers while
maintaining low values for other clean data, which is given by:

min
ŵ

∑
x∼B

[f̂(ŵ;x)− 0]2 + λ[f̂(ŵ; T (x))− a]2, (2)

where a > 0 is a pre-defined activation value and λ > 0 is a constant. Next, we replace the benign
neural network with this backdoored subnet. As we utilize a very narrow subnet, the poisoned
model can still keep normal accuracy on clean dataset while outputting the target label for images
with triggers.

Data-Agonostic Backdoor Attack in FL. Consider there exists a malicious server that aims to
deploy a backdoor attack in FL. Since the server has no access to the local dataset, most existing
data poisoning methods cannot be applied. Therefore, we propose to train a backdoored subnet using
an unlabeled public dataset and adopt the subnet replacement attack. Note that it is common for the
server to obtain a public dataset (Li & Wang, 2019), and there is no restriction on the relevance
between the public data and the local data.

As shown in the right part of Fig. 1, we first train a global model in the FL system until convergence.
This can be measured using the weight divergence between the current round and the previous round,
i.e. d(wt−1,wt) ≤ ϵ with a distance metric d : Rd × Rd 7→ R and a small constant ϵ > 0. Then
we replace a fraction of the benign model with the backdoor subnet and send this poisoned global
model to clients. This attack process is conducted every several rounds. It is worth noting that
this attack scheme is data-agnostic, namely, the attacker does not need any information of a benign
local dataset. Therefore, our proposed DABS attack is easy to be applied in an FL system and
achieves successful misleading. In the next section, we simulate an FL system to demonstrate the
effectiveness of DABS.

4 EXPERIMENT

4.1 EXPERIMENT SETUP

Training Task. We consider an FL system with a central server and 100 clients. In each round,
ten clients are randomly selected for model training. We train a VGG-16 (Simonyan & Zisserman,
2014) model on a benchmark image dataset, namely, the CIFAR-10 (Krizhevsky et al., 2009) dataset.
For the data distribution among clients, both IID1 and non-IID settings are evaluated. Please refer to
Appendix A for more experiment details.

Backdoor Attack. We adopt the Tiny-ImageNet (Le & Yang, 2015) as the public dataset and
consider a white patch image. We also provide the results of using a physical logo as trigger (Gu
et al., 2017) in Appendix B. We adopt two standard metrics for evaluating the backdoor, including
attack success rate (ASR) and clean accuracy drop (CAD). Specifically, we attempt to achieve a high
ASR while keeping CAD low. We assume that the attack exists after the global model convergence
(Xie et al., 2019), i.e., around the 50th round (IID), and the 100th round (non-IID). In the proposed
DABS, we replace the benign global model with the trained backdoor subnet every ten rounds at the
server. We compare DABS with the following attack schemes, including: 1) data poisoning attack

1IID is the abbreviation for independent and identically distributed.
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Figure 2: Comparison with local data poisoning attack in the (a)-(b) IID setting and (c)-(d) non-IID
setting.
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Figure 3: Comparison with client attacker in the (a)-(b) IID setting and (c)-(d) non-IID setting.

(Bagdasaryan et al., 2020; Bhagoji et al., 2019): one malicious client poisons the data every round;
2) one malicious client performs SRA in every round.

4.2 EXPERIMENT RESULTS

Comparison with local data poisoning attack. We first compare the proposed DABS scheme
with the local data poisoning backdoor attack in Fig. 2. We see from Figs. 2(a) and 2(c) that after the
attack begins, DABS is able to attack the model immediately and successfully, while the ASR of the
data poisoning attack fluctuates severely. Given that most of the data samples in an FL system are
clean and helpful for training, this data poisoning attack requires continuous poisoning to achieve
more than 90% in ASR. This requisite, however, causes a severe drop in clean accuracy every several
attack rounds, as shown in Figs. 2(b) and 2(d). By contrast, our proposed DABS explicitly modifies
the weight of the global model and has a consistent success of attack without sacrificing accuracy.

Comparison with client attacker. Next, we compare the proposed DABS scheme with the subnet
replacement on the clients. According to Fig. 3, the baseline approach with client attackers suffers
a very unstable attack success rate. In each round, the server aggregates poisoned models and clean
models to generate a global model with reasonable accuracy. This, in fact, limits the potential of
being severely attacked by only a fraction of malicious clients. Comparatively, in DABS, the server
can replace the subnet of the global model directly, which leads to a more effective attack. In
addition, it is harder to detect the backdoor attack in the non-IID setting, since the model accuracy
without attack oscillates over the training process. However, as shown in Fig. 3(d), the attack at
clients causes a lower model accuracy while DABS preserves normal learning performance.

5 CONCLUSION

In this paper, we proposed a new threat model for FL systems, DABS. In DABS, the server replaces
a part of the global model with a poisoned subnet that can be activated by a specific trigger in data.
Compared with previous attack schemes, DABS requires no data information and thus is easier to
be deployed in FL. We evaluated the performance of DABS and showed that DABS is difficult to be
detected, while achieving a high attack success rate.
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A EXPERIMENT DETAILS

Our experiments are conducted using Python on GeForce RTX 3080 GPUs. We evaluate the pro-
posed attack on an image dataset, i.e., the CIFAR-10 dataset (Krizhevsky et al., 2009). There are
50,000 training samples in CIFAR-10, which are distributed to 100 local clients. For the IID setting,
we uniformly sample the data samples and assign them to clients. For the non-IID setting, we divide
the training dataset into 200 shards, each of which contains one class of samples, and assign two
random shards to each client. We use a VGG-16 model (Simonyan & Zisserman, 2014) to train the
model on the CIFAR-10 dataset. The details of experimental setup are summarized in Table 1.

The subnet selection is arbitrary, in details, in each layer of our model, we randomly select some
neurons to replace. In our experiment, the width of backdoor subnet is 1.
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Table 1: Experiment setup details.

Parameter IID non-IID
Number of data samples/client 500 500

Initial learning rate 0.01 0.01
Batch size 32 10

Local epochs 5 5

B SUPPLEMENTARY EXPERIMENT RESULTS

B.1 BACKDOOR ATTACK WITH A PHYSICAL LOGO TRIGGER

A physical logo trigger is more stealthy and practical in realistic applications compared with a single
white patch. We conduct backdoor attacks with a physical logo trigger, as shown in Fig. 4, and show
the results in Figs. 5 and 6. In this case, our attack still obtains a high ASR while keeping CAD low
after each attack. In comparison, it would be hard to effectively deploy data poisoning attack in FL,
due to the severe data heterogeneity among clients.

(a) (b)

Figure 4: Comparison between (a) a white patch trigger and (b) a physical logo trigger.
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Figure 5: Comparison with local data poisoning attack in the (a)-(b) IID setting and (c)-(d) non-IID
setting.
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Figure 6: Comparison with client attacker in the (a)-(b) IID setting and (c)-(d) non-IID setting.

B.2 COMPARISON BETWEEN ONE-TIME AND CONTINUOUS ATTACK

Given that the attack goal is to obtain a poisoned global model, we show the final ASRs and CADs
of different attack schemes in Tables 2 and 3. We see that our proposed DABS achieves the highest
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attack rate while securing the lowest accuracy drop. By contrast, the baselines suffer from either high
CAD or unstable ASR. Besides, we compare DABS with a one-shot attack scheme that replaces the
subnet only at the end of the training process. Although it achieves a successful backdoor attack,
this scheme causes an unacceptable dropout in model accuracy.

Table 2: Final ASRs and CADs with a white patch trigger

Attack Scheme IID non-IID

ASR ↑ CAD ↓ ASR ↑ CAD ↓
Local data poisoning attack 100% 1.75% 0.02% 5.98%

Local model modification attack 99.92% 0.93% 84.08% 3.28%
One-shot data-agnostic attack 96.84% 3.29% 100% 0.28%

DABS 100% 0.42% 100% 0.17%

Table 3: Final ASRs and CADs with a physical logo trigger

Attack Scheme IID non-IID

ASR ↑ CAD ↓ ASR ↑ CAD ↓
Local data poisoning attack 12.34% 1.47% 13.27% 5.94%

Local model modification attack 8.89% 1.24% 12.55% 3.64%
One-shot data-agnostic attack 99.60% 7.85% 99.81% 0.54%

DABS 99.76% 0.26% 99.86% 0.23%

B.3 ABLATION STUDY ON THE NUMBER OF MALICIOUS CLIENTS

We also investigate the effect of the number of malicious clients in Fig. 7. We see that assuming
more malicious clients in FL system is helpless to increase the attack success rate but causes a severe
degradation in learning performance. Moreover, the backdoor performance fluctuates severely when
we increase the number of malicious clients even if attacks are deployed until the global model
convergence.
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Figure 7: Clean accuracy and ASR of different malicious client numbers with a physical logo trigger
in the IID setting. (a) and (b): comparison with the local data poisoning attack; (c) and (d): compar-
ison with the model modification attack.
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