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ABSTRACT

Conformal prediction provides prediction sets with coverage guarantees. The in-
formativeness of conformal prediction depends on its efficiency, typically quan-
tified by the expected size of the prediction set. Prior work on the efficiency of
conformalized regression commonly treats the miscoverage level α as a fixed con-
stant. In this work, we establish non-asymptotic bounds on the deviation of the
prediction set length from the oracle interval length for conformalized quantile
and median regression trained via SGD, under mild assumptions on the data dis-
tribution. Our bounds of order O(1/√n + 1/(α2n) + 1/

√
m + exp(−α2m))

capture the joint dependence of efficiency on the proper training set size n, the
calibration set size m, and the miscoverage level α. The results identify phase
transitions in convergence rates across different regimes of α, offering guidance
for allocating data to control excess prediction set length. Empirical results are
consistent with our theoretical findings.

1 INTRODUCTION

Deploying machine learning models in safety-critical domains, such as health care (Allgaier et al.,
2023; Gui et al., 2024), finance (Wisniewski et al., 2020; Bastos, 2024), and autonomous systems
(Lindemann et al., 2023; Ren et al., 2023), requires not only accurate predictions but also reliable un-
certainty quantification. Conformal prediction (CP) is a principled, distribution-free framework for
this purpose, equipping black-box models with prediction sets achieving coverage guarantees or va-
lidity (Vovk et al., 2005; Balasubramanian et al., 2014). Formally, given a set of data {(Xj , Yj)}mj=1

drawn from a distribution P over X × Y , for any user-specified miscoverage level α ∈ (0, 1) and a
predictive model, conformal prediction constructs a set-valued function C : X → 2Y such that, for
a test pair (Xm+1, Ym+1) ∼ P , the prediction set C(Xm+1) covers the label Ym+1 with probability

P [Ym+1 ∈ C(Xm+1)] ≥ 1− α. (1)

Split conformal prediction is a computationally efficient variant that incorporates training predictive
models. It splits data into a proper training set and a calibration set; the model is first trained on
the former, and its uncertainty is then quantified using the latter. During calibration, nonconformity
score functions are constructed to measure the discrepancy between model predictions and true
labels. The distribution of these scores is estimated over the calibration set, and a quantile of them
defines a threshold. The prediction set C is then obtained by collecting all candidate labels whose
nonconformity scores are no larger than this threshold.

A central focus of conformal prediction is efficiency, commonly quantified by the expected measure
of the prediction set (Shafer & Vovk, 2008). For classification tasks, efficiency relates to the cardinal-
ity of the predicted label set; for regression, it corresponds to the length (or volume) of the prediction
interval (or region). Under the validity condition (1), smaller prediction sets are more informative.
Early works primarily evaluated efficiency empirically, whereas recent research has shifted toward
asymptotic efficiency, demonstrating that prediction sets converge to the oracle sets as the sample
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size increases (Sesia & Candès, 2020; Chernozhukov et al., 2021; Izbicki et al., 2022). In contrast,
non-asymptotic efficiency, or finite-sample guarantees on the expected measure or excess measure of
the prediction set, remains much less understood, with only partial results available (Lei & Wasser-
man, 2014; Lei et al., 2018; Dhillon et al., 2024; Bars & Humbert, 2025). Existing non-asymptotic
bounds are typically expressed based on the calibration set size m, whereas the effect of training set
size n and miscoverage level α remains an open question in split conformalized regression.

In this work, we analyze the efficiency of split conformal prediction in regression, focusing on
conformalized median regression (CMR) and conformalized quantile regression (CQR) (Romano
et al., 2019). CMR uses the absolute residual as the nonconformity score, and the quantile of the
calibration residuals then determines the half-width of a symmetric prediction interval centered at
the estimated conditional median. In contrast, CQR estimates both upper and lower conditional
quantiles, defining nonconformity scores relative to these estimates. After calibration, CQR yields
adaptive, asymmetric prediction intervals that naturally capture heteroscedasticity without assuming
symmetric conditional quantiles.

Contributions. We present a non-asymptotic theoretical analysis of the efficiency of conformal-
ized quantile regression and conformalized median regression under stochastic gradient descent
(SGD) training. Our main contributions are as follows:

• Finite-sample bounds for CQR. For CQR-SGD (Algorithm 1), we derive an upper bound of
orderO(1/√n+1/(α2n) + 1/

√
m+exp(−α2m)) on the expected deviation of the prediction

set length from the oracle interval, where n is the proper training set size, m is the calibration set
size, and α is the miscoverage level (Theorem 3.2). Unlike prior work that relies on assumptions
on intermediate quantities, our analysis places assumptions directly on the data distribution.

• Finite-sample bounds for CMR. For homoscedastic tasks, CMR-SGD produces symmetric
intervals of constant length across inputs, enabling us to derive a non-asymptotic upper bound
of analogous order (Theorem 4.1) to CQR.

• Theoretical guidance. To the best of our knowledge, our work is the first analysis establishing
upper bounds on interval length deviation as a function of (n,m, α), revealing phase transitions
across different α regimes (Section 3.2.1). Our results thus offer guidance on allocating data
between training and calibration to control excess length at a desired miscoverage level. These
theoretical insights are further validated through experiments.

Finally, while our theorems are presented for models trained with SGD, the analytical framework
developed in this paper is not tied to a specific optimizer: the bounds extend directly to other opti-
mization algorithms by substituting their corresponding estimation error rates.

2 PRELIMINARIES

Quantiles of random variables. Let F be the cumulative distribution function (c.d.f.) of a random
variable Z. For γ ∈ (0, 1), the γ-quantile of Z is defined as

qγ(Z) := inf{u ∈ R : F (u) ≥ γ}.

Conditional quantile function. For (X,Y ) ∼ P over X ×Y , the conditional γ-quantile function
qγ (Y | X) : X → R is defined as

qγ (Y | X = x) := inf
{
u ∈ R : FY |X=x (u) ≥ γ

}
, for all x ∈ X . (2)

Split conformal prediction. In split conformal prediction, the data are partitioned into the proper
training set Dtrain and the calibration set Dcal. The training set is first used to train a model h. With
the trained model h, a nonconformity score function ψh : X × Y → R is then defined to quantify
the discrepancy between a candidate label y and the input x, where higher scores indicate worse
conformity. The nonconformity scores Sm := {ψh(xj , yj)}mj=1 are computed for all calibration
samples in Dcal = {(xj , yj)}mj=1. The sample quantile q̂(1−α)m is calculated at level:

(1− α)m := ⌈(1− α)(m+ 1)⌉ / m,
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corresponding to the ⌈(1−α)(m+1)⌉-th smallest value in Sm, which is also known as the empirical
quantile. The prediction set for a new input x is then defined as

C(x) = { y ∈ Y : ψh(x, y) ≤ q̂(1−α)m }.

Bachmann–Landau notation. We employ Bachmann–Landau (or Big O) notation in the limit as
n,m → ∞. For positive sequences or functions f, g, we write f = O(g) if there exists C,N > 0
such that |f(k)| ≤ C |g(k)| for all k ≥ N ; we write f = Ω(g) if there exists c,N > 0 such that
|f(k)| ≥ c |g(k)| for all k ≥ N . We write f = o(g) if f/g → 0, and f = ω(g) if f/g →∞.

3 ANALYSIS OF CONFORMALIZED QUANTILE REGRESSION (CQR)

3.1 PROBLEM SETUP FOR CQR-SGD

Data model. We consider a random design setting where training, calibration, and test samples
are drawn i.i.d. from an unknown distribution P over X × Y . Formally, for all i ∈ [n], j ∈ [m]

(Xtrain
i , Y train

i ), (Xcal
j , Y cal

j ), (Xtest, Y test) i.i.d. ∼ P.
We assume the covariate space X ⊂ Rd is bounded: there exists a constant B > 0 such that

∥x∥2 ≤ B, ∀x ∈ X . (3)
Similarly, the response space Y ⊂ R is assumed to be a bounded interval [ymin, ymax].

Learning objective. In CQR, the training set Dtrain is used to estimate the conditional γ-quantile
function qγ (Y | X) defined in (2), where γ = 1−α/2, α/2. The estimated function tγ(·; θn(γ)) is
obtained by solving the stochastic pinball loss minimization problem (Koenker & Bassett Jr, 1978):

min
θ∈Θ

ℓγ(θ) := E(X,Y )∼PX×Y

[
Lγ

(
tγ(X; θ), Y

)]
, (4)

where the pinball loss takes the form
Lγ(t, y) = γ(y − t)1{y ≥ t}+ (1− γ)(t− y)1{y < t}. (5)

We consider a linear function class with a convex and compact parameter space:

tγ(x; θ) = θ⊤x, θ ∈ Θ ⊂ Rd, sup
θ∈Θ
∥θ∥2 ≤ K <∞. (6)

Without loss of generality, we assume K ≤ max{|ymin|, |ymax|}/B. The linear model represents a
standard setting for theoretical analysis of quantile regression (Koenker, 2005; Pan & Zhou, 2021),
ensuring convexity of the objective function in (4).

Learning algorithm. To solve (4), we consider the stochastic approximation framework (Robbins
& Monro, 1951), focusing on stochastic gradient descent (SGD). The θ is updated according to

θk+1 = ΠΘ(θk − ηkĝk) , (7)
where ηk is the step size, ΠΘ denotes the Euclidean projection onto Θ, and ĝk is a stochastic sub-
gradient satisfying E[ĝk | θk] = gk, with gk a subgradient of the population objective in (4) at
θk.

Let θn(γ) denote the parameter learned by solving (4) via SGD on the training set Dtrain. For
convenience, we introduce the shorthand notations for the learned parameters

θn := θn(α/2) , θ̄n := θn(1− α/2) , ϑn :=
(
θn, θ̄n

)
.

Conformalized quantile regression. CQR employs two estimated conditional quantile functions,
tα/2(·; θn) and t1−α/2(·; θ̄n). Given the learned parameters ϑn =

(
θn, θ̄n

)
, the score for (X,Y ) is

S (X,Y ;ϑn) := max
{
tα/2(X; θn)− Y, Y − t1−α/2(X; θ̄n)

}
. (8)

Thus S > 0 if Y lies outside the interval [tα/2(X; θn)), t1−α/2(X; θ̄n)], and S ≤ 0 otherwise.
Let Sm(Dcal;ϑn) denote the m scores on the calibration data, and let q̂(1−α)m(Sm | ϑn) be their
empirical (1 − α)m-quantile, i.e., the ⌈(1 − α)(m + 1)⌉-th smallest value of Sm(Dcal;ϑn). The
prediction set for a test covariate X is then

C(X) =
[
tα/2 (X; θn)− q̂(1−α)m(Sm | ϑn), t1−α/2

(
X; θ̄n

)
+ q̂(1−α)m(Sm | ϑn)

]
, (9)

if t1−α/2 (X; θn)− tα/2
(
X; θ̄n

)
+ 2q̂(1−α)m(Sm | ϑn) ≥ 0; otherwise, C(X) = ∅.
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Remark 3.1. The phenomenon where the lower quantile estimate exceeds the upper quantile esti-
mate is known as quantile crossing (Romano et al., 2019; Bassett Jr & Koenker, 1982). We show
in the proof of Proposition A.4 that, quantile crossing does not occur with high probability once the
training set size n is sufficiently large. Moreover, because the covariate space X is bounded, the
ground-truth lower and upper quantile functions cannot cross, even if they are not parallel.

The whole pipeline of CQR with SGD training is summarized in Algorithm 1.

Algorithm 1 Conformalized Quantile Regression with SGD Training (CQR-SGD)

1: Input: Dataset of size (n+m), miscoverage level α, new input x
2: Split the dataset into a proper training set Dtrain of size n and a calibration set Dcal of size m
3: Train quantile regressors tα/2(·; θn) and t1−α/2(·; θ̄n) on Dtrain by solving (4) via SGD
4: Compute m nonconformity scores on Dcal according to (8)
5: q̂(1−α)m ← the (1− α)m-quantile of the scores on Dcal

6: C (x)←
[
tα/2 (x; θn)− q̂(1−α)m , t1−α/2

(
x; θ̄n

)
+ q̂(1−α)m

]
7: Output: Prediction set C(x) for a new input x

3.2 THEORETICAL RESULTS FOR EFFICIENCY OF CQR

To establish upper bounds on the expected length deviation of the prediction sets, we introduce the
following assumptions.

Assumption 3.1 (Well-specification in CQR). For γ ∈ {α/2, 1 − α/2}, there exists θ∗(γ) ∈ Θ
such that

qγ(Y | X = x) = tγ(x; θ
∗(γ))= x⊤θ∗(γ), for all x ∈ X ⊂ Rd.

Assumption 3.1 ensures that θ∗(γ) is a minimizer of (4) (Takeuchi et al., 2006; Steinwart & Christ-
mann, 2011).

Similar to θn, θ̄n, and ϑn, we introduce the shorthand notations for the ground-truth parameters

θ∗ := θ∗(α/2) , θ̄∗ := θ∗(1− α/2) , ϑ∗ :=
(
θ∗, θ̄∗

)
.

Assumption 3.2 (Bounded covariance). There exist constants 0 < λmin ≤ λmax <∞ such that

λminI ⪯ Σ := E[XX⊤] ⪯ λmaxI, (10)

where I is the identity matrix, and A ⪯ B means that (B −A) is positive semi-definite for two
symmetric matrices A,B.

Note that λmax ≤ B2, since ∥x∥2 ≤ B for all x ∈ X .

Assumption 3.3 (Regularity of the conditional density). For any x ∈ X , the conditional probability
density function (p.d.f.) fY |X( · | x) exists and is continuous. Moreover, there exist constants
0 < fmin ≤ fmax <∞ such that

fmin ≤ fY |X(y | x) ≤ fmax, ∀x ∈ X , ∀ y ∈ Y. (11)

We notice that Assumption 3.3 concerns only the underlying data distribution P . In particular, our
assumptions are agnostic to the induced nonconformity scores, unlike prior works which impose
assumptions on the induced distribution of nonconformity scores, which depends on the trained pre-
dictive model. Assumption 3.3 is satisfied by many common continuous distributions once truncated
to a bounded support and normalized, including the truncated normal distribution.

Assumption 3.3 implies that the conditional support of Y given any x ∈ X is the common set
Y . The lower bound fY |X(y | x) ≥ fmin guarantees that Y is bounded, while the upper bound
fY |X(y | x) ≤ fmax ensures that Y has non-empty interior. A constant H is defined to characterize
the flatness of conditional distribution, i.e.

H(fmax, fmin) := fmax / fmin. (12)
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In particular, the Lebesgue measure of Y satisfies 1/fmax ≤ |Y| ≤ 1/fmin. Together with B in (3),
K in (6), and Assumption 3.1, it yields

|y| ≤ BK + 1/fmin, ∀ y ∈ Y. (13)

The score S has a bounded support, since |t1/2(X; θn)| ≤ BK and |Y | ≤ BK + 1/fmin, i.e.,

|S| ≤ R := 2BK + 1/fmin.

As a first step toward bounding the expected length deviation, Theorem 3.1 establishes upper bounds
on both the prediction error of the quantile regressor and the parameter estimation error under SGD
training, expressed in terms of the training sample size n.

Theorem 3.1 (Quantile regression error of SGD-trained models). If Assumptions 3.1–3.3 hold, tak-
ing step size ηk = 1/ (λminfmink) in SGD update (7), then

EX,θn

[
(tγ (X; θn (γ))− tγ (X; θ∗ (γ)))2

]
≤ 4λ2maxfmaxd

λ3minf
2
minn

, (14)

Eθn

[
∥θn (γ)− θ∗ (γ) ∥22

]
≤ 4λ2maxfmaxd

λ4minf
2
minn

. (15)

The proof of Theorem 3.1 is deferred to Appendix A.1.

Remark 3.2. The results of Theorem 3.1 are established under a strongly-convex assumption as they
rely on Theorem A.1 from Rakhlin et al. (2012). Comparable rates can also be obtained for non-
strongly-convex objectives under the assumptions in Bach & Moulines (2013), where Assumption 3.2
can be weakened to requiring only the invertibility of E[XX⊤].

Theorem 3.2 establishes a non-asymptotic efficiency guarantee for CQR-SGD (Algorithm 1), bound-
ing the expected length deviation of the prediction set from the oracle conditional quantile interval

C∗(X) :=
[
qα/2 (Y | X) , q1−α/2 (Y | X)

]
. (16)

We measure the efficiency of conformalized regression methods by the expected length deviation

EX,ϑn,Dcal

[∣∣|C(X)| − |C∗(X)|
∣∣]. (expected length deviation)

Theorem 3.2 (Efficiency of CQR-SGD). For CQR-SGD, suppose Assumptions 3.1–3.3 hold. If
m > 8H/min{α, 1− α}, then for test sample (X,Y ) and 0 < α ≤ 1/2,

EX,ϑn,Dcal

[∣∣|C(X)| − |C∗(X)|
∣∣]≤ O(n−1/2 + (α2n)−1 +m−1/2 + exp(−α2m)

)
, (17)

where H is the constant defined in (12).

The explicit upper bound (41) and the full proof of Theorem 3.2 are presented in Appendix B, with
a proof sketch illustrated in Figure 1.

Remark 3.3. While Theorem 3.2 is presented for CQR trained using SGD, the analysis strategy
applies to other optimization algorithms. In particular, one can replace the SGD error bound in
Theorem 3.1 with that of the chosen optimizer. This replacement modifies only the terms in the
overall bound that depend on the training set size n. Formally, suppose the upper bound in Theo-
rem 3.1 is replaced by φn where φn → 0 as n→∞, then the upper bound in Theorem 3.2 becomes
O
(
φ
1/2
n + α−2φn +m−1/2 + exp(−α2m)

)
.

Remark 3.4. For a random variable Z, the density level set L(u1−α) is the optimal prediction set
with coverage probability 1− α (Lei et al., 2011), i.e.,

L(u1−α) := {z ∈ Z : fZ(z) ≥ u1−α} = argmin
P[Z∈C]≥1−α

|C|,

where u1−α = inf{u : P[Z ∈ L(u)] ≥ 1−α}. The oracle interval C∗(x) coincides with the optimal
prediction set if for any y ∈ C∗(x) and any y′ ∈ Y \ C∗(x), it holds that fY |X=x(y) ≥ fY |X=x(y

′).
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EX,ϑn,Dcal

[∣∣|C(X)| − |C∗(X)|
∣∣]

= EX,ϑn,Dcal

[∣∣∣∣∣max
{
t1−α/2

(
X; θ̄n

)
− tα/2 (X; θn) + 2q̂(1−α)m(Sm | ϑn), 0

} ∣∣
−

∣∣(t1−α/2

(
X; θ̄∗

)
− tα/2 (X; θ∗)

) ∣∣∣∣∣]
≤ EX,ϑn

[∣∣t1−α/2

(
X; θ̄n

)
− t1−α/2

(
X; θ̄∗

)∣∣+ ∣∣tα/2 (X; θn)− tα/2 (X; θ∗)
∣∣]︸ ︷︷ ︸

= O
(√

1/n
)

Quantile regression errors of trained model (Thm. 3.1)

+ Eϑn [|q1−α (S | ϑn)|]︸ ︷︷ ︸
= O

(√
1/n

)
Population quantile of the score (Prop. A.2)

+ Eϑn

[∣∣q1−α (S | ϑn)− q(1−α)m (S | ϑn)
∣∣]︸ ︷︷ ︸

= O
(
1/m+ 1/(α2n)

)
Population finite-sample score-quantile gap (Prop. A.3)

+ Eϑn,Dcal

[∣∣q(1−α)m (S | ϑn)− q̂(1−α)m (Sm | ϑn)
∣∣]︸ ︷︷ ︸

= O
(√

1/m+ exp(−α2m) + 1/(α2n)
)

Empirical score-quantile concentration (Prop. A.5)

Figure 1: Proof outline of Theorem 3.2. Full proof deferred to Section A.

3.2.1 PHASE TRANSITIONS OF THE UPPER BOUND

In Theorem 3.2, the upper bound on the expected absolute deviation between the prediction set
length |C(X)| and the oracle interval length |C∗(X)| is expressed explicitly as a function of the
training size n, calibration size m, and miscoverage level α. Unlike prior analyses that treat α as a
fixed constant, our result reveals its critical role in efficiency. Specifically, the terms (α2n)−1 and
exp(−α2m) in the bound imply a fundamental scaling relationship as follows.

Regimes of α in general cases.

• The length deviation converges to zero whenever α decays slower than n−1/2 and m−1/2, i.e.,
α = ω(max{n−1/2,m−1/2}). Thus, Theorem 3.2 implies that if the expected prediction set
length is required to remain within a fixed tolerance of the oracle length, α is not supposed to be
chosen arbitrarily small.

• For the two n-dependent terms in (17), if α = Ω(n−1/4), then they are of order O(n−1/2);
otherwise they are of order O

(
(α2n)−1

)
.

• For the two m-dependent terms, if α = Ω(
√
logm/m), then they are of order O(m−1/2);

otherwise they are of order O(exp(−α2m)).

• Thus, if α = Ω(max{n−1/4,
√

logm/m}), the upper bound scales as O(n−1/2 +m−1/2), which
coincides with the rate in Bars & Humbert (2025) assuming a finite function class.

Regimes of α when n,m of the same order. When n = Θ(m), the upper bound simplifies to
O(n−1/2 + (α2n)−1). Figure 2 shows it in different regimes of α = Ω(n−1), consistent with the
assumption m > 8H/min{α, 1− α} in Theorem 3.2.

Data Allocation. If α = Ω(max{n−1/4,
√

logm/m}), the bound reduces to O(n−1/2 +m−1/2), so
a natural choice is to set n and m to be of the same order. If α = Ω(

√
logm/m) and α = ω(n−1/4),

the trade-off is between O(m−1/2) and O(1/(αn2)), and balancing them yields m = Θ(α4n4).
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not vanishing

Upper-bound order

Figure 2: Upper bound orders in Theorem 3.2 in different regimes of α when n = Θ(m). Results
in Lei et al. (2018); Bars & Humbert (2025) lie in the right most regime (blue).

4 ANALYSIS OF CONFORMALIZED MEDIAN REGRESSION (CMR)

4.1 PROBLEM SETUP FOR CMR-SGD

For conformalized median regression (CMR), we consider the same i.i.d. data model and learning
algorithm (SGD) as CQR in Section 3.1.

Learning objective. In CMR, the training set Dtrain is used to estimate the conditional median
function q1/2 (Y | X), which is the special case for conditional γ-quantile estimation with γ = 1/2
(see (2)). The estimated conditional median function t1/2(·; θ) is learned by solving the minimiza-
tion of the expected absolute error (stochastic pinball loss with γ = 1/2) via SGD:

min
θ∈Θ

ℓ1/2(θ) := E(X,Y )∼PX×Y

[
|t1/2(X; θ)− Y |

]
. (18)

We adopt the same linear model class as in CQR, namely (6).

The shorthand notations for the learned parameter θn(1/2) and the true parameter θ∗(1/2) are:

θ̌n := θn(1/2) , θ̌∗ := θ∗(1/2) .

Conformalized median regression. In CMR, given the trained regressor t1/2(·; θ̌n), the noncon-
formity score for (X,Y ) is

S
(
X,Y ; θ̌n

)
:=

∣∣t1/2(X; θ̌n)− Y
∣∣ , (19)

which corresponds to the absolute prediction error of the estimated conditional median t1/2(·; θ̌n).
For the calibration set Dcal, let Sm(Dcal; θ̌n) denote the m scores on calibration data, and let
q̂(1−α)m(Sm | θ̌n) be the empirical (1− α)m-quantile of S given θ̌n, i.e., the ⌈(1− α)(m+ 1)⌉-th
smallest element in Sm(Dcal; θ̌n). The prediction set for a test covariate X is then

C (X) =
[
t1/2(X; θ̌n)− q̂(1−α)m(Sm | θ̌n), t1/2(X; θ̌n) + q̂(1−α)m(Sm | θ̌n)

]
. (20)

4.2 THEORETICAL RESULTS FOR EFFICIENCY OF CMR

The well-specification assumption in CMR assumes a linear q1/2:
Assumption 4.1 (Well-specification in CMR). There exists θ∗(1/2) ∈ Θ such that

q1/2(Y | X = x) = t1/2(x; θ
∗(1/2)), for all x ∈ X .

For the CMR setting, we make an additional assumption on top of Assumptions 4.1, 3.2, and 3.3:
Assumption 4.2 (Symmetry of quantiles). There exists ζ > 0 such that for every x ∈ X ,

q1−α/2(Y | X = x)− q1/2(Y | X = x) = q1/2(Y | X = x)− qα/2(Y | X = x) = ζ. (21)
Remark 4.1. Assumption 4.2 is standard in the analysis of conformalized regression based on a
single regressor, following the precedent set by Assumption A1 of Lei et al. (2018).
Theorem 4.1 (Efficiency of CMR). For CMR-SGD, suppose Assumption 4.1,3.2,3.3,4.2 hold. If
m > 8H/min{α, 1− α}, then for test sample (X,Y ) and 0 < α ≤ 1/2,

EX,ϑn,Dcal

[∣∣|C(X)| − |C∗(X)|
∣∣]≤ O(n−1/2 + (α2n)−1 +m−1/2 + exp(−α2m)

)
, (22)

where H is the constant defined in (12).

The explicit upper bound (42) and the full proof of Theorem 4.1 are presented in Appendix B.
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5 RELATED WORKS

Quantile regression. Quantile regression has attracted significant attention since the seminal work
of Koenker & Bassett Jr (1978) due to its robustness to outliers and ability to capture distributional
heterogeneity. Early works derived the

√
n-consistency and asymptotic normality of quantile re-

gressors in the linear model (Bassett Jr & Koenker, 1978; 1982; Portnoy & Koenker, 1989; Pol-
lard, 1991). Other works established statistical properties under fixed designs, where covariates are
treated as deterministic (He & Shao, 1996; Koenker, 2005). More recent works have shifted toward
non-asymptotic analysis with convergence rate O(1/√n) under random designs, where covariates
are random and prediction performance on unseen data is emphasized (Steinwart & Christmann,
2011; Catoni, 2012; Hsu et al., 2014; Loh & Wainwright, 2015; Pan & Zhou, 2021; He et al., 2023;
Liu et al., 2023; Sasai & Fujisawa, 2025). Median regression is a special case of quantile regression,
has also been extensively studied (Chen et al., 2008). Shen et al. (2025) analyze online quantile
regression with linear models trained via SGD, under regularity conditions closely related to ours,
including a local lower bound on the conditional density. These methods form the basis for confor-
malized median regression and conformalized quantile regression (Romano et al., 2019).

Efficiency analysis of conformal prediction. Conformal prediction was developed to equip point
predictions with confidence regions that provide finite-sample coverage guarantees (Papadopoulos
et al., 2002; Vovk et al., 2005; 2009; Vovk, 2026). Research on its efficiency (Vovk et al., 2016;
Gasparin & Ramdas, 2025) has evolved from early asymptotic convergence analyses, which es-
tablished convergence rates toward the oracle prediction region (Chajewska et al., 2001; Li & Liu,
2008; Sadinle et al., 2019; Sesia & Candès, 2020; Chernozhukov et al., 2021; Izbicki et al., 2022), to
generalization error-based bounds on expected set size Zecchin et al. (2024), and recently volume-
minimization methods using data-driven norms (Sharma et al., 2023; Correia et al., 2024; Kiyani
et al., 2024; Braun et al., 2025; Bars & Humbert, 2025; Gao et al., 2025; Srinivas, 2026). Relat-
edly, Gauthier et al. (2025) propose backward conformal prediction, which directly controls the
size of prediction sets while relaxing the classical marginal coverage formulation. Complementary
to marginal coverage, Duchi (2025) investigates sample-conditional coverage guarantees in split
conformal prediction. We note that our analysis focuses on the i.i.d. setting; robustness under dis-
tribution shift has been studied separately, e.g., Joshi et al. (2025).

For conditional density estimation, under β-Hölder class and γ-exponent margin conditions
of the conditional density, Lei & Wasserman (2014) derived minimax-optimal rates of order
O((logm/m)β/(3β+1)) when γ = 1, and showed that conditional coverage cannot generally be
guaranteed in finite samples. When the quantile of Y is symmetric and independent of X (analo-
gous to Assumption 4.2), Lei et al. (2018) incorporated training error into the efficiency analysis,
treating α as a fixed constant. In contrast, our results for CQR and CMR make no assumptions on
the training error and provide explicit upper bounds (41, 42) as functions of (n,m, α), applicable
also to adaptive prediction sets.

Under the assumptions that the quantile function of the nonconformity score is locally β-Hölder
continuous, and that the worst-case empirical estimation error of the function class is bounded,
Bars & Humbert (2025) derived convergence rates of the order O(m−βκ/2 + n−βι/2) for some
0 < ι, κ < 1 when the function class is finite. In the case of β = 1, this rate matches our bound
when α is treated as a fixed constant, namely O(m−1/2 + n−1/2). Different from analysis in Bars
& Humbert (2025) that focuses on methods based on volume minimization, our work develops
efficiency guarantees for CQR and CMR, without imposing assumptions on the score distribution
induced by the trained model or on the estimation error. Instead, we demonstrate in the proof
(especially Proposition B.2) that the required regularity conditions of the score are satisfied with
high probability under mild assumptions on the underlying data distribution.

6 EXPERIMENTS

This section presents evaluations of length deviation using synthetic data to access our theoretical
results. Additional synthetic experiments and real-world experiments are deferred to Appendix C
and D due to space constraints. An overview of all experiments conducted in this paper can be found
in Section 6.1.

8



Published as a conference paper at ICLR 2026

1e3 1e4
# Training (n)

1e
-1

1e
0

1e
1

1e
2

Le
ng

th
De

via
tio

n
(∆

)

(a) Exp1: Fix m=5000

1e1 1e2 1e3
# Calibration (m)

(b) Exp2: Groundtruth θ∗

α
0.01
0.025
0.05

0.075
0.1
0.125

0.15
0.175
0.2

0.00 0.05 0.10 0.15 0.20
α

-1
-0

.7
5

-0
.5

Sl
op

e 

(c) Slopes in loglog plot (a), (b)

(a)
(b)

−4 −3 −2

log(α)

4
5

6
7

8
9

10
11

In
te

rc
ep

ta
2

(d) Intercepts in loglog plot (a)
y=-2.24x + 0.71
y=-2.00x + 1.40

For each α, ...

log∆ = a1 log n+ a2

For each α, ...

log∆ = a1 logm+ a2

1Figure 3: The length deviation of conformalized quantile regression in synthetic data experiments.

Experiment setup. The data generation procedure is described in Appendix C.1. All experi-
ments employ linear models trained with SGD for one epoch using a batch size of 64. Learning
rates are selected via successive halving over the range [10−5, 1]. We evaluate miscoverage levels
α ∈ {0.01, 0.025, 0.05, 0.075, 0.1, 0.125, 0.15, 0.175, 0.2}. Reported results are averaged over 20
independent trials, and length deviations are computed on 2000 test samples.

We denote the expected length deviation as ∆. We empirically assess the upper bound of ∆ in
Theorem 3.2, of order O( 1√

n
+ 1

nα2 + 1√
m

+ exp(−α2m)) from three perspectives.

• Effect of training size n. With a large calibration set (m = 5000), the calibration error is
negligible, and the theoretical bound simplifies toO(1/√n+1/(nα2)). The theory predicts that
a linear regression of log∆ on logn, i.e.,

log∆ ∼ a1 log n+ a2, (23)

yields a slope a1 that transitions from −1 to −1/2 as α increases. We confirm this trend em-
pirically. For each α, we train models over n ranging from 200 to 20000 (Figure 3a) and fit the
regression model (23) (the inset in Figure 3a shows an example) to obtain slope a1 and intercept
a2). The resulting (α, a1) pairs, shown by the red curve in Figure 3c, validate that the slope shifts
from approximately −1 to −1/2 as α grows, reflecting the transition of the dominant term in the
bound from O(1/(nα2)) to O(1/√n). The intercept a2 depends on logα, as discussed below.

• Effect of miscoverage level α. In the regime where (nα2)−1 dominates, ∆ is expected to follow
a power-law scaling of order α−2. To examine this, we further regress the fitted intercepts a2 in
(23) on logα:

a2 ∼ b1 logα+ b2.

Together with (23), the estimated coefficient b1 = −2.24 (Figure 3d) implies that ∆ ∼ α−2.24.
This aligns with the theoretical upper bound of order O(α−2). Appendix C.2 provides an addi-
tional verification for the existence of this regime.

• Effect of calibration size m. Using the ground-truth parameter θ∗, we vary the calibration set
size m ranging from 100 to 3000, ensuring that the resulting length deviation depends only on
m and α. As illustrated in Figure 3b, the deviation decreases consistently with larger calibration
sets. On a log–log scale, the slope approximately approaches −0.5, reflecting the increasing
dominance of the O(1/√m) term in the bound. Meanwhile, the exponential term exp(−α2m)
decays quickly for modest values of m and becomes negligible thereafter.

6.1 ROADMAP OF EXPERIMENTS

We here outline the structure of all experiments conducted in the paper.

Synthetic experiments. Figure 3 in Section 6 and Figure 5 in Appendix C.2 assess the theoretical
results developed in this paper. Appendix C.3 further examines optimization effects: Figure 6 in-
vestigates SGD with heavy-ball momentum, and Figure 7 reports the case of AdamW (Loshchilov
& Hutter, 2019). In Appendix C.4, Figure 8 presents results under nonlinear conditional quantile
functions. Finally, in Appendix C.5, Figures 9–10 evaluate alternative convex loss models.

9
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Real-world experiments. In Appendix D.2.2, Figure 11 presents an empirical evaluation of length
deviation of CMR and CQR under different optimizers on five real-world datasets, comparing SGD,
SGD with momentum, Adam, and AdamW. In Appendix D.2.3, Figure 12 evaluates non-linear
models. Appendix D.3 empirically investigates data-allocation strategies in Figure 13.

7 LIMITATIONS, DISCUSSION, AND FUTURE WORK

Oracle intervals may not be optimal under certain distributions. Our theoretical analysis
shows that the prediction sets produced by CQR and CMR converge to the oracle quantile inter-
val (16) as the training and calibration sample sizes n and m grow. However, the oracle interval
itself is not always efficiency-optimal. It is optimal only when the condition in Remark 3.4 holds,
which depends on the structure of the conditional distribution. For instance, when the conditional
density is multimodal or basin-shaped, the optimal prediction set is not a single interval. In such
cases, the prediction sets produced by standard conformal methods such as CMR and CQR do not
approximate the optimal set. This limitation stems inherently from the standard non-conformity
scores, which are restricted to producing single-interval prediction sets and therefore cannot capture
complex distributional structures. One way to improve efficiency in these settings is to move beyond
fixed score functions and consider parameterized nonconformity scores that adapt to the data. For
instance, recent work such as Braun et al. (2025) employs an optimization-driven framework tar-
geting volume minimization to learn the parametrization. Such approaches could potentially learn
transformations that adapt to complex conditional distributions, leading to more efficient prediction
sets. This is a promising direction for future research.

Role and limitations of the linearity assumption. Our theoretical analysis builds on the linearity
assumption of the conditional quantiles. This assumption is standard in the theoretical analysis of
quantile regression (Koenker, 2005; Pan & Zhou, 2021; Shen et al., 2025), as it ensures convexity of
the objective and therefore the consistency of the SGD estimator as the training data size n grows.
While relaxing this assumption is in principle possible, it typically requires additional assumptions
on the complexity of the function class or on the estimation error bounds, which may be difficult to
verify in practice (Bars & Humbert, 2025).

8 CONCLUSION

This paper studies the efficiency of conformalized quantile regression (CQR) and conformalized me-
dian regression (CMR) through the lens of the expected length deviation, defined as the discrepancy
between the coverage-guaranteed prediction set size and the oracle interval length. Our analysis
explicitly accounts for randomness introduced by training, finite-sample calibration, and test evalua-
tion. Under mild assumptions on the data distribution, we provide, to the best of our knowledge, the
first non-asymptotic convergence rate of the form: O(n−1/2 + n−1α−2 +m−1/2 + exp(−α2m)),
which highlights a fine-grained effect of the miscoverage level α. Empirical results closely align
with the theoretical findings.

Ethics statement. This work raises no ethical concerns to declare.

Reproducibility statement. For our theoretical results, we provide complete proofs in Appendix
A and B. The empirical setups are detailed in Section 6, Appendix C, and Appendix D. To facil-
itate full reproducibility, we include the source code and datasets as part of our submission. The
provided repository contains scripts to install the required Python environment, run all experiments,
and generate the figures presented in the manuscript.
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A PROOFS OF RESULTS IN CQR

To proceed, we first define some notations as follows.

Eγ (X, θn (γ)) := |tγ (X; θn (γ))− tγ (X; θ∗ (γ))| ≥ 0; (24)

∆(X,ϑn) := max
{
Eα/2 (X, θn) , E1−α/2

(
X, θ̄n

)}
≥ 0; (25)

S∗ (X,Y ) := max
{
tα/2 (X; θ∗)− Y, Y − t1−α/2

(
X; θ̄∗

)}
(26)

= max
{
qα/2 (Y | X)− Y, Y − q1−α/2 (Y | X)

}
;

M (ϑn) := max
{
∥(θn − θ∗)∥2 ,

∥∥(θ̄n − θ̄∗)∥∥2} . (27)

Let F̂ (m)
S|ϑn

denote the empirical c.d.f. from m i.i.d. calibration scores given ϑn, i.e.,

F̂
(m)
S|ϑn

(s) =
1

m

m∑
j=1

1{Sj ≤ s}, Sj
i.i.d.∼ FS|ϑn

.

A.1 PROOF OF THEOREM 3.1

Theorem 3.1 (Quantile regression error of SGD-trained models). If Assumptions 3.1–3.3 hold, tak-
ing step size ηk = 1/ (λminfmink) in SGD update (7), then

EX,θn

[
(tγ (X; θn (γ))− tγ (X; θ∗ (γ)))2

]
≤ 4λ2maxfmaxd

λ3minf
2
minn

, (14)

Eθn

[
∥θn (γ)− θ∗ (γ) ∥22

]
≤ 4λ2maxfmaxd

λ4minf
2
minn

. (15)

To prove Theorem 3.1, we first show that ℓγ (θ) in (4) is strongly convex and smooth with respect
to θ∗(γ), as stated below in Proposition A.1. The proof of Proposition A.1 further relies on Lemma
A.1 and Lemma A.2 for the gradient and the Hessian of ℓγ (θ).

Proposition A.1. Under Assumption 3.3, and if E
[
∥X∥2

]
<∞, the objective ℓγ (θ) in (4) satisfies

fmin

2
∥θ − θ∗ (γ) ∥2Σ ≤ ℓγ (θ)− ℓγ (θ∗ (γ)) ≤

fmax

2
∥θ − θ∗ (γ) ∥2Σ. (28)

If Assumption 3.2 furthermore holds, then
fminλmin

2
∥θ − θ∗ (γ) ∥22 ≤ ℓγ (θ)− ℓγ (θ∗ (γ)) ≤

fmaxλmax

2
∥θ − θ∗ (γ) ∥22, (29)

where ∥ · ∥Σ denotes the Σ-induced norm, i.e., ∥θ∥Σ :=
√
θ⊤Σθ.
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Proof. To prove this proposition, we first need Lemma A.1 and Lemma A.2 to calculate the gradient
and the Hessian of ℓγ (θ). By Lemma A.1,

∇ℓγ (θ∗ (γ)) = EX

[(
FY |X

(
(θ∗ (γ))⊤X | X

)
− γ

)
X
]

= EX

[(
FY |X (qγ (Y | X))− γ

)
X
]

= 0.

By Lemma A.2, ∇2ℓγ (θ) = EX

[
fY |X

(
θ⊤X | X

)
XX⊤]. By Assumption 3.3, ∀v ∈ Rd,

fmin∥v∥2Σ = fminEX

[(
X⊤v

)2] ≤ EX

[
fY |X

(
θ⊤X | X

) (
X⊤v

)2]
≤ fmaxEX

[(
X⊤v

)2]
= fmax∥v∥2Σ.

Hence, fminΣ ⪯ ∇2ℓγ (θ) ⪯ fmaxΣ for any θ ∈ Θ. By Taylor’s Formula,

ℓγ (θ)− ℓγ (θ∗ (γ)) =
∫ 1

0

(1− u) (θ − θ∗ (γ))⊤∇2ℓγ (θ
∗ + u (θ − θ∗ (γ))) (θ − θ∗ (γ)) du.

Since

fmin∥θ − θ∗ (γ) ∥Σ ≤ (θ − θ∗ (γ))⊤∇2ℓγ (θ
∗ + u (θ − θ∗ (γ))) (θ − θ∗ (γ))

≤ fmax∥θ − θ∗ (γ) ∥Σ

and
∫ 1

0
(1− u) du = 1/2, we have

fmin

2
∥θ − θ∗ (γ) ∥2Σ ≤ ℓγ (θ)− ℓγ (θ∗ (γ)) ≤

fmax

2
∥θ − θ∗ (γ) ∥2Σ.

Lemma A.1. Suppose (11) in Assumption 3.3 is true, if E [∥X∥2] <∞, then

∇ℓγ (θ) = EX,Y

[(
1
{
Y < θ⊤X

}
− γ

)
X
]
= EX

[(
FY |X

(
θ⊤X | X

)
− γ

)
X
]
. (30)

Proof. The key idea is to show that the interchange of differentiation and expectation is valid ac-
cording to the dominated convergence theorem. For θ ∈ Θ, it holds that

P
[
Y = θ⊤X

]
= E(X,Y )

[
1
{
Y = θ⊤X

}]
= EX

[
EY |X

[
1
{
Y = θ⊤X

}
| X

]]
= EX

[
P
[
Y = θ⊤X | X

]]
.

Since (11) in Assumption 3.3 is true, the p.d.f fY |X (Y | X) exists for each x ∈ X . Thus,

P
[
Y = θ⊤x | X = x

]
=

∫
{θ⊤x}

fY |X (Y | X) dy = 0.

Thus, P [Y = tγ (X; θ)] = P
[
Y = θ⊤X

]
= E[0] = 0.

For (x, y) ∈ X ×Y , if y ̸= tγ (x; θ), the directional derivative of Lγ

(
θ⊤x, y

)
at θ along vector v is

DvLγ

(
θ⊤x, y

)
= lim

ρ→0

Lγ

(
(θ + ρv)

⊤
x, y

)
− Lγ

(
θ⊤x, y

)
∥v∥2ρ

=
1

∥v∥
d

dρ
Lγ

(
(θ + ρv)

⊤
x, y

)∣∣∣∣
ρ=0

=
(
1
{
y < θ⊤x

}
− γ

)
x⊤

v

∥v∥ .
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Moreover, since Lγ (t, y) is 1-Lipschitz with respect to t,∣∣∣∣∣∣
Lγ

(
(θ + ρv)

⊤
x, y

)
− Lγ

(
θ⊤x, y

)
∥v∥2ρ

∣∣∣∣∣∣ = 1

∥v∥2ρ
∣∣∣Lγ

(
(θ + ρv)

⊤
x, y

)
− Lγ

(
θ⊤x, y

)∣∣∣
≤ 1

∥v∥2ρ
∥ (θ + ρv)

⊤
x− θ⊤x∥2

≤ ∥x∥.
Since we assume E [∥X∥2] <∞, by the dominated convergence theorem,

Dvℓγ (θ) = DvEX,Y

[
Lγ

(
θ⊤X,Y

)]
= lim

ρ→0

EX,Y

[
Lγ

(
(θ + ρv)

⊤
X,Y

)]
− EX,Y

[
Lγ

(
θ⊤X,Y

)]
∥v∥2ρ

= lim
ρ→0

EX,Y

Lγ

(
(θ + ρv)

⊤
X,Y

)
− Lγ

(
θ⊤X,Y

)
∥v∥2ρ


= EX,Y

 lim
ρ→0

Lγ

(
(θ + ρv)

⊤
X,Y

)
− Lγ

(
θ⊤X,Y

)
∥v∥2ρ


= EX,Y

[
DvLγ

(
θ⊤X,Y

)]
= EX,Y

[(
1
{
Y < θ⊤X

}
− γ

)
X
]⊤ v

∥v∥ .

Hence,

∇ℓγ (θ) = EX,Y

[(
1
{
Y < θ⊤X

}
− γ

)
X
]

= EX

[
EY |X

[(
1
{
Y < θ⊤X

}
− γ

)
X | X

]]
= EX

[
EY |X

[(
1
{
Y < θ⊤X

}
− γ

)
| X

]
X
]

= EX

[(
FY |X

(
θ⊤X | X

)
− γ

)
X
]
.

Lemma A.2. Under Assumption 3.3, if E
[
∥X∥2

]
<∞, then

∇2ℓγ (θ) = EX

[
fY |X

(
θ⊤X | X

)
XX⊤] . (31)

Proof. By Assumption, E [∥X∥2] ≤
√
E [∥X∥2] <∞. Then, by Lemma A.1,

∇ℓγ (θ) = EX,Y

[(
1
{
Y < θ⊤X

}
− γ

)
X
]

= EX

[
EY |X

[(
1
{
Y < θ⊤X

}
− γ

)
X | X

]]
= EX

[
EY |X

[(
1
{
Y < θ⊤X

}
− γ

)
| X

]
X
]

= EX

[(
FY |X

(
θ⊤X | X

)
− γ

)
X
]
.

To prove the lemma, the key point is to show that the interchange of differentiation and expectation
is valid, as in the proof of Lemma A.1.

lim
ρ→0

(
FY |X

(
θ⊤x+ ρv⊤x | X

)
− γ

)
x−

(
FY |X

(
θ⊤x | X

)
− γ

)
x

∥v∥2ρ

= lim
ρ→0

1

∥v∥2ρ
(
FY |X

(
θ⊤x+ ρv⊤x | X

)
− FY |X

(
θ⊤x | X

))
x

= x · v
⊤x
∥v∥ lim

ρ→0

1

ρv⊤x

(
FY |X

(
θ⊤x+ ρv⊤x | X

)
− FY |X

(
θ⊤x | X

))
.

16
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According to the mean value theorem, there exists ξ (x) in
(
θ⊤x, θ⊤x+ ρv⊤x

)
such that

1

ρv⊤x

(
FY |X

(
θ⊤x+ ρv⊤x | X

)
− FY |X

(
θ⊤X | X

))
= fY |X (ξ (x) | X) .

Hence,

lim
ρ→0

1

ρv⊤x

(
FY |X

(
θ⊤x+ ρv⊤x | X

)
− FY |X

(
θ⊤X | X

))
= lim

ρ→0
fY |X (ξ (x) | X) .

Since fY |X (Y | X) is continuous for PX -almost every x ∈ X , we have for PX -almost every
x ∈ X ,

lim
ρ→0

fY |X (ξ (x) | X) = fY |X
(
θ⊤X | X

)
.

Hence, for PX -almost every x ∈ X ,

lim
ρ→0

(
FY |X

(
θ⊤x+ ρv⊤x | X

)
− γ

)
x−

(
FY |X

(
θ⊤X | X

)
− γ

)
x

∥v∥2ρ
= fY |X

(
θ⊤X | X

) xx⊤v
∥v∥ .

Since (11) in Assumption 3.3 is true, for any x ∈ X , FY |X is fmax-Lipschitz.∣∣∣∣∣
(
FY |X

(
θ⊤x+ ρv⊤x | X

)
− γ

)
x−

(
FY |X

(
θ⊤X | X

)
− γ

)
x

∥v∥2ρ

∣∣∣∣∣
=

1

∥v∥2ρ
∣∣(FY |X

(
θ⊤x+ ρv⊤x | X

)
− FY |X

(
θ⊤X | X

))∣∣ ∥x∥2
≤ 1

∥v∥2ρ
fmaxρ∥v∥2∥x∥2 = fmax∥x∥2.

Since E
[
∥X∥2

]
<∞, it holds that E

[
fmax∥X∥2

]
<∞. Therefore, by the dominated convergence

theorem, the directional derivative of ∇ℓγ (θ) at θ along vector v is

Dv (∇ℓγ (θ))
= DvEX

[(
FY |X

(
θ⊤X | X

)
− γ

)
X
]

= lim
ρ→0

EX

[(
FY |X

(
θ⊤X + ρv⊤X | X

)
− γ

)
X
]
− EX

[(
FY |X

(
θ⊤X | X

)
− γ

)
X
]

∥v∥2ρ

= lim
ρ→0

EX

[
1

∥v∥2ρ
(
FY |X

(
θ⊤X + ρv⊤X | X

)
− FY |X

(
θ⊤X | X

))
X

]
= EX

[
lim
ρ→0

1

∥v∥2ρ
(
FY |X

(
θ⊤X + ρv⊤X | X

)
− FY |X

(
θ⊤X | X

))
X

]
= EX

[
fY |X

(
θ⊤X | X

)
XX⊤] v

∥v∥ .

Hence, ∇2ℓγ (θ) = EX

[
fY |X

(
θ⊤X | X

)
XX⊤].

With Proposition A.1, we are ready to apply Theorem A.1 for SGD and get Corollary A.1.
Theorem A.1 (Section 3 in Rakhlin et al. (2012)). Suppose the loss function ℓ is λ-strongly convex
and µ-smooth with respect to a minimizer θ∗ over Θ, and E[∥gt∥2] ≤ G2. Then taking ηt = 1/λt,
it holds for any n that

Eθn [f (θn)− f (θ∗)] ≤
2µG2

λ2n
. (32)

Corollary A.1 (Upper Bound of Extra Loss). Suppose Assumption 3.1, 3.2 and 3.3 hold. Let
Dtrain := {(Xi, Yi)}ni=1 be the set of training samples and θn be the estimator by optimizing
stochastic pinball loss (4) produced by SGD (7). Taking ηk = 1/ (λminfmink), it holds that

Eθn [ℓγ (θn (γ))− ℓγ (θ∗ (γ))] ≤
2λ2maxfmaxd

λ2minf
2
minn

. (33)
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Proof. In this proof, we denote θn (γ) by θn for simplicity. By Lemma A.1, ∇ℓγ (θ) =
EX

[(
1
{
Y < θ⊤X

})
X
]
. Then,

EX,θn

[
∥∇ℓγ (θn)∥2

]
= Eθn

[∥∥EX

[(
1
{
Y < θ⊤nX

})
X
]∥∥2]

= Eθn

[
EX

[∥∥(1{Y < θ⊤nX
})
X
∥∥]2]

≤ EX [∥X∥]2 ≤ λmaxd.

where the last inequality is by Assumption 3.2,

E [∥X∥]2 ≤ E
[
∥X∥2

]
= E

[
trace

(
XX⊤)] = trace

(
E
[
XX⊤]) ≤ trace (λmaxI) = dλmax.

The corollary then follows from Proposition A.1 and Theorem A.1.

Now we are ready to prove Theorem 3.1. In this proof, we denote θn (γ) , θ∗ (γ) by θn, θ∗, respec-
tively, for simplicity. By Proposition A.1,

∥θn − θ∗∥2Σ ≤
2

fmin
(ℓ (θn)− ℓ (θ∗)) ;

∥θn − θ∗∥22 ≤
2

fminλmin
(ℓ (θn)− ℓ (θ∗)) .

Since the test sample (X,Y ) is sampled independently of the set of the training samples
{(Xi, Yi)}ni=1, and θn is a function of {(Xi, Yi)}ni=1, θn is independent of X .

Eθn,X

[
(t (X; θn)− t (X; θ∗))2

]
= Eθn,X

[(
(θn − θ∗)⊤X

)2
]

= Eθn

[
EX

[
(θn − θ∗)⊤XX⊤ (θn − θ∗) |θn

]]
= Eθn

[
(θn − θ∗)⊤ EX

[
XX⊤] (θn − θ∗)]

= Eθn

[
∥θn − θ∗∥2Σ

]
.

Hence, by Corollary A.1, Eθn [∥θn − θ∗∥2Σ] ≤ 2
fmin

Eθn [(ℓ (θn)− ℓ (θ∗))] ≤ 4λ2
maxfmaxd

λ3
minf

2
minn

.

This completes the proof of Theorem 3.1.

A.2 PROOF OF PROPOSITION A.2

Proposition A.2 (Population quantile of the score). In CQR, if FY |X (Y | X = x) is continuous for
all x ∈ X , then

|q1−α (S | ϑn)| ≤ Bmax
{
∥θn − θ∗∥2 ,

∥∥θ̄n − θ̄∗∥∥2} . (34)

Suppose Assumptions 3.1–3.3 hold,

Eϑn
[|q1−α (S | ϑn)|] ≤

2B λmax

√
2fmaxd

λ2minfmin

√
1

n
. (35)

The proof of Proposition A.2 relies on the following lemma.
Lemma A.3. Suppose FY |X (Y | X) is continuous for each x ∈ X . Then,

|q1−α (S | X,ϑn)| ≤ ∆(X,ϑn) , (36)

where q1−α (S | X,ϑn) denotes the (1− α)-quantile of S given X,ϑn.

Proof. By the definitions (24, 25, 26),

S (X,Y ;ϑn) := max
{
tα/2 (X; θn)− Y, Y − t1−α/2

(
X; θ̄n

)}
≤ max

{
Eα/2 (X, θn) + qα/2 (Y | X)− Y, E1−α/2

(
X, θ̄n

)
+ Y − q1−α/2 (Y | X)

}
≤ ∆(X,ϑn) + S∗ (X,Y ) , (37)
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where the last inequality is because max{u1 + v1, u2 + v2} ≤ max{u1, u2}+max{v1, v2}.
Similarly,

S (X,Y ;ϑn) := max
{
tα/2 (X; θn)− Y, Y − t1−α/2

(
X; θ̄n

)}
≥ max

{
qα/2 (Y | X)− Y − Eα/2 (X, θn) , Y − q1−α/2 (Y | X)− E1−α/2

(
X, θ̄n

)}
= S∗ (X,Y )−∆(X,ϑn) , (38)

where the last inequality is because max{u1 − v1, u2 − v2} ≥ max{u1, u2} −max{v1, v2}.
Note that S∗ (X,Y ) ≤ 0 is equivalent to qα/2 (Y | X) ≤ Y ≤ q1−α/2 (Y | X). Since FY |X is
continuous,

P
[
qα/2 (Y | X) ≤ Y ≤ q1−α/2 (Y | X) | X

]
= 1− α.

Hence, P[S∗ (X,Y ) ≤ 0|X] = 1 − α. Let q1−α (S∗ | X) be the (1− α)-quantile of S∗ given
X . Since X is given, and FY |X is continuous, FS∗|X is continuous. Then, q1−α (S∗ | X) = 0.
Conditional on X,ϑn, ∆(X,ϑn) is deterministic. By (37), we have

P [S (X,Y ;ϑn) ≤ u | X,ϑn] ≥ P [∆ (X,ϑn) + S∗ (X,Y ) ≤ u | X,ϑn]
=⇒ P [S (X,Y ;ϑn) ≤ ∆(X,ϑn) | X,ϑn] ≥ P [S∗ (X,Y ) ≤ 0 | X] = 1− α.

Then, q1−α (S | X,ϑn) ≤ ∆(X,ϑn). By (38), we have

P [S (X,Y ;ϑn) ≤ u | X,ϑn] ≤ P [S∗ (X,Y )−∆(X,ϑn) ≤ u | X,ϑn]
=⇒ P [S (X,Y ;ϑn) ≤ −∆(X,ϑn) | X,ϑn] ≤ P [S∗ (X,Y ) ≤ 0 | X] = 1− α.

Then, q1−α (S | X,ϑn) ≥ −∆(X,ϑn).

For γ ∈ {α2 , 1− α
2 },

Eγ (X, θn (γ)) =
∣∣∣(θn (γ)− θ∗ (γ))

⊤
X
∣∣∣ ≤ ∥(θn (γ)− θ∗ (γ))∥2 ∥X∥2 ≤ B ∥(θn (γ)− θ∗ (γ))∥2 ,

where the last inequality is from the fact that the norm of x ∈ X is bounded by B. Then,

∆(X,ϑn) ≤ Bmax
{
∥(θn − θ∗)∥2 ,

∥∥(θ̄n − θ̄∗)∥∥2} = B ·M (ϑn) .

By Lemma A.3, |q1−α (S | X,ϑn)| ≤ ∆(X,ϑn) ≤ B ·M (ϑn). Then,

P [S (X,Y ;ϑn) ≤ B ·M (ϑn) | X,ϑn] ≥ 1− α;
P [S (X,Y ;ϑn) ≥ −B ·M (ϑn) | X,ϑn] ≤ 1− α.

Then, removing the conditioning on X ,

P [S (X,Y ;ϑn) ≤ B ·M (ϑn) | ϑn]
= EX,Y |ϑn

[1 {S (X,Y ;ϑn) ≤ B ·M (ϑn)} | ϑn]
= EX|ϑn

[
EY |X,ϑn

[1 {S (X,Y ;ϑn) ≤ B ·M (ϑn)} | X,ϑn] | ϑn
]

= EX|ϑn
[P [S (X,Y ;ϑn) ≤ B ·M (ϑn) | X,ϑn] | ϑn]

≥ EX|ϑn
[1− α | ϑn] = 1− α.

Hence, q1−α (S | ϑn) ≤ B ·M (ϑn). And by similar arguments as below, q1−α (S | ϑn) ≥ −B ·
M (ϑn).

P [S (X,Y ;ϑn) ≥ −B ·M (ϑn) | ϑn]
= EX,Y |ϑn

[1 {S (X,Y ;ϑn) ≥ −B ·M (ϑn)} | ϑn]
= EX|ϑn

[
EY |X,ϑn

[1 {S (X,Y ;ϑn) ≥ −B ·M (ϑn)} | X,ϑn] | ϑn
]

= EX|ϑn
[P [S (X,Y ;ϑn) ≥ −B ·M (ϑn) | X,ϑn] | ϑn]

≤ EX|ϑn
[1− α | ϑn] = 1− α.
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Therefore, |q1−α (S | ϑn)| ≤ B ·M (ϑn). Then,
Eϑn [|q1−α (S | ϑn)|] ≤ B Eϑn [M (ϑn)]

≤ B Eϑn

[√
∥(θn − θ∗)∥

2
2 +

∥∥(θ̄n − θ̄∗)∥∥22]
≤ B

√
Eϑn

[
∥(θn − θ∗)∥

2
2 +

∥∥(θ̄n − θ̄∗)∥∥22]
≤ B

√
Eϑn

[
∥(θn − θ∗)∥

2
2

]
+ Eϑn

[∥∥(θ̄n − θ̄∗)∥∥22]
≤ B

√
8λ2maxfmaxd

λ4minf
2
minn

=
2B λmax

√
2fmaxd

λ2minfmin

√
1

n
,

where the second inequality is from max{a, b} ≤
√
a2 + b2, the third inequality is by Jensen’s

inequality, and the last inequality is from Theorem 3.1.

This completes the proof of Proposition A.2.

A.3 PROOF OF PROPOSITION A.3

Proposition A.3 (Population finite-sample score-quantile gap). In CQR, Suppose Assumptions 3.1–
3.3 hold, if m > 8H/min{α, 1− α} for H in (12), then

Eϑn

[
|q(1−α)m

(S | ϑn)− q1−α (S | ϑn) |
]
≤ 1

fminm
+

1056Rf3maxλ
2
maxB

2d

min{α2, (1− α)2}λ4minf
2
minn

.

To prove Proposition A.3, we first need the following critical proposition:
Proposition A.4. Suppose α ∈ (0, 1) is a constant. Define

β := min

{
α

2fmax
,
1− α
2fmax

}
, A :=

4λ2maxfmaxd

λ4minf
2
min

, ϵn := B

√
2A

nδ
.

Under the same setting of Theorem 3.1, if ϵn < β/4 (equivalently n > 32AB2

β2δ ), then for δ ∈ (0, 1),
with probability at least 1− δ over ϑn, the following (denoted by event V ) hold simultaneously:

1. For s with |s| < β − ϵn, fS|ϑn
(s | ϑn) ≥ 2fmin.

2. |q1−α (S | ϑn)| ≤ ϵn < β/4.

Proof. By the definition of S in (8),

P [S ≤ s|X,ϑn] = P

[
tα/2 (x; θn)− s ≤ Y ≤ t1−α/2

(
x; θ̄n

)
+ s]

and s ≥ tα/2(x;θn)−t1−α/2(x;θ̄n)
2

∣∣∣∣∣X,ϑn
]
.

Hence,

FS|X,ϑn (s) =


0, if s <

tα/2(x;θn)−t1−α/2(x;θ̄n)
2

,

FY |X,ϑn

(
t1−α/2

(
x; θ̄n

)
+ s

)
−FY |X,ϑn

(
tα/2 (x; θn)− s

)
, otherwise.

(39)

We now show that with high probability, it holds for s in the neighbourhood of 0 that

s ≥ tα/2 (x; θn)− t1−α/2

(
x; θ̄n

)
2

, t1−α/2

(
x; θ̄n

)
+ s ∈ Y, tα/2 (x; θn)− s ∈ Y.

Let ymax := sup{y ∈ Y} and ymin := inf{y ∈ Y}. Then, under Assumption 3.3, ymax > ymin.
qα/2 (Y | X = x) , q1−α/2 (Y | X = x) ∈ [ymin, ymax],

qα/2 (Y | X = x)− ymin ≥
α

2fmax
≥ β, ymax − q1−α/2 (Y | X = x) ≥ α

2fmax
≥ β,

q1−α/2 (Y | X = x)− qα/2 (Y | X = x)

2
≥ 1− α

2fmax
≥ β.
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By Theorem 3.1, Eθn

[
∥θn (γ)− θ∗ (γ) ∥22

]
≤ A

n for γ ∈ {α2 , 1− α
2 }. By Markov’s inequality,

P

[
∥θn (γ)− θ∗ (γ) ∥2 ≤

√
2A

nδ

]
≥ 1− δ

2
.

Applying the union bound, we have

P

[
max

γ∈{α
2 ,1−α

2 }
∥θn (γ)− θ∗ (γ) ∥2 ≤

√
2A

nδ

]
≥ 1− δ.

Since for each x ∈ X ,

Eγ (x, θn (γ)) = |tγ (x; θn (γ))− tγ (x; θ∗ (γ))| =
∣∣∣(θn (γ)− θ∗ (γ))⊤ x∣∣∣

≤ ∥(θn (γ)− θ∗ (γ))∥2 ∥x∥2 ≤ B ∥(θn (γ)− θ∗ (γ))∥2 .
we have that with probability at least 1− δ,

sup
x

∆(x, ϑn) ≤ B max
γ∈{α

2 ,1−α
2 }
∥θn (γ)− θ∗ (γ) ∥2 ≤ B

√
2A

nδ
=: ϵn.

and by Proposition A.2, it also holds that

|q1−α (S | ϑn)| ≤ ϵn. (40)

Then, w.p. ≥ 1− δ, for any x ∈ X ,

tα/2 (x; θn) ≥ qα/2 (Y | X = x)−∆(x, ϑn) ≥ ymin + β − ϵn;
t1−α/2

(
x; θ̄n

)
≤ q1−α/2 (Y | X = x) + ∆ (x, ϑn) ≤ ymax − β + ϵn;

t1−α/2

(
x; θ̄n

)
− tα/2 (x; θn)
2

≥ q1−α/2 (Y | X = x)− qα/2 (Y | X = x)

2
−∆(x, ϑn) ≥ β − ϵn.

The last inequality above shows that with high probability, quantile crossing will not occur given n
is large enough.

In this case, for any s with |s| < rn := β − ϵn, we have ∀x ∈ X ,

tα/2 (x; θn)− s > ymin + β − ϵn − rn ≥ ymin;

tα/2 (x; θn)− s < qα/2 (Y | X = x) + ϵn + rn ≤ q1−α/2 (Y | X = x) + β ≤ ymax;

t1−α/2

(
x; θ̄n

)
+ s < ymax − β + ϵn + rn ≤ ymax;

t1−α/2

(
x; θ̄n

)
+ s > q1−α/2 (Y | X = x)− ϵn − rn ≥ qα/2 (Y | X = x)− β ≥ ymin;

s ≥ −|s| ≥ −rn = ϵn − β ≥
tα/2 (x; θn)− t1−α/2

(
x; θ̄n

)
2

.

Since Y is an interval,

tα/2 (x; θn)− s ∈ Y, t1−α/2

(
x; θ̄n

)
+ s ∈ Y.

Therefore, by (39), conditioning on ϑn, for s with |s| < rn = β − ϵn,

fS|ϑn
(s | ϑn) = EX|ϑn

[ fY |X,ϑn

(
tα/2 (x; θn)− s | X,ϑn

)
+fY |X,ϑn

(
t1−α/2

(
x; θ̄n

)
+ s | X,ϑn

)]
≥ 2fmin.

Suppose n > 32AB2

β2δ , which is equivalent to ϵn < β/4. Then, rn = β − ϵn ≥ 3β/4 ≥ ϵn. By (40),
|q1−α (S | ϑn)| ≤ β − ϵn.

The proof of Proposition A.3 also relies on the following useful lemma, which is a classical result
(Bobkov & Ledoux, 2019). We include the proof here for completeness.
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Lemma A.4. Let F be a c.d.f. with p.d.f. f . Suppose there exists an interval I ∈ R and a constant
c0 > 0 such that f(s) ≥ c0 for all s ∈ I. For p ∈ (0, 1), qp := inf{u : F (u) ≥ p} ∈ I, define
r0 := min{qp − inf I, sup I − qp} ≥ 0. Then, for any p′ such that |p′ − p| < c0r0, it holds that
qp′ ∈ I, and |qp′ − qp| ≤ |p′−p|

c0
.

Proof. By assumption,

F (qp − r0) ≤ F (qp)− c0r0 = p− c0r0;
F (qp + r0) ≥ F (qp) + c0r0 = p+ c0r0.

Since |p′ − p| < c0r0, either p ≤ p′ < p+ c0r0 or p′ ≤ p < p′ + c0r0. If p ≤ p′ < p+ c0r0, then
p ≤ p′ < F (qp + r0). Since F is non-decreasing, qp ≤ qp′ < qp+r0. Similarly, if p−c0r0 < p′ ≤
p, then F (qp − r0) < p′ ≤ p, and qp− r0 < qp′ ≤ qp. Hence, qp′ ∈ I, and |qp′ − qp| ≤ |p′−p|

c0
.

With Proposition A.4, we apply Lemma A.4 and get Lemma A.5.
Lemma A.5. Under the same setting of Proposition A.4, if the event in Proposition A.4 occurs, and
if m > 4

fminβ
, then it holds that |q(1−α)m

(S | ϑn) | ≤ β/2, fS|ϑn

(
q(1−α)m

(S | ϑn)
)
≥ 2fmin,

and |q(1−α)m
(S | ϑn)− q1−α (S | ϑn) | ≤ 1

fminm
.

Proof. For simplicity, in the proof we denote qp (S | ϑn) by qp.

(1− α) (m+ 1) ≤ ⌈(1− α) (m+ 1)⌉ < (1− α) (m+ 1) + 1

⇒ (1− α) (m+ 1)− (1− α)m ≤ ⌈(1− α) (m+ 1)⌉ − (1− α)m < (1− α) (m+ 1) + 1− (1− α)m

⇒ 0 <
1− α

m
≤ | (1− α)m − (1− α) | < 2− α

m
<

2

m
.

Since ϵn < β/4, from Proposition A.4, with probability at least 1 − δ, for s with |s| < 3β/4,
fS|ϑn

(s | ϑn) ≥ 2fmin, and |q1−α| < β/4. In this case, r0 := min{q1−α+3β/4, 3β/4− q1−α} >
β/2. If m > 4

fminβ
, then | (1− α)m − (1− α) | < 2

m < 2fmin
β
4 < 2fmin

β
2 < 2fmin · r0. Then

by Lemma A.4, |q(1−α)m
| ≤ 3β/4, fS|ϑn

(
q(1−α)m

(S | ϑn)
)
≥ 2fmin, and |q(1−α)m

− q1−α| <
|(1−α)m−(1−α)|

2fmin
< 1

fminm
≤ β/4. Hence, |q(1−α)m

| ≤ |q1−α|+ |q(1−α)m
− q1−α| < β/4 + β/4 =

β/2.

Notice that |q(1−α)m
(S | ϑn)−q1−α (S | ϑn) | is bounded by 2R. Let V denote the event in Propo-

sition A.4, and V c its complement. Then, by Lemma A.5,

Eϑn

[
|q(1−α)m

(S | ϑn)− q1−α (S | ϑn) |
]

= P[V ] · Eϑn

[
|q(1−α)m

(S | ϑn)− q1−α (S | ϑn) | | V
]

+ P [V c] · Eϑn

[
|q(1−α)m

(S | ϑn)− q1−α (S | ϑn) | | V c
]

≤ 1

fminm
+ 2Rδ.

Picking δ = 33AB2

β2n completes the proof of Proposition A.3.

A.4 PROOF OF PROPOSITION A.5

Proposition A.5 (Empirical score-quantile concentration). In CQR, Suppose Assumptions 3.1–3.3
hold, if m > 8H/min{α, 1− α} for H in (12), then

Eϑn,Dcal

[
|q̂(1−α)m

(Sm | ϑn)− q(1−α)m
(S | ϑn) |

]
≤

√
π

2fmin

√
2m

+ 4R exp

(
−min{α2, (1− α)2}f2min

8f2max

m

)
+

1056Rf3maxλ
2
maxB

2d

min{α2, (1− α)2}λ4minf
2
minn

.

To prove Proposition A.5, we first prove the following lemma:
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Lemma A.6. Under the same setting of Lemma A.5, if the high probability event V in Proposition
A.4 occurs, for any u ∈ [0, β/4], if

sup
s

∣∣∣FS|ϑn
(s)− F̂ (m)

S|ϑn
(s)

∣∣∣ ≤ 2fminu,

then |q̂(1−α)m
(Sm | ϑn)− q(1−α)m

(S | ϑn) | ≤ u.

Proof. For simplicity, in the proof we denote qp (S | ϑn) by qp. By Lemma A.5, for u ∈ [0, β/4],
|q(1−α)m

− u| ≤ 3β/4 and |q(1−α)m
+ u| ≤ 3β/4. Hence, in this case,

FS|ϑn

(
q(1−α)m

− u
)
≤ FS|ϑn

(
q(1−α)m

)
− 2fminu = (1− α)m − 2fminu;

FS|ϑn

(
q(1−α)m

+ u
)
≥ FS|ϑn

(
q(1−α)m

)
+ 2fminu = (1− α)m + 2fminu.

By assumption, ∣∣∣FS|ϑn

(
q(1−α)m

− u
)
− F̂ (m)

S|ϑn

(
q(1−α)m

− u
)∣∣∣ ≤ 2fminu;∣∣∣FS|ϑn

(
q(1−α)m

+ u
)
− F̂ (m)

S|ϑn

(
q(1−α)m

+ u
)∣∣∣ ≤ 2fminu.

Then

F̂
(m)
S|ϑn

(
q(1−α)m

− u
)
≤ (1− α)m , F̂

(m)
S|ϑn

(
q(1−α)m

+ u
)
≥ (1− α)m .

Since F̂ (m)
S|ϑn

is non-decreasing, we have

q̂(1−α)m
(Sm | ϑn) := inf{u′ ∈ Sm : F̂

(m)
S|ϑn

(u′) ≥ (1− α)m} ∈
[
q(1−α)m

− u, q(1−α)m
+ u

]
,

where Sm is the set of scores of the calibration data.

Then, |q̂(1−α)m
(Sm | ϑn)− q(1−α)m

(S | ϑn) | ≤ u.

Lemma A.7 (Dvoretzky–Kiefer–Wolfowitz Inequality (Dvoretzky et al., 1956; Massart, 1990)).
Given a natural number m, let X1, . . . , Xm be real-valued i.i.d. random variables with c.d.f. F (·).
Let F (m) denote the associated empirical distribution function defined by

F (m) (x) =
1

m

m∑
j=1

1{Xj ≤ x}, x ∈ R.

Then,

P
[
sup
x∈R

∣∣∣F (m) (x)− F (x)
∣∣∣ > ε

]
≤ 2e−2mε2 , ∀ε ≥ 0.

By the Dvoretzky–Kiefer–Wolfowitz Inequality (Lemma A.7),

P
[
sup
s

∣∣∣FS|ϑn
(s)− F̂ (m)

S|ϑn
(s)

∣∣∣ ≥ 2fminu

]
≤ 2 exp

(
−8mf2minu

2
)
.

Thus, by Lemma A.6, given that the event V occurs,

P
[
|q̂(1−α)m

(Sm | ϑn)− q(1−α)m
(S | ϑn) | ≥ u

∣∣∣ V ]
≤ 2 exp

(
−8mf2minu

2
)
, u ∈ [0, β/4].

Specifically,

P
[
|q̂(1−α)m

(Sm | ϑn)− q(1−α)m
(S | ϑn) | ≥ β/4

∣∣∣ V ]
≤ 2 exp

(
−8mf2min(β/4)

2
)
.

Then, for any u > β/4,

P
[
|q̂(1−α)m

(Sm | ϑn)− q(1−α)m
(S | ϑn) | ≥ u

∣∣∣ V ]
≤ 2 exp

(
−8mf2min(β/4)

2
)
.

23



Published as a conference paper at ICLR 2026

Since |S| ≤ R, |q̂(1−α)m
(Sm | ϑn)− q(1−α)m

(S | ϑn) | ≤ 2R. By the layer cake representation of
the expectation of a non-negative random variable Z, which is E[Z] =

∫∞
0

P[Z ≥ u] du,

Eϑn,Dcal

[
|q̂(1−α)m

(Sm | ϑn)− q(1−α)m
(S | ϑn) |

∣∣∣ V ]
=

∫ 2R

0

P
[
|q̂(1−α)m

(Sm | ϑn)− q(1−α)m
(S | ϑn) | ≥ u

∣∣∣ V ]
du

≤
∫ β/4

0

2 exp
(
−8mf2minu

2
)
du+

∫ 2R

β/4

2 exp
(
−8mf2min(β/4)

2
)
du

≤ 2

∫ ∞

0

exp
(
−8mf2minu

2
)
du+ 4R exp

(
−8f2min(β/4)

2m
)

=

√
π

2fmin

√
2m

+ 4R exp

(
−1

2
f2minβ

2m

)
.

Therefore, we have

Eϑn,Dcal

[
|q̂(1−α)m

(Sm | ϑn)− q(1−α)m
(S | ϑn) |

]
≤ P [V ] · Eϑn

[
|q̂(1−α)m

(Sm | ϑn)− q(1−α)m
(S | ϑn) |

∣∣∣ V ]
+ P [V c] · 2R

≤
√
π

2fmin

√
2m

+ 4R exp

(
−1

2
f2minβ

2m

)
+ 2Rδ.

Picking δ = 33AB2

β2n completes the proof of Proposition A.5.

A.5 PROOF OF THEOREM 3.2

Theorem 3.2 (Efficiency of CQR-SGD). For CQR-SGD, suppose Assumptions 3.1–3.3 hold. If
m > 8H/min{α, 1− α}, then for test sample (X,Y ) and 0 < α ≤ 1/2,

EX,ϑn,Dcal

[∣∣|C(X)| − |C∗(X)|
∣∣]≤ O(n−1/2 + (α2n)−1 +m−1/2 + exp(−α2m)

)
, (17)

where H is the constant defined in (12).

Proof. By the definition of the prediction set (9),

|C(x)| = max
{
0, t1−α/2

(
x; θ̄n

)
− tα/2 (x; θn) + 2q̂(1−α)m

}
≤

∣∣t1−α/2

(
x; θ̄n

)
− tα/2 (x; θn) + 2q̂(1−α)m

∣∣ .
We further bound the right hand side by∣∣t1−α/2

(
x; θ̄n

)
− tα/2 (x; θn) + 2q̂(1−α)m

∣∣
=

∣∣t1−α/2

(
x; θ̄n

)
− t1−α/2

(
x; θ̄∗

)
+ t1−α/2

(
x; θ̄∗

)
− tα/2 (x; θn) + tα/2 (x; θ

∗)− tα/2 (x; θ∗)
+2q̂(1−α)m

∣∣
≤

∣∣t1−α/2

(
x; θ̄n

)
− t1−α/2

(
x; θ̄∗

)∣∣+ ∣∣tα/2 (x; θn)− tα/2 (x; θ∗)∣∣+ 2
∣∣q̂(1−α)m

∣∣
+
∣∣t1−α/2

(
x; θ̄∗

)
− tα/2 (x; θ∗)

∣∣
=

∣∣t1−α/2

(
x; θ̄n

)
− t1−α/2

(
x; θ̄∗

)∣∣+ ∣∣tα/2 (x; θn)− tα/2 (x; θ∗)∣∣+ 2
∣∣q̂(1−α)m

∣∣
+
(
t1−α/2

(
x; θ̄∗

)
− tα/2 (x; θ∗)

)
,

where the last equality follows because

t1−α/2

(
x; θ̄∗

)
= q1−α/2 (Y | X) ≥ qα/2 (Y | X) = tα/2 (x; θ

∗) .

Hence,

|C(X)| −
(
t1−α/2

(
x; θ̄∗

)
− tα/2 (x; θ∗)

)
≤

∣∣t1−α/2

(
x; θ̄n

)
− t1−α/2

(
x; θ̄∗

)∣∣+ ∣∣tα/2 (x; θn)− tα/2 (x; θ∗)∣∣+ 2
∣∣q̂(1−α)m

∣∣ .
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We also have

−
(
|C(X)| −

(
t1−α/2

(
x; θ̄∗

)
− tα/2 (x; θ∗)

))
=

(
t1−α/2

(
x; θ̄∗

)
− tα/2 (x; θ∗)

)
−max

{
0, t1−α/2

(
x; θ̄n

)
− tα/2 (x; θn) + 2q̂(1−α)m

}
≤ t1−α/2

(
x; θ̄∗

)
− tα/2 (x; θ∗)− t1−α/2

(
x; θ̄n

)
+ tα/2 (x; θn)− 2q̂(1−α)m

≤
∣∣t1−α/2

(
x; θ̄n

)
− t1−α/2

(
x; θ̄∗

)∣∣+ ∣∣tα/2 (x; θn)− tα/2 (x; θ∗)∣∣+ 2
∣∣q̂(1−α)m

∣∣ .
Therefore,∣∣|C(X)| −

(
t1−α/2

(
x; θ̄∗

)
− tα/2 (x; θ∗)

)∣∣
≤

∣∣t1−α/2

(
x; θ̄n

)
− t1−α/2

(
x; θ̄∗

)∣∣+ ∣∣tα/2 (x; θn)− tα/2 (x; θ∗)∣∣+ 2
∣∣q̂(1−α)m

∣∣ .
Hence, for test sample (X,Y ),

EX,ϑn,Dcal

[∣∣|C(X)| − t1−α/2

(
X; θ̄∗

)
− tα/2 (X; θ∗)

∣∣]
≤ EX,ϑn

[∣∣t1−α/2

(
X; θ̄n

)
− t1−α/2

(
X; θ̄∗

)∣∣]+ EX,ϑn

[∣∣tα/2 (X; θn)− tα/2 (X; θ∗)
∣∣]

+ 2Eϑn,Dcal

[∣∣q̂(1−α)m (Sm | ϑn)
∣∣]

≤ EX,ϑn

[∣∣t1−α/2

(
X; θ̄n

)
− t1−α/2

(
X; θ̄∗

)∣∣]+ EX,ϑn

[∣∣tα/2 (X; θn)− tα/2 (X; θ∗)
∣∣]

+ 2Eϑn [|q1−α (S | ϑn)|] + 2Eϑn,Dcal

[∣∣q1−α (S | ϑn)− q̂(1−α)m (Sm | ϑn)
∣∣]

≤ EX,ϑn

[∣∣t1−α/2

(
X; θ̄n

)
− t1−α/2

(
X; θ̄∗

)∣∣]+ EX,ϑn

[∣∣tα/2 (X; θn)− tα/2 (X; θ∗)
∣∣]

+ 2Eϑn [|q1−α (S | ϑn)|] + 2Eϑn

[∣∣q1−α (S | ϑn)− q(1−α)m (S | ϑn)
∣∣]

+ 2Eϑn,Dcal

[∣∣q(1−α)m (S | ϑn)− q̂(1−α)m (Sm | ϑn)
∣∣] .

By Theorem 3.1,

EX,θn [|tγ (X; θn (γ))− tγ (X; θ∗ (γ))|] ≤
√
EX,θn

[
(tγ (X; θn (γ))− tγ (X; θ∗ (γ)))2

]
≤ 2λmax

√
fmaxd

λminfmin

√
λminn

.

By Proposition A.2,A.3,A.5,

EX,ϑn,Dcal

[∣∣|C(X)| − t1−α/2

(
X; θ̄∗

)
− tα/2 (X; θ∗)

∣∣]
≤

(
4λmax

√
fmaxd

λminfmin

√
λmin

+
2B λmax

√
2fmaxd

λ2minfmin

)√
1

n
+

1

fminm

+

√
π

2fmin

√
2m

+ 4R exp

(
−1

2
f2minβ

2m

)
+

66AB2R

β2n

=

(
4λmax

√
fmaxd

λminfmin

√
λmin

+
2B λmax

√
2fmaxd

λ2minfmin

)√
1

n
+

√
π

2fmin

√
2

√
1

m
+

1

fminm

+ 4R exp

(
−min{α2, (1− α)2}f2min

8f2max

m

)
+

1056λ2maxf
3
maxB

2R

min{α2, (1− α)2}λ4minf
2
minn

. (41)

This completes the proof of Theorem 3.2.

B PROOFS OF RESULTS IN CMR

To prove Theorem 4.1, the goal is to upper bound

EX,θ̌n,Dcal

[∣∣2 q̂(1−α)m

(
S | θ̌n

)
−

(
q1−α/2 (Y | X)− qα/2 (Y | X)

)∣∣]
= 2 EX,θ̌n,Dcal

[∣∣q̂(1−α)m

(
S | θ̌n

)
−

(
q1/2 (Y | X)− qα/2 (Y | X)

)∣∣] .
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Further decompose it, and we have∣∣q̂(1−α)m

(
S | θ̌n

)
−
(
q1/2 (Y | X)− qα/2 (Y | X)

)∣∣
=

∣∣q̂(1−α)m

(
S | θ̌n

)
− q(1−α)m

(
S | θ̌n

)
+ q(1−α)m

(
S | θ̌n

)
− q1−α

(
S | θ̌n

)
+q1−α

(
S | θ̌n

)
−
(
q1/2 (Y | X)− qα/2 (Y | X)

)∣∣
≤

∣∣q̂(1−α)m

(
S | θ̌n

)
− q(1−α)m

(
S | θ̌n

)∣∣+ ∣∣q(1−α)m

(
S | θ̌n

)
− q1−α

(
S | θ̌n

)∣∣
+
∣∣q1−α

(
S | θ̌n

)
−
(
q1/2 (Y | X)− qα/2 (Y | X)

)∣∣ .
Thus, the expectation is decomposed into three parts as follows, and we will upper bound each of
them in Proposition B.4, B.3, and B.1:

EX,θ̌n,Dcal

[∣∣2 q̂(1−α)m

(
S | θ̌n

)
−
(
q1−α/2 (Y | X)− qα/2 (Y | X)

)∣∣]
= 2 Eθ̌n,Dcal

[∣∣q̂(1−α)m

(
S | θ̌n

)
− q(1−α)m

(
S | θ̌n

)∣∣]
+ 2 Eθ̌n

[∣∣q(1−α)m

(
S | θ̌n

)
− q1−α

(
S | θ̌n

)∣∣]
+ 2 EX,θ̌n

[∣∣q1−α

(
S | θ̌n

)
−
(
q1/2 (Y | X)− qα/2 (Y | X)

)∣∣]
≤

√
π

fmin

√
2m

+ 8R exp

(
−f

2
min min{α2, (1− α)2}

8f2max

m

)
+

2056Rλ2maxf
3
maxB

2d

λ4minf
2
min min{α2, (1− α)2}n

+
2

fminm
+

4B λmax

√
fmaxd

λ2minfmin

√
1

n
. (42)

To proceed, we define some random variables for simplicity.

∆
(
X, θ̌n

)
:=

∣∣t1/2 (X; θ̌n
)
− t1/2

(
X; θ̌∗

)∣∣ ≥ 0; (43)

S∗ (X,Y ) :=
∣∣q1/2(Y | X)− Y

∣∣ ; (44)

M
(
θ̌n

)
:=

∥∥(θ̌n − θ̌∗)∥∥2 . (45)

B.1 PROOF OF PROPOSITION B.1

Proposition B.1. In CMR, suppose Assumption 4.2 holds, we have∣∣q1−α

(
S | X, θ̌n

)
− ζ

∣∣ ≤ B ·M (
θ̌n

)
. (46)

If Assumptions 4.1,3.2,3.3 further hold, then

EX,θ̌n

[∣∣q1−α

(
S | θ̌n

)
−
(
q1/2 (Y | X)− qα/2 (Y | X)

)∣∣] ≤ 2B λmax

√
fmaxd

λ2minfmin

√
1

n
. (47)

Proof. Notice that

S
(
X,Y ; θ̌n

)
:=

∣∣t1/2 (X; θ̌n
)
− Y

∣∣
≤

∣∣q1/2(Y | X)− Y
∣∣+ ∣∣t1/2 (X; θ̌n

)
− q1/2(Y | X)

∣∣
= S∗ (X,Y ) + ∆

(
X, θ̌n

)
.

Similarly, S
(
X,Y ; θ̌n

)
≥ S∗ (X,Y )−∆

(
X, θ̌n

)
. Hence,∣∣S (

X,Y ; θ̌n
)
− S∗ (X,Y )

∣∣ ≤ ∆
(
X, θ̌n

)
≤ ∥X∥2

∥∥(θ̌n − θ̌∗)∥∥2 ≤ B · ∥∥(θ̌n − θ̌∗)∥∥2 .
Now we show that q1−α (S∗ | X) = q1/2(Y | X)− qα/2(Y | X). Note that given X ,

S∗ (X,Y ) ≤ q1/2(Y | X)− qα/2(Y | X)

⇐⇒ −
(
q1/2(Y | X)− qα/2(Y | X)

)
≤ Y − q1/2(Y | X) ≤ q1/2(Y | X)− qα/2(Y | X)

⇐⇒ qα/2(Y | X) ≤ Y ≤ q1−α/2(Y | X),

where the last step is from Assumption 4.2. Since FY |X is continuous,

P
[
qα/2 (Y | X) ≤ Y ≤ q1−α/2 (Y | X) | X

]
= 1− α.
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Hence,
P[S∗ (X,Y ) ≤ q1/2(Y | X)− qα/2(Y | X)|X] = 1− α.

Let q1−α (S∗ | X) be the (1− α)-quantile of S∗ given X . Since X is given, and FY |X is continu-
ous, FS∗|X is continuous. Then, q1−α (S∗ | X) = q1/2(Y | X)− qα/2(Y | X).

Conditioned on X, θ̌n, ∆
(
X, θ̌n

)
is deterministic. Thus,

P
[
S
(
X,Y ; θ̌n

)
≤ u | X, θ̌n

]
≥ P

[
S∗ (X,Y ) + ∆

(
X, θ̌n

)
≤ u | X, θ̌n

]
⇒ P

[
S
(
X,Y ; θ̌n

)
≤ ∆

(
X, θ̌n

)
+ q1/2(Y | X)− qα/2(Y | X) | X, θ̌n

]
≥ P

[
S∗ (X,Y ) ≤ q1/2(Y | X)− qα/2(Y | X) | X

]
= 1− α.

Then, q1−α

(
S | X, θ̌n

)
≤ ∆

(
X, θ̌n

)
+ q1/2(Y | X)− qα/2(Y | X). Similarly, we have

P
[
S
(
X,Y ; θ̌n

)
≤ u | X, θ̌n

]
≤ P

[
S∗ (X,Y )−∆

(
X, θ̌n

)
≤ u | X, θ̌n

]
⇒ P

[
S
(
X,Y ; θ̌n

)
≤ −∆

(
X, θ̌n

)
+ q1/2(Y | X)− qα/2(Y | X) | X, θ̌n

]
≤ P

[
S∗ (X,Y ) ≤ q1/2(Y | X)− qα/2(Y | X) | X

]
= 1− α.

Then, q1−α

(
S | X, θ̌n

)
≥ −∆

(
X, θ̌n

)
+ q1/2(Y | X)− qα/2(Y | X). Thus, by Assumption 4.2,∣∣q1−α

(
S | X, θ̌n

)
−

(
q1/2(Y | X)− qα/2(Y | X)

)∣∣ ≤ ∆
(
X, θ̌n

)
=⇒

∣∣q1−α

(
S | X, θ̌n

)
− ζ

∣∣ ≤ B ·M (
θ̌n

)
.

Then we can remove the conditioning on X ,

P
[
S
(
X,Y ; θ̌n

)
≤ ζ +B ·M

(
θ̌n

)
| θ̌n

]
= EX,Y |θ̌n

[
1
{
S
(
X,Y ; θ̌n

)
≤ ζ +B ·M

(
θ̌n

)}
| θ̌n

]
= EX|θ̌n

[
EY |X,θ̌n

[
1
{
S
(
X,Y ; θ̌n

)
≤ ζ +B ·M

(
θ̌n

)}
| X, θ̌n

]
| θ̌n

]
= EX|θ̌n

[
P
[
S
(
X,Y ; θ̌n

)
≤ ζ +B ·M

(
θ̌n

)
| X, θ̌n

]
| θ̌n

]
≥ EX|θ̌n

[
1− α | θ̌n

]
= 1− α.

Hence, q1−α

(
S | θ̌n

)
≤ ζ + B ·M

(
θ̌n

)
. And by similar arguments as below, q1−α

(
S | θ̌n

)
≥

ζ −B ·M
(
θ̌n

)
. Specifically,

P
[
S
(
X,Y ; θ̌n

)
≥ ζ −B ·M

(
θ̌n

)
| θ̌n

]
= EX,Y |θ̌n

[
1
{
S
(
X,Y ; θ̌n

)
≥ ζ −B ·M

(
θ̌n

)}
| θ̌n

]
= EX|θ̌n

[
EY |X,θ̌n

[
1
{
S
(
X,Y ; θ̌n

)
≥ ζ −B ·M

(
θ̌n

)}
| X, θ̌n

]
| θ̌n

]
= EX|θ̌n

[
P
[
S
(
X,Y ; θ̌n

)
≥ ζ −B ·M

(
θ̌n

)
| X, θ̌n

]
| θ̌n

]
≤ EX|θ̌n

[
1− α | θ̌n

]
= 1− α.

Therefore,
∣∣q1−α

(
S | θ̌n

)
− ζ

∣∣ ≤ B ·M (
θ̌n

)
.

Then, by Theorem 3.1,

Eθ̌n

[∣∣q1−α

(
S | θ̌n

)
− ζ

∣∣] ≤ B · Eθ̌n

[
M

(
θ̌n

)]
≤ B

√
Eθ̌n

[
∥(θn − θ∗)∥

2
2

]
≤ B

√
4λ2maxfmaxd

λ4minf
2
minn

=
2B λmax

√
fmaxd

λ2minfmin

√
1

n
,

i.e.,

EX,θ̌n

[∣∣q1−α

(
S | θ̌n

)
−
(
q1/2 (Y | X)− qα/2 (Y | X)

)∣∣] ≤ 2B λmax

√
fmaxd

λ2minfmin

√
1

n
.
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B.2 PROOF OF PROPOSITION B.2

Proposition B.2. In CMR, suppose Assumption 4.1,3.2,3.3,4.2 hold. Define

β := min

{
α

2fmax
,
1− α
2fmax

}
, ϵn := B

√
A

nδ
. (48)

If ϵn < β/4, then with probability at least 1− δ, for any s such that for s ∈ I := {s ∈ R : |s− ζ| ≤
β − ϵn}, fS|θ̌n (s) ≥ 2fmin, and

∣∣q1−α

(
S | θ̌n

)
− ζ

∣∣ ≤ ϵn ≤ β − ϵn.

Proof. By the definition of S,

P
[
S ≤ s|X, θ̌n

]
= P

[
t1/2

(
X; θ̌n

)
− s ≤ Y ≤ t1/2

(
X; θ̌n

)
+ s | X, θ̌n

]
.

Hence,
FS|X,θ̌n

(s) = FY |X,θ̌n

(
t1/2

(
x; θ̌n

)
+ s

)
− FY |X,θ̌n

(
t1/2

(
x; θ̌n

)
− s

)
. (49)

We now show that with high probability, it holds for s in the neighbourhood of ζ that

t1/2
(
x; θ̌n

)
+ s ∈ Y, t1/2

(
x; θ̌n

)
− s ∈ Y.

By Theorem 3.1, Eθ̌n

[
∥θ̌n − θ̌∗∥22

]
≤ A

n for A :=
4λ2

maxfmaxd

λ4
minf

2
min

. By Markov’s inequality,

P

[
∥θ̌n − θ̌∗∥2 ≤

√
A

nδ

]
≥ 1− δ.

Hence, with probability at least 1− δ,

sup
x

∆
(
x, θ̌n

)
≤ B∥θ̌n − θ̌∗∥2 ≤ B

√
A

nδ
=: ϵn.

In this case, by (46), ∣∣q1−α

(
S | θ̌n

)
− ζ

∣∣ ≤ ϵn. (50)

Then, for every s such that |s− ζ| ≤ β − ϵn, i.e., s ∈ I, it holds that

t1/2
(
x; θ̌n

)
+s ≤ q1/2 (Y |X)+ϵn+ζ+β−ϵn = q1/2 (Y |X)+ζ+β = q1−α/2(Y |X)+β ≤ ymax;

t1/2
(
x; θ̌n

)
+s ≥ q1/2 (Y |X)−ϵn+ζ−β+ϵn = q1/2 (Y |X)+ζ−β = q1−α/2 (Y |X)−β ≥ ymin;

t1/2
(
x; θ̌n

)
−s ≤ q1/2 (Y |X)+ ϵn−ζ+β− ϵn = q1/2 (Y |X)−ζ+β = qα/2(Y |X)+β ≤ ymax;

t1/2
(
x; θ̌n

)
−s ≥ q1/2 (Y |X)− ϵn−ζ−β+ ϵn = q1/2 (Y |X)−ζ−β = qα/2 (Y |X)−β ≥ ymin.

Thus, t1/2
(
x; θ̌n

)
+ s ∈ Y, t1/2

(
x; θ̌n

)
− s ∈ Y .

By (49), if ϵn < β/4, then with probability at least 1−δ, we have for any s such that |s−ζ| ≤ β−ϵn,

fS|X,θ̌n
(s) = fY |X,θ̌n

(
t1/2

(
x; θ̌n

)
+ s

)
+ fY |X,θ̌n

(
t1/2

(
x; θ̌n

)
− s

)
≥ 2fmin. (51)

Since
∣∣q1−α

(
S | θ̌n

)
− ζ

∣∣ ≤ ϵn ≤ β − ϵn < 3
4β, after taking expectation over X , we have

fS|θ̌n
(
q1−α

(
S | θ̌n

)
− ζ

)
≥ 2fmin.

B.3 PROOF OF PROPOSITION B.3

Proposition B.3. In CMR, suppose Assumption 4.1,3.2,3.3,4.2 hold. If

m >
8fmax

fmin min{α, (1− α)} . (52)

then

Eθ̌n

[∣∣q(1−α)m

(
S | θ̌n

)
− q1−α

(
S | θ̌n

)∣∣] ≤ 1

fminm
+

514Rλ2maxf
3
maxB

2d

λ4minf
2
min min{α2, (1− α)2}n, (53)

and if furthermore n > 256λ2
maxf

3
maxB

2d

λ4
minf

2
min min{α2,(1−α)2}δ , then with probability at least 1− δ,

|q(1−α)m

(
S | θ̌n

)
− q1−α

(
S | θ̌n

)
| ≤ 1

fminm
<
β

4
.
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Proof. Notice that

0 <
1− α
m

≤ | (1− α)m − (1− α) | < 2− α
m

<
2

m
.

If let m > 4
βfmin

for β defined in (48), then

| (1− α)m − (1− α) | < 2

m
< 2fmin ·

β

4
.

According to Lemma A.4, since
∣∣q1−α

(
S | θ̌n

)
− ζ

∣∣ ≤ ϵn < β
4 by Proposition B.2, the distance

from Ic is r0 > β
2 . Thus, by Lemma A.4, |q(1−α)m

(
S | θ̌n

)
− q1−α

(
S | θ̌n

)
| ≤ 1

fminm
< β

4 , and

hence, |q(1−α)m

(
S | θ̌n

)
− ζ| < β

2 .

Therefore, if ϵn < β/4 and m > 4
fminβ

, then

Eθ̌n

[
|q(1−α)m

(
S | θ̌n

)
− q1−α

(
S | θ̌n

)
|
]
≤ 1

fminm
+ 2Rδ.

Taking δ = 257λ2
maxf

3
maxB

2d

λ4
minf

2
min min{α2,(1−α)2}n , and we get

Eθ̌n

[
|q(1−α)m

(
S | θ̌n

)
− q1−α

(
S | θ̌n

)
|
]
≤ 1

fminm
+

514Rλ2maxf
3
maxB

2d

λ4minf
2
min min{α2, (1− α)2}n.

B.4 PROOF OF PROPOSITION B.4

Proposition B.4. In CMR, suppose Assumption 4.1,3.2,3.3,4.2 hold. If

m >
8H

min{α, (1− α)} (54)

for H in (12), then

Eθ̌n,Dcal

[
|q̂(1−α)m

(
Sm | θ̌n

)
− q(1−α)m

(
S | θ̌n

)
|
]

≤
√
π

2fmin

√
2m

+ 4R exp

(
−f

2
min min{α2, (1− α)2}

8f2max

m

)
+

514Rf3maxλ
2
maxB

2d

min{α2, (1− α)2}λ4minf
2
minn

.

The proof of Proposition B.4 is essentially the same as the proof of Proposition A.5. We include
here for completeness.

Proof.

Lemma B.1. In CMR, under the same setting of Proposition B.2, if the high probability event V in
Proposition B.2 occurs, for any u ∈ [0, β/4], if

sup
s

∣∣∣FS|θ̌n (s)− F̂ (m)

S|θ̌n (s)
∣∣∣ ≤ 2fminu,

then |q̂(1−α)m

(
Sm | θ̌n

)
− q(1−α)m

(
S | θ̌n

)
| ≤ u.

Proof. For simplicity, in the proof we denote qp
(
S | θ̌n

)
by qp. By Proposition B.3, for u ∈

[0, β/4], |q(1−α)m
− ζ − u| ≤ 3β/4 and |q(1−α)m

− ζ + u| ≤ 3β/4, i.e., q(1−α)m
− u ∈ I

and q(1−α)m
+ u ∈ I for I defined in Proposition B.2. Hence, in this case,

FS|θ̌n
(
q(1−α)m

− u
)
≤ FS|θ̌n

(
q(1−α)m

)
− 2fminu = (1− α)m − 2fminu;

FS|θ̌n
(
q(1−α)m

+ u
)
≥ FS|θ̌n

(
q(1−α)m

)
+ 2fminu = (1− α)m + 2fminu.
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By assumption, ∣∣∣FS|θ̌n
(
q(1−α)m

− u
)
− F̂ (m)

S|θ̌n
(
q(1−α)m

− u
)∣∣∣ ≤ 2fminu;∣∣∣FS|θ̌n

(
q(1−α)m

+ u
)
− F̂ (m)

S|θ̌n
(
q(1−α)m

+ u
)∣∣∣ ≤ 2fminu.

Then

F̂
(m)

S|θ̌n
(
q(1−α)m

− u
)
≤ (1− α)m , F̂

(m)

S|θ̌n
(
q(1−α)m

+ u
)
≥ (1− α)m .

Since F̂ (m)

S|θ̌n is non-decreasing, we have

q̂(1−α)m

(
Sm | θ̌n

)
:= inf{u′ ∈ Sm : F̂

(m)

S|θ̌n (u′) ≥ (1− α)m} ∈
[
q(1−α)m

− u, q(1−α)m
+ u

]
.

where Sm is the set of scores of the calibration data. Then, |q̂(1−α)m

(
Sm | θ̌n

)
−

q(1−α)m

(
S | θ̌n

)
| ≤ u.

By the Dvoretzky–Kiefer–Wolfowitz Inequality (Lemma A.7),

P
[
sup
s

∣∣∣FS|θ̌n (s)− F̂ (m)

S|θ̌n (s)
∣∣∣ ≥ 2fminu

]
≤ 2 exp

(
−8mf2minu

2
)
.

Thus, by Lemma A.6, given that the event V occurs,

P
[
|q̂(1−α)m

(
Sm | θ̌n

)
− q(1−α)m

(
S | θ̌n

)
| ≥ u

∣∣∣ V ]
≤ 2 exp

(
−8mf2minu

2
)
, u ∈ [0, β/4].

Specifically,

P
[
|q̂(1−α)m

(
Sm | θ̌n

)
− q(1−α)m

(
S | θ̌n

)
| ≥ β/4

∣∣∣ V ]
≤ 2 exp

(
−8mf2min(β/4)

2
)
.

Then, for any u > β/4,

P
[
|q̂(1−α)m

(
Sm | θ̌n

)
− q(1−α)m

(
S | θ̌n

)
| ≥ u

∣∣∣ V ]
≤ 2 exp

(
−8mf2min(β/4)

2
)
.

Since |S| ≤ R, |q̂(1−α)m

(
Sm | θ̌n

)
− q(1−α)m

(
S | θ̌n

)
| ≤ 2R. By the layer cake representation of

the expectation of a non-negative random variable Z, which is E[Z] =
∫∞
0

P[Z ≥ u] du,

Eθ̌n

[
|q̂(1−α)m

(
Sm | θ̌n

)
− q(1−α)m

(
S | θ̌n

)
|
∣∣∣ V ]

=

∫ 2R

0

P
[
|q̂(1−α)m

(
Sm | θ̌n

)
− q(1−α)m

(
S | θ̌n

)
| ≥ u

∣∣∣ V ]
du

≤
∫ β/4

0

2 exp
(
−8mf2minu

2
)
du+

∫ 2R

β/4

2 exp
(
−8mf2min(β/4)

2
)
du

≤ 2

∫ ∞

0

exp
(
−8mf2minu

2
)
du+ 4R exp

(
−8f2min(β/4)

2m
)

=

√
π

2fmin

√
2m

+ 4R exp

(
−1

2
f2minβ

2m

)
.

Therefore, we have

Eθ̌n,Dcal

[
|q̂(1−α)m

(
Sm | θ̌n

)
− q(1−α)m

(
S | θ̌n

)
|
]

≤ P [V ] · Eθ̌n

[
|q̂(1−α)m

(
Sm | θ̌n

)
− q(1−α)m

(
S | θ̌n

)
|
∣∣∣ V ]

+ P [V c] · 2R

≤
√
π

2fmin

√
2m

+ 4R exp

(
−f

2
min min{α2, (1− α)2}

8f2max

m

)
+ 2Rδ.

Picking δ = 257λ2
maxf

3
maxB

2d

λ4
minf

2
min min{α2,(1−α)2}n completes the proof of Proposition B.4.
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Figure 4: The probability density function of Y |X = x for synthetic dataset.

C ADDITIONAL EXPERIMENTS ON SYNTHETIC DATA

C.1 DATA GENERATION IN SECTION 6

The sampler of the data distribution P is constructed as follows. A vector θ0 is first drawn from
θ0 ∼ Uniform([1, 2]2). The covariate X is sampled uniformly from X = [1, 20]2, i.e., X ∼
Uniform([1, 20]2). Then, the probability density function of the conditional distribution Y |X =
x is constructed over support [ymin, ymax], where ymax = [20, 20]⊤θ0 and ymin = −ymax. The
conditional p.d.f., illustrated in Figure 4, is piecewise affine with five segments, symmetric about
zero. The central segment carries probability mass (1−α0), and each the other four segments carries
α0/4, where α0 = 0.005 is chosen to be smaller than the smallest miscoverage level considered in
the experiments. The model is well-specified (Assumption 3.1) for γ ∈ {α/2, 1 − α/2} and all
α ∈ (α0, 1/2) by taking θ∗(γ) = 1−2(1−γ)

1−α0
θ0, and hence the true quantile functions tγ(x; θ∗(γ)) =

1−2(1−γ)
1−α0

θ⊤0 x. Then we can draw y ∼ Y |X = x from reject sampling to obtain (x, y).

C.2 VALIDATING REGIME OF O(1/(nα2))

In the regime where α = o(n−1/4) and α = ω(n−1/2), theory predicts that the length deviation
should scale asO(1/(nα2)), corresponding to the middle regime (green) in Figure 2. To validate this
dependence, we pick α at several small values α = {0.01, 0.02, 0.025, 0.03} and vary the training
size n, plotting the length deviation against 1/(nα2) on a log–log scale. The fitted regression line
(red) in Figure 5 yields a slope of approximately 0.92, which is close to the theoretical value of 1.
The empirical results support the predicted theoretical scaling, indicating the upper bound accurately
captures the observed dependence.

10 1 100 101

1/(n 2)

10 1

100

101

102

fitted slope 0.92
slope = 1

Figure 5: Log–log regression of length deviation ∆ versus 1/(nα2) for relatively small α.

C.3 TRAINING VIA ALTERNATIVE OPTIMIZERS

To demonstrate that our analytical framework extends directly to alternative optimization algorithms
by substituting the corresponding estimation error rate, Figure 6 reports the empirical results ob-
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tained using SGD with heavy-ball momentum (Polyak, 1964). Theoretically, SGD with momentum
achieves the same convergence rate as vanilla SGD, up to improved constants. According to Remark
3.3, the efficiency with SGD with momentum scales in the same order as SGD. Consistent with this
prediction, the empirical results show that the phase transition phenomenon identified in our analy-
sis persists under SGD with momentum as well. Specifically, in Figure 6 (c), the slope of curves in
Figure 6 (a) changes from −1 to −0.5 as α increases.

Moreover, to demonstrate that our theoretical insights are not tied to optimizers with established
convergence guarantee, Figure 7 reports the empirical results obtained using AdamW (Loshchilov
& Hutter, 2019). From Figure 7 (c), we observe the phase transition phenomenon, where the slope
of curves in Figure 7 (a) changes from −1 to −0.5 as α increases.
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1Figure 6: The length deviation of conformalized quantile regression with training via SGD with
momentum.
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C.4 NON-LINEAR GROUND-TRUTH QUANTILE FUNCTIONS

To empirically show that our theoretical insights extend beyond linear models, we conducted exper-
iments in a setting where the ground-truth quantile functions are no longer linear. This is achieved
by applying Gaussian convolution kernels to the original linear conditional probability density func-
tions, thereby introducing controlled non-linear distortion. As shown in Figure 8, even with this
non-linear distortion, the phase transition phenomenon persists, indicating that our theoretical in-
sights remain valid in a broader setting.

C.5 ALTERNATIVE LOSS FUNCTIONS

To provide empirical evidence that similar efficiency scaling behavior persists for other convex mod-
els satisfying our assumptions, we report results using ℓ1-regularization during training in Figure 9
and Huber penalty (Huber, 1964) during training in Figure 10. In both cases, the phase transition
phenomenon remains clearly visible (the slope of (a) changes from −1 to −0.5 as α increases),
further validating the generality of our theoretical insights.
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non-linear conditional quantile functions, where Gaussian convolution kernels are applied to the
linear conditional probability density functions. We set σ to be 0.1× conditional quantile.
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1Figure 9: The length deviation of conformalized quantile regression, training with ℓ1 regularization.
We set the coefficient of the regularization term to be 0.001.
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We set Huber δ to be 0.5, and Huber λ to be 0.1.
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D EXPERIMENTS ON REAL-WORLD DATA

D.1 STATISTICS OF DATASETS

We list the statistics of multiple popular real world regression datasets used in this paper in Table 1.

The Medical Expenditure Panel Survey (MEPS) Panels 191 and 202 are standard datasets used for
benchmarking and comparative analysis in the quantile regression literature. Each sample consists
of 139 features, including 2 categorical features, 4 continuous features, and 133 boolean features.

Table 1: Statistics of datasets.

Dataset # Features # Number Samples
MEPS 19 139 15,785
MEPS 20 139 17,541

cpusmall (Chang & Lin, 2011) 12 8,192
abalone (Chang & Lin, 2011) 8 4,177

California Housing (Pace & Barry, 1997) 8 20,640

D.2 EMPIRICAL EVALUATION OF LENGTH DEVIATION

D.2.1 EXPERIMENTAL SETTINGS

We examine the effect of the training set size n and the calibration set size m on the prediction set
length, comparing the empirical results with the theoretical bound in Theorem 3.2. Since the oracle
quantile interval length |C∗(X)| = q1−α/2(Y |X) − qα/2(Y |X) depends on α, we evaluate the
expected absolute deviation E[||C(X)| − |C∗(X)||] for α ∈ [0.01, 0.05, 0.1, 0.2], where the interval
length |C∗(X)| is approximated by its estimate with same α and largest training and calibration
sample sizes. We reserve 20% of the dataset for testing length deviation. The remaining 80% data
was partitioned for 80% training data and 20% calibration data: the training size n varied from 10%
to 80% in increments of 10%, while the calibration m was chosen from 5%, 10%, 15%, 20% of the
remaining data. Throughout experiments, models are trained with a step size tuned by successive
halving for 1 epoch.

D.2.2 EMPIRICAL RESULTS WITH VARIOUS OPTIMIZERS

Figure 11 presents an empirical evaluation of length deviation of CMR and CQR under different
optimizers on real-world datasets, comparing SGD, SGD with momentum (SGDM) (Polyak, 1964),
Adam (Kingma & Ba, 2015), and AdamW (Loshchilov & Hutter, 2019). Although our theory
is based on analyzing SGD and directly extends to SGD with momentum, we include Adam and
AdamW due to their widespread practical use.

The results confirm two key insights from our theoretical analysis. First, increasing the calibration
set size m reduces the expected length deviation. Second, for a fixed sample size, a larger miscov-
erage level α leads to a smaller deviation with lower variance, which aligns with the α-dependence
in the theoretical rate. Consistent with Theorem 4.1, we observe that smaller values of α yield
significantly larger length deviations.

Among the optimizers, we observe that Adam and AdamW generally achieve better efficiency (lower
length deviation) but exhibit higher volatility, likely due to their scaled gradient norms. SGD de-
cays more smoothly, providing a more consistent reduction in length deviation as the number of
training samples increases. For Adam and AdamW, the benefit of additional training data can be
less pronounced or even reversed on certain datasets (e.g., MEPS), where fast convergence makes
efficiency more sensitive to stochasticity. On other datasets such as abalone and cpusmall,
however, Adam also exhibits a clear decreasing trend, indicating a dataset-dependent behavior.

1https://meps.ahrq.gov/mepsweb/data_stats/download_data_files_detail.
jsp?cboPufNumber=HC-181

2https://meps.ahrq.gov/mepsweb/data_stats/download_data_files_detail.
jsp?cboPufNumber=HC-192
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Figure 11: Efficiency of conformalized regression under different training optimizers on
real-world datasets: MEPS 19, MEPS 20, California Housing (Pace & Barry, 1997),
cpusmall, and abalone (Chang & Lin, 2011). For each optimizer, the learning rate is selected
via successive halving, while all other hyperparameters (e.g., momentum=0.9 for SGD with mo-
mentum) follow the PyTorch defaults.
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D.2.3 EMPIRICAL PROBING ON NON-LINEAR MODELS

We conduct empirical probing of non-linear models on real-world datasets, and report the results
in Figure 12. We observe that the length deviation remains consistent across non-linear and linear
model architectures, suggesting a potential practical relevance of our findings beyond linear models.

D.3 EMPIRICAL DATA ALLOCATION GUIDANCE

We empirically investigate how to allocate data on cpusmall dataset from LIBSVM (Chang &
Lin, 2011). The training ratio rn takes values from [0.01, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8,
0.9, 0.95, 0.99], the calibration ratio rm is set as 1− rn, the miscoverage level α takes values from
[0.001, 0.002, 0.003, 0.004, 0.005, 0.006, 0.007, 0.008, 0.009, 0.01, 0.02, 0.03, 0.04, 0.05, 0.06,
0.07, 0.08, 0.09, 0.1, 0.15, 0.2].

The left plot in Figure 13 shows the length of the prediction interval versus α of CMR, grouping
curves by training ratio (0%–20%, 20%–80%, 80%–100%). We observe that two “elbows” occur
at approximately α = 0.045 and α = 0.003, at which points, reducing α leads to a substantially
sharper increase in interval length than before. Notably, before the first elbow, e.g., when reducing
α from 0.2 to 0.05, the prediction interval length increases only mildly.

The right plot in Figure 13 shows the length of the prediction interval versus the training ratio, with
each curve corresponding to a different miscoverage level α (lighter color representing smaller α).
We observe that:

• The curves largely concentrate around interval lengths of approximately 2.5 and 15, re-
spectively, which correspond to the two elbow locations in the left plot.

• For most cases where α is not extremely small, the interval length stays below 15, and the
curves exhibit a wide U-shape. This indicates that allocating an excessively large portion
of data to either training or calibration tends to degrade efficiency, whereas a more bal-
anced split yields better efficiency. For reasonably large α, say α > 0.04, the number of
calibration samples has less influence on the interval than the number of training samples,
suggesting that allocating more data for training is generally beneficial.

• For very small miscoverage levels (α ≤ 0.003), which correspond to the three curves above
the dashed line at length = 15, the interval length behaves erratically and no longer follows
the U-shaped trend observed for larger α. It is likely due to insufficient sample size at such
small α, and the prediction interval length is a trivial upper bound of the oracle interval
length rather than its approximation. This phase of extremely small α may correspond to
the regime α = ω(n−1/2), where our upper bound is non-vanishing (Figure 2).

Takeaway. The empirical results suggest that practitioners may leverage the elbow points in the left
plot of Figure 13 to select α values that yield good efficiency while maintaining reasonable coverage
guarantees. In particular, for extremely small α, the prediction interval becomes trivially large due to
insufficient sample size, whereas in the regime of large α, decreasing the miscoverage level results
in only a mild increase in interval length. In terms of data allocation, the results are consistent with
the practical rule of thumb that the amount of training and calibration data should be roughly of the
same order, while allocating slightly more data for training is generally beneficial.

E THE USE OF LARGE LANGUAGE MODELS (LLMS)

This paper uses a large language model to polish writing.

36



Published as a conference paper at ICLR 2026

10−1

100

101

L
en
g
th

d
ev
ia
ti
on

(∆
)

abalone: α=0.01 abalone: α=0.05 abalone: α=0.1 abalone: α=0.2

10−1

100

L
en
g
th

d
ev
ia
ti
on

(∆
)

calhousing: α=0.01 calhousing: α=0.05 calhousing: α=0.1 calhousing: α=0.2

0.25 0.50 0.75

# Training

10−1

100

L
en
gt
h
d
ev
ia
ti
on

(∆
)

cpusmall: α=0.01

0.25 0.50 0.75

# Training

cpusmall: α=0.05

0.25 0.50 0.75

# Training

cpusmall: α=0.1

0.25 0.50 0.75

# Training

cpusmall: α=0.2

Model

linear

three layer

two layer

1
(a) CMR

100

101

L
en

g
th

d
ev
ia
ti
o
n
(∆

)

abalone: α=0.01 abalone: α=0.05 abalone: α=0.1 abalone: α=0.2

100

L
en

g
th

d
ev
ia
ti
o
n
(∆

)

calhousing: α=0.01 calhousing: α=0.05 calhousing: α=0.1 calhousing: α=0.2

0.25 0.50 0.75

# Training

100

L
en

gt
h
d
ev
ia
ti
on

(∆
)

cpusmall: α=0.01

0.25 0.50 0.75

# Training

cpusmall: α=0.05

0.25 0.50 0.75

# Training

cpusmall: α=0.1

0.25 0.50 0.75

# Training

cpusmall: α=0.2

Model

linear

three layer

two layer

1
(b) CQR

Figure 12: Efficiency of conformalized regression with linear and non-linear models trained via
SGD on real-world datasets: MEPS 19, MEPS 20, California Housing (Pace & Barry,
1997), cpusmall, and abalone (Chang & Lin, 2011). The two-layer neural network has one
hidden layer with 10 ReLU neurons, and the three-layer network has two hidden layers, each with
10 ReLU neurons.
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Figure 13: The effect of training ratio rn, calibration ratio rm, and miscoverage level α on
cpusmall dataset. The training ratio rn takes values from 0.01 to 0.99, the calibration ratio rm is
1−rn, and α takes values from 0.001 to 0.2. See Appendix D.3 for detailed discussion on empirical
data allocation. The left plot shows the length of the prediction interval versus α, grouping curves
by training ratio (0%–20%, 20%–80%, 80%–100%). We observe that there are two “elbows” around
α = 0.045 and α = 0.003, at which points, reducing α leads to sharper rise of the interval length
than before. The right plot shows the length of the prediction interval versus the training ratio, with
each curve corresponding to a different miscoverage level α (lighter color representing smaller α).
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