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ABSTRACT

Implicit Neural Representations (INRs) approximate discrete data through con-
tinuous functions and are commonly used for encoding 2D images. Traditional
image-based INRs employ neural networks to map pixel coordinates to RGB val-
ues, capturing shapes, colors, and textures within the network’s weights. Recently,
GaussianImage has been proposed as an alternative, using Gaussian functions in-
stead of neural networks to achieve comparable quality and compression. Such a
solution obtains a quality and compression ratio similar to classical INR models
but does not allow image modification. In contrast, our work introduces a novel
method, MiraGe, which uses mirror reflections to perceive 2D images in 3D space
and employs flat-controlled Gaussians for precise 2D image editing. Our approach
improves the rendering quality and allows realistic image modifications, including
human-inspired perception of photos in the 3D world. Thanks to modeling images
in 3D space, we obtain the illusion of 3D-based modification in 2D images. We
also show that our Gaussian representation can be easily combined with a physics
engine to produce physics-based modification of 2D images. Consequently, Mi-
raGe allows for better quality than the standard approach and natural modification
of 2D images.

1 INTRODUCTION

Figure 1: MiraGe encodes 2D images with pa-
rameterized Gaussians, enabling high-quality re-
construction and real-life-like modifications. Se-
lected part of image can be transformed in 3D
space, creating a 3D effect, with a physics engine
controlling movement and interactions.

Recent research has increasingly emphasized
human perception and the understanding of the
world through this lens (Lu, 2019; Davoodi
et al., 2023). In line with this trend, we in-
troduce a model that encodes 2D images by
simulating human interpretation. Specifically,
our model perceives a 2D image as a human
would view a photograph or a sheet of paper,
treating it as a flat object within a 3D space.
This approach allows for intuitive and flexible
image editing, capturing the nuances of human
perception while enabling complex transforma-
tions (see Fig. 1).

Gaussian Splatting (3DGS) framework models
the structure of a 3D scene using Gaussian com-
ponents (Kerbl et al., 2023). In the 2D domain,
GaussianImage (Zhang et al., 2024) has shown
promising results in image reconstruction by
efficiently encoding images in the 2D space,
with a strong focus on model efficiency and
reduced training time. Unfortunately, Gaus-
sianImage does not support user-driven adjust-
ments of scene objects, which is a key feature
of 3DGS. While GaussianImage has explored
image representation using 2D Gaussians pri-
marily for data compression, our research high-
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Figure 2: MiraGe employs 3D flat parameterized Gaussians in 3D space to encode 2D images, rep-
resenting each flat Gaussian as three points, forming a cloud of triangles called a triangle soup. This
representation enables real-time manipulation of the 3D triangle/point clouds, allowing for flexible,
real-world modifications. The model seamlessly integrates with a physics engine, enhancing its ap-
plicability in dynamic environments.

lights an additional benefit, i.e., the use of parameterized flat 3D Gaussians for editing 2D images.
In our work, we address this by introducing the MiraGe model, which encodes 2D images through
the lens of human perception, bridging the gap between 2D image representation and 3D spatial
understanding (see Fig. 2).

Building on the foundational idea that humans intuitively can perform transformations on
photographs–primarily through affine transformations and bending them beyond the 2D plane–we
introduce a novel approach using flat Gaussians with GaMeS parameterization (Waczyńska et al.,
2024b). This capability enables our model to support image editing in both 2D and 3D spaces. No-
tably, our framework simplifies often difficult perspective adjustments by allowing intuitive modifi-
cations directly within the third dimension (see Fig. 3).

Figure 3: Parameterized flat 3D Gaussians pro-
vide a powerful representation of 2D images, en-
abling flexible editing in 3D space. Triangle Soup
can be animated using tools like Blender. The col-
ored lines depict the motion paths of 10 randomly
selected points during the simulation.

In addition to classical edits, our model has the
unique capability of interfacing with physics
engines, enabling applications that enhance
the realism and immersiveness of animations
(Jiang et al., 2024). MiraGe treats the physics
engine as a black box and offers three distinct
methods for controlling Gaussians, i.e., 2D,
Amorphous and Graphite. For 2D representa-
tion (2D-MiraGe) we used Taichi_elements1,
for 3D representation (Amorphous-MiraGe,
Graphite-MiraGe) we use Blender2. This flex-
ibility makes our model highly applicable to
various fields, such as computer graphics for
populating spatial interfaces, where realistic,
physics-factual 2D animations can be incorpo-
rated (Tadeja et al., 2023).

Embedding 2D images in 3D space allows for
seamless integration of 2D and 3D objects, en-
abling the creation of dynamic backgrounds or
interactive elements within animated scenes. This versatility extends to applications such as virtual
reality, where 2D images can function as backdrops (Yin et al., 2024). This capability opens up new
avenues for creative composition, offering a powerful toolset for users. The novelty of this work lies

1https://github.com/taichi-dev/taichi_elements
2https://www.blender.orgversion3.6

2
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in its ability to enable easy, intuitive 3D transformations and integrations within a traditionally 2D
framework, expanding the possibilities for both image editing and animation (see Fig. 4).

Since high-quality image reconstruction is critical in animation, we compared MiraGe with other
models in particular with GaussianImage (see Fig. 5), showing our state-of-the-art performance in
the image reconstruction task. Our results demonstrate that the model operates in real-time, though
this comes with a trade-off in terms of model size.

Figure 4: Two images were encoded using the Mi-
raGe model on distinct planes within a 3D space.
This setup allows for seamless integration of the
encoded images, resulting in a collage-like com-
position. Moreover, the model facilitates editing
capabilities, as illustrated here with modifications
to the background image (the rear plane).

It is worth highlighting that flat 3D Gaussians
can be utilized for 2D images in four distinct
scenarios, with modifications that emphasize
how controlling the Gaussians during training
affects the perspective of viewing each image
(see Fig. 6).

The following constitutes a list of our key con-
tributions:

• We introduce the MiraGe model,
which represents 2D images using flat
3D Gaussian components, achieving
state-of-the-art reconstruction quality.

• MiraGe enables the manipulation of
2D images within 3D space, creating
the illusion of 3D effects.

• We integrate MiraGe with a physics
engine, enabling physics-based mod-
ifications and interactions for both 2D
and 3D environments.

2 RELATED WORKS

Figure 5: Visual comparison of two Gaussian-
based methods for 2D image reconstruction.
From left to right, the columns display the ground
truth image, the GaussianImage reconstruction,
and the MiraGe reconstruction. The bottom row
illustrates the differences between the ground
truth image and the results of each method.

Our work builds on several key research ar-
eas, including image reconstruction techniques,
Gaussian-based representations and Gaussian
animation frameworks.

One rapidly growing area in image reconstruc-
tion is Implicit Neural Representations (INRs),
which have attracted significant attention for
their ability to model continuous signals, such
as images, through neural networks (Klocek
et al., 2019). INRs encode spatial coordinates
and map them to corresponding values, such as
RGB color, allowing for highly compact and ef-
ficient representations (Xie et al., 2022). This
has led to the development of several special-
ized models for image INR, such as SIREN (Sitzmann et al., 2020a) with the novelty of sine used
as a periodic activation function to tackle the problem of complex image signals. Fourier feature
mapping was proposed in (Tancik et al., 2020) as another answer to the difficulty of aligning the
multilayer perceptron (MLP) predictions with high-frequency pictures. Interestingly, authors of
WIRE (Saragadam et al., 2023a) have leveraged continuous complex Gabor wavelets to capture vi-
sual signals with decent quality. The growing field of research resulted in further improvements of
already existing solutions, e.g. in (Liu et al., 2024), certain limitations of SIREN, namely the arising
capacity-convergence gap, were successfully alleviated with the idea of variable-periodic activation
functions. Yet another worth noting work from this area is (Müller et al., 2022) with INR solution
designed to effectively perform on modern computer architecture utilizing a simple data structure
concept of hashmap to offer speed-oriented image representation with high fidelity of the outcomes.
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Figure 6: We demonstrate three approaches for Gaussian control: Amorphous, 2D, and Graphite. As
a baseline, we utilize a single camera from the Amorphous setup. After applying perspective editing
in 3D, the image shows noticeable deformation. In contrast, no deformation is observed when
employing the Amorphous or Graphite methods with an additional camera. The model employs a
mirror setup during training, with the Amorphous configuration achieving the best results for image
reconstruction and 3D analysis. The 2D model represents images on a single plane, allowing 2D
physics engines like Taichi_elements to be used, but it does not support 3D modifications. The
Graphite model operates across multiple planes, making it ideal for 3D spatial reasoning and image
combination.

Alternative approaches to INRs were presented in GaussianImage (Zhang et al., 2024). Instead of
neural networks, the authors propose to approximate 2D images using 2D Gaussian components.
In practice, GaussianImage is a 2D version of 3DGS (Kerbl et al., 2023) that uses 2D Gaussians
instead of their 3D version and a simplified rendering procedure. Thanks to such a modification,
the GaussianImage is invariant to the order of Gaussian components. Therefore, such a model is
numerically efficient.

Figure 7: MiraGe use GaMeS (Waczyńska et al.,
2024b) representations of flat Gaussian by triangle
soup. Therefore, we can use real-life modification
by moving points.

GaussianImage represents each pixel color as a
weighted sum of 2D Gaussians. The training
procedure is similar to 3DGS without pruning.
The authors show that such representation gives
a similar reconstruction quality to classical INR
models and is able to obtain a high compression
ratio and fast rendering.

The interactive image editing of 2D images
has been widely explored in computer graph-
ics. Here, some methods leverage the current
advancements in generative models. For in-
stance, Pan et al. (2023) introduce DragGAN,
enabling point-based manipulation of images by performing them on the underlying manifold of
GAN, achieving realistic edits. Similarly, Shi et al. (2023) propose DragDiffusion, which extends
the previous framework to diffusion models, enhancing the control and applicability of image edit-
ing. On the other hand, Jacobson et al. (2011) propose bounded biharmonic weights for linear
blending, which produce smooth and intuitive deformation for handles of arbitrary topology. Wang
et al. (2015) further advances this field by proposing linear subspace design, unifying linear blend
skinning and generalized barycentric coordinates to provide a practical way of controlling deforma-
tions.

4
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The representation and editing of objects using Gaussians is a well-explored topic in 3D graph-
ics. In this field, meshes can be modified to simulate Gaussian editing (Guédon & Lepetit, 2024;
Huang et al., 2024), or Gaussians can be directly parameterized and manipulated to achieve specific
outcomes (Waczyńska et al., 2024b;a). This approach enables flexible and continuous deformations,
offering an intuitive method for controlling object shapes and rendering properties, which has proven
particularly useful in tasks like texture mapping, surface smoothing, and dynamic simulations.

Gaussians enable precise and flexible editing of objects, providing continuous control over shapes
and transformations. Moreover, integrating physics engines enhances these capabilities, allowing for
more sophisticated and physically consistent modifications, such as simulating realistic interactions,
deformations and movements in 3D environments. (Xie et al., 2024; Borycki et al., 2024).

3 MIRAGE: EDITABLE 2D IMAGES USING GAUSSIAN SPLATTING

Figure 8: We integrate MiraGe with Material
Point Methods (MPM) to achieve realistic alter-
ations of 2D images. The initial column presents
the original image, the subsequent two columns
display renders captured midway through the sim-
ulation, and the final column shows the outcome
of the full simulation. The colored lines in the last
column trace the paths of randomly chosen points
from the simulation.

Here, we describe in detail the inner workings
of our MiraGe model. We start by present-
ing classical 3DGS. Next, we present GaMeS-
based (Waczyńska et al., 2024b) parametriza-
tion of flat Gaussians. In the end, we present
our MiraGe and how it relates to prior works.

3D Gaussian Splatting 3DGS models 3D
scene by a set of Gaussian components with
color and opacity:

G = {(N (mi,Σi), σi, ci)}pi=1,

defined by their mean (position) mi, covari-
ance matrix Σi, opacity σi, and color ci, which
is represented using spherical harmonics (SH)
(Fridovich-Keil et al., 2022).

During the rasterization stage, the 3DGS pro-
duces a sorted Gaussian list based on the pro-
jected depth information. Then, the α-blending
method is used to create the image. We re-
fine the Gaussian parameters, color, and opac-
ity in the training phase according to the recon-
struction cost function. The optimal number of
Gaussians required to represent a given object
is not known a priori, and it is non-trivial to ad-
just the number of Gaussians. Hence, the initial
number of Gaussians is a parameter of the method. The authors implement additional strategies
for reducing and multiplying Gaussians. Gaussians with low opacity are removed, while those that
change rapidly during optimization are multiplied. These strategies make the 3D Gaussian approach
very efficient and capable of generating high-quality renders. We used this strategy to reconstruct
2D images, which distinguishes us from GaussianImage.

GaMeS Parametrization of Gaussian Component In MiraGe, we use flat Gaussian components
in 3D space. In such a model we use Gaussian components with a covariance matrix Σ, factored
as: Σ = RSSRT , where R is the rotation matrix, and S is a diagonal matrix containing the scaling
parameters. However, we force one of the scale parameters to be zero. Consequently, we obtain a
collection of flat Gaussian:

G = {(N (mi, Ri, Si), σi, ci)}pi=1, (1)
where S = diag(s1, s2, s3), with s1 = ε, and R is the rotation matrix defined as R = [r1, r2, r3],
with ri ∈ R3. In such a case, we can use GaMeS (Waczyńska et al., 2024b) parametrization to
represent flat Gaussian by triangle-face mesh. This mapping is denoted by T (·). When applied, this
parametrization generates a set of triangles labeled as triangle soup.

To outline the GaMeS parameterization, consider a Gaussian component N (m, R, S), characterized
by the mean m, the rotation matrix R = [r1, r2, r3] and the scaling matrix S = diag(ε, s2, s3).

5
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Figure 9: Visual comparison of image editing techniques, demonstrating the effectiveness of repre-
senting 2D images with parameterized Gaussians applied to Triangle Soup. This approach enables
highly realistic animations, achieving results comparable to those of generative models. Specifically,
local editing operations preserve fine details, such as a dimple on a face, without affecting unrelated
regions. Moreover, we can achieve precise manipulations, including subtle edits like closing a lion’s
mouth, underscoring the flexibility and control inherent in our method.

Then its face representation N (V ) is based on a triangle: V = [v1,v2,v3] = T (m, R, S) with the
vertices defined as: v1 = m, v2 = m + s2r2, and v3 = m + s3r3. Conversely, given a face
(triangle) representation V = [v1,v2,v3], we can recover the Gaussian component N (m̂, R̂, Ŝ) =

N (T −1(V )) through the mean m̂, the rotation matrix R̂ = [r̂1, r̂2, r̂3], and the scaling matrix
Ŝ = diag(ŝ1, ŝ2, ŝ3), where the parameters are defined by the following formulas:

m̂ = v1, r̂1 =
(v2 − v1)× (v3 − v1)

∥(v2 − v1)× (v3 − v1)∥
, (2)

r̂2 =
(v2 − v1)

∥(v2 − v1)∥
, r̂3 = orth(v3 − v1; r1, r2), (3)

s1 = ε, ŝ2 = ∥v2 − v1∥, and ŝ3 = ⟨v3 − v1, r̂3⟩. (4)

Here orth(·) denotes a single step of the Gram-Schmidt process (Björck, 1994). Accordingly, the
corresponding covariance matrix of a Gaussian distribution is given as Σ̂ = R̂ŜŜR̂T .

The parametrization enables control over the Gaussians’ position, scale, and rotation by manip-
ulating the underlying triangle mesh. Applying transformations to the triangle directly alters the
corresponding Gaussian, as illustrated in Fig. 7.

MiraGe In this work, we present an approach that leverages the concept of flat Gaussian distri-
butions in 3D space to model a single 2D image as input. Our methodology is grounded in human
visual perception. This perspective allows us to reframe the problem: instead of merely process-
ing a pixel matrix, we interpret the images as objects with a fixed spatial configuration in a 3D
environment.

We put the 2D image on the XZ plane where the center is situated at axes origin (0, 0, 0) with the
fixed distance from the camera origin. In practice, the distance from the plane is a hyper-parameter.
In our approach, we model flat objects within 3D space, where the camera distance parameter effec-
tively controls the perceived scale of the object. This relationship allows for intuitive adjustments
of object size based on the desired visual effect. For instance, increasing the camera distance can
naturally expand the apparent size of background elements like distant mountains (Fig. 4), making it
easier to represent them as larger objects without additional modeling complexity. While this feature
is beneficial, it is not strictly necessary for most applications.

We propose a method that situates the Gaussians within the XZ plane, ensuring that the entire image
remains visible under perspective projection. To achieve this, the possible range of x-values and z-
values is calculated using the camera field of view. We first calculate the deviation from 0 on the X
axis using the similarity of triangles devz = camdist · tan(0.5 ·Fovvert), where camdist and Fovvert are

6
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Figure 10: Comparison of PSNR obtained on a butterfly image from DIV2K dataset by MiraGe in
comparison with GaussianImage (Zhang et al., 2024) and Gaussian Splatting (Kerbl et al., 2023).
The lines with markers represent how the PSNR was changing during training. Different colors
represent models trained with different numbers of Gaussians during initialization. The dashed
black and orange lines represent the best results obtained during training by GaussianImage and GS,
respectively. Vertical lines represent iteration, where MiraGe obtained better results than Gaussian-
Image, the time in min:sec format above each line is the training time until this iteration.

camera distance from the XZ plane and camera field of view respectively. The deviation in the X
axis can be then computed by multiplying this value by the camera aspect ratio.

Consequently, the initialization of Gaussians is consistently performed on the XZ plane; however,
we have opted to permit their movement within the 3D space. Drawing inspiration from three
distinct models, we introduce three conceptual approaches for manipulating the spatial positioning
of Gaussians.

Amorphous The baseline approach how to control Gaussians is based on the classical GaMeS
parametrization, initialized randomly on the XZ plane, with the mean parameter’s y coordinate set
to zero:

G = {(N ([m1, 0,m3], [r1, r2, r3],diag(ε, s2, s3)), σi, ci)}, (5)
where m = [m1, 0,m3] S = diag(s1, s2, s3), with s1 = ε, and R is the rotation matrix defined as
R = [r1, r2, r3], with ri ∈ R3.

It should be highlighted that we only initialized the Gaussian component on the XZ plane. During
training, Gaussians can move amorphously in 3D space. We use the classical loss function L1

combined with a D-SSIM term:

L = (1− λ)L1(I,GS(I)) + λLD−SSIM (I,GS(I)),

where I is the input image and GS(I) is the constraint obtained by the Gaussian renderer. While
this solution enables the modeling of images using a collection of triangles, often referred to as
“triangle soup,” it proves insufficient for high-quality representations. During editing, significant
artifacts emerge (Fig. 6–Baseline).

2D Building on the promising outcomes of GaussianImage, we strategically anchored all Gaus-
sians onto the XZ plane. This configuration allows us to effectively translate the flat image geom-
etry into a spatial framework, bridging perceptual intuition. We set the mean of these components
to have zero in the second coordinate. Moreover, we use the projection of flat Gaussians on a 2D
plane. Unfortunately, orthogonal projection can produce artifacts. Therefore, we use a rotation of
Gaussian components to lay on the XZ plane. Since we use flat Gaussians to extract such rotation
we can use a rotation matrix between two vectors to align the vector in 3D (Markley, 1993). We use
the notation Rot(a, b) for the rotation matrix.

MiraGe on 2D plane is define by set of 3G parameterized Gaussian components:

G = {(N ([m1, 0,m3], [r1, r2, r3]Rot(r3, e2),diag(ε, s2, s3)), σi, ci)}, (6)

where e2 = [0, 1, 0], m = [m1, 0,m3], S = diag(s1, s2, s3), with s1 = ε, and R is the rotation
matrix defined as R = [r1, r2, r3], with ri ∈ R3.

7
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Graphite Unfortunately, 2D-MiraGe produces artifacts when we use modification in 3D space
(see the third row in Fig. 6). Such an effect is coursed by the Gaussians, which appear randomly
according to the camera position. To solve such a problem and obtain the possibility of 3D modifi-
cations, MiraGe allows the Gaussians to leave the XZ plane:

G = {(N ([m1, 0,m3] + γe2, [r1, r2, r3]Rot(r3, e2),diag(ε, s2, s3)), σi, ci)}, (7)

where γ is trainable parameter of translation scale along the vector e2 = [0, 1, 0], m = [m1, 0,m3],
S = diag(s1, s2, s3), with s1 = ε, and R is the rotation matrix defined as: R = [r1, r2, r3], with
ri ∈ R3. Such a model allows for the order of Gassians according to camera positions.

By leveraging parameterized Gaussians, we achieved precise manipulation of 2D images directly
within their native 2D space, enabling targeted edits of segmented regions and transformations of
complete scenes in easier way. While this approach demonstrated substantial promise, we observed
significant artifacts when extending manipulations into the 3D domain, particularly along the Y -
axis, see first and last row in Fig 6.

Figure 11: We compare the animation capabili-
ties of MiraGe with those of the DragGAN model,
highlighting the advantages of our Gaussian-
based image representation. This approach en-
ables highly realistic edits by not relying on gener-
ative techniques. Our method offers greater con-
trol during animation. For example, adjusting the
position of a leg does not inadvertently alter facial
features.

Mirror camera We employ a novel ap-
proach utilizing two opposing cameras posi-
tioned along the Y axis, symmetrically aligned
around the origin and directed towards one an-
other. The first camera is tasked with recon-
structing the original image, while the second
models the mirror reflection. We introduced
the mirror camera to ensure that Gaussians re-
main confined within a specific spatial region
between the cameras, enhancing control and
precision. The reflection can be effectively rep-
resented by horizontally flipping the image, de-
noted as M(I). This mirror-camera setup en-
hances the fidelity of the generated reflections,
providing a robust solution for accurately cap-
turing visual elements. We consider the addi-
tional camera as a means of augmenting the
dataset to improve the accuracy of the repre-
sentation. The MiraGe is initialized according
to equation Eqn. 5 and utilizes a cost function:
L(I) + L(M(I)). We simultaneously model
both the image and its mirrored reflection, as
shown in the second row in Fig. 6. We provide
numerical comparison in the ablation study in
the Appendix.

After thorough experimentation, we find that our model, Amorphous-MiraGe, utilizing a mirror
camera, achieves state-of-the-art reconstruction results. This model demonstrates significant advan-
tages over alternative methods in terms of both performance and outcome quality.

Editability The ability to manipulate Gaussians based on their spatial positioning empowers Mi-
raGe to effectively edit 2D images. When utilizing a mirror camera, the quality of the resulting
images is sufficiently high, enabling the parameterization and animation of Gaussians to signifi-
cantly reduce artifacts. Our findings demonstrate that our model facilitates the animation of both
segmented objects and entire scenes. Users can create manual animation, or leverage automated
processes using physics engines like Taichi_elements or Blender (Fig. 3,8). To incorporate MiraGe
with the 2D physics engine, we use 2D-MiraGe (see, Fig. 8). In Fig. 9, we demonstrate that our
method can also be applied to edit more complex scenes, such as changing human expression.

We argue that the Graphite-inspired model allows the creation of attractive compositions made of
multiple images that effectively present the positive attributes of the layered structure, like Graphite,
through the strategic positioning of Gaussians.

8
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4 EXPERIMENTS Table 1: Quantitative comparison with various baselines in
PSNR and MS-SSIM. MiraGe gives state of the art results.
Model-x denotes that the model was initialized with x Gaus-
sians.

Kodak dataset DIV2K dataset

PSNR ↑MS-SSIM ↑PSNR ↑MS-SSIM ↑
WIRE 41.47 0.9939 35.64 0.9511
SIREN 40.83 0.9960 39.08 0.9958
I-NGP 43.88 0.9976 37.06 0.9950
NeuRBF 43.78 0.9964 38.60 0.9913
3DGS 43.69 0.9991 39.36 0.9979
GaussianImage-70k 44.08 0.9985 39.53 0.9975
GaussianImage-100k* 38.93 0.9948 41.48 0.9981
MiraGe-70k (our) 57.41 0.9998 53.22 0.9996
MiraGe-100k (our) 59.52 0.9999 54.54 0.9998

We split the experimental section of
our paper into two main parts. First,
we demonstrate that our approach
achieves high-quality 2D reconstruc-
tion by comparing it with existing
models. Second, we highlight the
versatility of our method in image
editing both full scenes (Fig. 9) and
selected objects (Fig. 1, 7), present-
ing examples of user-driven modifi-
cations and demonstrations involving
physical simulations (Fig. 3, 8).

Reconstruction quality Our image
reconstruction assessment utilizes two widely-recognized datasets. Specifically, we employ the Ko-
dak dataset3, which includes 24 images at a resolution of 768×512, alongside the DIV2K validation
set (Agustsson & Timofte, 2017), which involves 2× bicubic downscaling and comprises 100 im-
ages with sizes ranging from 408 × 1020 to 1020 × 1020. The dataset was selected to facilitate
direct comparison with the work of GaussianImage. As a baselines we use competitive INR meth-
ods GaussianImage (Zhang et al., 2024), SIREN (Sitzmann et al., 2020b), WIRE (Saragadam et al.,
2023b), I-NGP (Müller et al., 2022), and NeuRBF (Chen et al., 2023).

Figure 12: MiraGe model allows modifications in 3D space,
but the model is limited by 2D images, which was used
in training. When we move some elements from the fore-
ground, we cannot see the background since the model only
reconstructs objects. Next, we can use image Inpainting to
fill the missing parts, allowing for more realistic modifica-
tions.

In Tab. 1, we demonstrate the perfor-
mance outcomes of different methods
on the Kodak and DIV2K datasets.
We see that our proposition outper-
forms the previous solutions on both
datasets. The quality measured by
both metrics shows significant im-
provement compared to all the previ-
ous approaches. Fig. 10 illustrates a
general trend observed during train-
ing in the contest of image recon-
struction. The selection of hyperpa-
rameters, including the number of it-
erations, was inspired by the princi-
ples of 3DGS. We provide ablation
studies and extensive numerical anal-
yses in the appendix for further in-
sights.

It is important to note that although
our model takes longer to train, it
quickly achieves better results than
GaussianImage. The trend we observe is illustrated in Fig. 10, which also includes the number
of initial Gaussians, indicating how densely the space has been filled. We see a clear upward trend
in performance as the density of the Gaussian initialization increases.

Manual modification MiraGe allows for manual manipulation of 2D images. By leveraging
GaMeS parameterization, each Gaussian component is represented as a triangle. Vertices can then be
independently adjusted and moved within 3D space, enabling flexible image modification (Fig. 2, 7).

We demonstrate examples of modifications using datasets such as DIV2K, Kodak, and Animals4.
Additionally, we generated our own 2D images using DALL-E 3 to illustrate the benefits of our
method. We can obtain modifications of small details like changing fingers’ position (Fig. 1), human

3https://r0k.us/graphics/kodak/
4https://www.kaggle.com/datasets/alessiocorrado99/animals10
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facial expressions (Fig. 16) or dog poses (Fig. 12). As MiraGe can trained in a 3D context, we can
implement modifications in the third dimension to create the illusion of 3D transformation (Fig. 3, 6).

Figure 13: Comparison between PhysGen (Liu
et al., 2025) and MiraGe. Our render has properly
solved the issue with the house borders. More-
over, PhysGen has slightly changed the shape of
the building (e.g., the elongated house tip). In an-
other animation, reasonable doubts related to the
correctness of the simulated physics of PhysGen
arise when a reader follows the behavior of a red
element upon hitting the wall; contrary to every-
day experience, the front part (instead of the back
part) of the figure bounces off the tabletop.

It is crucial to note that when we displace ele-
ments from the foreground, the background re-
mains unseen because the model only recon-
structs the objects. This is demonstrated in
Fig. 12, where artifacts are apparent on the
hind paw of the depicted animal. To reduce
such problem we can use Inpainting (Perche-
Mahlow et al., 2024) on the image background.

We conducted a comparative analysis of our
editing approach against the DragGAN model
(Pan et al., 2023). Here, we focused on the
ability to perform localized edits, such as clos-
ing the mouth, while preserving other features,
such as dimples (see Fig. 9). Visual results, pre-
sented in Fig. 11, highlight key distinctions be-
tween the two models. As DragGAN is a gener-
ative model, modifications often result in unin-
tended global transformations, for instance, at-
tempting to adjust a leg’s position may inadver-
tently modify facial features. In contrast, our
method demonstrates the capability to move el-
ements like the leg with realistic results and
without compromising other aspects of the im-
age.

Physics application in MiraGe Using 2D-
MiraGe we can express Gaussian components
with a 2D point cloud. Therefore, we can use
MPM (Hu et al., 2018) based physics engine
implemented, for example, in Taichi_elements. This high-performance physics engine supports mul-
tiple materials, including elastic objects and sand. We use inspiration from GASP (Borycki et al.,
2024) and train simulation on 2D points then use physical deformation on triangle soup. In Fig. 8,
we present simulation results obtained using Taichi_elements. As we can see, we can add physical
properties to 2D objects. On the other hand, using Amorphous-MiraGe or Graphite-MiraGe we can
use Blender and modify directly parameterized flat 3D Gaussian (Fig. 3). Moreover, we compare
MiraGe with PhysGen (Liu et al., 2025) (Fig. 13). Our renderer has successfully resolved the issue
with the house borders. Additionally, PhysGen has slightly altered the shape of the building. Fur-
thermore, in another animation, questions arise about the accuracy of PhysGen’s simulated physics.
Specifically, when observing the behavior of a red element striking a wall, the outcome contradicts
everyday experience, i.e., instead of the back part of the figure bouncing off the tabletop, the front
part rebounds (Fig. 13).

5 CONCLUSION

In this paper, we introduce MiraGe that uses flat 3D Gaussian components to model 2D images.
MiraGe gives state-of-the-art reconstruction quality and simultaneously allows image manipulation.
Furthermore, we can modify photos on a plane (Fig. 8) and in 3D space (Fig. 3). In consequence,
we obtain the illusion of 3D-based modifications. Furthermore, we can combine our solution with
a physics engine to obtain realistic motion in the image. Conducted experiments show that MiraGe
is applicable in many different scenarios and produces high-quality simulations. Limitation It is
crucial to note that the model is not generative, so improper adjustment of Gaussian positions can
cause gaps in the image (e.g. a missing dog’s paw Fig. 12). While the model can produce real-
istic changes, significant modification may introduce visual artifact. Moreover, our model requires
encoding more parameters than GaussianImage to achieve high-quality image reconstruction for
animation. Addressing this trade-off will be a focus of our future work.
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6 APPENDIX

Here, we provide a comprehensive overview of the implementation details. Furthermore, we present
supplementary experimental results, such as extended performance evaluations and ablation studies
focusing on camera settings.

Figure 14: Comparison of FPS obtained on a butterfly image from DIV2K dataset by MiraGe in
comparison with GaussianImage (Zhang et al., 2024) and Gaussian Splatting (Kerbl et al., 2023).
The experiment was performed on the rtx 4070 GPU.

6.1 IMPLEMENTATION DETAILS

The source code for this project will be made publicly available on GitHub. Our code was developed
based on the GaMeS framework, and it is distributed under the GS Vanilla license. Computational
experiments in main paper were conducted using NVIDIA GeForce RTX 4070 Laptop version and
NVIDIA GeForce RTX 2080. Appendix time comparisons were reported using NVIDIA GeForce
RTX 2080.

Building upon the GaMeS framework, we initialized the Gaussian distributions to lie perpendicular
to the XZ plane. In our model, where all Gaussians are constrained to a 2D plane at rendering time,
we consider only the rotation angle, denoted as ϕ, as the primary rotation parameter. To facilitate
the rendering of Gaussians positioned on the XZ plane, ϕ serves as the primary learning parameter.
The corresponding quaternions of rotation are computed as follows: for rotation about the x-axis
qx = [cos(ϕ2 ), sin(

ϕ
2 ), 0, 0], and for the z-axis qz = [cos(π2 ), 0, 0, sin(

π
2 )]. Since no rotation occurs

about the y-axis, the quaternion remains qy = [1, 0, 0, 0]. These quaternions are then combined
through multiplication to form a new rotation matrix, ensuring precise alignment of the Gaussians
on the XZ plane.

Figure 15: MiraGe enables modifying 2D im-
ages, such as adjusting the scene’s elements’
sizes.

Figure 16: MiraGe allows us to produce realis-
tic modifications of small details like changing
human facial expressions.
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Figure 17: MiraGe allows for manual image edits and for using a physics engine for real-life-like
image modifications.The left image illustrates a Gaussian representation achieved through a triangle
mesh triangle soup, while the accompanying point-based depiction provides finer details, offering a
more refined visual comparison.

Figure 18: MiraGe allows for the modification of larger scenes. We can selectively alter specific
areas and introduce smooth movements or material adjustments. In this example, the bottom of the
blanket is shown in motion. This, along with other modifications, is available in the supplementary
files as videos.

Table 2: Ablation study of the effect of adding the mirror camera as augmentation technique on
training time and the output image quality measured in widely recognized metrics: PSNR, MS-
SSIM, LPSIS. Experiment was performed with initial 100k Gaussians.

Kodak dataset
Gaussian control method Camera Setting PSNR ↑ MS-SSIM ↑ LPSIS ↓ Training Time(s) ↓

Amorphous One camera 51.56 0.9996 0.0050 448.73
Mirror cameras 59.52 0.9999 0.0005 639.66

Graphite One camera 42.49 0.9948 0.2984 398.54
Mirror cameras 46.90 0.9983 0.1238 739.66

2D One camera 42.75 0.9950 0.2931 552.80
Mirror cameras 48.82 0.9987 0.0071 942.78
DIV2K dataset

Gaussian control method Camera Setting PSNR ↑ MS-SSIM ↑ LPSIS ↓ Training Time(s) ↓

Amorphous One camera 46.00 0.9991 0.0162 690.98
Mirror cameras 54.54 0.9998 0.0033 946.35

Graphite One camera 40.02 0.9949 0.0312 582.50
Mirror cameras 46.52 0.9986 0.0117 1082.41

2D One camera 39.99 0.9949 0.0310 869.62
Mirror cameras 46.32 0.9985 0.0124 1278.33
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Figure 19: MiraGe can be integrated with Blender, by using flat 3D Gaussians in 3D space. The
initial column presents the original image, the subsequent two columns display renders captured
midway through the simulation, and the final column shows the outcome at the simulation’s con-
clusion. The colored lines in the last column trace the paths of 10 randomly chosen points from the
simulation.

6.2 SUPPLEMENTARY NUMERICAL FINDINGS FROM THE PRIMARY PAPER

We conducted an extensive analysis of the MiraGe model due to its unique ability to control the
behavior of Gaussians. Three distinct settings for Gaussian movement were explored:

• Amorphous the first allows Gaussians to move freely in 3D space,

• 2D: the second restricts their movement to align parallel to the XZ plane

• Graphite the third confines all Gaussians to the XZ plane, effectively creating a 3D repre-
sentation.

A qualitative analysis was performed, considering the impact of the mirror camera (see Tab. 2),
as well as the effect of varying the number of initial Gaussians on the overall model behavior (see
Tab. 3). We also examined the impact of the camera using Frames Per Second (FPS) metric and
storage memory (see Tab. 4). Given the ongoing development of various 3D Gaussian Splatting
compression techniques, we employed the .spz5 tool to effectively compress the data.

Due to our particular focus on animation, we analyzed FPS trends to benchmark real-time perfor-
mance. Fig. 14 shows that while our model introduces a higher number of parameters, leading to
a decrease in FPS compared to GaussianImage, it maintains the ability to render animations in real
time.

Figure 20: MiraGe simplifies intuitive editing of
image, allowing transformations such as adjusting
the tilt of a hand with minimal complexity. This is
achieved by modifying the object along the third
dimension.

Tab. 2 shows the mirror camera view as
augmentation technique improves significantly
the representation’s fidelity of every proposed
Gaussian method. This behavior can be de-
tected with the help of any of the measured
metrics, i.e., PSNR, MS-SSIM and LPSIS. The
drawback of improving the image quality is
a longer training time required. The ablation
study presented in Tab. 3 similarly suggests
that our model scales well with the number
of Gaussians used during model initialization.
The striking example here is an average 62.12
PSNR score achieved by Amorphous method
on Kodak dataset. The price paid in time
of training grows here slower, i.e., increasing
the number of starting Gaussians by an order
of magnitude results in more extended though
comparable training period length.

5https://github.com/nianticlabs/spz
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6.3 EXTENSION OF EXAMPLES MODIFICATION AND ARTIFACTS

Figure 21: Example of artifacts generated during
animation, typically due to imperfect rendering.
The model was trained on a white background,
leaving residual white Gaussians along the border
of the camel’s muzzle, leading to artifacts. In this
instance, the Graphine-MiraGe performed best in
handling the head-turning movement

Animating a full scene can be non-trivial, but it
is possible. Fig. 15 demonstrates how a paint-
ing can be enlarged to visualize the impact of
its placement in a room, offering a clear view of
the potential arrangement. It is also possible to
animate small, localized areas of the image, as
demonstrated in Fig. 16. For the facial anima-
tion, we utilized the Lattice modifier in Blender.
MiraGe enables manual image editing and in-
corporates a physics engine for image modifi-
cations (Fig. 17, 18, 19). It is crucial to remem-
ber that if certain Gaussians are shifted without
considering their dependencies on others, the
image will be disrupted. Therefore, the rela-
tionships between the Gaussians must be care-
fully modeled. We demonstrate this concept
with the example of children playing with a
blanket (Fig. 18). Despite the movement of the
blanket (as seen in the supplementary video),
the image remains uninterrupted and coherent.

A simple editing concept using 3D is shown in
Fig 20. Fig. 19 illustrates a sculpture where the
movement of the hand is achieved by adjusting
the position of the shield behind the warrior. The image representation, based on parameterized
Gaussians, facilitates precise editing of fine details within the 3D space.

Integrating the representation into Blender can introduce automatic adjustments that may result in
visual artifacts (Fig. 21), particularly when training on images with a white background. These
modifications can lead to unrealistic renderings that are challenging to detect through automated
means and currently require subjective evaluation by a human observer.

6.4 SOCIAL IMPACT

The model can be applied to generate novel image transformations used to dataset augmentation,
facial recognition (Sanil et al., 2023), distortion correction, and visualizing architectural designs
(Gerstweiler et al., 2018), as shown in Fig. 15. In the field of medical imaging, it is utilized for
refining anatomical models and enhancing the accuracy of surgical simulations and diagnostic tools
(Lin et al., 2023). Additionally, in 2D computer games, the model facilitates more realistic anima-
tions by incorporating physics-based effects (Mohd et al., 2023).
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Table 3: Measuring the influence of the initial number of Gaussians on the quality of the Image
reconstruction. Experiment was performed using mirror camera view for every table entry.

Kodak dataset
Gaussian control method Initial Gaussians PSNR ↑ MS-SSIM ↑ LPSIS ↓ Training Time(s) ↓

Amorphous 10k 50.66 0.9987 0.3531 584.84
50k 55.54 0.9997 0.0033 634.65
100k 59.52 0.9999 0.0005 639.66
150k 62.12 0.9999 0.0002 676.10

Graphite 10k 40.39 0.9940 0.0599 651.32
50k 44.90 0.9973 0.2024 732.91
100k 46.90 0.9983 0.1238 739.66
150k 48.16 0.9987 0.0105 801.18

2D 10k 39.75 0.9886 0.0769 857.30
50k 45.03 0.9955 0.2789 876.56
100k 48.82 0.9987 0.0071 942.78
150k 50.54 0.9992 0.0031 955.86
DIV2K dataset

Gaussian control method Initial Gaussians PSNR ↑ MS-SSIM ↑ LPSIS ↓ Training Time(s) ↓

Amorphous 10k 49.53 0.9987 0.0322 852.19
50k 52.23 0.9995 0.0112 902.80
100k 54.54 0.9998 0.0033 946.35
150k 56.40 0.9999 0.0014 975.44

Graphite 10k 40.75 0.9959 0.0457 983.41
50k 44.67 0.9980 0.0216 1008.52
100k 46.52 0.9986 0.0117 1082.41
150k 47.61 0.9989 0.0083 1103.69

2D 10k 38.40 0.9920 0.0616 1166.09
50k 42.86 0.9967 0.0275 1256.62
100k 46.32 0.9985 0.0124 1278.33
150k 48.46 0.9990 0.0065 1415.54

Table 4: Ablation study of the effect of adding the mirror camera as augmentation technique on
Kodak dataset measured using Frames Per Second (FPS) and memory storage.

Kodak dataset
Gaussian control method Camera Setting FPS Memory

(MB)
Compressed
memory
(MB)

Amorphous One camera 583.28 31.25 2.42

Mirror cameras 620.10 117.25 7.80

Graphite One camera 1157.75 30.71 2.68

Mirror cameras 650.75 117.91 9.22

2D One camera 1130.08 30.69 2.68

Mirror cameras 418.39 173.64 12.82
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