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ABSTRACT

The nightmare of cancer as a leading cause of premature deaths worldwide is be-
coming real and turns out to be one of the major problems of humanity nowadays.
Cancer diagnostics at the early stage is Critical to cancer recovery and survival. In
this context, renal diseases, including kidney cysts, stones, and tumors, pose sig-
nificant global health challenges, affecting approximately 12% of the population
and contributing to chronic kidney disease (CKD). Notably, renal cancer ranks
as the tenth most prevalent cancer type, accounting for 2.7% of all cancer cases.
This work presents a deep learning (DL) framework utilizing transfer learning
(TL) for the early detection of renal diseases and categorizing the conditions into
four binary classifications: Cyst vs Normal, Cyst vs Stone, Cyst vs Tumor, and
Stone vs Tumor, allowing for a more specific understanding of each stage. By
analyzing CT scans and microscopic histopathology images, the framework em-
ploys convolutional neural networks (CNNs) with pre-trained models to facilitate
automatic and precise classification of renal conditions. Specifically, two CNN
models ResNet-50 and EfficientNetV2 are implemented, providing a comprehen-
sive analysis of each stage of the DL architecture. Comparative evaluations of
training outcomes across various datasets revealed that EfficientNetV2 performed
marginally better than ResNet-50, achieving an impressive testing accuracy of up
to 100% for all cases. These results underscore the effectiveness of the DL-based
system and highlight its potential for widespread clinical application in renal dis-
ease diagnosis.
Keywords- CNN, kidney, image classification, deep learning, transfer learning

1 INTRODUCTION

Renal organs are vital, bean-shaped located below the rib cage that filters blood, removes waste, and
balances fluids and electrolytes, with each kidney containing about a million nephrons Raghavendra
& Vidya (2013). Additionally, they control blood pressure, stimulate red blood cell production
through hormone secretion, and maintain overall homeostasis, making their proper function essential
for health. Renal cancer originates in the kidneys when malignant cells form in the tubules, often
requiring treatments like immunotherapy Navani & Heng (2023). Early detection and advanced
medical interventions can significantly improve outcomes for affected individuals Jacobson (2013).
Kidney cancer is a growing public health concern, in the year 2022, it ranked as the 14th most
common cancer and the 16th leading cause of cancer-related death globally Can (2022) to the 5th
by 2040 Foreman et al. (2018). Kidney diseases commonly consist of cysts, stones, and renal cell
carcinoma (RCC) Hsieh et al. (2017), while nephrolithiasis affects approximately 12% of the global
population Alelign & Petros (2018). Despite control efforts, the prevalence of these conditions
continues to increase, highlighting the need for enhanced medical interventions and public health
strategies Hsieh et al. (2017). Computed tomography (CT) scans are particularly effective for kidney
examinations, offering three-dimensional, cross-sectional images ideal for identifying abnormalities
like cysts, stones, and tumors Sagel et al. (1977).

It is challenging for doctors to clinically determine invasive cancer by identifying the captured im-
ages, and it needs to administer safe and expensive treatments for the patients Wang et al. (2020).
Therefore, tracking the growth of every stage is essential to develop customized medications based
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on a patient’s disease profile Hsieh et al. (2017). There is a significant global shortage of nephrol-
ogists and radiologists, particularly in Asia, where there is only about one nephrologist for every
million people, in contrast to Europe, which has approximately 25.3 nephrologists per million Sozio
et al. (2021). Given the widespread impact of kidney diseases and the scarcity of specialists, devel-
oping DL-based models to assist in detecting kidney abnormalities has become essential Bi et al.
(2022). Recent advancements in DL-based models for vision tasks offer promising solutions to
support doctors and alleviate patient suffering.

This work is organized as follows: Section 2 discusses recent work that has been done previously.
Section 3 provides an overview of the dataset and details of the model training process, including
the initialization of weights. Additionally, this section offers a comprehensive overview of the DL
architectures employed. Two different CNN models are introduced, evaluating their performance
for detection across the four stages of renal disease. Finally, Section 4 presents concluding remarks
and outlines potential pathways for future works.

2 RELATED WORKS

CNNs are a powerful DL algorithm commonly used for classifying grid-like data, such as images Si-
monyan & Zisserman (2015); Szegedy et al. (2014); He et al. (2015a); Tan & Le (2020). Specifically,
renal US images are enhanced using median and Gaussian filtering techniques and morphological
operations Verma et al. (2017). Relevant features from images are extracted using various unsu-
pervised techniques and classified using supervised algorithms. In Aksakalli et al. (2021), authors
demonstrated a range of traditional supervised machine learning algorithms, including decision tree
(DT), random forests (RF), K-nearest neighbors (KNN), and multilayer perceptron (MLP), as well as
CNN. They achieved the best F1 score of 0.853 with those methods. In Sudharson & Kokil (2020),
they employed pre-trained CNN models like ResNet-101, MobileNet-v2, and ShuffleNet to extract
features from kidney US images, got an accuracy of 95.58% using support vector machine (SVM).
In Fu et al. (2021) residual dual-attention (RDA) module utilized for segmenting kidney cysts from
the CT images. In Zheng et al. (2019), combined features extracted through TL approaches, which
were subsequently utilized to distinguish between affected and non-affected ultrasound images by
SVM classifier. In Parakh et al. (2019), two consecutive CNN models were employed: first CNN
identified the urinary region, and second CNN detected the existence of stones, both achieved an ac-
curacy of 95%. In Yildirim et al. (2021) introduced an automated method for the detection of kidney
stones using coronal CT images and DL techniques, achieving an accuracy of 96.82%. In Blau et al.
(2018), researchers developed a system to detect kidney cysts in the images of abdominal CT scans
by utilizing a fully connected CNN. They reported an 84.3% true-positive rate (TPR) for their ap-
proach. In recent studies on kidney disease detection from CT images, the EANet, ResNet50, and a
customized CNN model achieved accuracies of 83.65%, 87.92%, and 98.66%, respectively Hossain
et al. (2023). In summary, initiatives employing ML and DL approaches to classify kidney-related
radiological findings have demonstrated encouraging outcomes, primarily concentrating on CT and
US images.

The rapid advancement of CNNs has led to the development and utilization of various DL architec-
tures Khan et al. (2020), including EfficientNet Tan & Le (2020) a highly efficient CNN by Google
AI that balances depth, width, and resolution for superior performance and reduced computational
cost in image classification tasks. After that, it was updated utilizing sophisticated DL methods like
the fused mobile inverted bottleneck (Fused-MBConv) operation to produce even better performance
and was named EfficientNetV2 Tan & Le (2021). While ResNet-50 CNN model has been granted
as a promising CNN model for image classification task He et al. (2015b). This study utilized the
EfficientNetV2 architecture and contrasted its performance with ResNet-50 for the classification of
four different stages of kidney cancer image dataset “CT KIDNEY DATASET” Kid (2022). This
study subdivided into four binary classifications: Cyst vs Normal, Cyst vs Stone, Cyst vs Tumor,
and Stone vs Tumor, aiming to distinguish between specific kidney conditions and streamline the
diagnostic process. Each of them trained to differentiate between them, allowing for more focused
and precise detection of kidney abnormalities. Those CNN models demonstrate high accuracy across
all conditions, highlighting their potential for kidney cancer diagnosis and prediction.
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Table 1: Kidney images dataset summary at four different stages
Label/Set Total Count Training Validation Test
Normal vs Cyst

Normal 5077 4077 479 521
Cyst 3709 2951 399 359
Combined 8786 7028 878 880

Cyst vs Stone
Cyst 3709 2992 349 368
Stone 1377 1077 158 142
Combined 5086 4069 507 510

Cyst vs Tumor
Cyst 3709 2993 359 357
Tumor 2283 1800 240 243
Combined 5992 4793 599 600

Stone vs Tumor
Stone 1377 1084 152 141
Tumor 2283 1844 214 225
Combined 3660 2928 366 366

3 RESULT AND DISCUSSION

3.1 DATSET OVERVIEW

The uploaded dataset in Kaggle Kid (2022), primarily sourced from picture archiving and commu-
nication system (PACS) at Dhaka, Bangladesh hospital Sharma & Lalwani (2024). Contains both
axial cuts and coronal from disparity and non-disparity studies, following protocols for the entire
abdomen and urogram, which were selected for collecting the images. Figure 1 displays sample
images of kidneys, with red marks highlighting the regions of interest that radiologists use to make
specific diagnoses.

Figure 1: Sample CT scans kidney cancer image data Kid (2022). (a) A normal kidney with, a
consistent and uniform structure without any abnormalities, serves as a baseline for comparison with
the other conditions. (b) Cysts, types of sacs filled with fluid, may vary in size and can sometimes
cause pain or other complications. (c) Stone, a hard deposit made of minerals and salts, can cause
severe pain and may require medical intervention. (d) A tumor, an abnormal growth of tissue, can
be benign or malignant (cancerous), such as RCC. The highlighted areas in red indicate the presence
of abnormal growth of tissue

Table 1 presents a dataset summary of the four conditions, detailing the total number of images,
in addition to the number of images for training, testing, and validation respectively. The “Nor-
mal vs Cyst” dataset at the top contains the largest number of images, totaling 8786 for training,
validation, and testing purposes. The “Cyst vs Stone” dataset in the middle comprises 5086 images,
“Cyst vs Tumor” dataset below it includes 5992 images. Lastly, the “Stone vs Tumor” dataset at
the bottom consists of 3360 images.
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Figure 2: Complete Workflow of an experiment for diagnosing kidney cancer at different condi-
tions. Images are resized to 224×224 as a height and width. After preprocessing the data, deep
CNNs He et al. (2015b), Tan & Le (2021) are then developed and trained, with weights optimized
through gradient descent. Sigmoid layer outputs provide the score for classifying each image. Fi-
nally, the accuracy metric is used to evaluate the model’s performance.

3.2 INITIALIZATION OF WEIGHTS

Weight initialization is a critical factor influencing the efficiency and effectiveness of NN train-
ing Vedanshu & Tripathi (2018). When weights are initialized to zero, a symmetry problem arises
during gradient descent, causing neurons within a layer to learn identical features and hindering
effective learning. To address this, specialized initialization methods like Xavier Glorot & Bengio
(2010) and He He et al. (2015c) initialization are utilized, each tailored to different activation func-
tions. Xavier initialization, also known as Glorot initialization Glorot & Bengio (2010), is designed
for layers using activation functions such as tanh and sigmoid. This method initializes weights using
a uniform distribution:

WXav = U

(
− 1√

m
,

1√
m

)
(1)

Where the number of input neurons is represented by m. Xavier initialization helps maintain the
variance of activations and gradients throughout the network layers Ramachandran et al. (2017).
This promotes smoother convergence during gradient descent, preventing the gradients from van-
ishing or exploding, which can be crucial for deep networks. For activation functions like ReLU
or SiLU Agarap (2019), Xavier initialization can lead to vanishing gradients, particularly for deep
networks. He initialization, also known as Kaiming initialization, addresses this by using a Gaussian
distribution for weight initialization:

WHe = N

(
0,

√
2

m

)
(2)

where N (0, σ2) denotes a normal distribution with mean 0 and σ2 He et al. (2015c). This ap-
proach scales the weights to ensure that the variance of the activations remains consistent, which
is particularly important for ReLU and similar activation functions that can otherwise suffer from
sparse gradients. Modern NN architectures such as ResNet-50 and EfficientNetV2 predominantly
use ReLU or SiLU activation functions, as a result, creators of those models used He initialization
in these layers He et al. (2015b). Consequently, these models typically employ He initialization
to ensure effective training. ResNet-50, leverages residual connections that help mitigate the van-
ishing gradient problem, and He initialization further complements this by maintaining appropriate
gradient scales. EfficientNetV2, emphasizing optimization accuracy and computational efficiency,
similarly benefits from He initialization to achieve robust performance.

TL Zhuang et al. (2020) is a powerful technique that significantly enhances training efficiency, es-
pecially when data is limited. It involves taking a pre-trained model, often trained on a large dataset
like ImageNet, and fine-tuning it for a different but related task. By initializing the model with
pre-trained weights, such as those from ImageNet Abadi et al. (2016b), TL allows the model to
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leverage previously learned features and patterns. This provides a strong starting point and leads to
more effective training with less data Abadi et al. (2016b). For example, when fine-tuning ResNet-
50 or EfficientNetV2 for a new task, initializing with pre-trained ImageNet weights enables faster
convergence and often results in better performance than training from scratch.

3.3 TRAINING RESULT AND DL MODELS

Two modern CNN architectures ResNet-50 and EfficientNetV2 are used, and both models were
trained and evaluated using TensorFlow Abadi et al. (2016b); Tan & Le (2021); He et al. (2016). To
ensure optimal performance, a TensorFlow checkpoint mechanism was implemented for tracking the
accuracy of each epoch during the validation process, which allowed us to keep into record of the
topmost model weights after the training process Abadi et al. (2016a). The training for both ResNet-
50 and EfficientNetV2 was conducted over 10 epochs with 256 iterations per epoch. The best
weights for the ResNet-50 model were saved at epochs 06, 10, 05, and 08 for the Cyst vs Normal,
Cyst vs Stone, Cyst vs Tumor, and Stone vs Tumor datasets, respectively. In contrast, the Effi-
cientNetV2 model achieved its best weights at epochs 09, 10, 07, and 10 for the same datasets.

Figure 3: (a) A brief architecture of the Resnet-50 model representing through step-by-step process.
The framework demonstrates a forward-passing process through a feature extraction stage (at the
top) and a binary classification stage (at the bottom). (b) Graphical representation of training for
four conditions. Left and right column represents the model accuracy and loss after the training
(blue line) and validation (orange line) process.

The ResNet-50 model, developed by Microsoft in 2015, is a well-known CNN architecture demon-
strating outstanding accomplishment on the ImageNet dataset He et al. (2015b). As shown in Fig-
ure 3 (a), the architecture comprises a feature extraction and a binary classification. At the top five
distinct stages are included for feature extraction, which recognize the most valuable features from
the given input image tensor, Apart from that binary classification layers are employed at the bottom
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using the sigmoid activation function S(x). During feature extraction, the last four layers (2–5) con-
tain a combination of convolutional and identity blocks He et al. (2015b), Simonyan & Zisserman
(2015), as depicted in Figure 3 (a). Each of these blocks incorporates a skip connection, in addition
to convolutional layers and batch normalization Ioffe & Szegedy (2015). These skip connections
help mitigate issues related to vanishing and exploding gradients, allowing the model to effectively
utilize a greater number of layers and learn more complex features, ultimately leading to improved
accuracy. After extracting high-level features, the intermediate output image tensor got flattened
before passing through the final fully connected layer as illustrated in Figure 3 (a). The feature ex-
tractor’s output (originally 7 × 7 × 2048) is flattened out into a one-dimensional array of size 2048,
by averaging the first two dimensions using global average pooling Lin et al. (2014). FC and dropout
layers then reduce the 2048-node array to a one-dimensional final output of 512 nodes. The final
prediction is obtained by the FC layer at the end, which includes a sigmoid activation function.

Figure 4: (a) A brief architecture of the EfficientNetV2 model representing through step-by-step
process. The framework demonstrates a forward-passing process through a feature extraction stage
(at the top) and a binary classification stage (at the bottom). The number of channels at each MB-
Conv block is expanded, represented by the expansion component (E). (b) Graphical representation
of training for four categories. Left and right column represents the model accuracy and loss after
the training (blue line) and validation (orange line) process.

The training and validation process results, shown in Figure 3 (b), demonstrate the ResNet-50 model
accuracy and loss for each category over the epochs. The training accuracy and loss consistently
trend upward and downward from the start, while validation shows some fluctuations. Implementing
a TensorFlow checkpoint Abadi et al. (2016b), the most effective epoch is identified throughout the
training process. As a result, the best weights were retained corresponding to the best validation
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accuracy, ensuring that the validation images were not included in the training phase. This approach
led to improved accuracy in testing.

Now for the second model, EfficientNetV2 represents cutting-edge supervised tasks, developed by
Google Brain in 2021 Tan & Le (2021). This model leverages the method, known as neural ar-
chitecture search (NAS) Tan et al. (2019), which systematically explores various ML architectures
to identify the most effective design by sampling different configurations and evaluating their per-
formance. EfficientNetV2 builds upon its predecessor, EfficientNetV1, by optimizing speed during
training and incorporating a valuable operation, Fused-MBConv at the earlier layers. Unlike the
original EfficientNetV1, which employs depthwise convolutions, the Fused-MBConv layer utilizes
standard 3 × 3 convolutions, as illustrated in Figure 4 (a). Additionally, EfficientNetV2 incorporated
strategies from several prior studies to enhance training efficiency keeping the number of parameters
at manageable levels. One such technique is progressively adaptive regularization by learning, pro-
viding a regularized framework that aligns with the image resolution during training Sandler et al.
(2019). This approach gradually adjusts the regularization and image size, starting with lower val-
ues in the early epochs and increasing them in later stages. Although progressive learning was not
implemented here, the TL methods reduced the number of parameters and allowed for a significant
reduction in training time approximately less than the ResNet-50 model. The principal components
of the EfficientNetV2 architecture include MBConv and Fused-MBConv layers, which are reused
multiple times throughout the model. As depicted in Figure 4 (a), the architecture is divided into
segments for feature extraction and binary classification similar to ResNet-50. The feature extractor
begins with a stem that includes a standard convolution layer, followed by six distinct blocks that
consist of several repetitions of Fused-MBConv and MBConv layers. After collecting feature tensors
of size 7 × 7 × 1280, global average pooling is applied Lin et al. (2014), resulting in a single value
per channel. Then passing through three layers (two ReLU activation and one sigmoid activation)
output is obtained.

The training and validation process results, shown in Figure 4 (b) demonstrate the model accuracy
and loss over each category across the epochs. The Cyst vs Normal dataset is shown at the top,
followed by Cyst vs Stone and Cyst vs Tumor in the middle, and Stone vs Tumor at the bottom.
Similar to ResNet-50 the most effective epoch is identified throughout the training process, by im-
plementing a TensorFlow checkpoint Abadi et al. (2016b). As a result, the best weights are retained
corresponding to the best validation accuracy. While the training time of EfficientNetV2 is much
faster than the ResNet-50. Overall, the EfficientNetV2 model demonstrates comparable stability in
accuracy and loss to the ResNet-50 model. Training with EfficientNetV2 was approximately faster
than ResNet-50, thanks to optimizations introduced through neural architecture search (NAS).

3.4 MODEL PERFORMANCE

The performance of the ResNet-50 model across four binary classifications demonstrates its high
reliability in medical image classification [see Figure 5]. The model achieves perfect or near-perfect
accuracy in all four conditions, with minimal misclassifications, highlighting its robust capability in
distinguishing between the conditions. The Cyst vs Tumor task shows a slight decrease in perfor-
mance compared to the others, reflecting the inherent challenge in differentiating these two classes.
Precision remains consistently at 100% for all tasks, indicating the absence of false positives, while
recall is also perfect except for a minor reduction in the Cyst vs Tumor task. These results estab-
lish ResNet-50 as a highly effective tool for binary classification in medical imaging, capable of
delivering reliable predictions with minimal errors across diverse categories.

In contrast, the EfficientNetV2 model demonstrates strong performance across the four binary clas-
sification tasks [see Figure 6]. It achieves perfect accuracy for all tasks and near-perfect accuracy in
the Cyst vs Stone. Precision remains consistently high across all of the classifications, with only a
slight drop in the Cyst vs Stone. Similarly, recall is perfect across all classifications. These results
underscore the model’s reliability and effectiveness in medical image classification, with minimal
errors, making it well-suited for clinical applications.

Both models exhibit similarly high performance across all four binary classification tasks, but Ef-
ficientNetV2 shows a slight advantage in the Cyst vs Tumor, where it achieves flawless classifica-
tion, unlike ResNet-50, which had minor misclassifications. However, EfficientNetV2 experienced a
small dip in precision during the Cyst vs Stone task, where ResNet-50 maintained perfect precision.
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Figure 5: Performance of ResNet-50 model over the test sets of four different conditions. (a)
Cyst vs Normal (b) Cyst vs Stone (c) Cyst vs Tumor (d) Stone vs Tumor represents binary confu-
sion matrix. (e) shows the accuracy and AUC score for each binary classification, while (f) displays
the corresponding precision and recall metrics.

Figure 6: Performance of EfficientNetV2 model over the test set. (a) Cyst vs Normal (b)
Cyst vs Stone (c) Cyst vs Tumor (d) Stone vs Tumor represents binary confusion matrix. (e) shows
the accuracy AUC score for each binary classification, while panel (f) displays the corresponding
precision and recall metrics.

Overall, both models deliver remarkable accuracy, EfficientNetV2 shows a slightly more consistent
recall performance across all tasks, making it a marginally more robust model for medical image
classification, especially when subtle class distinctions are involved. Even small gains in accuracy,
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Figure 7: Receiver Operating Characteristic (ROC) curves for two deep CNN models: (a) ResNet-
50 and (b) EfficientNetV2, across multiple binary classification tasks. The plots represent the
True Positive Rate (TPR) against the False Positive Rate (FPR) for the four different conditions:
Cyst vs Normal, Cyst vs Stone, Cyst vs Tumor, and Stone vs Tumor, along with a reference ran-
dom classifier (AUC = 0.5). The AUC values indicate excellent classification performance, with
most tasks achieving AUC values close to 1.

as seen with models like EfficientNetV2 compared to ResNet-50, could have significant implications
for future medical applications. The high levels of accuracy achieved with these datasets highlight
the potential of deep CNNs in medical image analysis. These findings point toward a promising
research direction in the precise identification of renal disease subtypes, where the ability of CNNs
to detect subtle variations in images could lead to more effective and reliable diagnostic tools in
healthcare.

4 CONCLUSION

The DL frameworks presented in this study effectively address the critical need for early detection of
renal diseases. By leveraging TL and advanced CNNs system achieved remarkable testing accuracy
of up to 100% across multiple classifications. These findings not only demonstrate the potential for
precise and automatic classification of renal conditions but also highlight the framework’s applica-
bility in clinical settings. By improving early diagnosis, this approach could lead to better patient
management, reduced rates of chronic kidney disease, and ultimately improved survival rates in
renal cancer. However, future work is needed to inflate the robustness and generalizability of the
model. This includes expanding the dataset to encompass a wider variety of demographic and clini-
cal variables, integrating multimodal imaging techniques, and conducting prospective clinical trials
to validate performance in real-world scenarios. Additionally, further research could focus on the
interpretability of the model’s predictions to support clinicians in decision-making processes.
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