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ABSTRACT

Federated Learning (FL) facilitates collaborative model training across a network
of decentralized clients, enabling the development of global models without re-
quiring raw data exchange. This approach preserves data privacy and security by
keeping data localized on individual devices, but remains vulnerable to gradient
inversion attacks. Existing defense mechanisms rely on global noise injection,
which not only causes excessive utility loss or computational overhead but also
fails to adequately protect sensitive information requiring additional emphasis. In-
tensified global perturbations to protect these local sensitive areas can compromise
the overall utility of the image. This issue is particularly pronounced in sparse
medical imaging data, where critical features are localized in specific regions.
To address this challenge, we propose Federated Critical-Region-Aware Perturba-
tions (FedCRAP), a novel defense framework that leverages gradient-guided spar-
sity patterns. FedCRAP strategically injects noise into task-critical regions iden-
tified by high gradient magnitudes, aligning perturbations with the intrinsic spar-
sity of medical imaging data. By integrating domain-specific sparsity awareness,
FedCRAP achieves a favorable balance between privacy preservation and model
performance. This provides a finer and more specific noise protection strategy,
making it particularly effective. Extensive experiments across various datasets,
including sparse medical datasets, demonstrate that FedCRAP preserves model
accuracy while significantly reducing privacy leakage risks. It also shows clear
superiority over previous state-of-the-art (SoTA) methods for privacy-preserving
federated learning.

1 INTRODUCTION

In the contemporary era, where artificial intelligence (AI) has achieved significant maturity and
widespread application, data has emerged as the most invaluable asset of the information age. AI
continues to empower various sectors; however, with its rapid development, researchers have tran-
sitioned their focus from merely the volume of data to concerns regarding data privacy and se-
curity. In response, numerous countries and regions have enacted legislation to protect user data
privacy(Regulation, 2018). Medical data, owing to its sensitive and unique nature, has consistently
been at the forefront of privacy protection issues(Act, 1996), leading to challenges in utilizing such
data for machine learning training purposes.

Federated Learning (FL), as a distributed machine learning paradigm, implements the design phi-
losophy of ”moving models instead of data” (McMahan et al., 2017; Li et al., 2024), enabling col-
laborative training of global models without sharing local data. This significantly reduces the risk of
data privacy leakage and innovatively addresses the core contradiction between data utilization and
privacy protection, demonstrating particular value in the medical field.

Although FL’s distributed architecture and privacy protection objectives solve the data silo problem,
its unique structure and operation mechanism also create opportunities for various attacks. Member-
ship inference (Shokri et al., 2017), attribute inference (Shokri et al., 2017), and Gradient Leakage
Attacks(GLAs) (Zhu et al., 2019) represent three typical types of machine learning privacy attacks.
Among these, GLAs is particularly prevalent. In FL, each participant keeps their data locally, shar-
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Figure 1: FedCRAP Framework Overview.

ing only model parameters or gradient updates during training. However, gradients contain sensitive
information about the data (Lyu et al., 2020). GLAs attempts to recover original data by illegally
obtaining shared gradients exchanged between clients and the server, posing risks of sensitive data
leakage from FL participants.

Privacy protection remains a core challenge in FL. To mitigate privacy risks, researchers have pro-
posed various methods, primarily including encryption techniques, differential privacy, and its vari-
ants such as Centralized DP (CDP) (Geyer et al., 2017) and Local DP (LDP) (Sun et al., 2020).
However, these methods still face significant challenges in balancing privacy and utility, where dif-
ferential privacy becomes a trade-off between noise injection and model performance. Compared
to LDP methods that apply global noise in gradient space, FedEM(Xu et al., 2025) innovatively
embeds structured perturbations in client data space, achieving a more favorable balance between
utility and privacy protection than previous approaches.

These traditional privacy protection methods blindly add noise globally without discrimination, ig-
noring that information density varies across different regions of an image. Applying equal-intensity
noise to non-critical secondary areas not only increases useless information perturbation but may
also lead to privacy leaks due to insufficient protection in information-dense key areas. This issue is
particularly pronounced in medical data with evident sparsity (Ye & Liu, 2012; Chuang et al., 2007;
Huang et al., 2009; Otazo et al., 2015; Davoudi et al., 2019; Fang et al., 2013). To address this chal-
lenge, we propose FedCRAP, a novel approach that strategically perturbs high-information-density
pixels. Guided by gradient values, FedCRAP sequentially adds differentiated noise across various
image regions, tailoring the noise to each image. This targeted perturbation ensures that sensitive ar-
eas receive robust privacy protection without over-disturbing non-critical regions, thereby achieving
a more favorable balance between utility and privacy. Moreover, considering that medical workflows
frequently involve operations such as cropping, FedCRAP’s focus on perturbing key image regions
ensures that its protective efficacy remains robust despite such modifications.

The primary contributions of this work are as follows:

• Problem Identification: We identify a gap in existing FL privacy-preserving methods,
which often overlook the unique characteristics of different image regions by applying
uniform noise, thereby failing to provide optimal privacy protection, especially in sparse
medical images.

• Methodology: We propose Federated Critical-Region-Aware Perturbations (FedCRAP),
an innovative method that confines perturbations to specific regions, ensuring that models
trained on privacy-protected data maintain utility while being resilient against attacks like
GLAs.
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• Empirical Validation: Through comprehensive evaluations across multiple datasets, we
demonstrate that FedCRAP achieves a superior balance between utility and privacy in FL
systems, offering more refined and effective privacy protection for medical data.

In summary, this paper presents a targeted approach to enhancing privacy protection in federated
learning for medical applications, addressing existing shortcomings and paving the way for more
secure and efficient collaborative learning in healthcare.

2 RELATED WORKS

2.1 ATTACK METHODS IN FEDERATED LEARNING

Federated learning enables multiple clients to collaboratively train machine learning models without
exposing their raw data. While this decentralized paradigm provides a degree of privacy protection,
it does not eliminate all risks. Studies have shown that FL remains vulnerable to privacy leakage
through shared model updates. Among various attack vectors, inference attacks, which aim to extract
information about the training data were widely studied in early work (Salem et al., 2018; Ganju
et al., 2018; Melis et al., 2019; Song & Mittal, 2021). However, as defense mechanisms against such
attacks have matured and their practical impact has been reassessed, recent research has shifted its
focus to a more severe and direct threat: gradient leakage attacks.

Gradient leakage attacks attempt to reconstruct client-side training data by exploiting the gradients
exchanged during training. These attacks are especially concerning in privacy-critical applications
such as healthcare and finance. Based on methodology, they can be broadly categorized into two
types: gradient analysis attacks and gradient matching attacks.

Gradient analysis attacks exploit the mathematical structure of gradients to analytically recover input
data. Aono et al. (2017) first showed that inputs to fully connected layers with bias terms can be
exactly recovered from gradients. Zhu & Blaschko (2020) extended this approach to convolutional
and bias-free layers, enabling layer-wise reconstruction in deep neural networks. Lu et al. Zhao
et al. (2024b) designs a dedicated attack neural network that leverages the reconstructed private data
as training samples for secondary learning, enhancing the efficiency and effectiveness of the attack.
In the language domain, Gupta et al. (2022) leveraged pre-trained model priors and beam search to
reconstruct likely input sequences. Malicious server settings were further explored in (Fowl et al.,
2021; 2022), where attackers injected specially designed components or manipulated model weights
to enhance gradient leakage.

Gradient matching attacks instead treat data recovery as an optimization problem. Given a set of
gradients, the attacker iteratively updates dummy inputs to minimize the discrepancy with the ob-
served gradients. This approach was formalized by Zhu et al.Zhu et al. (2019) as the Deep Leakage
from Gradients (DLG) method, Zhao et al.Zhao et al. (2020) proposed iDLG by assuming known
labels, which improves convergence and accuracy. Geiping et al. (2020) introduced cosine similarity
as a distance metric and demonstrated effective reconstruction of high-resolution images. In NLP,
Balunovic et al. (2022) combined gradient matching with language model priors to iteratively refine
generated token sequences. More recently, Yue et al. (2023) proposed a framework that integrates
low-dimensional feature optimization and image enhancement modules, improving both speed and
semantic quality of reconstruction under defense mechanisms.

The above analysis demonstrates that gradient leakage attacks have evolved rapidly in both method-
ology and scope, encompassing increasingly sophisticated strategies across different model archi-
tectures and data modalities. Existing defense mechanisms remain inadequate when confronted
with these advanced threats, underscoring the urgent need for more robust and efficient privacy-
preserving techniques to safeguard federated learning against evolving privacy risks.

2.2 PRIVACY-PRESERVING MECHANISMS IN FEDERATED LEARNING

To address the privacy risks faced by federated learning, a wide range of privacy-preserving tech-
niques have been proposed. The most prominent among them include perturbation-based mech-
anisms grounded in DP (Reshef & Levy, 2024; Malekmohammadi et al., 2024; Gao et al., 2024;
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Wu et al., 2024), and cryptography-based encryption methods (Yan et al., 2024; Kumar et al., 2024;
Zhao et al., 2022).

Differential privacy has become one of the most widely adopted privacy-preserving techniques in
FL due to its rigorous mathematical definition and verifiable privacy guarantees. First introduced
by Dwork et al.Dwork et al. (2006), DP has been extensively applied in FL by injecting carefully
designed noise into model updates or gradients to defend against gradient leakage and inference
attacks. Depending on the location where the perturbation is added, DP mechanisms in FL can
be categorized into LDP(Sun et al., 2020; Liu et al., 2020) and CDP(Miao et al., 2022), where
LDP applies noise on the client side, and CDP performs centralized noise addition on the server.
Recent works have further advanced DP in FL: Reshef et al.Reshef & Levy (2024) proposed a novel
DP mechanism based on stochastic optimization; Malekmohammadi et al.Malekmohammadi et al.
(2024) introduced an adaptive noise injection strategy for heterogeneous data scenarios to improve
model utility while maintaining privacy; Wu et al.Wu et al. (2024) combined coding techniques with
DP to enhance its effectiveness.

In addition to differential privacy, cryptographic approaches have also been explored to ensure pri-
vacy in FL, including homomorphic encryption(Yan et al., 2024; Kumar et al., 2024) and secure
multi-party computation (SMC)(Zhao et al., 2022). These methods encrypt model parameters or
gradients and allow computations to be performed on encrypted data, theoretically ensuring privacy
throughout the communication and aggregation process. However, due to their high computational
complexity and communication overhead, these techniques remain challenging to deploy at scale in
real-world FL systems.

Furthermore, several recent studies have proposed alternative approaches to mitigate privacy risks.
For instance, (Zhao et al., 2024a; Maddock et al., 2024) applied data compression techniques to
reduce exposure of sensitive information, while (Zhang et al., 2024) explored centralized training
schemes to avoid gradient sharing during model updates. While these methods can enhance commu-
nication efficiency and reduce data leakage risks, they currently lack systematic theoretical analysis
and rigorous privacy guarantees.

2.3 PRIVACY-UTILITY TRADE-OFF IN FEDERATED LEARNING

With the continuous development of privacy protection and attack technologies, one of the key chal-
lenges faced by Federated Learning (FL) is how to balance privacy protection and model utility. In
FL, participants collaborate to optimize a global model by exchanging model parameters or gradient
information. Although raw data is not directly shared, the transmitted parameters or gradients may
still inadvertently leak sensitive details about the local data. To mitigate privacy risks, additional pri-
vacy protection measures are often introduced. However, these measures frequently interfere with
the model training process, leading to reduced model performance, slower convergence, or higher
resource and communication costs to achieve the same level of accuracy.

Existing research on the trade-off between privacy and utility in FL tends to follow two main direc-
tions. On one hand, some studies emphasize model performance but fail to adequately consider the
privacy risks involved in the parameter exchange process, which could lead to sensitive data leakage
(Fallah et al., 2020; Balakrishnan et al., 2022). On the other hand, other studies focus excessively on
privacy protection, adopting stringent privacy mechanisms (such as strong differential privacy pa-
rameters or high-intensity encryption), which significantly reduce model accuracy (Wei et al., 2020;
Zhu et al., 2021). The existence of these two extreme tendencies indicates that the reasonable bal-
ance between privacy protection and model utility has yet to be systematically addressed, becoming
a major bottleneck that hinders the widespread application of FL.

Recently, some studies have attempted to analyze the inherent mechanisms of the privacy-utility
trade-off from a theoretical perspective. For instance, Zhang et al. Zhang et al. (2022) introduced
the ”no free lunch” theorem for FL, stating that privacy protection necessarily involves interventions
in model updates or parameter information. While such interventions reduce the risk of privacy
leakage, they also inevitably lead to a loss in model utility, and vice versa. Additionally, Zhang
et al. (2023a) proposed the FedPAC framework, which uses the sample complexity from Probably
Approximately Correct (PAC) learning theory to unify the measurement of privacy leakage, utility
loss, and training efficiency. This framework transforms the multi-objective optimization problem
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into a single-objective optimization problem, simplifying the computational process while providing
a detailed analysis of privacy leakage, utility loss, and protection mechanisms.

Despite these efforts, the FL field still lacks a systematic and generalizable theoretical framework
and optimization algorithms for the privacy-utility trade-off. Therefore, establishing a scientifi-
cally sound analysis framework and achieving personalized balances between privacy protection
and model utility for different application scenarios remain critical challenges in FL research.

3 FEDERATED CRITICAL-REGION-AWARE PERTURBATIONS FOR PRIVACY
PROTECTION

3.1 FEDERATED LEARNING

We investigate the privacy preservation problem in federated learning to mitigate sensitive infor-
mation leakage caused by gradient leakage attacks (GLAs). In a federated learning framework
with K clients collaboratively training a global model, each client i holds a local dataset Di. The
server maintains global model parameters θ ∈ Rd. During the t-th communication round, each
client computes a local gradient g(t)i ≜ ∇Li(θ

(t)), where Li(θ) = 1
|Di|

∑
(x,y)∈Di

ℓ(fθ(x), y)

represents the empirical loss over Di. The server aggregates these gradients into a global gra-
dient g(t) =

∑K
i=1 αig

(t)
i , with αi = |Di|∑K

j=1 |Dj |
weighting the contribution of each client based

on its dataset size. This aggregated gradient is used to update the global model parameters via
θ(t+1) = θ(t) − ηg(t), where η is the learning rate. The process repeats until convergence, aiming to
minimize the weighted loss L(θ) =

∑K
i=1 αiLi(θ).

3.2 ATTACK MODEL

The federated learning framework employs gradient-based parameter transmission, where clients
and the server exchange gradient vectors instead of raw data or model parameters. Within this ar-
chitecture, gradients g

(t)
i = ∇Li(θ

(t)) computed from local datasets Di are transmitted through
potentially insecure channels. A critical vulnerability arises from semi-honest adversaries – enti-
ties adhering to protocol specifications while passively intercepting transmitted gradients. These
adversaries exploit gradient leakage to launch gradient inversion attacks (Zhu et al., 2019), aiming
to reconstruct sensitive input samples (x, y) ∈ Di through iterative optimization:

min
x̂,ŷ

∥∥∥∇θℓ(fθ(x̂), ŷ)− g
(t)
i

∥∥∥2
2

(1)

This attack paradigm leverages the intrinsic correlation between gradient directions and training data
characteristics. Specifically, gradient components corresponding to salient features in Di exhibit
higher magnitudes, enabling adversaries to approximate input patterns through gradient matching.

3.3 FEDCRAP

3.3.1 ALGORITHM OVERVIEW

In the domain of Unlearnable Examples, (Sun et al., 2024b) proposed strategically poisoning local
regions of medical images to render the data unusable for unauthorized model training—this design
effectively blocks unintended learning on sensitive medical data by disrupting task-critical features
in targeted areas.

Building on this region-aware insight, we introduce a key creative adaptation: rather than limiting the
regional modification strategy to ”preventing unauthorized training” (the original goal of unlearnable
examples), we transplant this design philosophy into the privacy-preserving scenario of federated
learning (FL). More importantly, we reframe the original ”poisoning” operation— which aimed to
invalidate data for learning—into a dynamic masking mechanism tailored for FL’s unique privacy
risks. This masked mechanism focuses on protecting critical data regions (instead of disabling
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them) and is specifically optimized to defend against Gradient Leakage Attacks (GLAs), directly
addressing the core challenge of sensitive data leakage from shared gradients in FL.

To better highlight the innovation of FedCRAP, it is necessary to first clarify the core characteristics
of existing representative privacy-preserving methods—including Differential Privacy (DP) variants
and FedEM—and their inherent limitations, which FedCRAP is designed to address. DP variants
(e.g., DP-Gas, DP-Lap, DP-Clip) are typical perturbation-based methods grounded in differential
privacy theory: they inject random noise (e.g., Gaussian, Laplacian) into model gradients or updates
in a globally undiscriminating manner—DP-Lap and DP-Gas add noise to gradient values directly,
while DP-Clip first clips gradient norms to control sensitivity before adding noise. These methods
rely on adjusting privacy budgets (ϵ, δ) to balance privacy and utility, but they ignore the heteroge-
neous information density across different image regions: critical regions (with high task relevance)
may receive insufficient noise due to ”one-size-fits-all” global perturbation, while non-critical re-
gions are burdened with redundant noise, leading to either privacy leakage or excessive utility loss.
FedEM (Xu et al., 2025), a recent data-space perturbation method, improves upon DP by embed-
ding structured perturbations into client-side raw data rather than gradient space, achieving a better
utility-privacy balance than traditional DP. However, FedEM still treats the entire image as a uniform
entity, failing to distinguish between task-critical and non-critical regions; its structured perturba-
tions are applied globally, which means it still cannot avoid over-perturbing non-essential areas or
under-protecting sensitive regions in sparse data (e.g., medical images).

FedCRAP enhances privacy preservation in federated learning by strategically perturbing critical
regions of input data identified through gradient sensitivity analysis. Unlike conventional noise
injection, FedCRAP introduces a spatially constrained perturbation mechanism guided by a dynamic
mask M , which localizes to the most sensitive and information-dense regions of the image. By
precisely adding noise to different local areas of the image multiple times, the sensitive regions of
the entire image are well protected. At the same time, excessive noise is not added to unimportant
areas. This approach reduces privacy leakage caused by Gradient Leakage Attacks (GLAs) while
also maintaining the usability of the data.

The mask is derived from gradient magnitude rankings, ensuring perturbations maximize privacy
protection while minimizing utility degradation. The core innovation lies in integrating a bi-level
optimization framework with sparsity-aware adversarial training.

3.3.2 OBJECTIVE FUNCTION

In the research problem of adding noise to protect data privacy without significantly affecting the
utility of the data, we need to consider two optimization objectives:

Model Utility Objective Function Term(Xu et al., 2025):

min
θ

min
δ1,δ2,...,δK

K∑
k=1

|Dk|
|D|

E(xk,yk)∼Dk
[L (fθ (t (xk + δk)) ,yk)] (2)

Privacy Protection Objective Function Term:

max
δk

Ex̂

[
∥x̂−A (g̃ (xk + δk,θ))∥p

]
(3)

Let θ denote the global model parameters, δk denotes the perturbation vector for client k,
g̃ (xk + δk,θ) denotes the gradients in federated learning that have been defended by adding noise,
as stolen by DLG attacks, A denotes Attack model simulating a gradient leakage attack

The Model Utility Objective Function Term aims to minimize the loss of model utility caused by
perturbation injection, ensuring that FedCRAP’s privacy protection does not undermine the global
model’s task performance (e.g., diagnostic accuracy for medical images).The Privacy Protection
Objective Function Term aims to maximize the difficulty of gradient leakage attacks, ensuring that
even if attackers steal the defended gradient g̃ (xk + δk), they cannot accurately reconstruct the
original sensitive data xk(e.g., patient medical images).
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3.3.3 ALGORITHM DETAILS

Mk the binary mask indicating critical regions. We have the following restriction requirements for
the added noise:

ρmin
u ≤ ∥Mk ⊙ δk∥p ≤ ρmax

u , ∥Mk∥0 ≤ m. (4)

Here, ρmin
u and ρmax

u constrain the allowed norm for perturbation δk , m constrains the sparsity of
the mask (i.e., the number of perturbable pixels per perturbation or the percentage of perturbable
pixels relative to the entire image.), and ⊙ denotes element-wise multiplication. The mask Mk is
dynamically generated based on gradient magnitudes to prioritize information-dense and privacy-
sensitive regions.

Perturbation Update Rule : In each step of the noise generation process, We address the constrained
minimization problem in Eq(2) by employing the PGD(Madry et al., 2019) to determine the global
noise(which will later be processed into local noise using a mask) added each step:

δt+1
k = Πρmin

u ≤∥Mk⊙δk∥p≤ρmax
u

(
δtk − αu · sign (P (Gk, τ)t)

)
, (5)

where τ denote the percentage of perturbable pixels relative to the entire image . The direction
of noise update in each round is determined by P , ensuring updates only occur in critical regions,
which reduces unnecessary distortion . P will be further introduced below.

Mask Generation : Regarding the generation process of the mask, we employ the method from Sun
et al. (2024b) . To better focus on local areas and provide a more refined noise addition strategy, we
utilize Mk to locally perturb the image with noise. The process of determining the local regions for
each round of noise addition is as follows.

P (Gk, τ) = Mk ⊙Gk (6)

The mask Mk is constructed by thresholding the gradient map Gk = ∇xL(fθ(xk), yk). For each
input x, Compute the gradient Gk via backpropagation,Determine the τ -percentile value gτ of Gx

and generate the mask:

M(i,j) =

{
1, g(i,j) ≥ gτ
0, otherwise (7)

FedCRAP addresses the privacy-utility trade-off in federated learning through spatially aware per-
turbations. We illustrate the noise addition process for specific data points using the BloodMNIST
dataset in Appendix. By integrating gradient sensitivity analysis with sparsity constraints, it achieves
stronger privacy guarantees than FedEM while maintaining competitive model performance.

Table 1: Comparison of different methods.
DATASET METHOD Val ACC(U,↑) Test ACC(U,↑) Test MSE(P,↑) Feature MSE(P,↑) PSNR(P,↓) SSIM(P,↓)

Clean 0.8560 0.8523 0.8064 0.8206 10.5880 0.2453
DP-Gas 0.6653 0.6667 0.1919 0.0022 16.7570 0.6170
DP-Lap 0.6284 0.6297 0.1666 0.0069 17.2290 0.5922

FMNIST DP-Clip 0.8429 0.8365 0.5111 1.6929 14.0510 0.3667
FedEM 0.8357 0.8354 0.8213 1.7213 10.0320 0.1454

FedCRAP(Ours) 0.8634 0.8470 1.2212 6.1792 8.6519 0.1317
Clean 0.9819 0.9768 0.9324 2.0676 11.3870 0.1573

DP-Gas 0.7765 0.7813 0.6284 0.0284 13.4210 0.4703
DP-Lap 0.6550 0.6483 0.2418 0.0120 9.7231 0.6536

MNIST DP-Clip 0.9523 0.9502 1.2227 2.2886 9.0826 0.1163
FedEM 0.9711 0.9671 1.1800 7.7600 9.8471 0.1131

FedCRAP(Ours) 0.9768 0.9732 1.2162 6.4864 10.2659 0.1088

4 EXPERIMENTS AND RESULTS

4.1 FL SETTINGS

To evaluate privacy-preserving mechanisms in federated learning (FL), we conduct experiments
on three benchmark datasets: MNIST(Deng, 2012)and FashionMNIST(Xiao et al., 2017). These
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Figure 2: Visualization of the Results of Different Privacy Protection Algorithms Against DLG
Attacks

datasets span varying complexities and modalities: MNIST and FashionMNIST comprise 60,000
training and 10,000 testing grayscale images across 10 classes. To emulate real-world FL scenarios,
each dataset is partitioned into non-overlapping subsets distributed across 4 clients under an IID
split, with an 80-10-10 ratio for training, validation, and testing to ensure reproducibility.

We adopt ResNet-18(He et al., 2016) as the base model, balancing computational efficiency and clas-
sification performance. The FL framework follows the FedSGD protocol(McMahan et al., 2017),
where clients execute local stochastic gradient descent (SGD) updates with a learning rate of 0.01,
momentum of 0.9, and no weight decay to isolate regularization effects. Each client trains for 1 local
epoch per communication round using a batch size of 8, while global aggregation operates over 50
epochs to ensure convergence. Early stopping halts training if validation accuracy plateaus for 40
consecutive rounds, mitigating overfitting risks.

4.2 EVALUATION METRICS

To evaluate the impact of privacy-preserving methods on dataset utility and investigate the trade-
off between privacy protection and data usability(Zhang et al., 2023b), we analyze the performance
degradation caused by noise injection strategies. The processed datasets under various privacy mech-
anisms are partitioned into training and validation sets. The test accuracy (Test-ACC) and validation
accuracy (Val-ACC) are employed as primary metrics to quantify utility preservation, where the ac-
curacy drop before and after noise perturbation reflects the extent of utility loss. For privacy assess-
ment, we leverage the DLG attack to reconstruct sensitive images from gradients and calculate four
metrics—Test MSE, Feature MSE, SSIM, and PSNR—computed against the original data. These
four metrics are used to evaluate the privacy-preserving performance of different privacy protection
methods and the details of them can be seen in the Appendix. By integrating accuracy degrada-
tion analysis with privacy leakage quantification, we can comprehensively and integrally evaluate
the strengths and weaknesses of different privacy protection methods.We demonstrate the relative
superiority of our method in the performance-utility-privacy trilemma(Sun et al., 2024a).

4.3 EFFECTIVENESS ANALYSIS

Our method achieves enhanced privacy protection through iterative localized noise injection, ensur-
ing data confidentiality after sufficient perturbation steps. To validate the superiority of FedCRAP,
we conducted comparative experiments against multiple baseline approaches across three bench-
mark datasets in federated learning. During training, we launched DLG attacks and evaluated pri-
vacy preservation by computing Test MSE, Feature MSE, PSNR, and SSIM between reconstructed
and original (attacked) images. Higher Test MSE/Feature MSE and lower PSNR/SSIM values in-
dicate stronger privacy protection. Figure 5 in Appendix illustrates the impact of different noise
addition methods on the accuracy of the original data. As can be seen from Figure 5, FedCRAP is
not inferior to, and even outperforms other noise addition methods in ensuring that the accuracy is
not significantly affected. Under this premise, as shown in Table 1, FedCRAP outperforms its com-
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Table 2: Results of Different Algorithms on the PneumoniaMNIST and BloodMNIST

DATASET METHOD VAL
ACC(U,↑)

TEST
ACC(U,↑)

TEST
MSE(P,↑)

FEAT
MSE(P,↑)

PSNR(P,↓) SSIM(P,↓)

BloodMNIST FedSGD 0.8551 0.8593 2.4234 17.7843 11.0750 0.04133
DP-Gas 0.8563 0.8599 1.6195 4.1459 12.7538 0.0659
DP-Lap 0.8580 0.8649 1.7577 4.6171 12.5148 0.0717
FedEM 0.8516 0.8532 1.6886 4.3815 12.6343 0.0688
FedCRAP(Ours) 0.8680 0.8678 1.9378 11.8034 11.9499 0.0432

PneumoniaMNISTFedSGD 0.8740 0.8782 1.7823 3.0114 13.1104 0.0600
DP-Gas 0.8511 0.8542 1.7209 1.6266 13.3475 0.0866
DP-Lap 0.8588 0.8590 1.7262 5.1529 13.3087 0.0868
FedEM 0.8779 0.8798 1.8060 3.1425 13.0293 0.0600
FedCRAP(Ours) 0.8721 0.8750 1.8606 3.3025 13.1915 0.0852

petitors in most metrics across all datasets, particularly excelling in Feature MSE. As shown in Table
1, FedCRAP performs similarly to the clean method (Clean) in terms of accuracy, but significantly
outperforms it in privacy protection.FedCRAP maintains minimal accuracy degradation on MNIST
(0.4%), while exhibiting moderate drops on FashionMNIST (1.5%). These results demonstrate that
our noise-adding method provides significant privacy protection for the original data.Although Fed-
CRAP introduces two core extra steps: dynamic mask generation (based on gradient magnitude
ranking and thresholding) and localized perturbation optimization (via a small number of PGD iter-
ations) ,This minor additional overhead is fully justifiable given FedCRAP’s advantages.

To further evaluate the robustness and generalizability of FedCRAP, we extended our comparative
study to two additional medical imaging datasets: BloodMNIST and PneumoniaMNIST.Across both
datasets in Table 2, FedCRAP exhibits a consistent ability to safeguard sensitive medical image fea-
tures while preserving competitive classification accuracy. On BloodMNIST, it clearly outperforms
all baselines in both utility and privacy protection; on PneumoniaMNIST, it delivers a balanced
performance that remains highly competitive despite the inherently challenging nature of the dataset
and its pre-processing constraints. These findings reaffirm FedCRAP’s suitability for privacy-critical
medical imaging applications, where both diagnostic accuracy and protection against gradient inver-
sion attacks are paramount.

5 CONCLUSION

In this work, we propose the novel method FedCRAP to address the important aspects that previous
federated learning privacy-preserving methods have long overlooked. FedCRAP is based on an
obvious intuition: if focusing on too many areas at once in a task makes it difficult to optimize
every detail, then we only concentrate on the more important parts of the overall image during each
noise addition. By focusing on local areas, it is easier to achieve the best results locally. Through
multiple rounds of focused processing on different local areas, an optimal noise addition strategy
that is refined globally can be achieved.A large number of experiments have shown that, due to the
characteristic of FedCRAP processing image pixel subsets in stages, it effectively protects the data
participating in federated learning from the risk of data privacy theft, thereby providing significant
privacy protection for federated learning systems.

Future work may focus more on exploring more advanced noise addition strategies, as well as inte-
grating the idea of multiple selective processing of important local areas with more diverse federated
learning methods. As large models and big data continue to grow rapidly in the future, the demand
for privacy and security will become increasingly urgent and stringent. Federated learning emerged
to meet the needs of the times, and numerous current studies are continuously strengthening and
perfecting the privacy protection mechanisms of federated learning. It is hoped that this paper can
contribute, even if only in a small way, to the vast body of research in this field.
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A APPENDIX

A.1 METRICS FOR DLG ATTACKS

The attack efficacy is quantified using four complementary metrics:

Test mean squared error (TEST-MSE):

1

n

n∑
i=1

∥xi − x̂i∥2 (1)

where x̂i denotes reconstructed samples, n is the number of pixels. This metric directly measures
the pixel-wise accuracy of reconstructed images but may fail to capture perceptual quality . Lower
values indicate better reconstruction. The TEST-MSE quantifies pixel-level discrepancies between
reconstructed data x̂ and original data x.

Feature-level MSE (FEA-MSE):

1

d

d∑
j=1

∥ϕ(x)j − ϕ(x̂)j∥2 (2)

where ϕ(·) represents deep features. FEA-MSE uses the pre-trained model ϕ(·) to evaluate semantic
similarity in feature space. It reflects semantic fidelity by comparing high-level features, address-
ing limitations of pixel-level metrics. Widely adopted for evaluating privacy leakage in federated
learning.

Structural Similarity Index Measure (SSIM) : SSIM assesses perceptual quality by comparing
luminance (µ), contrast (σ), and structure (σxy):

SSIM(x, x̂) =
(2µxµx̂ + C1)(2σxx̂ + C2)

(µ2
x + µ2

x̂ + C1)(σ2
x + σ2

x̂ + C2)
, (3)

where C1, C2 stabilize division. Values range in [−1, 1], with higher values indicating better struc-
tural preservation.

Peak Signal-to-Noise Ratio (PSNR): PSNR measures signal fidelity using the maximum pixel
value (L, typically 255) and TEST-MSE:

PSNR = 10 · lg
(

L2

TEST-MSE

)
. (4)

Higher values denote lower noise and better signal preservation.

These metrics collectively measure the effectiveness of privacy preservation by evaluating recon-
struction fidelity and perceptual similarity.
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A.2 DIFFERENT τ SELECTION

In the previous experiments, we set the value of τ to 10% by default, and the noise norm radius to
8/255. How should we determine the value of τ when using FedCRAP in practical applications, so
as to maximize its privacy protection capability without affecting the accuracy ? In this experiment,
to further investigate the impact of varying τ values on the performance of FedCRAP, we conducted
tests on the FashionMNIST dataset under multiple different training rounds for DLG attacks. By
plotting the various metrics exhibited by FedCRAP under different values of τ into a line chart as
shown in Figure 3, we can clearly observe the following phenomenon: the results demonstrate that
τ = 30% achieves optimal privacy protection on FashionMNIST with ResNet-18, while maintain-
ing data utility (Val ACC and Test ACC) without significant degradation. Remarkably, the slight
robustness improvement observed may stem from the reduced noise magnitude introduced by the
algorithm. Notably, when τ = 100%, the method degenerates into a traditional global noise-based
privacy-preserving algorithm. Smaller values of τ can still achieve good protection effects after
multiple rounds of noise addition. However, further increasing τ does not significantly enhance the
protection performance. This is precisely the reason why traditional methods fall behind and need
improvement: to protect privacy, too much redundant noise is added to the original data.

This experiment demonstrates that the optimal value of τ is neither the largest nor the smallest, but
rather depends on the specific characteristics of the dataset. A reasonable selection of τ based on
these characteristics is essential for achieving the best performance. We plan to further investigate
how to determine the optimal τ value more efficiently for different datasets in future work to achieve
the most desirable outcomes.

Given the varying characteristics of images across different datasets, selecting a universal optimal
τ value for all datasets is challenging. We found that setting τ at 10% effectively preserves pri-
vacy without degrading image quality. Thus, for simplicity, we consistently set τ to 10% in our
subsequent experiments.

Figure 3: Trend of Result Metrics Changes with Different τ Selection

A.3 VISUALIZATION OF THE NOISE ADDITION PROCESS

We illustrate the noise addition process for specific data points using the BloodMNIST dataset in
Figure 4.
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Figure 4: Visualization of the Noise Addition Process.(In each group of images, the leftmost image
is the original, the middle image visualizes the processed noise, and the rightmost image is the result
after adding one round of noise using FedCRAP)

Table 3: Comparison of different radius on medical datasets

DATASET METHOD VAL
ACC(U,↑)

TEST
ACC(U,↑)

TEST
MSE(P,↑)

FEAT
MSE(P,↑)

PSNR(P,↓) SSIM(P,↓)

OCTMNIST FedEM(1024) 0.8312 0.8452 1.7329 13.3718 11.9857 0.0337
FedEM(2048) 0.8280 0.8431 1.5912 16.3594 12.4864 0.0223
FedEM(4096) 0.8153 0.8292 1.4340 18.3011 12.6001 0.0289
FedCRAP(1024) 0.8322 0.8486 2.5352 13.2344 10.5113 0.0257
FedCRAP(2048) 0.8154 0.8267 1.3496 23.7580 12.8963 0.0348
FedCRAP(4096) 0.7898 0.8004 1.9561 12.5274 11.3061 0.0216

BreastMNIST FedEM(1024) 0.8086 0.7940 5.2473 0.0564 6.6556 0.0295
FedEM(2048) 0.8112 0.7922 5.2896 0.0435 6.5834 0.0189
FedEM(4096) 0.8138 0.7940 5.4801 0.0406 6.3958 0.0154
FedCRAP(1024) 0.7595 0.7336 5.8732 0.3797 6.9222 0.0487
FedCRAP(2048) 0.7474 0.7284 6.1988 0.4390 6.6625 0.0424
FedCRAP(4096) 0.7534 0.7293 7.3373 0.2173 5.9748 0.0415

BloodMNIST FedEM(1024) 0.6454 0.6471 1.9938 4.0800 11.9450 0.0562
FedEM(2048) 0.4083 0.4094 2.2248 1.9910 11.3700 0.0307
FedEM(4096) 0.3102 0.3175 3.7957 0.0134 8.9547 0.0146
FedCRAP(1024) 0.6466 0.6477 2.0203 3.5262 11.7058 0.0327
FedCRAP(2048) 0.3773 0.3722 2.2617 2.5242 11.2494 0.0242
FedCRAP(4096) 0.3756 0.3868 3.8523 0.0099 8.8959 0.0145

PneumoniaMNISTFedEM(1024) 0.8511 0.8446 2.4025 1.6415 11.7792 0.0262
FedEM(2048) 0.8340 0.8285 2.3268 0.8603 11.8668 0.0254
FedEM(4096) 0.8321 0.8317 3.8888 0.0788 9.6960 0.0147
FedCRAP(1024) 0.8473 0.8397 2.2237 0.9583 12.0849 0.0388
FedCRAP(2048) 0.8511 0.8429 2.7982 0.6400 11.0570 0.0247
FedCRAP(4096) 0.7996 0.7997 4.2499 0.1176 9.2394 0.0110

The parenthesized numbers indicate the perturbation radius (in units of 1/255) prior to norm-clipping. For
example, FedEM(1024) denotes a perturbation radius of 1024/255 for FedEM.

A.4 DIFFERENT PERTURBATION RADIUS

To investigate how the perturbation radius — a core hyperparameter directly determining perturba-
tion intensity and data distortion — influences the privacy-utility trade-off of FedCRAP and FedEM
on medical datasets, we conducted experiments with radii 1024, 2048, and 4096 (unit: 1/255)
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As shown in Table 3, We found that FedCRAP is more sensitive to radius changes and small per-
turbation radii (e.g., 1024) enable FedCRAP to strike a favorable privacy-utility trade-off: utility
remains close to FedEM while privacy is significantly strengthened.

Figure 5: Accuracy Comparison of Privacy-Preserving Techniques.
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